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ABSTRACT: When the inclined base of an ice shelf melts into the ocean, it induces both a statically stable stratification

and a buoyancy-forced, sheared flow along the interface. Understanding how those competing effects influence the dy-

namical stability of the boundary current is the key to quantifying the turbulent transfer of heat from far-field ocean to ice.

The implications of the close coupling between shear, stability, and mixing are explored with the aid of a one-dimensional

numerical model that simulates density and current profiles perpendicular to the ice. Diffusivity and viscosity are deter-

mined using a mixing length model within the turbulent boundary layer and empirical functions of the gradient Richardson

number in the stratified layer below. Starting from rest, the boundary current is initially strongly stratified and dynamically

stable, slowly thickening as meltwater diffuses away from the interface. Eventually, the current enters a second phase where

dynamical instability generates a relatively well-mixed, turbulent layer adjacent to the ice, while beneath the currentmaximum,

strong stratification suppresses mixing in the region of reverse shear. Under weak buoyancy forcing the time scale for de-

velopment of the initial dynamical instability can be months or longer, but background flows, which are always present in

reality, provide additional current shear that greatly accelerates the process. A third phase can be reached when the ice shelf

base is sufficiently steep, with dynamical instability extending beyond the boundary layer into regions of geostrophic flow,

generating a marginally stable pycnocline through which the heat flux is a simple function of ice–ocean interfacial slope.

KEYWORDS: Ocean; Antarctica; Ice shelves; Density currents; Shear structure/flows; Boundary layer

1. Introduction

Beneath the Antarctic ice shelves, which together cover

1.63 106 km2 of the Southern Ocean (Fretwell et al. 2013), the

interaction between ice and ocean removes just over half the

mass that initially falls as snow over the Antarctic Ice Sheet

(Rignot et al. 2013) and creates water masses that in key lo-

cations contribute to Antarctic Bottom Water (AABW) for-

mation (Nicholls et al. 2009). Recent variability in that

interaction is thought to be responsible for thinning of many of

the ice shelves (Paolo et al. 2015) and to have contributed to

freshening of AABW precursors (Jacobs and Giulivi 2010).

Since the ice shelves restrain outflow from the inland ice sheet,

their thinning has been accompanied by acceleration of outlet

glaciers and an overall loss of grounded ice to the ocean

(Shepherd et al. 2018). The impacts of such changes on ocean

circulation and sea level, now and in the future, havemotivated

efforts to incorporate ice shelf–ocean interactions into ice

sheet, ocean, and climate models.

A key process controlling the interaction between ice

shelves and the underlying ocean is the exchange of heat and

freshwater across the ice–ocean turbulent boundary layer. Our

understanding of that process is based almost exclusively on

studies of the analogous boundary layer beneath sea ice

(McPhee 2008). The fundamental physics governing the pro-

duction, transport, and dissipation of turbulence within, and

the resulting mixing of momentum and scalars across, the

boundary layer should not differ. However, there are subtle but

important distinctions in the physical processes that generate

turbulence. Beneath melting sea ice, turbulence is generated

by wind-forced motion of the hydraulically rough ice across the

ocean surface. Thus, the source of energy to generate turbu-

lence and overcome the stabilizing buoyancy flux is external to

the ice–ocean boundary layer. In contrast, beneath an ice shelf,

the currents driven by the buoyancy forcing associated with the

melting ice provide a key source of energy for turbulence in the

boundary layer, although generally supplemented by tidal

forcing (Makinson et al. 2011; Jourdain et al. 2019).

The close coupling between the ice shelf–ocean boundary

layer exchanges and the large-scale circulation driven by the

resulting density gradients represents one of the main chal-

lenges for models of the sub-ice-shelf circulation. Estimates of

melting and freezing at the base of the ice shelves (Rignot et al.

2013) provide the most comprehensive datasets against which

to evaluate model performance. However, it is difficult to as-

sess whether model biases result from poor performance of the

parameterizations of turbulent mixing within the boundary

layer or from a poor representation of the delivery of heat to
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the boundary layer by the larger-scale circulation. A poor

representation of the circulation could result from incomplete

knowledge of the sub-ice-cavity geometry or of the density

forcing generated beyond the cavity but will be compounded

by biases in the buoyancy fluxes simulated within the cavity.

Given the paucity of observations within the ice shelf–ocean

boundary layer, and the difficulties in significantly expanding

that database when each observation requires an access hole to

be made through, or the deployment of an autonomous vehicle

beneath, hundreds of meters of ice (Stanton et al. 2013; Kimura

et al. 2015; Davis and Nicholls 2019), process-oriented models

can provide critical insight. Direct numerical simulation of

near-ice turbulent mixing (Gayen et al. 2016) and large-eddy

simulations of the boundary layer (Vreugdenhil and Taylor

2019) represent potentially rewarding approaches. However,

our knowledge of even the basic current structure beneath an

ice shelf is almost completely lacking, so there is much that can

be learnt from simpler models. This paper describes one such

model and the insight that it gives into the problem. It is a

development of an earlier study (Jenkins 2016) that explored

the fundamental dynamical balance in a one-dimensional

model of the ice shelf–ocean boundary current. That study

made the unrealistic assumption of constant eddy viscosity and

diffusivity and discussed the flow within and beyond the

stratified Ekman layer that resulted. Here a turbulence closure

scheme is added to that model to investigate the interaction

between the buoyancy-driven flows and the turbulent mixing

that results, and that ultimately dictates the density structure.

The following section gives an overview of the earlier model

of Jenkins (2016) and describes the extensions introduced for

the present study. The impact of the added turbulence closure

scheme is then discussed, both in the context of a conventional

ice–ocean boundary layer beneath a horizontal interface and

the inclined ice shelf–ocean boundary current. The sensitivity

of the solutions to changes in far-field forcing and interface

slope are presented, followed by solutions that result from

combinations of interface slope and background pressure

gradient. The fundamental structure of the ice shelf–ocean

boundary current and the interfacial fluxes that it generates are

then discussed, while overall findings and their applications are

summarized in the concluding remarks.

2. Model

The starting point is the model of Jenkins (2016) that de-

scribes the cooling and dilution of seawater by interaction with

an overlying ice shelf and the resulting flow of the modified

waters along the ice shelf base through one-dimensional dif-

fusion equations for momentum and thermal driving:

›u

›t
1fiu5Drg sina2 g cosa=h1

›

›z

�
n
›u

›z

�
and (1)

›T*
›t

5
›

›z

�
K
›T*
›z

�
. (2)

The equations have been transformed into a translated and

rotated coordinate system (Fig. 1), in which z is the coordinate

axis perpendicular to a planar ice–ocean interface that slopes at

an angle a to the horizontal, and x, y lie in the plane of the

interface with x pointing directly upslope. The momentum

equation in (1) uses both Boussinesq and hydrostatic approx-

imations, with the latter applied perpendicular to the sloping

interface, so its validity is not limited to small slopes. For

convenience, the velocity vector parallel to the interface is

expressed as a complex number:

u5u1 iy ,

and temperature and salinity have been combined into a single

scalar, the thermal driving, defined as the temperature relative

to the freezing point at the interface:

T*5T2 (l
1
S1 l

2
1l

3
P

b
) . (3)

The combination of temperature and salinity into a single

scalar requires the implicit assumption that the Lewis number

is one everywhere. In the rotated coordinate system, the

Coriolis parameter is given by

f5 2V(cosu sinb sina1 sinu cosa)

Variables and physical constants are defined in Table 1. Time

derivatives [first terms in (1) and (2)], Coriolis acceleration

[second term in (1)], and terms for turbulent diffusion per-

pendicular to the interface [last terms in (1) and (2)] take their

conventional forms, but the pressure gradient parallel to the

interface has two components. The large-scale slope of the

interface is set such that there is no forcing when the density

deficit Dr relative to the uniform ambient fluid is zero. Thus,

when the ice–ocean interface is at z5 0, the ice shelf is passively

afloat in stationary ambient fluid. Flow is forced either by a

nonzero density deficit, which creates an upslope buoyancy force

[first term on the right-hand side of (1)], or nonuniform dis-

placement of the interface from is equilibriumposition (z5 0) to

z 5 h, which creates a depth-independent pressure gradient

parallel to the gradient vector of h [second term of on the right-

hand side of (1)], which is expressed as a complex number:

=h5
›h

›x
1 i

›h

›y
.

