
���������	
���
�����	��

�	�
�	�������
��������������������	�����	������ !"#�����������	��
!�$�����%
!���!��
&!!����
�'������
��#�	!
�������	#��
���(�������
�!�)��*+,+-.�������!!	�#������
��/
�"�����	�
!�!	0�	��1!��������!	�����"
����2�	��	1���/������--�*-.��/��3-+,��$22��+,456
+7++�

8��!	�����'���
����8��!	��	�#

9��� � ���/��::��	���#:-,�-,73:�4-5;36,+-63<54;65 � =���/��::��	���#:-,�-,73:�4-5;36,+-6
3<54;65>

?�	� � @��	�� � �
� � ����!�
�� � "��� � ���������	
 � ��
��� � �	���
���/�::��!����������	
�
����:	�:/�	��:45;44:

���������	
�9�	@��	�'��
���@!�/�����������	
���
�����	���*���.�����
�!�����
�� � 
���� � �� �9�	@��	�'A����
��� � ���/��� � ��/'�	#�� �B�
�� � ���
! � �	#��� �"�� � 	��� � ��
����
����
	����'����	��	@	��
!�
�����*�.�
��:����������/'�	#�����������2	�#!���/	�
�"�"�!!�	�����
�����/�������� �	�/!
'�����/�"������
���#	@�������	���/
��	��	��
�'
"���
�������	���"���/����
!���
�����������'�����
�	��
!��������6"��6/��1��/��/���
�	����� � /�	�� � /��	��	�� � �� � ��
�#� � /��@	�� � �� � 
������� � �	�! � 
�� � "�!! � �	�!	�#�
/�	�
��
	!��
��#	@���
���!!�
��
��'/�!	���
��:���9�����������	#	�
!���
�
�
�/
#��?�
��������������������
�#��	��
�'��
'��C�!!�	�����������������!��������	
!!'�	��
�'
"���
�������	����	������"���
!�/��	��	����"������/'�	#�����!���� �?��"�!!�/�!	�'�	�

@
	!
�!���!	��� ���/�::��!����������	
�
����:/�!	�	�����!

?�	�����������
'��	D��"�������1�
!��/��!	����@��	����"������
����
����
����
�
��
@
	!
�!���!	��	��
�����
����	���/��!	����/�!	�	���?���
��
��:����	��"������
/��!	��� �@��	�� � �" � �� � ��
���� � /!
� �@	�	� � �� � /��!	���A� � ���	� � *
 � ������	/�	��
�
'����0�	���.

������������������������



�w���…�‹�‡�•�–�‹�¤�…�����‡�’�‘�”�–�• |         (2021) 11:8120  | �Š�–�–�’�•�ã�����†�‘�‹�ä�‘�”�‰���w�v�ä�w�v�y�~���•�z�w�{�•�~�æ�v�x�w�æ�~�}�{�z�•�æ�{

���‘�•�–�”�‘�Ž�Ž�‹�•�‰���–�Š�‡���„�”�‡�ƒ�•�—�’���‘�ˆ���–�‘�”�‘�‹�†�ƒ�Ž��
�Ž�‹�“�—�‹�†���¤�Ž�•�•���‘�•���•�‘�Ž�‹�†���•�—�”�ˆ�ƒ�…�‡�•
���•�†�”�‡�™�����ä����ä�����†�™�ƒ�”�†�•�w�á���2�Ž�ˆ�‡�‰�‘�����—�‹�œ�æ�
�—�–�‹�±�”�”�‡�œ�x�á�y�á�����‹�…�Š�ƒ�‡�Ž�����ä�����‡�™�–�‘�•�w�á���
�Ž�‡�•�����…���ƒ�Ž�‡�x�á�y�á��
�
�ƒ�”�›���
�ä�����‡�Ž�Ž�•�x�á�y�á�����‘�†�”�‹�‰�‘�����‡�†�‡�•�•�ƒ�æ���‰�—�‹�Ž�ƒ�”�x�á�y* ���¬�����ƒ�”�Ž�����ä�����”�‘�™�•�w*

