Northumbria Research Link

Citation: Liu, Henry, E.D. Love, Peter, Zhao, Jianfeng, Lemckert, Charles and Muldoon-Smith, Kevin (2021) Transport Infrastructure Asset Resilience: Managing Government Capabilities. Transportation Research, Part D: Transport and Environment, 100. p. 103072. ISSN 1361-9209

Published by: Elsevier

URL: https://doi.org/10.1016/j.trd.2021.103072 <

This version was downloaded from Northumbria Research Link: https://nrl.northumbria.ac.uk/id/eprint/47424/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

1	Transport Infrastructure Asset Resilience: Managing
2	Government Capabilities
3	
4	Henry Liu ^a , Peter E.D. Love ^b Jianfeng Zhao ^c , Charles Lemckert ^a , and Kevin Muldoon-
5	Smith ^c
6	
7	^a School of Design and the Built Environment
8	University of Canberra
9	11 Kirinari Street, Bruce, ACT 2617, Australia
10	Email: henry.liu@canberra.edu.au
11	
12	^b School of Civil and Mechanical Engineering
13	Curtin University
14	GPO Box U1987, Perth, WA 6845, Australia
15	
16	^c Department of Architecture and Built Environment
17	Northumbria University
18	Sutherland Building, City Campus
19	Newcastle upon Tyne, NE1 8ST, United Kingdom
20	
21	
22	
23	
24	
25	
26	
27	Accepted by the Transportation Research Part D: Transport
28	and Environment on 03 October 2021
29	
30	
31	

33

Transport Infrastructure Asset Resilience: Managing Government Capabilities

34

35 Abstract

36 The management of the organisational capabilities needed to ensure the resilience of transport 37 infrastructure assets is a challenge for governments worldwide. However, an absence of critical 38 research in this area has exacerbated this challenge. The upshot, in this instance, has been the 39 inability of governments to engender and enact an effective transport resilience strategy. This 40 paper aims to fill this void and address the following research questions: (1) How do 41 government organisational capabilities interact with one another to determine the resilience of 42 transport projects? and (2) What is the best way to manage these organisational capabilities to 43 aid a resilience strategy? Using Social Network Analysis, seven transport infrastructure case 44 studies that were significantly impacted by natural hazards in the United Kingdom were used 45 to answer the proposed research questions. The analysis revealed five inter-related factors are 46 required to ensure the resilience of transport assets: (1) leadership; (2) reflexive 47 (organisational) learning; (3) support from senior management; (4) a culture adept to resilience; 48 and (5) continuous improvement (also investment) in asset absorbability, adaptability and 49 vulnerability. The original contribution of this research is threefold: (1) a network providing a 50 systematic visualisation of the interactions between organisational capabilities influencing 51 asset resilience; (2) the prioritisation of governmental capabilities; and (3) the development of 52 management framework providing a pathway that can accommodate environmental changes 53 and asset resilience.

54

55 Keywords: Transport infrastructure, resilience, governments, organisational capabilities
56

57 **1.0 Introduction**

58 Worldwide, governments are struggling to ensure their transport assets can adapt to external disturbances (in this case, climate change-related events), especially since the Coronavirus-59 60 2019 (COVID-19) outbreak (Sircar et al., 2013; Spaans and Waterhout, 2017; Pregnolato et 61 al., 2017; Love et al., 2018a.b; Van der Merwe and Van der Waldt, 2018; Zhang and Li, 2018; 62 Love et al., 2020; Ton et al., 2020). In 2009/2010 and 2010/2011, heavy snowfalls led to travel 63 chaos throughout the United Kingdom (UK), adversely disrupting airports, railways and road 64 networks. In 2019 England was subjected to torrential downpours, which resulted in 73 flood 65 warnings and a disrupted transport network, especially its Northern Rail services. Additionally, London's Liverpool Street station was flooded, causing severe track circuit failures and 66 platform closures. Adverse weather conditions have become the norm in the UK and are now 67 68 anticipated, though many uncertainties reside around such events' severity. In response to 69 increasingly adverse environmental events, the UK Government has developed a dedicated 'Sector Resilience Plan' to mitigate its infrastructure assets' vulnerability and improve its 70 71 resilience (Cabinet Office, 2019).

72

73 Resilience primarily relates to how infrastructure can positively withstand, absorb and respond 74 to changing conditions (Bosher and Dainty, 2011; NCCARF, 2013; Hughes and Healy, 2014). 75 Enabling resilient infrastructure is a sophisticated and systematic process, which integrates 76 engineering, technical and managerial elements over an asset's life-cycle (Desouza and Flanery, 77 2013; Love et al., 2021). Thus, the underlying dynamics of infrastructure resilience are 78 diversified no more so than the capabilities such as the collective skills, abilities and expertise 79 of critical organisations, particularly governments, involved with the delivery of the assets 80 (Bosher et al., 2009; Hughes and Healy, 2014; Liu et al., 2019). To this end, an organisation's

capability refers to its ability to perform a coordinated set of tasks, utilising its resources to
achieve a particular end result (Helfat and Peteraf, 2003: p.999).

83

84 Organisational capabilities are intangible assets and are "an outcome of investment in staffing, 85 training, compensation, communication and other human resource areas" (Smallwood and 86 Ulrich, 2004, p.119). They are also interdependent assets that comprise technical and social 87 components and emerge when competencies and abilities are combined. There is no "magic 88 list of capabilities" appropriate for governments to provide the intangible value needed to 89 ensure asset resilience (Smallwood and Ulrich, 2004, p.119). Despite their importance, there is 90 limited knowledge about the core capabilities required to underpin and enact a resilience 91 strategy. Lamenting this concern, the Cabinet Office (2017) in the UK acknowledged that a 92 lack of knowledge and understanding of organisational capabilities has contributed to its 93 inability to assess risk and uncertainty. Consequently, transport assets have performed poorly 94 as their fragility to adverse weather conditions has come to the fore (House of Commons, 2019; 95 Department for Transport, 2017; 2020).