If the ice–ocean interface were horizontal (sina 5 0), the first

of the above terms would vanish, irrespective of the density

deficit, and the second would be a conventional sea surface

slope forcing. With the exception of the prescribed =h term, all

gradients parallel to the interface are assumed to be zero, al-

though, in principle, fixed gradients could be prescribed

(Jenkins 2016). The neglect of gradients parallel to the inter-

face implies that the only source of buoyancy is diffusion of the

melt signal away from the interface.

A more traditional route to a reduced-physics model of

buoyancy-driven flow along an ice shelf base would retain ei-

ther one or both of the spatial dimensions parallel to the ice–

ocean interface that have been dropped from (1) and (2), while

depth-integrating over the dimension perpendicular to the in-

terface that has been retained above (MacAyeal 1985; Jenkins

1991; Holland and Feltham 2006; Jenkins 2011). Depth-

integration of the last terms on the right-hand sides of (1)
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and (2) reduces them to fluxes at the upper and lower limits of

the integration, generally assumed to the boundaries of a dis-

tinct turbulent layer. Fluxes at the ice–ocean interface are

defined in a manner analogous to that described below

(Jenkins 1991), while those at the outer edge of the turbulent

layer are parameterized as if the layer could be considered an

inclined, entraining plume (Ellison and Turner 1959). The

thickness of the layer is calculated from a depth-integrated

version of the continuity equation, which in the model pre-

sented here reduces to the trivial form

›w/›z5 0

because of the neglect of horizontal gradients. The key advantage

of the depth-integrated layer approach is the inclusion of the

horizontal advection terms that are essential for simulating pro-

cesses such as the accumulation of marine ice at the ice shelf base

(Jenkins and Bombosch 1995). The main disadvantage is the loss

of information on the vertical structure of the turbulent layer that

is critical for representing the processes of heat transfer across

that layer from far-field ocean to ice. The model presented here

focuses on that vertical structure at the expense of losing the

advection terms,making itmost appropriate to the early stages of

turbulent layer growth when those terms are small (Lane-Serff

1995). A possible strategy for combining the best aspects of both

approaches is discussed in the concluding remarks.

The model equations, (1) and (2), are coupled via the de-

pendence of the dimensionless density deficit on the thermal

driving deficit (Jenkins 2016):

Dr5 T*a 2T*

� ��S
a
b
S
2 T*a 1 L

i
2 c

i
T*i

� �
/c

h i
b
T

T*a 1 L
i
2 c

i
T*i

� �
/c2S

a
l
1

�
, (4)

where the subscript a indicates the defined far-field properties

of the ambient ocean and ‘‘i’’ indicates ice properties (Table 1).

Equation (4) is derived from the combination of a linear

equation of state:

Dr5b
S
(S

a
2 S)2b

T
(T

a
2T) ,

which can be rewritten as

Dr5 (S
a
2S)

�
b
S
2b

T

(T
a
2T)

(S
a
2 S)

	
,

the thermal driving definition (3) rewritten similarly:

T*a 2T*

� �
5 (S

a
2 S)

�
(T

a
2T)

(S
a
2S)

2l
1

	
,

and an expression that relates the cooling and dilution of wa-

ters that interact with a melting ice shelf, analogous to that

discussed by Gade (1979):

(T
a
2T)

(S
a
2S)

5
T*a 1 L

i
2 c

i
T*i

� �
=c

S
a

. (5)

Application of (5) requires the assumption that the ambient

fluid has uniform properties and that the Lewis number is one

FIG. 1. Schematic illustrating the transformed coordinate system (x, y, z) in which the model

is formulated, with x upslope and y cross slope in the plane of the ice shelf base, and its rela-

tionship with the conventional system (x0, y0, z0), which has x0 zonal, y0 meridional, and z0

vertical, with positive up and the origin at sea level.
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TABLE 1. Symbols and physical constants.

Symbol Value Units Description

cd; Cd Drag coefficient; geostrophic drag coefficient

ci 2.009 3 103 J kg21 K21 Specific heat capacity for ice

c 3.974 3 103 J kg21 K21 Specific heat capacity for seawater

dn
E;d

b
E m Ekman depth for neutral and background viscosity

g 9.81 m s22 Acceleration due to gravity

Li 3.35 3 105 J kg21 Latent heat of fusion for ice

L0 m Monin–Obukhov length scale
_m myr21 Melt rate

n 2 Exponent in PP viscosity expression

Q0 Wm22 Interfacial heat flux

Rc 0.2 Critical flux Richardson number

Ri; Ri0 Gradient Richardson number; interfacial Ri

Rimin
bl Minimum Ri at edge of boundary layer

S; Sa Salinity; ambient salinity

t s Time

T; Ta 8C Temperature; ambient temperature

T*; T*a 8C Thermal driving; ambient thermal driving

T*i 8C Ice shelf thermal driving

u m s21 Velocity vector in (x, y) plane

u* m s21 Friction velocity magnitude

u*0; u*0 m s21 Interfacial friction velocity vector and magnitude

u, y, w m s21 (x, y, z) components of velocity vector

vg, yg m s21 Geostrophic current vector and magnitude

v̂g Unit vector parallel to geostrophic current

ygi m s21 Interface geostrophic current magnitude

va m s21 Ageostrophic current vector

x, y, z m Rotated and transformed coordinates (Fig. 1)

x0, y0, z0 m Cartesian (zonal, meridional, elevation) coordinates

z*0; zr m Interfacial roughness length; physical roughness height

dz m Model grid resolution

a Equilibrium slope of ice–ocean interface

b 8 True bearing of rotated y axis

bS 7.86 3 1024 Haline contraction coefficient

bT 3.87 3 1025 K21 Thermal expansion coefficient

bRi Gradient Richardson number scale factor

g 5 Constant in PP viscosity/diffusivity expression

« Thermal driving coefficient

G 6 3 1023 LTC Stanton number

h m Displacement of ice–ocean interface from equilibrium

u 8N Latitude

k 0.4 von Kármán’s constant
K; K0 m2 s21 Eddy diffusivity; diffusivity in interface submodel

Kb 1 3 1025 m2 s21 Background eddy diffusivity

Kmol 1.4 3 1027 m2 s21 Molecular diffusivity

l1 25.73 3 1022 8C Seawater freezing-point slope

l2 8.32 3 1022 8C Seawater freezing-point offset

l3 7.58 3 1024 8C dbar21 Pressure dependence of freezing point

l; ,lmax m LTC mixing length; limiting mixing length

ls
max; l

n
max m Limiting mixing length under stable, neutral conditions

L* 0.028 LTC similarity constant

m m2 s21 Eddy viscosity/diffusivity

mTLB/PYC m2 s21 Boundary layer/pycnocline eddy viscosity/diffusivity

n; n0 m2 s21 Eddy viscosity; viscosity in interface submodel

nn 0.005 m2 s21 Eddy viscosity under neutral conditions

nb 1 3 1024 m2 s21 Background eddy viscosity

nmol 1.95 3 1026 m2 s21 Molecular viscosity

r 1030 kgm23 Seawater density

Dr Dimensionless density deficit
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everywhere. The treatment of the interfacial sublayer, where

the latter assumption breaks down because of the dominant

role played by molecular diffusion in heat and mass transfer, is

discussed later. The term in braces in (4) is approximately

constant, since it is weakly dependent on the far-field thermal

driving and the observed range in far-field salinity is small.