���Š�‡���„�”�‡�ƒ�•�—�’���‘�ˆ���ƒ���•�Ž�‡�•�†�‡�”���¤�Ž�ƒ�•�‡�•�–���‘�ˆ���Ž�‹�“�—�‹�†���†�”�‹�˜�‡�•���„�›���•�—�”�ˆ�ƒ�…�‡���–�‡�•�•�‹�‘�•���‹�•���ƒ���…�Ž�ƒ�•�•�‹�…�ƒ�Ž���ª�—�‹�†���†�›�•�ƒ�•�‹�…�•��
�•�–�ƒ�„�‹�Ž�‹�–�›���’�”�‘�„�Ž�‡�•���–�Š�ƒ�–���‹�•���‹�•�’�‘�”�–�ƒ�•�–���‹�•���•�ƒ�•�›���•�‹�–�—�ƒ�–�‹�‘�•�•���™�Š�‡�”�‡���¤�•�‡���†�”�‘�’�Ž�‡�–�•���ƒ�”�‡���”�‡�“�—�‹�”�‡�†�ä�����Š�‡�•���–�Š�‡��
�¤�Ž�ƒ�•�‡�•�–���‹�•���”�‡�•�–�‹�•�‰���‘�•���ƒ���ª�ƒ�–���•�‘�Ž�‹�†���•�—�”�ˆ�ƒ�…�‡���™�Š�‹�…�Š���‹�•�’�‘�•�‡�•���™�‡�–�–�‹�•�‰���…�‘�•�†�‹�–�‹�‘�•�•���–�Š�‡���•�—�„�–�Ž�‡���‹�•�–�‡�”�’�Ž�ƒ�›���™�‹�–�Š��
�–�Š�‡���ª�—�‹�†���†�›�•�ƒ�•�‹�…�•���•�ƒ�•�‡�•���–�Š�‡���‹�•�•�–�ƒ�„�‹�Ž�‹�–�›���’�ƒ�–�Š�™�ƒ�›�•���ƒ�•�†���•�‘�†�‡���•�‡�Ž�‡�…�–�‹�‘�•���†�‹�¥�…�—�Ž�–���–�‘���’�”�‡�†�‹�…�–�ä�����‡�”�‡�á���™�‡��
�•�Š�‘�™���Š�‘�™���…�‘�•�–�”�‘�Ž�Ž�‹�•�‰���–�Š�‡���•�–�ƒ�–�‹�…���ƒ�•�†���†�›�•�ƒ�•�‹�…���™�‡�–�–�‹�•�‰���‘�ˆ���ƒ���•�—�”�ˆ�ƒ�…�‡���…�ƒ�•���Ž�‡�ƒ�†���–�‘���”�‡�’�‡�ƒ�–�ƒ�„�Ž�‡���•�™�‹�–�…�Š�‹�•�‰��
�„�‡�–�™�‡�‡�•���ƒ���–�‘�”�‘�‹�†�ƒ�Ž���¤�Ž�•���‘�ˆ���ƒ�•���‡�Ž�‡�…�–�”�‹�…�ƒ�Ž�Ž�›���‹�•�•�—�Ž�ƒ�–�‹�•�‰���Ž�‹�“�—�‹�†���ƒ�•�†���’�ƒ�–�–�‡�”�•�•���‘�ˆ���†�”�‘�’�Ž�‡�–�•���‘�ˆ���™�‡�Ž�Ž�æ�†�‡�¤�•�‡�†��
�†�‹�•�‡�•�•�‹�‘�•�•���…�‘�•�¤�•�‡�†���–�‘���ƒ���”�‹�•�‰���‰�‡�‘�•�‡�–�”�›�ä�����‘�†�‡���•�‡�Ž�‡�…�–�‹�‘�•���„�‡�–�™�‡�‡�•���‹�•�•�–�ƒ�„�‹�Ž�‹�–�›���’�ƒ�–�Š�™�ƒ�›�•���–�‘���–�Š�‡�•�‡��
�†�‹�¡�‡�”�‡�•�–���¤�•�ƒ�Ž���•�–�ƒ�–�‡�•���‹�•���ƒ�…�Š�‹�‡�˜�‡�†���„�›���†�‹�‡�Ž�‡�…�–�”�‘�’�Š�‘�”�‡�•�‹�•���ˆ�‘�”�…�‡�•���•�‡�Ž�‡�…�–�‹�˜�‡�Ž�›���’�‘�Ž�ƒ�”�‹�•�‹�•�‰���–�Š�‡���†�‹�’�‘�Ž�‡�•���ƒ�–���–�Š�‡��
�•�‘�Ž�‹�†�æ�Ž�‹�“�—�‹�†���‹�•�–�‡�”�ˆ�ƒ�…�‡���ƒ�•�†���•�‘���…�Š�ƒ�•�‰�‹�•�‰���„�‘�–�Š���–�Š�‡���•�‘�„�‹�Ž�‹�–�›���‘�ˆ���–�Š�‡���…�‘�•�–�ƒ�…�–���Ž�‹�•�‡���ƒ�•�†���–�Š�‡���’�ƒ�”�–�‹�ƒ�Ž���™�‡�–�–�‹�•�‰���‘�ˆ��
�–�Š�‡���–�‘�’�‘�Ž�‘�‰�‹�…�ƒ�Ž�Ž�›���†�‹�•�–�‹�•�…�–���Ž�‹�“�—�‹�†���†�‘�•�ƒ�‹�•�•�ä�����—�”���”�‡�•�—�Ž�–�•���’�”�‘�˜�‹�†�‡���‹�•�•�‹�‰�Š�–�•���‹�•�–�‘���–�Š�‡���™�‡�–�–�‹�•�‰���ƒ�•�†���•�–�ƒ�„�‹�Ž�‹�–�›��
�‘�ˆ���•�Š�ƒ�’�‡�†���Ž�‹�“�—�‹�†���¤�Ž�ƒ�•�‡�•�–�•���‹�•���•�‹�•�’�Ž�‡���ƒ�•�†���…�‘�•�’�Ž�‡�š���‰�‡�‘�•�‡�–�”�‹�‡�•���”�‡�Ž�‡�˜�ƒ�•�–���–�‘���ƒ�’�’�Ž�‹�…�ƒ�–�‹�‘�•�•���”�ƒ�•�‰�‹�•�‰���ˆ�”�‘�•��
�’�”�‹�•�–�‹�•�‰���–�‘���†�‹�‰�‹�–�ƒ�Ž���•�‹�…�”�‘�ª�—�‹�†�‹�…���†�‡�˜�‹�…�‡�•�ä

Drops and bubbles adjust their shape to minimise the surface energy, for instance, becoming spherical when 
 suspended1. However, drops and bubbles can exist, at least temporarily, in geometries of a higher free energy. 
Such geometries are inherently unstable, driven by surface tension to revert back to the more energetically favour-
able shape. A free liquid jet, for example, while cylindrical at the nozzle outlet, breaks into spherical droplets by 
virtue of the Plateau–Rayleigh (P–R)  instability2,3, as volume for volume, spheres have smaller surface area than 
cylinders. For a thin inviscid liquid cylinder, with radius, r, and length, L, small periodic perturbations with 
wavelength, � � �� �  on the surface of the liquid become ampli�ed over  time4. However, not all perturbations 
grow equally. �e wavelength of the fastest growing perturbation is given by the universal relation, � � � �����  
and so the mode of breakup is given by the simple geometric relation � � � �� �

3,5.
Free �oating toroidal shaped droplets and bubbles are another example of a nonminimal energy shape which 

regularly occurs in nature. �ese can be found when droplets impact on superhydrophobic  surfaces6, be created 
by rapid oscillation of the surface, by high rising  speeds7–9 or by shaped magnetic  �elds10. Free �oating toroidal 
shaped droplets and bubbles can breakup through the capillary driven P–R instability, with the most unstable 
breakup mode being related to the geometry of the  torus11–13. �eir unique topology allows an additional shrink-
ing instability which is not possible in a cylinder. �is acts to close the inner hole of the toroidal liquid �lament, 
thus re-forming to a single sphere, and is denoted as an � � �  mode. �erefore, during the energy minimisation 
of a toroidal shaped droplet there exists a competition between the P–R instability and the shrinking instability, 
and so the shape and the topology add complexity to understanding the mode of  breakup14.