96

97 While Cabinet Office (2017) in the UK has been cognisant of its inadequate organisational capabilities to provide resilient infrastructure and has put in place policy initiatives to address 98 99 this issue, there remains limited research examining how they can be better identified and 100 developed. This paper seeks to fill this void in knowledge and thus addresses the following 101 research questions: (1) How do government organisational capabilities interact with one 102 another to determine the resilience of transport projects? and (2) What is the best way to 103 manage these organisational capabilities to aid a resilience strategy? Understanding the 104 interdependency between capabilities and identifying critical needs is needed to effectively

105 manage them and enable governments to establish a pathway to develop practical actions for106 future improvement.

107

The paper commences with a review of the transport infrastructure resilience literature to provide a contextual backdrop for the research (Section 2). Then, the research method used to form the basis of the study's line of inquiry is presented (Section 3). Next, case studies from the UK are used to address the proposed research questions (Section 4). A conceptual framework for managing the organisational capabilities needed to ensure a transport asset's resilience (Section 5) and its implications for research are then presented (Section 6). Finally, the paper's conclusions are presented (Section 7).

115

116 **2.0** Transport Infrastructure Resilience

The literature is replete with studies that have examined transport resilience (Love *et al.*, 2021).
Nonetheless, when transport networks are disrupted and/or damaged, the socio-economic
wellbeing of an economy can be adversely impacted (Cox *et al.*, 2011; Reggiani, 2013; Hughes
and Healy, 2014; Reggiani *et al.*, 2015; Wan *et al.*, 2017; Love *et al.*, 2018b; Ton *et al.*, 2020).
However, such impacts can be significantly minimised if the infrastructure assets are designed,
constructed, operated and maintained to adapt and respond to unexpected changes and effects
imposed on them (Love *et al.*, 2017; Zhang and Li, 2018).

124

The epistemology of resilience is underpinned by four questions: (1) resilience of what? (2) resilience to what? (3) resilience for whom? and (4) how to be resilient (Vale, 2014; Chmutin *et al.*, 2016). While no standard definition of resilience prevails, within the context of infrastructure, four core elements have been identified in terms of an asset's ability to: (1) predict and resist impacts; (2) absorb and accommodate stress and remain functional; (3) be self-organised; and (4) learn, change and adapt (Davoudi, 2012; Thayaparan *et al.*, 2016; Wan *et al.*, 2017). A recurring theme of resilience, spurred on by calls to respond to global climate
change, is its ability to accommodate environmental changes (Bruneau *et al.*, 2003; Bosher and
Dainty, 2011; Emmanuel and Krüger, 2012; Sircar *et al.* 2013; Balsas, 2014; Spaans and
Waterhout, 2017).

135

136 The advent of major terrorist incidents has intensified the interest in transport system resilience 137 (Bruyelle et al., 2014). Emerging from Cox et al.'s (2011) research into the 2005 London 138 bombings were a series of operational metrics that sought to determine a passenger transport 139 system's resilience to terrorism based on its vulnerability, flexibility and resource availability 140 to cope with a terrorist attack or natural disaster. Continuing with the theme of underground 141 rail and buses, Jin et al. (2014) focused on developing an integrated multi-modal transport 142 network to improve a system's ability to adapt to increasing population and urban density. In 143 contrast, Venkittaraman and Banerjee (2013) examined the resilience of existing bridges to 144 natural hazards such as seismic activity by taking an ex-post perspective. They identified that 145 there is a need for bridges to be retrofitted to accommodate the likelihood of earthquakes. 146 Similarly, Becker and Caldwell (2015) adopted an *ex-ante* approach by soliciting stakeholders' 147 views to design and develop strategies to ensure a seaport's resilience.

148

149 2.1 Organisational Capability and Resilience

An organisation's capability refers to the capacity and resources that enable business functions such as strategic planning, leadership, systems and procedures, human resources, innovation, and network coordination to enact a strategy (Grant, 1991; Teece, 2007; Inan and Bititci, 2015).

Since the 1990s, there have been a wealth of studies that have sought to categorise organisational capabilities and to identify how they impact business performance (Amit and Schoemaker, 1993; Collis, 1994; Teece *et al.*, 1997; Winter, 2003; Zahra *et al.*, 2006), Ambrosini *et al.*, 2009; Saunila *et al.*, 2014; Raffoni *et al.*, 2018; Khalil and Belitski, 2020). Emerging from these studies is the role that stakeholders, regularly governments and construction contractors, play in identifying the critical needs to construct resilient infrastructure assets (Shaw *et al.*, 2019).

161

162 Table 1 presents the key studies conducted over the past decade investigating resilience from 163 an organisational capability perspective. A detailed examination of the literature reveals a 164 paucity of research examining the interdependency of organisational capabilities and how they 165 can be managed to ensure resilient transport systems (Blake et al., 2019). Thus, acquiring an 166 understanding of how capabilities interact with one another can help policy-makers develop a 167 resilience strategy that can be used to *future-proof* their transport assets. That is, to be better 168 positioned to anticipate future events, changes and needs or uses to prepare appropriately, 169 minimize impact and capitalise on opportunities (Masood et al., 2015; Love et al., 2018a).

170

171 **3.0 Research Approach**

This study aims to develop new knowledge for managing transport infrastructure resilience from a government's organisational capability perspective. An illustrative case study approach (Gerring, 2006), which draws on the grey literature, is used to address the research questions that have been proposed. The grey literature is defined as sources that are not formally published in books and journals but are found in technical reports, pre-prints, the media, and the like (Schöpfel and Farace, 2010). The use of grey literature to examine policy-related matters is deemed a valid inquiry line (Søndergaard *et al.*, 2003).

A total of seven cases have been selected, which were significantly impacted by natural hazards
in the UK (Table 2). Additionally, the cases are representative examples that the UK
Government has used to demonstrate the need to ensure infrastructure resilience in the future
(Department of Transport, 2014; Cabinet Office, 2017; Greater London Authority, 2019).