Hereinafter, it will be denoted by Dr/DT*.
The ice–ocean interface is assumed to be at the freezing

point at all times and a no-slip condition is applied, leading to

boundary conditions of zero velocity and thermal driving at the

interface, while ambient properties and geostrophic flow are

imposed in the far field:

u5 0, T*5 0 at z5 0, and

u5 i
g cosa

f
=h, T*5T*a at z5‘ .

The above model could now be supplemented with a turbu-

lence closure scheme of arbitrary complexity. However, the

aim of the present study is to explore the qualitative structure

of the boundary current that emerges when the viscosity and

diffusivity vary in a physically meaningful way with distance

from the ice–ocean interface. That aim motivates a rela-

tively simple scheme. The local turbulence closure (LTC) of

McPhee (1994) fits that requirement and moreover has been

shown to perform as well as much more complex closures

when compared with observations from the sea ice–ocean

boundary layer (McPhee 1999).

The LTC expresses the eddy viscosity and diffusivity as

products of the local friction velocity and a mixing length:

n5 u*l1 n
mol

and

K5u*l1K
mol

,

where the subscript mol indicates molecular values and the

friction velocity is derived from the local shear stress:

u*5

�
n





›u›z





�1/2

.

The mixing length scales with distance from the interface

according toMonin–Obukhov similarity theory until it reaches

a limiting value:

l5min

�
k

� jzj
11 5jzj=L

0

�
,l

max

	
,

where k is von Kármán’s constant, and

L
0
5

u3

*0
kg cosahw0Dr0i

0

(6)

is the Monin–Obukhov length scale estimated from the

interfacial friction velocity and buoyancy flux. The inter-

facial buoyancy flux is related to the thermal driving flux as

before:

hw0Dr0i
0
52

�
K
›T*
›z

�
0

�
Dr

DT*

�
,

and the problem of estimating thermal driving and momentum

fluxes at the interface will be returned to shortly.

Under a stabilizing buoyancy flux the limiting length scale is

ls
max 5R

c
kL

0
,

where Rc is a critical flux Richardson number, but as L0 / ‘
under nearly neutral conditions, rotation restricts the growth of

the mixing length beyond a second limit given by

ln
max 5

L*u*0
jfj ,

where L* is a similarity constant. McPhee (1994) combines

these two limiting length scales into one expression that is one-

half of their harmonic mean:

l
max

5 ln
max

�
11

ln
max

ls
max

�21

.

The above expression asymptotically approaches the smaller

of the limiting length scales in the case that one is much larger

than the other.

While the LTC as presented thus far is suitable for most of

the boundary layer, it cannot be applied to the region very

close to the interface, where the presence of the solid

boundary suppresses eddies to such an extent that molecular

diffusion becomes the dominant process of heat and mass

transfer within an interfacial sublayer (McPhee et al. 2008).

Such processes are not captured by the above equations, and

themodel grid is anyway too coarse to resolve them explicitly,

so they must be parameterized using an interface submodel

(McPhee 2008).

The parameterization of momentum transfer uses a con-

ventional quadratic drag law to express the magnitude of the

interfacial shear stress as

t
0
5 ru*0

ffiffiffiffiffi
c
d

p juj ,

TABLE 1. (Continued)

Symbol Value Units Description

t0 Nm22 Interfacial shear stress

t1 s Time scale for onset of boundary current instability

tin s Inertial period

f s21 Coriolis parameter in (x, y) plane

vg Interfacial stress angle relative to geostrophic current

V 7.29 3 1025 s21 Planetary rotation rate
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with the drag coefficient derived from the ‘‘law of the wall’’

for a boundary with a specified roughness length of z*0:

ffiffiffiffiffi
c
d

p
5

�
1

k
ln

� jzj
z*0

�	21

,

where z is the distance from the interface at which u is defined

(McPhee 2008). In the case of a hydraulically smooth interface,

the effective roughness length becomes

z*0 5
n
mol

e22

u*0
,

while for a rough interface it is related to the characteristic

physical height of the roughness elements by (McPhee 2008)

z*0 5 z
r
/30.

To apply this parameterization within a fixed grid model, the

viscosity across the upper-most grid box adjacent to the ice–

ocean boundary is chosen to ensure that the correct turbulent

stress is recovered:

n
0

ju
0
2u

1
j

z
0
2 z

1

5u*0
ffiffiffiffiffi
c
d

p ju
1
j

0 n
0
5u*0

ffiffiffiffiffi
c
d

p
dz ,

where dz is the size of the first grid box.

The interfacial sublayer is particularly influential for

scalar transfer within the ice–ocean boundary layer be-

cause of seawater’s large molecular Prandtl and Schmidt

numbers. Large parts of the temperature and salinity

changes across the boundary layer therefore occur within

the interfacial sublayer. Observations beneath sea ice

(McPhee et al. 1999) suggest that transfer of heat across the

inner part of the boundary layer is well represented by an

equation of the form

Q
0
5 rcu*0GT*, (7)

where G is a Stanton number based on the friction velocity

that has been found to be constant over a wide range of

conditions (McPhee 2008). A theoretically more justifiable

formulation would include separate expressions for the heat

and salt fluxes, using thermal and haline Stanton numbers

that differ in magnitude, reflecting the role of molecular

diffusion in setting the transfer rates within the interfacial

sublayer. The differences between the two approaches are

discussed in Holland and Jenkins (1999), where it is shown

that the nonlinearity associated with the more complex

formulation leads to interfacial heat fluxes that differ by no

more than 10% from those given by (7) for typical oceanic

conditions. Here, the simpler expression (7) is favored for

two reasons: it is the one conventionally used in the analysis

of ice–ocean heat flux observations, so that the appropriate

Stanton number is better constrained by data; it is in a

convenient form for the model described above, where the

equations for temperature and salinity have been combined

into one for T*. As before, the parameterization is used to

set the diffusivity across the upper-most grid box such that

the correct heat flux is recovered:

2K
0

T*0 2T*1
z
0
2 z

1

5u*0GT*1

0K
0
5 u*0Gdz .

The above approach requires an implicit assumption that

the first grid point lies beyond the thermal boundary layer,

but within the logarithmic layer. It converges numerically as

the grid size is reduced but would become physically unre-

alistic if the first grid point were to lie within the interfacial

sublayer. A more general alternative would be to place the

upper boundary a set distance from the interface and apply a

Neumann boundary condition at that grid point, but the

simpler approach here is justifiable given that the standard

grid resolution is ;0.5 m.

Application of the LTC to the turbulent ice–ocean boundary

layer beneath a horizontal interface produces a well-mixed

boundary layer that is separated from the far-field ocean by a

pycnocline. That motivates application of a second set of

mixing length scales in the pycnocline, derived as above, but

using the friction velocity and buoyancy flux estimated at the

base of the mixed layer, and defining the transition between

the mixed layer and pycnocline based on a density or strati-

fication criterion (McPhee 2008). In this study, the pycnocline

is defined using a Richardson number criterion, while two

approaches to estimating mixing there are adopted. The

former follows the LTC mixing length scheme, while the

latter defines viscosity and diffusivity as empirical functions

of the gradient Richardson number following Pacanowski

and Philander (1981):

n5
n
n

(11gRi)
n 1 n

b
and

K5
n

(11 gRi)
1K

b
,

where the gradient Richardson number is given by

Ri5

"
2g cosa(›T*=›z)

j›u=›zj2
#�

Dr

DT*

�
, (8)

and values used for the empirical constants are given in

Table 1. Parameterizations of this form provide the sim-

plest solution to the problem of simulating mixing due to

resolved shear in the stratified ocean interior (Fox-Kemper

et al. 2019) and are used to estimate diffusivity in the

pycnocline in other turbulence closures (Large et al. 1994).