Such complexity is further increased when a small droplet of a partially-wetting liquid is placed on a solid 
surface, where the balance of the solid–vapour, � ��  solid–liquid, � ��  and liquid vapour, �  surface tensions deter-
mines the static wettability of the surface and forces the liquid to take the shape of a spherical cap shaped droplet 
intersecting the solid with Young’s equilibrium angle, ��� � � � �� �� � � �� ��� 15. When out of equilibrium, surface 
tension acts as a restoring force to minimise the overall energy of the  system1. �is leads to the motion of the 
contact line, controlled by both the equilibrium angle and the localised slip, �  , on the surface. For a higher energy 
geometry, such as a toroidal liquid �lament on a  substrate16, hydrodynamic instabilities and static and dynamic 
wettability act to minimise the overall energy of the  system17,18. However, the subtle interplay between each of 
these e�ects and the timescales over which they act makes understanding the pathway to minimisation, and 
therefore predicting the outcome,  complicated17,19,20.
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Here, we report how localised controllable surface wettability is able to produce and control the dewetting of 
toroidal liquid �lms into toroidal liquid �laments and their eventual break up into droplets. We use dielectrowet-
ting to produce the initial ring-shaped �lament of electrically insulating liquid on the normally liquid repellent 
surface. We study the dynamics and resultant breakup modes of toroidal �lms a�er the dielectrowetting actua-
tion is abruptly switched o�. We use Fourier series and linear stability analysis (LSA) to elucidate the subtle role 
that both static and dynamic wettability play in the liquid shape evolution. Lastly, by control over the degree of 
surface wettability through our dielectrowetting method, we elucidate selection of the pathway and mode during 
the evolution of a toroidal liquid �lament.

���‡�•�—�Ž�–�•
���ƒ�–�Š�™�ƒ�›�•���–�‘���‡�•�‡�”�‰�›���•�‹�•�‹�•�‹�•�ƒ�–�‹�‘�•���‹�•���–�‘�”�‘�‹�†�ƒ�Ž���‹�•�•�—�Ž�ƒ�–�‹�•�‰���Ž�‹�“�—�‹�†���¤�Ž�•�•�ä��To form our initial toroidal 
spread �lm of electrically insulating liquid we use non-uniform electric �elds generated between sub-surface 
electrodes to polarise the electric dipoles within the liquid, immediately adjacent to the solid-liquid interface. 
�is  dielectrowetting21 increases the e�ective local surface wettability, and provides the unique ability to impose 
a pattern of voltage controlled partial, to full, wettability onto a normally non-wetting solid surface. �is allows 
a variety of desired shaped contact and wetting areas to be de�ned by the electrode geometry, and here we have 
created liquid wetting rings. We form thin spread toroidal �lms of an electrically insulating dielectric liquid, 
trimethylolpropane triglycidyl ether (TMP-TG-E) (liquid vapour surface tension � � ����� � ���� ����  , and 
dynamic viscosity � � ��� � �� �����  @ �� � � 22), from initial spherical cap shaped droplets (see Supplementary 
Movie M1) by patterning our surfaces with a series of inter-digitated electrodes arranged in a concentric ring 
array, capped with a thin planarising dielectric layer and a hydrophobic surface coating (See “Methods” sec-
tion). Upon application of an A.C. voltage, V, between electrodes a non-uniform electric �eld localised at the 
surface is  created23,24. Deposited droplets respond by spreading over the solid until they cover an area such that 
the overall energy, having surface tension and electrostatic components, is minimised. �e electrostatic energy 
component is purely dielectric for an electrically insulating liquid such as TMP-TG-E used in this work, and is 
associated with the polarisation of bound charge in induced dipoles in the liquid in the absence of free charges. 
�e induced increase in wetting area is accompanied by a reversible reduction in the solid-liquid contact angle, 
�  , with increasing V. Above a threshold voltage, � �� � ��� �  , the liquid spreads completely over the solid patch 
above the electrodes to create a toroidal �lm that remains held in place due to the electrostatic actuation, see the 
le� hand column of Fig.�1. It is important to note that the ability to form such a reversible, spread, ring-shaped 
liquid �lm on a solid �at surface is unique to our dielectrowetting approach. �is would not be possible using an 
alternative Electrowetting on Dielectric (EWOD)25,26 approach which su�ers from contact angle  saturation27,28, 
since in EWOD the limited extent to which the contact angle can be reduced would therefore prevent the liquid 
from spreading down to the initial spread �lm state that we can achieve using dielectrowetting.

By suddenly setting the voltage V between electrodes to zero, we rapidly quench the electric �eld, and hence 
the patterning of increased surface wettability is abruptly and completely removed, introducing a sudden change 
in the free energy of the system. �is forces the shape of the toroidal liquid �lm to evolve, driven by surface ten-
sion forces, to adopt the shape that minimises the total free energy (see Fig.�1 and Supplementary Movie M2). 
Initially, this occurs by a rapid dewetting process occurring locally at both the inner and outer contact lines with 
a speed, U driven by the deviation from equilibrium of the contact  angles22,29. During this rim dewetting phase 
the liquid shape evolves from a spread toroidal �lm to take the form of a toroidal liquid �lament, keeping the 
memory of the initial patterning of the liquid �lm. We de�ne two geometric measurements while the toroidal 
liquid �lament remains unbroken; � �  , which is the mean of the inner and outer radii, � � and � �  , respectively, 
and � �� � � � � �� � � � ��� �  which is the width of the torus as a function of the azimuth angle �  (see Fig.�1). 
To simplify our discussion, we also de�ne the average width of the torus, denoted by ��  , and an aspect ratio as 
�� � � � � ��  . For the �lament, the reduced width w is now dependent on the liquid volume and the instantaneous 
contact angle �  . �e toroidal liquid �lament continues to dynamically evolve in shape to minimise the surface free 
energy. �e global minimum energy state corresponds to a single droplet, thereby losing memory of the original 
�lm topology with its central hole, see the � � �  mode in Fig.�1a. However, with decreasing liquid volume, we 
observe a number of disconnected droplets distributed around the original ring geometry, for example see the 
� � �  and � � �  modes in Fig.�1b and Fig.�1c, respectively. �ese latter droplet states result from the Plateau–Ray-
leigh (P–R) instability and have a higher total surface energy for a �xed volume than the single droplet state.