184 Table 1. Key studies investigating organisational capabilities and resilience within governments

Organisational Abilities	Research Targets	Authors
Strategies and stakeholder management	Entire built environment	Bosher <i>et al.</i> (2009)
Stakeholder and supply chain management	Entire infrastructure system	Steward et al. (2009)
Governance strategies	Communication systems	Carmeli and Markman (2011)
Workforce management	Entire infrastructure system	Santos <i>et al.</i> (2014)
Decision-making ability	Transport	Giezen et al. (2015)
Governance and empowerment in decision making	Community	Fan (2015)
Collaborating and networking, awareness and committing, learning, training and preparedness	City	Gimenez et al. (2017)
Performance management/measurement	Transport	Loo and Leung (2017)
Leadership, staff engagement, decision making, situation awareness and strategic planning	Entire built environment	Sapeciay et al. (2017)
Community engagement, leadership, finance, organisational structure and human resources	City	Van der Merve and Van der Waldt (2018)
Information management	Transport	Blake <i>et al.</i> (2019)
Governance	Community	Lee (2019)
Planning and resource management	Ports	Shaw et al. (2019)

¹⁸⁵

186

Table 2. The transport assets/systems selected for case studies

Transport Assets/Systems	Documentary Sources	
Motorway Network (e.g., M1, M4, M5, M18, M40, M50 and M54)	Department for Transport (2014)	
A390 (road) at Cornwall	Department for Transport (2014) and Cornwall Council (2019)	
London Gatwick Airport	Department for Transport (2014), McMillan (2014) and BBC (2019)	
A303 (trunk road) at Deptford	Department for Transport (2014) and UK Parliament (2014)	
Wokingham Borough Road System	Department for Transport (2014) and Cabinet Office (2017)	

Railway lines at Dawlish

187

188 The research questions aim to determine how a government's capabilities can systematically

- 189 develop a framework to assist policy-makers in formulating a resilience strategy.
- 190

Social Network Analysis (SNA) was utilised to analyse the collected data from various documentary sources identified in Table 2. The concept of SNA is a by-product of graph theory and can be used to: (1) systematically map the interdependencies between the individuals and their activities; (2) empirically interpret how such relationships can impact a network; and (3) prioritise the key 'activities' needed to be focused for management and improvement using the betweenness and closeness centralities (Otte and Rousseau, 2002). The robustness of SNA presents itself as an appropriate technique to address the paper's research questions.

198

Previous studies have demonstrated that SNA is an effective technique to identify complex
network relationships in infrastructure projects (Zheng *et al.*, 2016; Herrera *et al.*, 2020; Wang *et al.*, 2021). For instance, Herrera *et al.* (2019) utilised SNA to understand how a design team's
performance affected the quality of project outputs in construction. Contrastingly, Wang *et al.*(2021) used SNA to identify the transmission patterns and underlying dynamics determining
the performance of Public-Private Partnerships (PPPs).

205

A series of 'points' (nodes) and 'lines' (edges) depict individuals' social structure within SNA (Scott, 1988; Otte and Rousseau, 2002). While points represent the observed individuals, lines visualise their interactions. Data acquired from the documentary sources presented in Table 2 was inputted into NVivo 12 to derive and analyse the point and edges of the government's

- 210 capabilities and interdependencies (Figure 1). Gephi was then adopted to construct an SNA to
- 211 visualise the identified points and edges for further quantitative analysis.
- 212

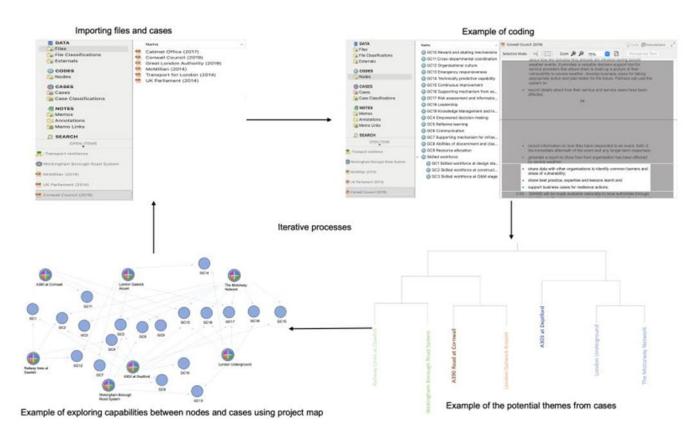


Figure 1. Process of data coding with NVivo

213

Two quantitative metrics, the 'betweenness' (Eq.1) and 'closeness' (Eq.2) centralities form the

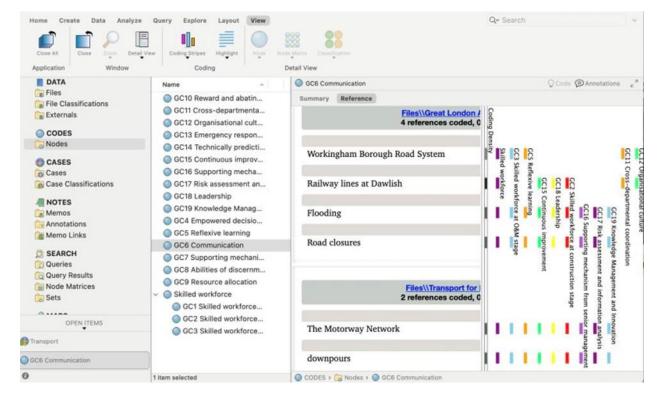
- 217 core of SNA and can be expressed as:
- 218

219
$$C_B(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st(v)}}{\sigma_{st}}$$
 [Eq.1]

220
$$C_c(v) = \sum_{\omega \in G} \frac{1}{d(v,\omega)}$$
 [Eq.2]

221

Where σ_{st} represents the number of the shortest paths with *s* and *t* as their end vertices. At the same time $\sigma_{st}(v)$ is the number of such paths above, including vertex *v*. The 'betweenness' centrality describes the frequency of a node that appears on the shortest path between nodes in the network (Freeman, 1978). Similarly, the 'closeness' centrality is the average distance from
a given starting node to all others in a network (Borgatti, 1995). Thus, it is used to indicate how
close a node is to another one.