The two pycnocline schemes, the latter denoted PP, are

merged with the LTC boundary layer scheme by defining

depth limits based on where the gradient Richardson

number first exceeds values of 0.25 and 1. The boundary

layer scheme is applied up to the first limit, the pycnocline

scheme beyond the second limit, and between the limits a

linear combination of the two estimates of viscosity and

diffusivity is used, such that
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For convenience, the scheme that merges LTC in the turbulent

boundary layer with PP in the pycnocline is referred to here-

inafter as the hybrid turbulence closure (HTC) model.

The above equations are solved numerically on a staggered

grid with viscosity and diffusivity defined on intermediate

points and calculated using velocity and thermal driving data

from the previous time step. An explicit time-stepping scheme

is used with an adaptive step size, based on grid size and

maximum diffusivity, to ensure stability. The domain extends

to 15(2nn/jfj)1/2, sufficient for the far-field boundary condition

to play no role in the final solution. Initial conditions have far-

field properties everywhere except at the ice–ocean interface,

where the boundary condition is applied. Initial investigations

use four options to specify eddy viscosity and diffusivity: con-

stant values; PP; LTC, which includes the interface submodel

and modified mixing lengths in the pycnocline; and HTC,

which combines LTC with the interface submodel in the

boundary layer, and PP in the pycnocline. Subsequent discus-

sion focuses on HTC, as it is found to give the most robust

results.

3. Results

a. Impact of turbulence closure model on stratification and
current structure

The evolution of the ice–ocean boundary current beneath a

horizontal interface is illustrated in Fig. 2. Solutions for con-

stant viscosity and diffusivity (set equal to nn and 0.1nn, re-

spectively) are analogous to those described in Jenkins (2016).

The thermal driving and velocity are uncoupled, so while the

former evolves as an error function, the latter adjusts to

produce a steady Ekman layer adjacent to the ice shelf base.

Within the Ekman layer, friction induces shear in the otherwise

depth-independent current, so the application of any turbu-

lence model creates a region of enhanced diffusivity within the

Ekman layer. That changes the stratification fundamentally

(Figs. 2b–d), resulting in a well-mixed layer above a sharp

pycnocline.

Using PP only (Fig. 2b), the computed diffusivity rises

monotonically toward the interface, where current shear is

maximum. There is a positive feedback, in that weakening of

the stratification near the ice–ocean boundary further en-

hances the diffusivity there. The pycnocline is sharpened by

the opposite feedback, wherein low diffusivity enhances the

stratification, leading to a further reduction in diffusivity. In the

velocity structure, the basic form of the Ekman solution is still

visible, albeit modified by the depth-varying viscosity.

The LTC (Fig. 2c) includes two important physical controls

on mixing that are not considered in PP. The size of the eddies

is restricted both by the presence of the solid boundary and by

the stabilizing buoyancy flux at the interface. The latter control

is there even when mixing is sufficient to destroy the stratifi-

cation near the boundary. With the inclusion of those pro-

cesses, the LTC gives a diffusivity that rises rapidly with

distance from the boundary, before decaying to background

levels beyond the boundary layer where the current shear

vanishes and the stratification in the pycnocline restricts the

vertical scale of the eddies. The interface submodel yields very

low diffusivity next to the ice–ocean boundary, resulting in a

sharp jump in properties across the first grid box. That jump,

which maintains significant thermal driving within the mixed

layer, represents themajor difference between the PP and LTC

models. As the thermal driving in the mixed layer decays, the

stabilizing interfacial buoyancy flux weakens and the diffusiv-

ity in the mixed layer grows. The pycnocline is stronger than in

the PP result, but its depth is very similar, despite the very

different turbulence closure assumptions.

That similarity suggests that, while the near-boundary pro-

cesses included in LTC are critical to estimating mixed layer

properties, the structure of the pycnocline is not sensitive to the

choice of turbulence closure. Indeed, the HTC (Fig. 2d) yields

results that are very similar to those produced by LTC. The

velocity profiles are modified in a similar way, with relative

uniformity within the mixed layer and steep gradients through

the pycnocline. Because the forcing on the flow is externally

imposed and unrelated to the stratification, the form of the

current profiles changes little as the mixed layer progressively

cools and deepens.

The introduction of an ice–ocean boundary slope (now with

zero background pressure gradient, Fig. 3) couples the thermal

driving and velocity profiles because the thermal driving deficit

now represents a buoyancy forcing on the flow. The resulting

current shear enhances the viscosity and diffusivity beyond the

frictional boundary layer, so the spread of the boundary cur-

rent found in the constant diffusivity case is also a feature of the

other models. The introduction of stability-dependent mixing

in PP (Fig. 3b), LTC (Fig. 3c) and HTC (Fig. 3d) leads to the

development of a relatively well-mixed boundary layer above a

broad pycnocline. However, the transition between them is

more gradual than in the case of a horizontal interface (Fig. 2),

and it is no longer possible to define an unambiguous mixed

layer depth based on stratification. Instead, the term ‘‘turbu-

lent layer’’ is applied to the region where the gradient

Richardson number is less than 1, with the transition to the

pycnocline then occurring at the bottom of the bold line seg-

ments in Fig. 3.

As before, cooling of the turbulent layer leads to enhanced

diffusivity near the ice–ocean interface because of the weak-

ening stratification (in the case of PP) and the weakening in-

terfacial buoyancy flux (in the case of LTC and HTC).

However, the cooling now also increases the density contrast

across the pycnocline, strengthening the flow of the turbulent
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layer, and further enhancing the diffusivity through the greater

frictionally generated current shear. Although the boundary

current grows in thickness and the buoyancy-forced cross-slope

current increases, the peak speed of the frictionally driven

upslope flow remains relatively constant, as discussed by

Jenkins (2016) for the constant diffusivity model.

The coupling between the thermal driving deficit and the

flow gives rise to three distinct phases in the temporal devel-

opment of the current at the sloping ice shelf base. Initially the

thermal driving deficit is confined to a region very close to the

ice. The flow is weak, and the stratification is strong enough

that the current is initially stable everywhere. Within the HTC,

diffusivity and viscosity are estimated exclusively from the PP

model, while within LTC, the pycnocline scaling is used. The

shear is maximum near the interface, so the weakening strati-

fication leads to an initial instability there and the resulting

introduction of the LTC submodel produces a jump in prop-

erties over the first grid box (Figs. 3c,d). During the ensuing

FIG. 2. (top) Thermal driving, (middle) velocity, and (bottom) viscosity/diffusivity profiles obtained using (a) constant viscosity/dif-

fusivity, (b) PP, (c) LTC, and (d) HTC for a flow generated by far-field thermal driving of 28C at an ice–ocean boundary with equilibrium

slope sina of 0 and interface displacement gradient ›h/›x of 25 3 1026. Solutions (color coded) are shown at 1, 3, 8, 16, and 30 inertial

periods tin. Thicker lines indicate where the gradient Richardson number falls within the range 0.25–1. In the middle row u is solid and y is

dashed, and in the bottom row viscosity is solid and diffusivity is dashed. Scales used to nondimensionalize the results are the Ekman depth

dn
E 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nn/jfj

p
, the far-field thermal driving T*a, the geostrophic current at the interface ygi 5 (g cosa/f)=h, and the diffusivity under

neutral conditions nn, as defined in Table 1.
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second phase of evolution, the flow is sufficiently strong for