In general terms, the evolution of the liquid shape and selection of pathway is a competition between the 
timescales of dewetting and P–R breakup. �e timescale of dewetting is given by, ���������� � �� �� �  , where ��  
is the dewetting lengthscale, � � � � � �

� �� �� �� �� �  is the characteristic velocity and �  is a microscopic cut-o� 
length  scale22. While the timescale of the mode with maximum growth rate for P–R instability in a toroidal 
liquid �lament can be given by �� � � �� � �� � ��  , and central collapse, ���� � �� � �� �� �  (see Supplementary 
Information for details). �erefore, the initial pathway to minimisation for all �nal states is a rapid shrinking of 
the torus width from both contact lines, ���������� � ��� ��  resulting in the intermediary state. In this state the 
aspect ratio for the torus is increased, thereby decreasing the timescale of each P–R mode. If �� � � ����  , then 
the droplet evolves by the radial movement of both contact lines towards the center resulting in a single on-axis 
droplet, termed � � �  mode. If �� � � ����  , P–R instability breakup now dominates the minimisation pathway and 
the fastest growing P–R mode drives azimuthal �ows forcing “pinch-o� ” resulting in a string of disconnected 
droplets distributed around the original ring geometry. �erefore, for a �xed volume and surface wettability, the 
geometrical quantity of the aspect ratio at the intermediary state directly controls the two competing timescales. 
�en the selection of energy minimisation pathway is the one which locally reduces the free energy the quickest 
and whilst not necessarily being a global minimisation of energy (see Fig.�1 and Supplementary Movie M2).
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Figure�1.  Experimental results on the pathways to energy minimisation for initial spread toroidal-shaped liquid 
�lms having di�erent deposited volumes. (a) ��� � ��� � �  . (b) ��� � ��� � �  . (c) ��� � ��� � �  . (d) ��� � ��� � �  . 
(e) ��� � ��� � �  . (f) ��� � ��� � �  . (g) ��� � ��� � �  . (h) ��� � ��� � �  . Images of the initial toroidal liquid �lms 
are shown in the le� hand column that were produced using ring-shaped regions of electric �eld controlled 
variable wettability (regions subsequently marked by grey dashed circles for comparison). �e evolution of the 
liquid shape is shown in each case in subsequent columns at di�erent times a�er a sudden quench of the electric 
�eld to zero. Blue arrows show the direction of movement of the contact line and azimuthal �ows. Images edited 
for brightness and contrast using Fiji (version 1.52p, https:// imagej. net/ Fiji).
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To understand the pathways of minimisation, we quantify how a toroidal �lm evolves as a function of time. 
�e results of these measurements for an � � �  mode breakup with a schematic cross section of a segment of 
the toroidal �lm are shown in Fig.�2 (See Supplementary Movie M3). At the initial state, the liquid is shaped 
as a �lm of even thickness covering the electrode area (stage 1). As the electric �eld is quenched the dewetting 
phase begins and both inner and outer contact lines recede forming two capillary rims that move towards each 
other (stage 2). For clarity, we have exaggerated the �atness of the �lm and relative height of the formed capillary 
rims for this volume in Fig.�2a. We plot the velocities of the inner, � � ��� �  , and outer, � � � �� �  , edge velocities as 
a function of time (see Fig.�2b). When the two rims merge, the contact lines slow down and the contact angles 
increase. Eventually, the inner contact line stops moving and the contact angle raises to the receding contact 
angle (stage 3). However, the outer contact line is still decelerating, and by conservation of mass, the �uid in the 
outer section is drawn inwards, which further increases the inner contact angle up to the advancing contact angle 
(stage 4). �is event de�nes the intermediary state, shown by the vertical solid line, which corresponds to when 
� � ��� � � �  is no longer constant and starts to become negative as the inner radius commences to decrease and 
experimentally is found by the onset of motion of the inner contact line ( � � ��� � � �  and � � � �� � � �  simulta-
neously, see inset in Fig.�2b). �e end of the dewetting phase results in a shape of an unstable equilibrium, i.e., 
the toroidal liquid �lament.

Figure�2c shows the instantaneous width of the toroidal liquid �lament using a colour scale, as a function 
of time on the horizontal axis and azimuthal angle on the vertical axis. At the start there is a rapid decay of the 
width at all angles, arising from the initial dewetting phase ( � � ���� �  ). A�er the dewetting phase, the toroidal 

Figure�2.  Characterisation of the evolution of an � � �  breakup induced by quenching the electric �eld for a 
droplet of deposited volume, ��� � ��� � �  . (a) Schematic representation of the cross section of the liquid ring 
marked by the solid line. Not to scale. (b) Plot of inner, � � ��� �  (solid circles), and outer, � � � �� �  (open circles), 
edge velocities as a function of time. �e grey shaded points are the raw experimental data and the black points 
show the low-pass �ltered data. Inset shows a zoom in on the intermediary phase. (c) Contour plot of the 
toroidal liquid �lament width w with time t as a function of the azimuthal angle �  . (d) Time evolution of the 
�rst six coe�cients from a Fourier analysis of � � � � � � . �e vertical solid line marks the end of the intermediary 
phase at � � ���� �  . Dashed lines show linear �t to data at subsequent times. Images edited for brightness and 
contrast using Fiji (version 1.52p, https:// imagej. net/ Fiji).
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liquid �lament enters the intermediary phase ( ���� � � � � ���� �  ), in which the toroidal liquid �lament is nearly 
uniform along the entire circumference and the liquid �lament edges are approximately stationary. At the end of 
the intermediary phase minor sinusoidal perturbations develop along the circumference of the inner and outer 
edges of the �lament due to P–R instability. For continuity, these distortions must have a wavelength which is 
an integer fraction of the overall contact line circumference �� � �� � 13.

To visualise the time evolution of each mode, we carry out a Fourier series analysis on the width of the toroi-
dal liquid �lament as a function of the azimuthal angle, � � � � � � . �us, � �  corresponds to the weight of the n-th 
mode of the Fourier series � � � � � � �

�
� � � � � � � ����  . Fig.�2d shows the Fourier coe�cients for the �rst six modes 

during the time evolution of the toroidal liquid �lament. Close examination immediately a�er the intermediate 
state ( � � ���� �  ) reveals that several modes are growing simultaneously and exponentially with time following 
the relation �� � � � � � � , where �  is the growth rate. Our analysis shows that for this experiment, whilst at the end 
of the dewetting phase the coe�cients of �� � � and �� � � modes are similar and each coe�cient grows with time, it 
is the �� � � coe�cient which grows fastest, resulting in the � � �  �nal state. �erefore, using Fourier analysis we 
are able to quantify the growth rate of each of the coe�cients, and, without loss of generality, �nd the fastest 
growing mode that results in the �nal pattern.