228

229 4.0 Data Analysis

As identified in Table 2, seven cases were used to examine the UK government's capabilities contribution to implementing an asset resilience strategy. As previously mentioned, the cases were subjected to severe impacts due to extreme weather events (Table 3). For example, in July 2007, the road network comprising several critical motorways, including the M1, M4, M5, M18, M25, M40 and M54, was adversely affected by closures resulting from unprecedented downpours. Similarly, the electrical switchgear serving the North Terminal of London Gatwick Airport was inundated by the flooding, which caused a cloudburst in December 2013.

237

Over the last five years, the UK Government has undertaken several investigations (presented in Table 2) to determine the issues that have contributed to the poor resilience of their assets to extreme weather events. We inputted the reports into NVivo 12 to code the data (Figure 2). We then identified the organisational capabilities influencing the government's inability to ensure an asset's resilience, as noted in Figure 3.

244 Figure 2. Coding for categorising the UK Government's capabilities in determining resilience

246

Adapted from: Department for Transport (2014), McMillian (2014), UK Parliament (2014), Cabinet
Office (2017) Cornwall Council (2019) and Greater London Authority (2019)

- 249 Figure 3. Government's capabilities in determining asset resilience
- 250

Serial codes were then assigned to the identified capabilities (presented in Figure 3) so that further analysis could be undertaken (Table 3). As illustrated by Figure 1, thematic analysis was then performed using NVivo 12. Then, 'Queries' using the 'Search' function were run to map the identified capabilities (Figure 3) with each transport case. The mapping results are presented in Table 4.

Table 3.	Description	for the capabilities	being observed

Codes	Identified Capabilities	Definitions
GC1	Skilled workforce at design stage	The workforce of governmental departments that engage in the delivery of the
GC2	Skilled workforce at construction stage	transport projects
GC3	Skilled workforce at operation and maintenance stage	
GC4	Empowered decision-making	The power delegated to the teams or groups responsible for operating transport assets so that they can make decisions more efficiently when disasters/crisis happen
GC5	Reflexive learning	The learning mechanism of government for reflecting and capturing lessons learnt for organisational development
GC6	Communication	The communications between different departments in the government for works or actions initiated for enabling and/or ensuring resilience
GC7	Supporting mechanism for infrastructure system operations	The mechanisms across the departments of the government to support the operations of transport assets (i.e., the resilience planning workshops organised by the Department for Transport)
GC8	Abilities of discernment and classification	The organisation's ability in justifying and classifying the actions and/or initiatives essential for maintaining critical services during extreme weather
GC9	Resource allocation	The allocation of resources that are useful for developing, operating and maintaining the transport assets
GC10	Reward and abating mechanisms	The mechanisms placed for rewarding or abating the government's authorities that can or cannot address resilience in the delivery of transport assets
GC11	Cross-departmental coordination	The coordination across the departments within the government when a crisis occurs
GC12	Organisational culture	The organisational culture of resilience
GC13	Emergency responsiveness	The availability of practical guidance or procedure (i.e., the Local Resilience Fora and Strategic Co-ordinating Groups) in responding to an emergent situation (i.e., extreme weather incidents)
GC14	Technically predictive capability	The technical abilities of the government (e.g., systems, techniques and technologies) in effectively forecasting the risks (i.e., natural hazards) impacting the assets

	GC15	Continuous improvement	The investment and efforts spent for continuously improving the practice in delivering resilient transport assets
	GC16	Supporting mechanism from senior management	Effective and efficient supports from the government's top management for improving the practice in building resilient assets.
	GC17	Risk assessment and information analysis	Climate Change Risk Assessment and the analysis of information collected from transport systems, such as the signalling and customer information systems.
	GC18	Leadership	The styles of the leadership of the public authorities handling the delivery and operations of the assets
	GC19	Knowledge Management and Innovation	The systems for managing the knowledge and innovation (i.e., training system) essential for enabling and ensuring resilience
258	Sources: Dep	partment for Transport (2014), Cabinet Office (2017) and Gr	reater London Authority (2019)
259			
260			
261			
262			
263			
264			
265			
266			
267			
268			

Table 4. Coding for the government's capabilities determining the resilience of the assets

Assets	Incidents	Impacts	Disruptions	Capabilities
The Motorway Network (e.g., M1, M4, M5, M18, M40, M50 and M54)	Unprecedented downpours, 2007, 2013	Flooding	Road closures	GC2; GC3; GC5; GC6; GC15; GC16; GC17; GC18; GC19
A390 (road) at Cornwall	Extremely heavy rainfall, 2010	Flooding	Road closure	GC9; GC11; GC15
London Gatwick Airport	Cloudbursts, 2013, 2019	Flooding in the basement	(1) Partial closure of the North Terminal closure; (2) key power and IT systems failure; (3) airport express service delay	GC5; GC7; GC12; GC14; GC17
A303 (trunk road) at Deptford	Heavy rainfall, 2014	Large volume of groundwater	(1) Overwhelmed drainage system; (2) Eastbound carriageway closure; (3) Traffic diversion	GC1; GC2; GC4; GC5; GC8; GC10; GC15; GC16; GC17; GC19;
Workingham Borough Road System	Prolonged, persistent and heavy rainfall, 2013/14	Flooding from the River Thames and the River Loddon	(1) Road and bridge closures; (2) Difficult access to business parks and town centre	GC3; GC5; GC6; GC8; GC11; GC12; GC13
Railway lines at Dawlish	Wind, 2014	Wind, tidal surge and landslips	(1) The washing away of track ballast and foundations; (2) Severe breach of sea wall; (2) Severe damage to station track and platforms	GC1; GC2; GC4; GC6; GC7; GC8; GC9; GC11; GC12; GC13; GC15; GC18
London Underground	Cloudbursts, 2019	Flooding	(1) Flooded tunnels; (2) Electrical failures; (3) Mainline services at a standstill; and (4) platform closure.	GC1; GC3; GC5; GC9; GC11; GC13; GC14; GC15; GC16; GC17; GC18

270 Sources: Department for Transport (2014), McMillan (2014), UK Parliament (2014), Cabinet Office (2017), Cornwall Council (2019) and Greater London Authority (2019)

272 **4.1 Findings**

Based on the data collected from various sources and the coding above, we generated a network presented in Figure 4 using the Gephi 0.9.2 software package. The nodes connected by multiple edges in the developed network represent the UK government's organisational capabilities, which align with Figure 3. As there are both unidirectional ($A \rightarrow B$) and bidirectional ($A \rightarrow B$ and $B \rightarrow A$) links, the directed graph is chosen at the outset (Herrera *et al.*, 2020).