shear instability to generate turbulence between the current

maximum and the ice shelf base. Beyond the current maximum

the pycnocline remains stable. Eventually, however, as the flow

continues to grow in strength and the stratification weaken, the

current enters a third phase. Instability extends beyond the

current maximum, while a state of marginal stability is estab-

lished through the pycnocline, where the shear is now primarily

geostrophic. The condition for marginal stability (Ri 5 1) is

first met at the lower limit of the thicker lines in Fig. 3 and is

maintained through the region of constant vertical gradients

(Fig. 3d). Its origin will be discussed later. During the subse-

quent development of the boundary current, the structure is

preserved, with a marginally stable, geostrophic region,

through which shear and stratification remain constant,

beneath a relatively well-mixed, turbulent layer that grows in

thickness as it cools and accelerates. Note that the growth in

thickness of the boundary layer is controlled by the increase

in viscosity, which leads to a growth in the effective Ekman

depth, and hence an expansion of the region where frictionally

FIG. 3. As in Fig. 2, but showing profiles obtained using (a) constant viscosity/diffusivity, (b) PP, (c) LTC, and (d) HTC for a flow

generated by far-field thermal driving of 28C along an ice–ocean boundary with equilibrium slope sina of 0.01 and interface displacement

gradient =h of 0. In the middle row, u (solid) is upslope and y (dashed) is cross-slope. Black dashed lines in (d) (top and middle panels)

indicate the thermal driving and geostrophic current profiles for marginal stability (Ri 5 1), based on gradients given in (9) and (10)

plotted at an arbitrary depth chosen to coincide with the pycnocline. Scales used to nondimensionalize the results are as in Fig. 2, except

the geostrophic current at the interface, ygi 52(g sina/f)T*a(Dr/DT*).
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generated shear enhances mixing. The condition of marginal

stability is not well captured by LTC, because perturbations

around that state can give a jump in effective mixing length,

leading to artificial steps in the pycnocline (Fig. 3c), so the

subsequent discussion will focus on HTC.

The above results are qualitatively insensitive to uncer-

tainties in key parameters that define the component models of

the HTC (Fig. 4). The characteristic roughness of a melting ice

shelf–ocean boundary is largely unknown, yet it controls the

magnitude of the interfacial fluxes. Larger roughness lengths

lead to higher diffusivities throughout the boundary layer, so

while the current grows in thickness more rapidly, the jump in

properties across the interfacial layer, and the resulting prop-

erties of the turbulent layer, are unaltered (Fig. 4a). Results are

more sensitive to changes in the Stanton number, which have a

bigger impact on turbulent fluxes at the interface (7) than

through the boundary layer (Fig. 4b). As the Stanton number

falls the interfacial fluxes decline, so the turbulent layer warms

FIG. 4. Sensitivity of HTC results in Fig. 3d at 16 inertial periods to the value used for (a) the interfacial roughness length z*0, (b) the
Stanton number G, (c) the diffusivity for neutral stability in the pycnocline nn, and (d) the range in critical gradient Richardson number

used to define the transition between turbulence closures. Brown lines are obtainedwith the standard parameter values used in Fig. 3d, and

scales used to nondimensionalize the results are as in Fig. 3.
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and decelerates in response. Conversely, as the Stanton num-

ber rises the interfacial fluxes grow, so the turbulent layer cools

and accelerates in response. Results are insensitive to the pa-

rameterization of mixing through the pycnocline. Changing the

eddy viscosity under neutral conditions rescales the viscosity

and diffusivity profiles obtained from PP, but has almost no

impact (Fig. 4c), because the large contrast in diffusivities be-

tween turbulent layer and pycnocline is more influential than

the absolute values in setting the water column structure.

Changing the arbitrary transition region between the PP and

LTC turbulence closures has a similarly small impact (Fig. 4d).

A sharper transition leads to a more abrupt decrease in diffu-

sivity at the base of the turbulent layer, but its properties and

the strength of the pycnocline are little affected.

b. Sensitivity to forcing

Changing the slope of the ice shelf base (Figs. 5a,b) or the

far-field temperature of the ocean (Figs. 5c,d) alters the

FIG. 5. Results obtained with HTC after (a),(c) 1 and (b),(d) 16 inertial periods for (left),(left center) varying ice shelf basal slope

sina and (right center),(right) varying far-field thermal driving Ta*. Results obtained with the standard forcing used in Fig. 3d are

shown in brown. Scales used to nondimensionalize all results are as in Fig. 3. Note the differing horizontal axis limits along the

bottom two rows.
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buoyancy forcing on the current. Increased buoyancy forcing

yields a faster current and enhanced, shear-induced mixing, so

the turbulent layer cools, as the greater diffusivity enhances

heat loss to the ice, and deepens, as the greater viscosity in-

creases the effective Ekman depth. For an equivalent change in

the buoyancy forcing, changes in slope have a slightly greater

impact than changes in temperature, because gravity acts

more obliquely to the interface as the slope increases. As a

result, changes in both buoyancy forcing and static stability,

through the cosa terms in theMonin–Obukhov length (6) and

gradient Richardson number (8), contribute to changing

viscosity and diffusivity, whereas only the former acts for

changes in far-field thermal forcing. Nevertheless, the impact

is small and only apparent in the early stages (Figs. 5a,c,

bottom row). Once the boundary current is fully developed

the main differences are in the marginally stable pycnocline,

where the characteristic gradients are functions of interface

slope, but independent of far-field thermal driving (Figs. 5b,d),

as discussed later.

Since these are all transient solutions, a thicker turbulent

layer at any particular time indicates more rapid develop-

ment of the flow rather than any differences in a long-term

steady state, which cannot be attained with the present

model. In reality, advection processes, missing in the model,

would halt the evolution at the stage where they were suf-

ficient to balance the divergence between the interfacial and

pycnocline heat fluxes, giving a steady state that should be

qualitatively similar to the transient solution at that time

(Jenkins 2016).

Imposing a background pressure gradient in addition to the

buoyancy forcing leads to much more rapid deepening of the

turbulent layer, which develops over the first inertial period

(Figs. 6a,c). During that initial phase, the buoyancy forcing on

the flow is weak, so the structure of the boundary layer is de-

termined by the magnitude of the background flow and is al-

most independent of its direction. The current profiles shown

in Fig. 6c are practically the same as those in Fig. 6a, except

for a 908 cyclonic rotation. However, as the boundary layer

cools, the buoyancy forcing on the flow builds and a directional

asymmetry develops (Figs. 6b,d).

When the background flow enhances the buoyancy-driven

flow (Fig. 6b), there is a positive feedback as the developing

buoyancy forcing enhances current shear, increasing the dif-

fusivity and promoting deepening of the turbulent layer. In

contrast, when the background and buoyancy driven flows are

in opposition, the developing buoyancy forcing weakens the

shear at the interface, causing the viscosity to drop and the

turbulent layer to retreat. The effect is particularly marked

when the background and buoyancy driven flows exactly can-

cel (Fig. 6b). Then the Ekman layer is arrested, the frictional

shear at the interface vanishes and the resulting turbulent layer

is shallower than that obtained with buoyancy forcing alone.

An up- or downslope background flow, driven by a cross-slope

pressure gradient, always enhances the diffusivity relative to

the result with buoyancy forcing alone (Fig. 6d). The direc-

tional asymmetry in the currents is less marked because the

background and buoyancy-driven flows interact only via their

respective Ekman layers.

4. Discussion

a. Structure of the fully developed ice shelf–ocean boundary
current

Jenkins (2016) drew a distinction between the buoyancy-

driven boundary current and the inner boundary layer where

friction plays a role in the force balance. Such a distinction is

absent when the ice–ocean interface is horizontal (Fig. 2). In

that case, the only deviation from the constant, far-field flow is

caused by friction, which is the only source of shear instability

to create turbulence. The boundary layer and current are then

coincident, composing a relatively well-mixed layer above a

sharp pycnocline. Figure 3 shows that when the interface is

sloped a relatively well-mixed boundary layer may also de-

velop, given sufficient time. However, it is underlain by a broad

pycnocline, which forms the outer part of the boundary cur-

rent, where the inclined isopycnals drive a sheared, cross-slope,

marginally stable, geostrophic current. The conditions neces-

sary for the development of such a flow are discussed in the

appendix.