���ƒ�–�Š�‡�•�ƒ�–�‹�…�ƒ�Ž���•�‘�†�‡�Ž�ä��We construct a mathematical model to analyse the behaviour during breakup of a 
relaxing toroidal liquid �lament. In the absence of electric �elds, the dynamics is governed by the competition 
between capillary forces and viscous dissipation. During the intermediate stage, the liquid �ows radially or azi-
muthally leading to the � � �  mode collapse or the � � �  mode P–R pathways, respectively. In both cases, the 
characteristic lengthscale is proportional to mean of the inner and outer radii, � �  . Considering that the typical 
thickness of the �uid is much smaller than � �  , we model the breakup dynamics of the toroidal liquid �lament 
using the thin-�lm equation in the long wavelength  approximation17,30,

where h is the local thickness of the dielectric liquid, �  is the local mean curvature of the interface, and �  is the 
gradient operator in cylindrical coordinates �� � � � � � , with R and z being coordinates parallel and perpendicular 
to the wall, respectively. We note that Eq.�(1) is strictly valid in the limit of small contact angles, where the �ow is 
approximately parallel to the solid wall. To model the contact angles observed in the  experiments31, we retain the 
full expression for the curvature: � � �� � � � ��  , where ��  corresponds to the unit normal vector to the interface. 
Such an approximation does not capture the details of the �ow close to the contact line, but retains the main e�ect 
of driving and dissipative forces. In Eq.�(1), it has been assumed that the Navier boundary condition is satis�ed 
at the liquid-solid interface for the velocity of the �ow in the radial direction, � � �� � �� 32,

which de�nes the contact line slip length � 32 mobility parameter (see Supplementary Information for more 
details).

To take advantage of the symmetry of the system and model high contact angles ( � �� �  ), we parameterise 
the interface pro�le in toroidal coordinates as

where a de�nes unit of length of the coordinate system and is given by � � �� �� � � �� �  at the beginning of the 
intermediate phase. �e surface � � � �� � � � � � , corresponds to the liquid-vapour interface parameterised by the 
two angles �  and �  (see Fig.�3). For example, constant S results in a torus of constant minor radius. Eq.�(3) has 
the advantage that h becomes single-valued, and thus, alleviated from the singularities of contact angles above 
�� �  that Eq.�(1) produces.

Prior to the intermediate phase, the outer contact line slows down tending to form a static receding contact 
angle. However, the inner contact line has stopped its motion and remains immobile for some time while build-
ing up to form a static advancing contact angle. �is di�erence of contact angles is due to hysteresis and allows 
the toroidal liquid �lament to come close to an equilibrium state that we denote by � �  . From this point, we carry 
out a Linear Stability Analysis (LSA) to solve Eq.�(1) by performing a single mode perturbation,

In Eq.�(4), the last term corresponds to the Fourier mode of amplitude �  and exponential growth rate �  , as 
observed in the experiments. In the same way, the curvature is expressed to linear order in �  , � � � � � �� �  , where 
� �  corresponds to the variation from equilibrium.

We begin by �nding the equilibrium shape; this corresponds to an interface of constant curvature, � �� � � � � �  , 
and is uniquely determined by the position of the two contact lines or, equivalently, � �  and AR. �erefore, we 
vary � �  to set the outer contact angle to match the experimental observations (see Fig.�3a).

A�er obtaining � �  , we proceed to solve Eq.�(1) to �rst order in �  by substitution of Eq.�(4)20,30. �e resulting 
equation corresponds to an eigensystem, where �  corresponds to the eigenvalue and � �  the eigenfunction. �e 
growth rate of a Fourier mode is found by the largest eigenvalue for a given n. For consistency, we enforce Eq.�(2) 
as the boundary conditions for � �  . �e correspondence is established by calculating the velocity of the �ow at 
the contact lines, i.e.,

(1)� �� � � � � � �
�
� � � � � � ��� �

�
� ��

(2)� � �� � �� � � � � � � �� � ���

(3)� �
� ��� �

���� � � ��� �
�

(4)� �� � � � � � � � � �� � � � � � �� � ��� �� � � � �
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where the choice of signs corresponds to � � �  and � � �  , respectively. In this way we are able to model the fric-
tion forces at the contact line and consequently the dynamics of the contact angle (see Fig.�3b). For slip lengths 
of magnitude � � � �  , the change in the contact angle becomes negligible as the friction forces are reduced. For 
� � �  , in contrast, the contact lines become pinned and thus unable to move.

We proceed to �nd the shape and growth rate of the Fourier modes. To illustrate our results, in Fig.�3b, we 
present an example of an � � �  mode, mirroring the experimental situation showing in Fig.�2a. �e gradient of 
the change in pressure, ��� � � �  , drives the �ow inside the toroidal liquid �lament, therefore, if the � �  is negative 
in the lobe-shaped regions and positive in the thin ones, the perturbation has a positive growth rate.

From the model, we �nd that there are three key parameters which control the stability of the Fourier modes, 
a geometric parameter, AR, a static wetting parameter, � ���  and dynamic wetting parameter, �  . From the experi-
mental images we are able to determine the values of � ���  and AR for each of our experiments (see “Methods”) 
meaning the only free parameter to match the model to the experiments is the slip length, �  . To match the model 
with the experiments, we proceed to �nd the value for �  that �ts the experimental results when the electric �eld 
is quenched.

���ƒ�–�Š�™�ƒ�›�•���‹�•���—�•�‹�ˆ�‘�”�•���•�—�”�ˆ�ƒ�…�‡���™�‡�–�–�ƒ�„�‹�Ž�‹�–�›�ä��We now compare our mathematical model to the experimen-
tal results on the dewetting of toroidal insulating liquid �lms into toroidal liquid �laments and their eventual 
break up into droplets which is initiated by quenching the electric �eld (i.e. setting � � �  ) to restore the original 
intrinsic uniform surface wettability, see Figs.�1 and 2a (also Supplementary Movie M2). Figure�4a shows the 
phase diagram of the theoretical modal growth rates in dimensionless form, � � ����� �  , as a function of the 
aspect ratio over which the experimental data has been plotted (black circles in Fig.�4a). For our experimental 
data, the aspect ratio for each experiment is measured at the end of the dewetting phase, while the mode number 
is the mode of the �nal breakup pattern for that experiment. �e error bars show the error in measurement of 
AR due to the error in locating the exact end of the dewetting phase, as for higher aspect ratios the P–R insta-
bility begins to emerge during dewetting (See Supplementary Movie M2). �e dashed and solid lines show the 
predicted marginal stability limit and the maximum growth rate at a given aspect ratio, respectively. �e value of 
the contact angle at the outer contact line � ���  comes directly from the side view of experimental measurements 
( �� � � � �  ) and the only �tting parameter used to match the theoretical predictions to the experimental data is 
the slip length, �  . It should be noted that, since the mode � � �  is always present, the aspect ratio decreases dur-
ing the breakup state. �is implies that the growth rates are dynamically changing, and the mode number for 
maximum growth-rate reduces. �erefore, the maximum growth-rate curve is shi�ed slightly above the experi-

(5)� � �� � �� � � � � � � � ���� �� �� � ��� ��� �� � � � ��
� �� ��

Figure�3.  Results of the mathematical model. (a) Equilibrium solution as constant curvature solutions 
prescribed by the positions of the contact lines �xing the aspect ratio to �� � ����  . A contact angle can also be 
prescribed by adjusting the value of the curvature � �  . (b) �eoretically generated shape of a perturbed state of 
positive growth at � � �  ( � � �����  for visibility). (c) Surface plot of the perturbed interface ( � � �����  ). In this 
illustration � � �  , � ��� � �� �  and ��� � � ���� .
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mental results. However, we observe a strong correlation between the maximum predicted growth rate and the 
�nal modal outcome of each experiment across a wide range of measured intermediary state aspect ratios.