278

279 The network developed in Figure 4 comprises several nodes and edges relating to transport 280 resilience. The network contains 19 governmental capabilities illustrated in Figure 3, connected by 245 unidirectional and bidirectional links. Overall, the graph density of the constructed SNA 281 282 model is 0.716 out of 1. The relevant degree is 12.895 on average, indicating a relatively high 283 degree of the observed capabilities, represented by the number of links connected to a node. 284 As the network was constructed from the data of real-world transport assets, the systematic 285 interactions between organisational capabilities and resilience provide a sound basis for 286 developing a framework for policy development.

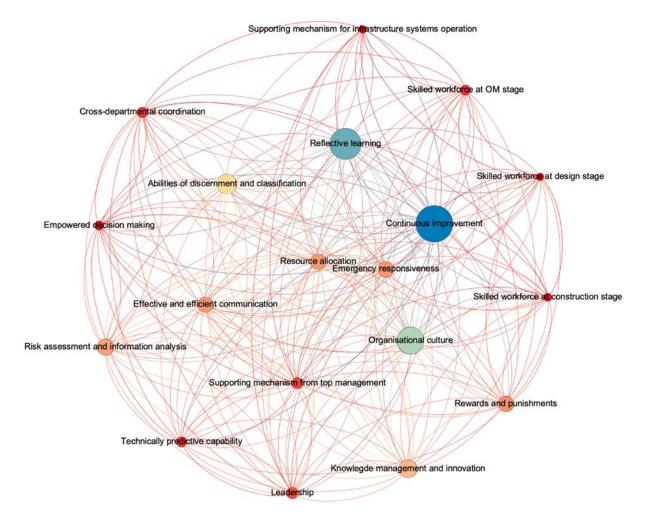
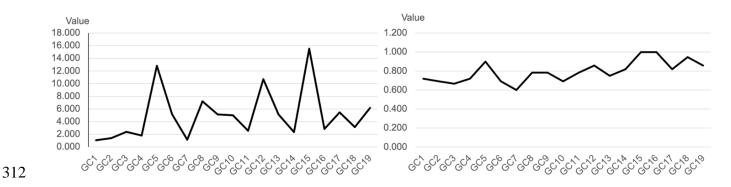
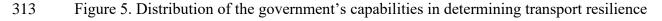


Figure 4. SNA of the government's capabilities determining the assets' resilience ¹ 290

The size of the nodes in a network represents different levels of importance of the individuals being observed. In this case, a larger node denotes a higher level of an individual's impact on the network. It can be seen from Figure 4 that the size of nodes in the network varies, implying that their effects on the resilience for each case are different.

295


Based on the betweenness centrality (left panel of Figure 5), the top three capabilities that determine the resilience of the transport assets are: (1) 'continuous improvement' (15.546), 'Reflexive learning' (a mechanism); (12.834); and (3) 'organisational culture' (10.683). The


¹ There are different layouts of network based on the types of metrics. This graph is visualised through degree.

betweenness centrality indicates which nodes are 'bridges' within the network (Disney, 2020).
As addressed above, betweenness centrality indicates which 'nodes' are the 'bridges' between
nodes within a network. When a node has a higher betweenness centrality, it is viewed as a
'hub' that transmits the influences of other nodes on the network.

303

In terms of closeness centrality² (right-hand panel of Figure 5), it can be seen that the 304 305 'supporting mechanism from top management' (1.000), 'Reflexive learning' (1.000) and 306 'leadership' (0.947) are the 'shortest' distances to all other nodes in the network. Therefore, 307 the nodes with high closeness centrality are those 'factors' that dominate the network and can 308 influence the entire network more significantly and efficiently than others. Put simply, the 309 capabilities such as 'supporting mechanism from top management, 'Reflexive learning' and 310 'leadership' are standing in the 'best position' to influence the resilience of a transport 311 infrastructure system) (Disney, 2020).

314

315 **5.0 Managerial Framework**

The UK government has been confronted with an array of challenges in its quest to ensure it can provide the organisational capabilities needed to ensure its transport assets' resilience. However, the process of enhancing transport resilience from the perspective of organisational

² A measure showing the degree of the individuals' closeness to others, the variables,

capability is ambiguous. The SNA can be used to examine the interactive impacts of the individual organisational capabilities on the resilience of a transport network. In the cases above, the SNA modelling has identified and visualised the patterns about how the: (1) capabilities interacted with each other in determining transport resilience; and (2) key 'actors' transmit the impacts of other factors within the network. Accordingly, the SNA findings from the case studies are significant as they enable an understanding of the key capabilities that the government needs to improve its ability to enact an infrastructure resilience strategy.

326

327 According to the betweenness centrality, the empirical evidence suggests that 'organisational 328 culture', 'reflexive learning' and 'continuous improvement' act as bridges to enable resilience. 329 Other capabilities, including the 'supporting mechanism from top management', 'reflexive 330 learning' and 'leadership', also influence resilience as indicated by the closeness centrality 331 measure. Naturally, support from the top management is needed for enhancing resilience. For 332 example, the UK's Cabinet Office (2021) has developed a national resilience strategy to help 333 "understand our vulnerabilities, pre-empt challenges before they arise, ensure we are prepared 334 for them, and mitigate the impacts. Then, when events do occur, we should be ready to 335 withstand and recover." (p.12)