When the pycnocline becomes marginally stable, its nature

changes fundamentally from that of the stable pycnocline that

forms beneath a horizontal ice–ocean interface. In the latter

case (Fig. 2), the current shear is an externally defined pa-

rameter, so the pycnocline stability, determined by the

gradient Richardson number (8), increases with increasing

stratification. There is a positive feedback whereby increasing

stratification reduces diffusivity and leads to higher thermal

driving gradients, generating the sharp transition between

turbulent layer above and strong, stable pycnocline below.

However, when the interface is sloped (Fig. 3), the current

shear everywhere is influenced by the stratification. For the

fully developed boundary current, in its final phase of evolu-

tion, the pycnocline lies beyond the boundary layer, so the flow

is primarily geostrophic, and stratification and shear are di-

rectly related through the thermal wind equation:

›juj
›z

’2
g sina

f

›T*
›z

�
Dr

DT*

�
.

The gradient Richardson number (8) can then be expressed as

Ri’

"
f2 cosa

g sin2a(›T*=›z)

#�
Dr

DT*

�21

,

implying the counterintuitive result that as the stratification

increases the stability of the pycnocline decreases, because the

increase in the current shear is the dominant effect. There is

then a negative feedback, whereby increasing stratification

destabilizes the water column and the enhanced mixing

weakens the stratification. A balance is established through the

pycnocline, in which a constant vertical gradient of thermal

driving maintains the gradient Richardson number at the

critical value where enhancedmixing starts (defined to be Ri5
1 in the HTC).

Accordingly, it is possible to derive simple expressions for

the stratification and current shear through the marginally

stable pycnocline. Setting Ri 5 1 gives
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and from the thermal wind equation:
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The above relationships are plotted in Fig. 3d and explain why

the thermal driving and current profiles through the pycnocline

are so similar in Figs. 4–6. There is only a very weak depen-

dence on the far-field thermal driving, through the density

parameter in (9), leaving interface slope as the single control-

ling factor (Fig. 5). The diffusivity and viscosity within the

marginally stable pycnocline are constant (Fig. 3d) and given

by PP with the gradient Richardson number set to 1:

FIG. 6. Results obtainedwithHTC after (a),(c) 1 and (b),(d) 16 inertial periods applying the standard forcing in Fig. 3d with the addition

of (left),(left center) varying upslope and (right center),(right) varying cross-slope interface displacement gradient. Scales used to non-

dimensionalize all results are as in Fig. 3. Note the differing horizontal axis limits along the bottom two rows. The e-X notation in the

legend indicates that the leading number should be multiplied by 10 raised to the negative X.
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Equations (9) and (10) thus yield simple, slope-dependent

expressions for the heat flux and shear stress through the

marginally stable pycnocline. Furthermore, they offer a simple

explanation for why the pycnocline on very shallow slopes

remains stable. The thermal driving gradient required for in-

stability (9) increases as the slope decreases (Fig. 5b). Where

the critical gradient exceeds that generated by the background

diffusivity, typified by the stable pycnocline in Fig. 2d, that

critical gradient can never be attained and the pycnocline will

remain stable.

b. Interfacial fluxes for the fully developed ice shelf–ocean
boundary current

The melt rate computed at 30 inertial periods for a wide

range of slope and thermal driving conditions is shown in

Figs. 7a and 7b, along with the dependence of melt rate on

thermal driving for the case shown in Fig. 2 with zero slope,

but forced by a background pressure gradient. The slope

FIG. 7. (top) Interfacial heat flux (expressed as a melt rate) and (bottom) shear stress (expressed as a friction velocity) computed at 30

inertial periods as a function of (a) interfacial slope, (b) far-field thermal driving, and (c) background pressure gradient. In all panels, the

large black symbols indicate standard values used in Figs. 3 (circles) and Fig. 2 (diamonds). In (a), blue plus signs show results for varying

interface slope, with all other parameters fixed at values used for Fig. 3. In (b), results are shown for varying thermal driving, with all other

parameters fixed at values used for Fig. 3 (magenta circles) and for Fig. 2 (green diamonds). In (c), results are shown for varying cross-slope

(red crosses) and upslope (cyan squares) pressure gradient with all other parameters fixed at values used for Fig. 3, and for varying cross-

slope pressure gradient with all other parameters fixed at values used for Fig. 2 (green diamonds). Dashed lines, color coded, were

generated using the theoretical relationships in (11), (12), and (13).
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dependence of the melt rate (Fig. 7a) and the temperature

dependence for zero slope (Fig. 7b) both show only weak

nonlinearity, while the temperature dependence of melting for

the sloped interface (Fig. 7b) is clearly nonlinear, as has been

found in other studies (Holland et al. 2008). That behavior can

be understood by inspection of (7), which expresses the inter-

facial heat flux as directly proportional to the interfacial fric-

tion velocity and the local thermal driving. For the horizontal

interface, the friction velocity is approximately constant, while

the similarity of the results for varying slope and varying

temperature (on a nonzero slope) demonstrate that friction

velocity is an approximately linear function of buoyancy

forcing (Fig. 7a). That suggests a simple dependence of friction

velocity on the geostrophic current within the turbulent layer

via an approximately constant geostrophic drag coefficient and

turning angle:

u*0 5
ffiffiffiffiffiffi
C

d

q
y
g
v̂
g
e2ivg . (11)

Furthermore, the near-linearity of the melt rate relationship

for zero slope indicates a simple dependence of the local

thermal driving on the far-field conditions:

T*5 «T*a . (12)

Using (11) and (12), the melt rate can be expressed as
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where the magnitude of the geostrophic current in the turbu-

lent layer is
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 ,
giving a quadratic dependence of melt rate on thermal driving

for the buoyancy forced flow and a linear dependence for the

pressure-gradient forced flow.

Equations (11) and (13) are plotted in Figs. 7a and 7b using a

drag coefficient of 1.33 1023 and a thermal driving coefficient,

«, of 0.25 for the buoyancy forced cases and 0.08 for the

pressure-gradient forced case. The magnitude of « is clearly

time dependent (Figs. 2 and 3), but the fact that a single value

can characterize all solutions at a particular time indicates that the

underlying processes scale with the magnitude of the buoyancy

forcing. The weak dependence of the geostrophic drag coefficient

and turning angle (;158) on such factors as flow speed and sta-

bility is a result of the relatively smooth interfaces and low melt

rates under consideration (McPhee 2012).

Melt rate and interfacial friction velocity are shown in Fig. 7c

as functions of background pressure gradient for zero (as in

Fig. 2) and standard (as in Figs. 3 and 6) slope cases. Again, the

interfacial stress conditions are well represented using the

same geostrophic drag coefficient (1.3 3 1023) and turning

angle (158). Using the same thermal driving coefficient (0.08)

gives a good estimate of the melt rate for the zero slope cases,

while a linear combination of buoyancy and pressure-gradient

forced coefficients

«5
0:251 0:08[h0

y/(253 1026)]

11 [h0
y/(253 1026)]

can characterize the melt rate dependence on the cross-slope

pressure gradient. However, an analogous combination for the

upslope pressure-gradient forced solutions cannot fully cap-

ture the asymmetry in the response, particularly the low melt

rates when pressure gradient and buoyancy forcing are acting

in opposition. It is noteworthy that in Fig. 6b, the configuration

with h0
x 5 13 1025 (black line) drives a melt rate that is only

half that of the configuration with h0
x 5 0 (light brown line),

despite the strong far-field current in the former. That is a re-

sult of the ‘‘slippery’’ boundary layer created when the buoy-

ancy forcing acts to reduce the interfacial shear stress.