A more direct comparison between the mathematical model and the experimental results can be made from 
analysing the measured and predicted growth rates of each mode. Figure�4b shows a comparison between the 
experimentally measured growth rates (symbols) from Fourier analysis plotted against the theoretical predic-
tions (solid lines) for three di�erent aspect ratios. Although the values that n can acquire are strictly integers, 
by analytical continuity, we are able to explore the behaviour at intermediate values. It is clear that changing the 
aspect ratio changes the growth rates of the di�erent modes. A low aspect ratio represents a liquid torus of large 
tubular radius, and higher n modes increase the surface energy and therefore � � �  . On the other hand, higher 
aspect ratios represent narrow tori and thus higher order modes become energetically favourable with a positive 
growth-rate. Increasing the aspect ratio resembles a linear stripe described by the Plateau–Rayleigh  instability33. 

Figure�4.  Comparison between experimental observations and LSA predictions for quenching of the electric 
�eld. (a) Phase diagram of the modal growth rates as a function of the intermediary stage aspect ratio. �e 
experimental data is shown as black circles. �e maximum growth-rate for a given AR is represented by the 
solid line, the dashed line corresponds to marginal stability � � � � � . Contour lines show equal growth rate. (b) 
Comparison between experimentally measured modal growth rates at the onset of the Plateau–Rayleigh phase 
(symbols) and the theoretical prediction (solid lines) for three di�erent experimental aspect ratios. Black—AR 
= 2.39 ( ��� � ��� � �  ). Red—AR = 3.72 ( ��� � ��� � �  ). Blue—AR = 6.99 ( ��� � ��� � �  ). �e value of the contact 
angle at the outer contact line is used as � ��� � �� �  , the �tted slip-length is ��� � � ���� � ����  . Inset shows the 
collapse of the data on to the single master curve.
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�us, for a superposition of Fourier modes of random amplitude, the mode with highest growth rate is more 
likely to dominate the breakup of the toroidal liquid �lament. Overall, the theoretical predictions are in good 
agreement with the experimental data.

From the inset of Fig.�4b, it can be observed that the modal growth rate is well captured by a fourth order 
polynomial (dashed curve in the inset) in n, where odd powers in n do not appear since the Fourier modes are 
invariant upon a change in sign of n. Moreover, at high aspect ratios and low contact line mobility, �� � � �� � �  , 
and so the independent term can be neglected. �is implies that the polynomial form can be expressed in terms 
of two independent coe�cients, for instance, a constant of proportionality, and the maximum modal growth for a 
given aspect ratio, � ��� � � � � � � � ��� � � � � �� � ������ � . Furthermore, as can be seen in Fig.�4a, the maximum 
modal growth follows a straight line at high aspect ratios, therefore a transformation can be made to reduce the 
parameter space into a master curve (see inset in Fig.�4b),

where � � ����� � ��  , is the transformation to collapse into a master curve and � ��� � � ��� ���� � ��  cor-
responds to the maximum modal growth. Both, �  and � ���  depend on the outer contact angle � ���  and slip length, 
�  . In the Supplementary Information, we de�ne approximate expressions to the numerical results obtained for 
�  and � ��� .

���ƒ�–�Š�™�ƒ�›�� �•�‡�Ž�‡�…�–�‹�‘�•�� �„�›�� �‡�Ž�‡�…�–�”�‹�…�� �¤�‡�Ž�†�� �’�ƒ�–�–�‡�”�•�‡�†�� �™�‡�–�–�ƒ�„�‹�Ž�‹�–�›�ä��We now quantify how a toroidal �lm 
evolves as a function of time throughout the shape evolution following the sudden reduction in the voltage value, 
in contrast to complete voltage removal, at � � �  . Rather than quenching the electric �eld ( � � � �  ), we instead 
switch the applied voltage to a non-zero retraction voltage, � � � �  , which is lower than � ��  , thereby retaining 
a geometrically patterned wettability. �is allows for the elucidation of the role of static and dynamic wettabil-
ity on the pathways, with the degree of wettability controlled by � �  . �e voltage controlled wettability, denoted 
by � � � � � � � �  , is increased within the patterned ring area de�ned by the electrodes, in comparison with the 
lower wettability on the surrounding outer and enclosed inner solid  areas34. In this situation, the toroidal �lm 
driven by surface tension forces still evolves via dewetting followed by P–R breakup. However, the dominant P–R 
breakup mode n is now reduced, by a number determined by the value of � �  , in comparison with the identical 
quenching experiment (i.e. when � � � �� �  ). To demonstrate this e�ect we choose a very low liquid volume, 
��� � ��� � �  , to provide an intermediary state that has a high aspect ratio, and which results in a high �nal P–R 
mode. Figure �5 shows how exactly the same initial toroidal �lm that results in an � � �  mode when � � � � �  , 
switches to an � � �  mode when � � � ��� �  (see Fig.�5a,b). To study the e�ect of � �  , we re-spread the droplets 
back to the initial toroidal �lm using � � � ��  and repeatedly switch to increasing retraction voltages i.e. �nal 
increased surface wettability (see Fig.�5c and Supplementary Movie M4). Figure�5c shows that the dominant 
P–R instability mode decreases as the surface wettability increases. Here the � � �  pathway is excluded because 
the voltage maintains a higher wettability within the annular area of the ring, compared to the area without 
electrodes within the centre of the ring. Measurements of the aspect ratio at the intermediary state show that the 
aspect ratio decreases with increasing voltage, following an approximately linear relationship for � � � �� �  (see 
Supplementary Fig.�4). However, we �nd that the modi�cation of the aspect ratio at the intermediary state alone 
is insu�cient to fully explain the di�erent �nal breakup patterns.