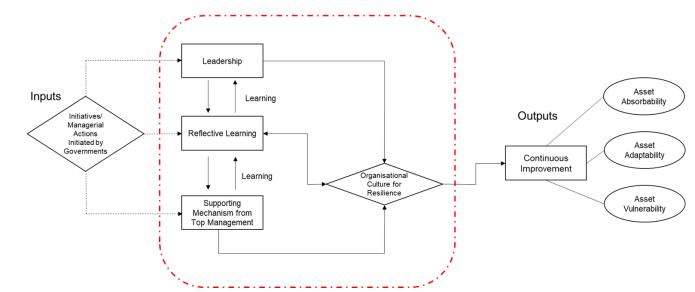
336

Additionally, a robust learning mechanism provides organisation's (i.e., governments) with an ability to capture well and reflect the issues of their businesses, enabling them to actively engage in continuous improvement and address a transport asset's vulnerability (Elliott, 2020). Notably, both the betweenness and closeness centralities of 'Reflexive Learning' are ranked the highest by the SNA. This ranking suggests that the government's learning mechanism is an efficient capability enabling resilience and is a significant 'hub' for transmitting the impacts of other capabilities on the entire network. Based on the findings above, a managerial framework is developed to determine the needs and actions required by the government to ensure theyhave the organisational capability to deliver resilient transport assets.

346

The provision of resilience is a challenge, but with top management support and leadership, which is transformational, governments will be well-positioned to enact a process of innovation and continuous improvement (Figure 6) (Bednall *et al.*, 2018). The reason for doing so is that significant relationship exists between leadership style and organisational changes in an organisation (Matzler *et al.*, 2008). For instance, transformational leadership is essential for business and project success, boosting organisational and technological innovation (Aga *et al.*, 2016).

354


355 Technological innovation and development play a critical role in driving asset management 356 forward (Baker et al., 2019), which is pivotal for delivering resilient transport infrastructure 357 assets (Love et al., 2021). In addition, transformational leadership is often required to: (1) 358 manage technology-enabled change to improve business processes and a transport asset's 359 adaptability and resilience; and (2) generate vision to guide the change process changes 360 (Bednall et al., 2018). It is proffered that government departments that oversee the 361 procurement, management and operation of transport assets should have in place a programme 362 to develop the skills of their leaders so that they have an: (1) awareness of the increasing natural 363 and human-made impacts on their assets; (2) ability to predict future impacts and a create a 364 strategy to implement the change needed to accommodate natural and human-made impacts; and (3) interpersonal capability to develop a business network (Trevor and Hill, 2012; 365 366 Hamdani, 2018).

In summary, a transformational leadership training programme aims to prepare leaders for selfawareness of risk and an ability to predict and execute change (Trevor and Hill, 2012). Noteworthy, predictability is an element of the definition of resilience, according to the US Environmental Protection Agency (2015). As also noted in Figure 4, the transport agencies need to continuously learn and improve by enacting lessons learned and engaging in reflexive practice to engender resilience capabilities (Love *et al.*, 2015; Liu *et al.*, 2018).

374

375 A life-cycle resilience performance measurement system (PMS) can improve transport 376 resilience from the perspective of 'organisational learning' as it can provide organisations with 377 an insight into: (1) the outputs of their business, specifically their adaptability and vulnerability; 378 and (2) a vision about what aspects could be improved in the future (Bourne, 1999; Neely et 379 al., 2001). As pointed out by the UK's Cabinet Office (2017), resilience measurement is a 380 prerequisite for building resilient infrastructure assets. However, the development of specific 381 PMSs has received limited attention (Sun et al., 2020). Thus, a resilience PMS would focus on 382 measuring transport asset's (1) adaptability to changes, (2) efficiency of a process leading to 383 adaptability, and (3) vulnerability (Liu et al., 2019). With a PMS in place, governments would 384 be better positioned to understand the vulnerabilities of their assets and the actions needed to 385 ensure they are resilient.

388 Note: The arrows with dot lines indicate the possible effects of the organisation's initiatives and actions on developing their capabilities

Figure 6. A conceptual framework for managing government's organisational capabilities to
 ensure transport asset resilience

391

387

As noted in Figure 6, a change to the 'transformational leadership' from a 'transactional style', 392 393 which is common in governments, can help shift the culture to be resilient and support a process 394 of 'learning through' (i.e., how to disasters) instead of 'learning from disasters (Hofstede et al., 395 2010; Valero et al., 2015; Love and Matthews, 2020). Developing an organisational culture of 396 resilience in the public sector is a necessary part of the future-proofing process (Everley, 2011; 397 Love et al., 2017). Noteworthy, there is a reciprocal relationship between organisational culture 398 and organisational capability. A culture of resilience, as a result of the skills development 399 programme, will, in turn, support the development of other organisational capabilities such as 400 the continuous improvement for an asset's adaptability, vulnerability and absorbability (Figure 401 6) (Chang et al., 2017; Cropley, 2017). To this end, culture is an integral part of shaping a 402 resilience strategy enacted by employees (White, 2013; Hughes and Healy, 2014). 403

- 404

405 **6.0** Implications for Future Research

406 Research examining the underlying dynamics of resilience abounds the literature, emphasising 407 the development of paradigms to enable positive responses to environmental changes (Figure 408 5) (Wan et al., 2018). For example, the extant known-what research tends to focus on 409 understanding and determining the elements to include in the definition of resilience, focusing 410 on robustness, recoverability and vulnerability and identifying the barriers to developing 411 resilient infrastructure, which includes resource availability, inflexibility, and unsupportive 412 policies (Markolv et al., 2018; Kermanshachi et al., 2019). However, the known-what paradigm 413 eschews insights about improving an asset's ability to adapt and respond to external 414 disturbances.

415

416 Future research, therefore, needs to focus on identifying how to enhance the business processes 417 leading to resilient infrastructure assets (known-how) (Chmutina et al., 2016; Liu et al., 2019) 418 by engaging in a collaborative asset delivery model and utilising digital technologies (Love et 419 al., 2021). Furthermore, within the know-how paradigm, an investigation into the 420 organisational capabilities that impact resilience is emerging (Blake et al., 2019). Despite the 421 significant role of such capabilities in determining resilience, studies have tended to shy away 422 from identifying how to manage them (Dubey et al., 2021). This has led to, for example, an 423 inability of the government in being able to develop resilient assets; thus, future studies need 424 to address the void above to enable the public sector to have robust capabilities in ensuring 425 their assets can adapt to changes (Blake et al., 2019). For example, the developed managerial 426 framework places a 'strategic' (macro) emphasis on enabling continuous improvements for 427 asset's adaptability, absorbability and vulnerability via leadership, learning, supporting 428 mechanism and organisational culture. At a 'micro-level, the future research places emphasise re-engineering governmental business processes to improve their ability to adapt and respond
to risks, manage uncertainties and respond to crisis events (Chmutina *et al.*, 2016).