5. Summary and concluding remarks

Developing our understanding of ice–ocean heat transfer at

the base of ice shelves is an important step toward explaining

the observed mass loss from the Antarctic Ice Sheet and pro-

jecting its continued evolution under future climate change.

This study represents one step in that process. It extends an

earlier study (Jenkins 2016) that explored the fundamentals of

the current structure adjacent to an inclined, melting ice–ocean

interface. The key development is the addition of a simple

turbulence closure model to account for the interactions

between stratification and current shear and the resulting

turbulent diffusivity and viscosity. Although the turbulence

closure is simple, it combines elements that are either widely

available in ocean models (PP) or have been extensively

tested against observations of the turbulent boundary layer

beneath sea ice (LTC). While more complex closures might

produce quantitatively different results, the underlying

qualitative behavior that is the main focus of the paper

should be robust. It emerges as a result of the computed

viscosity/diffusivity profile that first increases with distance

from the interface, reaching a maximum in the boundary

layer, before decaying to background levels. Such a profile

is a fundamental result that must emerge from any turbu-

lence model, regardless of its complexity.

During the early stages of its evolution, the boundary

current is dynamically stable, and the limited changes in

viscosity/diffusivity mean that the solutions conform quite

closely to those of Jenkins (2016), in which the stratification

decays monotonically with depth below the interface (Figs. 2

and 3). However, with the onset of dynamical instability, two

inflections appear in the thermal driving profile separating a

weakly stratified turbulent layer from much stronger stratifica-

tion next to the interface and through the pycnocline. The

changing stratification influences the buoyancy-forced geo-

strophic currents generated by the inclined interface, but the

ageostrophic currents are controlled by the interfacial shear

stress and are largely independent of the stratification (Jenkins

2016). Thus, the picture of a frictional boundary layer embedded

within an otherwise geostrophic, cross-slope ice shelf–ocean

boundary current described by Jenkins (2016) remains, al-

though the stratification is now stronger across the outer,

geostrophic current than within the inner, frictional boundary
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layer. The interplay between stratification, current shear and

diffusivity in the outer, geostrophic part leads to a negative

feedback between strengthening stratification and weakening

stability that can maintain a state of marginal stability. Such a

marginally stable pycnocline cannot develop on very low

slopes, where the background diffusivity prevents the stratifi-

cation reaching the required level (9).

If external forcing is absent, the flow along an inclined,

melting interface must develop from an initially motionless

state. While the thermal driving deficit is confined close to the

interface there can be little flow and diffusivities are conse-

quently low. As the flow builds, shear-induced mixing in-

creases, allowing the thermal driving deficit to spread away

from the interface, and that in turn increases the strength of the

flow. Three distinct phases of development can be identified:

an initially stable flow; a thin turbulent boundary layer un-

derlain by a sharp pycnocline through which friction influences

the current profile; a fully developed boundary layer underlain

by a marginally stable pycnocline through which the shear is

primarily geostrophic. The strength of the buoyancy forcing

associated with both the slope of the interface and the far-field

thermal driving determines how far the evolution can progress.

Estimates of the time scales for transition from the first to the

second phase (see the appendix) based on the constant diffu-

sivity model of Jenkins (2016) suggest that under conditions

quite commonly encountered beneath Antarctica’s larger ice

shelves (T*a ; 0.18C; sina ; 1023) the transition would take

months to years. However, at such low levels of thermal driv-

ing, background currents of ;1022m s21 are sufficient to re-

duce that time scale to days. Currents associated with tides and

even the time-mean circulation are typically an order of mag-

nitude larger, suggesting that a turbulent ice–ocean boundary

layer should be a widespread phenomenon. Estimates of

the slope required for transition to the third phase (see the

appendix) suggest that the fully developed ice shelf–ocean

boundary current may be less widespread, but those estimates

are conservative, being based on the constant diffusivity model

that is applicable only during the first phase.

The boundary current structure described in this paper dif-

fers from the plumelike form often assumed (MacAyeal 1985;

Jenkins 1991; Holland and Feltham 2006, Jenkins 2011).

Although there is a relatively well-mixed core, its depth is set

by the thickness of the frictional boundary layer, which is

controlled by the flow speed through its role in setting the ef-

fective turbulent viscosity. In contrast, the flow speed of a

plume sets the rate at which the plume thickness grows through

entrainment. Beyond the boundary layer, the outer part of

the ice shelf–ocean boundary current is stratified, and if the

buoyancy forcing is strong enough to induce marginal stability,

the heat flux through the pycnocline becomes a function of

interface slope only (9). It is independent of the far-field

thermal driving, because, as the thermal driving deficit in the

turbulent layer grows, the pycnocline broadens to maintain

the constant stratification (Fig. 5d). For a plume, the heat flux

from entrainment is often set proportional to interface slope

(Jenkins 1991), but it is also directly proportional to the

thermal driving deficit within the plume because the pyc-

nocline is treated as a discontinuity. Within the present

model, the ice–ocean interfacial heat flux remains a function of

far-field thermal driving (Fig. 7) because most of that flux is

supplied by cooling and deepening of the turbulent layer. If

advection were to be included in the model, a steady state

could be obtained once the advective heat flux were sufficient

to balance the divergence in the diffusive fluxes between in-

terface and pycnocline.

While the conventional formulation of the depth-integrated

plume equations naturally retains the along-slope heat advec-

tion, the main drawback is the reliance on an untested en-

trainment law to quantify the heat flux through the pycnocline.

That entrainment law has been shown to hold for a wide range

of natural and laboratory flows, including buoyancy-driven

currents along inclined interfaces (Ellison and Turner 1959),

but it has not been verified for cases where the current is

subject to a stabilizing interfacial buoyancy flux. In those cases,

turbulent kinetic energy must be expended to maintain well-

mixed conditions within the current, and it is not obvious that

the application of an identical entrainment law is appropriate.

The results of this paper could potentially replace the en-

trainment law within a revised, depth-integrated layer model.

Entrainment fluxes could be replaced with heat and momen-

tum fluxes based on (9) and (10), while the layer thickness

could be set proportional to the Ekman depth based on an

effective viscosity that scales with the interfacial shear

stress. Interfacial fluxes could be derived from (11) and (13),

while the more complete heat conservation equation, in-

cluding along-slope advection, would render (12) unneces-

sary. Appropriate geostrophic drag parameters are given in

Table 2 for a range of surface roughness values.

Thus, while the study described in this paper is entirely

idealized, the results potentially offer scope to improve the

parameterizations of critical vertical mixing processes in

models that simulate the ice shelf–ocean boundary current.

It remains to be seen whether those improvements could

represent a genuine advance in our ability to model the basal

melt rates of ice shelves or merely provide an alternative pa-

rameterization of the many unknowns. At present there is a

complete absence of observations that can be used to quantify

directly the interdependence of the current and density profiles

through the ice shelf–ocean boundary current that underpins

the above findings. The results, therefore, remain hypothetical,

and quantitatively dependent on the choice of turbulence

closure. Nevertheless, they provide hypotheses that can be

tested either by the application of physically more complete

models or by targeted observational campaigns.

TABLE 2. Geostrophic drag parameters for the fully developed

ice shelf–ocean boundary current (based on HTC solutions at 30

inertial periods).

Physical roughness

height (m)

Roughness

length scale (m) Drag coef

Turning

angle (8)

Hydraulically smooth nmole
22/u*0 0.8 3 1023 12

0.001 3.3 3 1025 0.9 3 1023 13

0.01 3.3 3 1024 1.3 3 1023 15

0.1 3.3 3 1023 2 3 1023 18

1 3.3 3 1022 3.5 3 1023 22
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APPENDIX

Development of Conditions for Dynamical Instability
within the Ice Shelf–Ocean Boundary Current

To consider the development of the ice shelf–ocean boundary

current from its initial stable state to its final formwith a turbulent

boundary layer and marginally stable pycnocline, it is instructive

to examine the behavior of the solutions for constant viscosity and

diffusivity shown in Fig. 3a. Since the initial condition has zero

floweverywhere and a step in thermal driving at the interface, that

step diffuses into the interior at a rate determined by the constant

background diffusivity defined in PP, and the resulting flow is

controlled by the constant background viscosity, even when HTC

is used. Deviation from that solution occurs as the flow ap-

proaches dynamical instability, causing the viscosity/diffusivity to

rise above background levels, but greatly elevated values only

occur once Ri , 1 and LTC is introduced into the calculation.