We use the Fourier analysis technique to examine how the electric �eld patterning of the wettability of the 
surface determines the �nal P–R breakup pattern demonstrated in Fig.�5. Fig.�6a shows the experimentally 
measured growth rates of three Fourier modes, � � �  , 5 and 7 for a range of retraction voltages. It is clear that, as 
the retraction voltage increases, and hence the wettability of the surface increases, the growth rate of each mode 
is modi�ed. For the � � �  mode, the growth rate rapidly declines above �� �  , to about ���  of its initial value at 
��� �  . �e growth rate of the � � �  mode remains predominantly una�ected until around ��� �  when it begins 
to decrease. �e � � �  mode growth rate initially shows a rise around �� �  which is biased by the geometry of the 
underlying electrode structure, nonetheless, the growth rate of this mode decreases back towards its original value 
(with scatter) at higher voltages. �erefore, at low voltages higher order modes are the fastest growing, dominat-
ing the breakup pattern. As the retraction voltage increases, the stronger suppression of higher order modes 
enables lower order modes to dominate, with growth rates becoming increasingly equivalent at higher voltages.

In the dielectrowetting driven electric �eld patterning of the static wettability, the contact angle is explicitly 
linked to the applied voltage between  electrodes21,34. �erefore, switching to non-zero retraction voltages causes 
the toroidal �lm to relax during the dewetting phase to a contact angle lower than the equilibrium angle. �e 
voltage-dependent angle is modelled as ��� � � � � � ��� � � � ��� ��  , where ��� � �� � � ���  is the dielecrophoretic 
force per unit length, where � �� � � � � � � � is the di�erence between the liquid and vapour permittivities, � � and 
� �  respectively, and �  is the penetration  depth21. For the present experiments, ��� �� � � � � �� �� � ��  (see Sup-
plementary Information). �is e�ect explains how the aspect ratio decreases with increasing voltage. For a given 
volume, a higher voltage promotes wettability and a lower contact angle, which leads to a wider and shallower 
cross-section of the toroidal liquid �lament with a lower aspect ratio. From our Linear Stability Analysis, we �nd 
that the lower contact angle, representing increased wettability, dominates the selection of the breakup mode 
more than aspect ratio alone as lower contact angles are more stable against the P–R instability.

�e motion of the contact line is a�ected by the retraction voltage as, during initial dewetting and relaxation, 
the contact line moves orthogonally to the underlying electrode geometry through the spatially varying electric 
�eld. At the edges of the electrode stripes the electric �eld is at peak intensity which creates stagnation points and 
introduces voltage dependent  pinning21,35. Taking into account the exponential evolution of the Plateau–Rayleigh 
instability, the pinning force is proportional to the velocity of the contact line and to the dielectrophoretic force 

(6)�� �� �� � � ��� � �� � � � � �� �
��� � � � � �
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(see Supplementary Information). �erefore, the balance of stresses that give rise to the boundary condition of 
Eq.�(2), now includes a term that depends on � �  and restricts the mobility of the contact line,

where b is a constant of proportionality to be found by the experimental results. Equivalently, we can de�ne an 
e�ective slip length of the contact line, � �� � � �� �� � � , de�ned by the reciprocal relation, � ��

�� �� � �� � � � � �
�  , 

where � � � ������� �� � � � � ���� � �� �� � �� � � ��  . At � � � �  the slip length is unaltered, � �� ��� � �  . As the 
retraction voltage � �  is increased, � ��  decreases, with � �� � �  as � � � � .

We introduce the voltage dependent behaviour of the contact angle and slip length (mobility) of the contact 
line into the mathematical model to use the voltage as the control parameter and compare against our experi-
mental results. Figure�6b shows the phase diagram of the theoretical voltage controlled model growth rates in 
dimensionless form over which the experimental data has been plotted (black circles in Fig.�6b). �e observed 
scatter of the experimental data occurs from the quantization of the �nal mode value within each experiment 
and is expected given the nearly equivalent growth rates of competing modes at higher voltages (see Fig.�6a). �e 
experimental data points show a close agreement with the maximum growth rate curve (solid line).

We note here that the e�ect of reducing contact line mobility at higher voltages greatly inhibits movement 
of the contact line in the radial direction (see Fig.�6c and Supplementary Movie M4). Fig.�6c (i) shows two main 
droplets produced by the P–R instability during a voltage modulated experiment ( � � � ��� �  ) connected by a 
thin liquid �lament. Over time the connecting �lament decreases in length (see Fig.�6c (ii) and (iii)) and the two 
main droplets join together resulting in a single �nal droplet (see Fig.�6c (iv)). �e thin connecting liquid �la-
ments between the main droplets are therefore stabilised against breakup and the preferred energy minimisation 
method is axial retraction. �erefore, our patterning of wettability is able suppress the formation of secondary 
and tertiary droplets between the main droplets produced by the P–R instability.

(7)
� �

�
� �� �� �� � �

�
� � � �� � � �

Figure�5.  Electric �eld modulation of the Plateau–Rayleigh instability pathway for a �xed volume of 
��� � ��� � �  by application of a retraction voltage � �  . (a) Time sequence images of an evolving toroidal 
liquid �lm at � � � � �  . (b) Time sequence experimental images of the same evolving toroidal liquid �lm at 
� � � ��� �  . (c) Formation of lower order modes, � � �  , 5, 4, 3, 2 and 1 from the same initial toroidal �lm by 
localised controllable surface wettability ( � � �� �  ). Images edited for brightness and contrast using Fiji (version 
1.52p, https:// imagej. net/ Fiji).
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Figure�6.  Growth rates of the voltage modulated experiments ( � � �� �  ). (a) Growth rates of various Fourier 
modes as a function of applied retraction voltage obtained from experimental �tting. (b) Phase diagram 
of the growth rates of possible modes as a function of the applied voltage, using � � �� � � ���� � ����  , 
� � � ���� � �� �� � �� � � ��  and � � ����� �� ��  . Contour lines show equal growth rate. (c) Time sequence 
images showing the stabilisation of a thin connecting liquid �lament between main droplets by localised electric 
�eld reduction of contact line mobility ( � � � ��� �  ). Leading to joining of the main droplets and suppression 
of satellite droplets produced by the Plateau–Rayleigh instability. Images edited for brightness and contrast using 
Fiji (version 1.52p, https:// imagej. net/ Fiji).
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���‹�•�…�—�•�•�‹�‘�•
In this work, we have shown how patterning of surface wettability by a non-contact electric �eld method is able 
to generate and select the pathway of energy minimisation for toroidal dielectric liquid �lms. We have studied 
the time evolution of the minimisation in detail, using Fourier analysis to elucidate how the complex interplay 
between geometry, and static and dynamic wettability results in the selection of pathway to the �nal state. �e 
experimental observations of the pathways of evolution have been modelled using a linear stability analysis of 
a thin-�lm �nite-slip model which uses only two free parameters, the contact angle and slip length, predicting 
with accuracy all aspects of the time evolution. We further use this understanding to interpret the selection of the 
pathway to the �nal states by the electric �eld control i.e., a combination of altering static and dynamic surface 
wettability by contact angle and contact line mobility reduction respectively.