431

432 **7.0 Conclusions**

433 Transport infrastructure is critical for supporting societies daily activities and businesses. 434 However, the infrastructure functionality is being impacted by external disturbances resulting 435 from climate-related, health, economic and social changes. Thus, transport resilience has been 436 prioritised by many governments worldwide. Yet, there is a widely accepted view that the 437 organisational capabilities of governments, particularly in the UK context for this research, are 438 critical to ensure infrastructure resilience. Still, they have received limited study within the 439 transport context. There is also an absence of research that attempts to identify how government's capabilities determine resilience, leading to a knowledge void about managing 440 441 them to ensure resilient transport assets. This paper has sought to address this issue and thus 442 aims to generate knowledge to manage the government's capabilities for enabling transport 443 resilience.

444

Based on the constructed SNA network and results presented, a managerial process, which incorporates five components, has been proposed to provide governments with an avenue to systematically improve their organisational capabilities and the resilience of their transport infrastructure assets. The components embrace (1) leadership; (2) organisational learning; (3) supporting mechanism from senior management; (4) a culture adept to resilience; and (5) continuous improvement (also investment) for asset's absorbability, adaptability and vulnerability.

453 The contribution of the study presented in this paper to the literature is threefold: (1) a network 454 providing a systematic visualisation of the interactions between organisational capabilities influencing asset resilience; (2) the prioritisation of governmental capabilities; and (3) the 455 456 development of a management framework providing a pathway that can accommodate environmental changes and asset resilience. In summary, this research output provides the 457 458 public sector authorities with the underlying knowledge required to develop their abilities to 459 further predict risks, thinking ahead and post-crisis learning, which aid in designing and 460 implementing a robust resilience policy.

461

462 **References**

- ABS (2020). Australian National Account: National Income, Expenditure and Product <
 https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/5206.0Mar%202020?Open
 Document> (accessed 18 July 2020).
- 466

467 Aga, D.A., Noorderhaven, N. and Vallejo, B. (2016). Transformational leadership and project 468 success: The mediating role of team-building, *International Journal of Project*469 *Management*, 34(5), 806-818.

- 470
- Ambrosini, V., Bowman, C. and Collier, N. (2009). Dynamic capabilities: an exploration of
 how firms review their resource base, *British Journal of Management*, 20, 9-24.
- 474 Amit, R. and Schoemaker, P.J.H. (1993). Strategic assets and organisational rent, *Strategic*475 *Management Journal*, 14, 33-46.
- 476

473

- 477 Balsas, CJL (2014). Downtown resilience: A review of recent (re)developments in Tempe,
 478 Arizona, *Cites*, 36, 158-169.
- 479

Becker, A. and Caldwell, M.R. (2015). Stakeholder perceptions of seaport resilience strategies:
A case study of Gulfport (Mississippi) and Providence (Rhode Island), *Coastal Management*, 43(1), 1-34.

483	Bednall, T.C., Rafferty, A.E., Shipton, H., Sanders, K. and Jackson, C.J. (2018). Innovative
484	behaviour: How much transformational leadership do you need?, British Journal of
485	Management, 29(4), 796-816.
486	
487	Blake, D.M., Stevenson, J., Wotherspoon, L., Ivory, V. and Trotter, M. (2019). The role of data
488	and information exchanges in transport system disaster recovery: A New Zealand case
489	study, International Journal of Disaster Risk Reduction, 39, 101-124.
490	
491	Bosher, L. and Dainty, A. (2011). Disaster risk reduction and 'built-in' resilience: Towards
492	overarching principles for construction practice, Disasters, 35(1), 1-18.
493	
494	Bosher, L., Dainty, A., Carrillo, P., Glass, J. and Price, A. (2009). Attaining improved
495	resilience to floods: a proactive multi-stakeholder approach, Disaster Prevention and
496	Management, 18(1), 9-22.
497	
498	Bruneau, M, Chang, S., Eguchi, R., Lee, G., O'Rourke, T., Reinhorn, A., Shinozuka, M.,
499	Tierney, K., Wallace, W. and von Winterfelt, D. (2003). A framework to quantitatively
500	assess and enhance the seismic resilience of communities, EERI Spectra Journal, 19(4),
501	733-752.
502	
503	Bruyelle, J.L., O'Neill, C., El-Koursi, E.M., Hamelin, F., Sartori, N. and Khoudour, L. (2014).
504	Improving the resilience of metro vehicle and passengers for an effective emergency
505	response to terrorist attacks, Safety Science, 62, 37-45.
506	
507	Cabinet Office (2017). Public summary of sector security and resilience plan, London, UK.
508	
509	Cabinet Office (2019). Sector resilience plans https://www.gov.uk/government/collections/sector-
510	resilience-plans (accessed 05 January 2021).
511	
512	Cabinet Office (2021). The national resilience strategy: A call for evidence, available at:
513	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment
514	_data/file/1001404/Resilience_StrategyCall_for_Evidence.pdf (accessed 02 August
515	2021).
516	