So, the constant diffusivity solution effectively captures the early

stages of development and can be used to estimate an upper

bound for the time taken for the current to become dynamically

unstable. The thermal driving profile takes the form

T*5T*a erf

 
2z

2
ffiffiffiffiffiffiffiffi
K

b
t

p
!

at time t (Fig. A1a), and the resulting buoyancy forcing gives

rise to a geostrophic flow:

v
g
5 iy

gi

"
12 erf

 
2z
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gi
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is the magnitude of the geostrophic current at the interface

(Fig. A1b). In association with the geostrophic current, an

ageostrophic component develops over the first inertial periods

(Jenkins 2016):
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q
is the Ekman depth for the background viscosity (Fig. A1c).

The current shear profile can then be expressed as
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leading to the following expression for the gradient Richardson

number (8) as a function of space and time:
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The basic form of the above expression is governed by the

physical constants that determine the relative sizes of the

thermal and dynamical boundary layers, while the overall

magnitude is set by an inverse length scale, that can be

expressed, using (A1) for the geostrophic current at the in-

terface, as

g cosaT*a
y2gi

�
Dr

DT*

�
5b

Ri

�
f2

g

�
,

where the balance between buoyancy forcing of the shear flow

and gravitational stability is encapsulated in the dimensionless

factor:

b
Ri
5

cosa

T*a sin
2 a

�
Dr

DT*

�21

.

The evolution of the gradient Richardson number (A2) for the

case plotted in Figs. 3a and A1 (where bRi 5 2 3 1027) is il-

lustrated in Fig. A2a. Results are inaccurate in the early stages,

when the thermal boundary layer is shallower than the Ekman

depth and the Ekman layer is consequently not fully devel-

oped. However, the analytical solutions capture the later de-

velopment well (Fig. A1d). The current is least stable at the

interface and the region of very weak stability deepens with

time (Fig. A2a). There is a core of slightly greater stability

around the current maximum that dissipates over time as the

stratification weakens, then a return to lower stability in the

region of reverse shear. Importantly, the region of instability

extends well beyond the Ekman layer and into the region of

primarily geostrophic shear beyond. In contrast, the gradient

Richardson number for the case plotted in Figs. 2a and A1

[evaluated from (A2) with only the first term in the denomi-

nator retained] shows that stability is rapidly established as

shear-free stratification develops beyond the boundary layer

(Figs. A1 and A2a).

With the introduction of the HTC, the solutions depart

substantially from those in Fig. A1. Nevertheless, Fig. A2a

provides insight into the early evolution of the boundary
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current before the onset of instability. The minimum gradient

Richardson number occurs at the interface and decreases with

time. While that minimum stays greater than one, the current

will be stable everywhere and remain in the initial phase of its

evolution. The transition to the second phase occurs almost

instantaneously in Fig. A2a, but for weaker buoyancy forcing

the time needed to reach that transition can be estimated from the

long time scale evolution of the interfacial gradient Richardson

number, derived from (A2) with only the first term in the

denominator retained:

Ri
0
5b

Ri

�
f2

g

�"
(db

E)
2

2
ffiffiffiffiffiffiffiffiffiffiffi
pK

b
t

p
#
.

The duration of the initial phase, relative to the inertial period

tin, can be found by setting Ri0 to 1 and rearranging:

t
1

t
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5
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b

 
db
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db
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#2
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FigureA2b shows the duration of the initial phase as a function

of ice shelf basal slope and thermal driving. There is a broad

region where the current becomes unstable almost immedi-

ately, but the transition to a second broad region where the

initial phase of stability is essentially infinite occurs at slopes

and temperatures that can be encountered beneath real ice

shelves. However, the neglect of advection in the model makes

the results more appropriate to regions nearer the ice shelf

grounding lines (Lane-Serff 1995), where basal slopes and far-

field thermal driving tend to be higher, typically greater than

;1023 and;1021, respectively. Furthermore, the addition of a

background current, which in reality is almost always present,

provides an additional source of shear to trigger instability

(Fig. A2b). Even when far-field thermal driving rises to a few

degrees, background currents of a few centimeters per second

are sufficient. In most cases, a rapid transition to the second

phase of current evolution, with a turbulent boundary layer,

should therefore be expected.

Establishment of the third phase of evolution requires that

the current be unstable beyond the frictional boundary layer.

In Fig. A2a it can be seen that, for the sloped interface, the

Richardson number near the outer edge of the boundary layer

passes through a minimum about 15–20 inertial periods after

the start. If that minimum exceeds one, the pycnocline that

forms beyond the boundary layer will remain stable. Inserting

appropriate numbers (z 5 pdE) into the expression for the

gradient Richardson number (A2) gives the minimum at the

outer edge of the boundary layer as

FIG. A1. Numerical (symbols plotted for every fifth grid point, color coded by time) and analytical (black lines) solutions for constant

viscosity and diffusivity (with Prandtl number 5 10). (top) The results in Fig. 2a; (bottom) the results in Fig. 3a for (a) thermal driving,

(b) upslope (solid) and across-slope (dashed) geostrophic currents, (c) upslope (solid) and across-slope (dashed) ageostrophic currents,

and (d) total current, where the analytical profile is a simple sum of the geostrophic [in (b)] and ageostrophic [in (c)] components.
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Rimin
bl ’ 9:143 1029b

Ri
.

The critical Rimin
bl contour is plotted in Fig. A2b. Beneath ice

shelves, far-field thermal driving can range from a few tenths of a

degree to a few degrees above freezing (Nicholls and Makinson

1998; Jenkins et al. 2010; Begeman et al. 2018), conditions that

require minimum slopes from;1022 to;1023 for the final phase

of boundary current evolution described earlier to be reached.

Such basal slopes are common on ice shelves, particularly near

their grounding lines, although the higher limit for colder waters

suggests that the third phasemay not be attainable everywhere.A

caveat is that the above limits are only a rough guide. Once the

boundary layer is unstable, a relativelywell-mixed layer forms and

the thermal driving profile changes fundamentally from the ana-

lytical solution (Fig. 3). Nevertheless, while the pycnocline re-

mains stable, its advance into the ambient fluid will be controlled

by the locally lower diffusivity, and its structurewill conformmore

closely to the analytical solution.

FIG. A2. (a) Gradient Richardson number as a function of depth and time, and (b) number of inertial periods

spent in the initial, dynamically stable phase of evolution as a function of dynamical forcing and thermal driving for

the ice shelf–ocean boundary currents illustrated in Fig. A1, with background viscosity nb and diffusivity Kb. In (a),

unshaded areas are where the thermal driving remains within 0.5% of the initial condition, the horizontal white line

indicates the outer edge of the frictional boundary layer, defined as z=db
E 5p, and black solid, dashed, and dotted lines

highlight contours of Ri5 1, 0.25, and 0.1825, respectively. In (b), the white asterisks indicate the parameters used for

Fig. 3 (top panel) and Fig. 2 (bottom panel), and the white line in the top panel indicates slope and thermal driving

combinations required for Rimin
bl 5 1. Only in the region above and to the right of that line is the third phase of

boundary current evolution attainable. All currents will eventually transition into phase two, but the time scale be-

comes very long, in excess of 60 inertial periods (;1 month) in the yellow shaded regions in both panels of (b).
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