Experimentally, we have focused on the dynamics of toroidal liquid �lms and pathways to mode-selected 
droplet states. However, the experiments, theoretical analysis and the control of the most unstable mode of P–R 
breakup can be applied to geometries beyond the toroidal geometry and topology explored here. Our non-contact 
method based on an underlying electrode structure de�nes the area of increased wettability when the voltage is 
applied. �is allows the creation of liquid �lms with a variety of initial topologies such as liquid disks, where all of 
the liquid is simply connected, rings, where the liquid �lm has a central hole or more complex shapes including 
disconnected and non-simply connected volumes of liquid. �is enables the study of the interactions of di�erent 
instabilities and pathways to �nal states. �erefore, our approach bridges the gap between understanding the 
behaviour of more complex shapes and the simplest case of a liquid  stripe36 as exempli�ed by our �ndings for 
the pathways to di�erent �nal toroidal droplet states arising from an initial toroidal shaped �lm. Moreover, our 
�ndings are relevant to other surface bound unstable systems such as those formed during spinodal  dewetting37, 
long liquid  �laments38,39 and pulsed laser induced dewetting (PLiD) of metallic  �lms 18,40.

Lastly, the ability to select the pathway of the P–R instability has applications in the opto-electronics industry 
providing re-con�gurable optical elements with complex geometries including being able to form lenslet shapes 
of uniform size without secondary  droplets41,42. �e ability to actively suppress secondary and tertiary droplet 
formation by modifying the stability of high order modes on interconnecting liquid �laments can prevent loss 
of material in lab on a chip  device43.

���‡�–�Š�‘�†�•
���‡�˜�‹�…�‡���‰�‡�‘�•�‡�–�”�›�� �ƒ�•�†���ˆ�ƒ�„�”�‹�…�ƒ�–�‹�‘�•�� �†�‡�–�ƒ�‹�Ž�•�ä��Annular arrays of interdigitated co-planar parallel micro-
stripe indium tin oxide (ITO) electrodes were fabricated on the solid surface using standard photolithographic 
techniques. �e electrode linewidths, of �� � �  , are equal to the electrode gaps. To allow access to a large range of 
modes two annular patterns were used in the experiments, one with dimensions � � � ���� ��  , � � � ���� ��  
and � � � ���� ��  and one with dimensions � � � ���� ��  , � � � ���� ��  and � � � � ��  . �e surface and 
the electrodes were coated with a SU-8 dielectric layer (Microchem Corp., thickness � � �  , dielectric constant 
3.2) to planarise the surface and to prevent any charge injection into the electrically insulating liquid. To promote 
retraction of the TMP-TG-E when the applied voltage is removed a thin Te�on AF mixed in a 0.5% by weight 
solution with its solvent, was applied. Substrates were dip-coated in the solution allowed to dry at room tem-
perature before baking at ��� � �  for 20 min to cure. �e surface roughness of the coated samples was measured 
using an Veeco Dektak 6M surface pro�lometer across the active electrode areas. �e measurements show that 
the surfaces on the small scale have an arithmetic mean deviation surface roughness of �� � � ��  for the Te�on 
AF surface.

���“�—�‹�’�•�‡�•�–���ƒ�•�†���•�‡�–�–�‹�•�‰�•�ä���e application of voltage V to alternate electrodes in the interdigitated elec-
trode array (with interposed electrodes at earth potential) was performed by an Agilent 33500B waveform gen-
erator providing a 10 KHz sine wave to a PZD700A (Trek Inc.) ampli�er, which multiplies the input signal 100x. 
Root Mean Square values of the A.C. voltage V are given in this report. �e integrity and instantaneous ampli-
tude of the output waveform was monitored using an DSO6014A (Agilent) oscilloscope, and the applied voltage 
was measured using a 34410A (Agilent) digital voltmeter where the error is found to be ���� �  . �e timescale 
of switching between di�erent voltages was measured in�situ to be � �� � �  . Images were captured from both the 
side and top during the experiments. Top images were captured using an EO-13122C (Edmund Optics) �tted 
with a x4 objective at 100 FPS. For the data shown in Fig.�2 we use a HHC x4 camera (Mega Speed Corporation) 
�tted with a x4 objective lens at 1000 FPS. Side images for contact angle analysis were captured using an HHC x4 
camera (Mega Speed Corporation) �tted with a x5 objective lens up to 1000 FPS. To improve image contrast for 
the image analysis the TMP-TG-E was dyed using Sudan Orange II (CAS number: 3118-97-6) at a concentration 
of 0.1% by wt.

���•�ƒ�‰�‡���ƒ�•�ƒ�Ž�›�•�‹�•�ä��Images are edited for brightness and contrast in a pre-processing step using Fiji (version 
1.52p, https:// imagej. net/ Fiji). For top images, the positions of the inner and outer edges as a function of the 
azimuthal angle of the dewetting toroidal liquid �lament are measured using a bespoke developed MatLAB 
program (Academic Licence, Version R2019a, MathWorks, https:// uk. mathw orks. com/ produ cts/ matlab. html) 
using the image processing toolbox. �e average position of the inner, � � and outer, � �  contact lines is deter-
mined using a circle �tting algorithm applied to the measured respective edge data. From each of these meas-
urements we are able to compute the velocity of each contact line, and measure the width of the toroidal liquid 
�lament as a function of time and azimuthal angle. Side images are analysed using a bespoke MatLAB program 
(Academic Licence, Version R2019a, MathWorks, https:// uk. mathw orks. com/ produ cts/ matlab. html) using the 
image processing toolbox, which enables measurement of the apparent outer contact angle � ���  and apparent 
equilibrium angle � �  . �e contact angle is calculated by �tting a tangent to points above a user determined 
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baseline, this tangent is then extrapolated to �nd the respective apparent contact angle at the solid substrate. 
We estimate deposited droplet volume from the top view images by averaging the measurement of the long and 
short axis of each resultant droplet, which is used in conjunction with the equilibrium angle, � � � �� � � �  , to 
calculate individual resultant droplet volume. �ese individual droplet volumes are then summed to give the 
initial volume of the deposited droplet, we consider satellite droplet volume negligible.
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