517	Carmeli, A. and Markman, G.D. (2011). Capture, governance, and resilience: Strategy
518	implications from the history of Rome, Strategic Management Journal, 32, 322-341.
519	
520	Chmutina, K., Lizarralde, G., Dainty, A. and Bosher, L. (2016). Unpacking resilience policy
521	discourse, Cities, 58, 70-79.
522	
523	Collis, D.J. (1994). Research note: How valuable are organisational capabilities?, Strategic
524	Management Journal, 15(2), 143-152.
525	
526	Cornwall Council (2019). Preliminary risk assessment: Annex 5, Cornwall, UK
527	
528	Cox, A., Prager, F., and Rose, A. (2011). Transportation security and the role of resilience: A
529	foundation for operational metrics, Transport Policy, 18(2), 307-317.
530	
531	Davoudi, S. (2012). Resilience: A bridging concept or a dead end?, Planning Theory and
532	Practice, 13, 299-307.
533	
534	Department for Transport (2014). Transport resilience review: A review of the resilience of the
535	transport network to extreme weather events, CM 8874, London, UK.
536	
537	Department for Transport (2017). Transport investment strategy: Moving Britain ahead, CM
538	9472, London, UK.
539	
540	Department for Transport (2020). Road investment strategy 2: 2020-2025, London, UK.
541	
542	Desouza, K.C., and Flanery, T. (2013). Designing, planning, and managing resilient cities: A
543	conceptual framework, Cities, 35, 89-99.
544	
545	Elliott, I.C. (2020). Organisational learning and change in a public sector context, Teaching
546	Public Administration, 38(3), 270-283
547	
548	Emmanuel, R. and Krüger, E. (2012). Urban heat island and its impact on climate change
549	resilience in a shrinking city: The case of Glasgow, UK, Building and Environment, 53,
550	137-149.

551	European Commission (2018). EU to invest nearly €700 million in sustainable and innovative
552	transport <https: 2018-10-01-<="" ec.europa.eu="" infrastructure="" news="" td="" themes="" transport=""></https:>
553	cef_en> (accessed 11 February 2019).
554	
555	Everly, G.S. (2011). Building a resilient organisational culture, Harvard Business Review,
556	June.
557	
558	Fan, M-F (2015). Disaster governance and community resilience: reflections on Typhoon
559	Morakot in Taiwan, Journal of Environmental Planning and Management, 58(1), 24-38.
560	
561	Gerring, J. (2006). Case study research: Principles and Practice. Cambridge University
562	Press, Cambridge, UK.
563	
564	Giezen, M., Salet, W. and Bertolini, L. (2015). Adding value to the decision-making process
565	of mega projects: Fostering strategic ambiguity, redundancy, and resilience, Transport
566	Policy, 44, 160-178.
567	Gimenez, R., Labaka, L. and Hernantes, J. (2017). A maturity model for the involvement of
568	stakeholders in the city resilience building process, Technological Forecasting and
569	Social Change, 121, 7-16.
570	
571	Grant, R.M. (1991). The resource-based theory of competitive advantages: Implications for
572	strategy formulation, California Management Review, 33(3), 114-135.
573	
574	Great London Authority (2019). Floods shut tube stations for 137 hours https://www.london.go
575	v.uk/press-releases/assembly/caroline-russell/floods-shut-tube-stations-for-137-hours>
576	(Accessed 18 July 2020).
577	
578	Helfat, C.M. and Peteraf, M. (2003). The dynamic resource-based view: Capability life-
579	cycless, Strategic Management Journal, 24, 997-1010.
580	
581	Herrera, R.F., Mourgues, C., Alarcón, L.F. and Pellicer, E. (2020). Understanding interactions
582	between design team members of construction projects using social network analysis,
583	Journal of Construction Engineering and Management, 10.1061/(ASCE)CO.1943-
584	7862.0001841

585	House of Commons (2019). Transport infrastructure in the South West, Session 2017-19,
586	London, UK.
587	
588	Hughes, J.F. and Healy, K. (2014). Measuring the resilience of transport infrastructure. NZTAR
589	<i>Report 546</i> , 82pp.
590	
591	Inan, GG and Bititci, U.S. (2015). Understanding organisational capabilities theories in the
592	context of micro enterprises: A research agenda, Procedia - Social and Behavioral
593	Science, 210, 310-319.
594	
595	Ingirige, B. (2016). Theorising construction industry practice within a disaster risk reduction
596	setting: is it a panacea or an illusion?, Construction Management and Economics, 34 (7-
597	8), 592-607
598	
599	Jin, J.G., Tang, L.C., Sun, L., and Lee, D.H. (2014). Enhancing metro network resilience via
600	localised integration with bus services, Transportation Research Part E: Logistics and
601	Transportation Review, 63(2), 17–30.
602	
603	Khalil, S. and Belitski, M. (2020). Dynamic capabilities for firm performance under the
604	information technology governance framework, European Business Review, 32(2), 129-
605	157.
606	
607	Lee, D.W. (2019). Local government's disaster management capacity and disaster resilience,
608	Local Government Studies, 45(6), 803-826.
609	
610	Liu, H.J., Love, P.E.D., Smith, J., Sing, MCP and Matthews, J. (2018). Evaluation of Public-
611	Private Partnerships: Alife-cyclee performance prism for ensuring value for money,
612	Environment and Planning C: Politics and Space, 36(6), 1133-1153.
613	
614	Liu, H.J., Love, P.E.D., Sing, M.C.P., Niu, B. and Zhao, J. (2019). Conceptual framework for
615	life-cycle performance measurement: Ensuring the resilience of transport infrastructure
616	assets, Transportation Research Part D: Transport and Environment, 77, 615-626.
617	• • • • •

618	Liu, H.J., Love, P.E.D., Ma, L. and Sing, MCP (2020). Predicting production-output
619	performance within a complex business environment: From singular to multi-
620	dimensional observations in evaluation, International Journal of Production Research,
621	10.1080/00207543.2020.1841316.
622	
623	Love, P.E.D., and Matthews, J. (2020). Quality, requisite imagination and resilience: Managing
624	risk and uncertainty in construction. Reliability Engineering and System Safety, 204,
625	107172
626	
627	Love, P.E.D., Liu, J., Matthews, J., Sing, CP and Smith, J. (2015). Future-proofing PPPs:Life-
628	cyclee performance measurement and building information modelling, Automation in
629	Construction, 56, 26-35
630	
631	Love, P.E.D. Ahiaga-Dagbui, D., Welde, M., and Odeck, J. (2017). Cost performance light
632	transit rail: Enablers of future-proofing, Transportation Research A: Policy and
633	Practice, 100, 27-39.
634	
635	Love, P.E.D., Ika, L., Locatelli, G., and Ahiaga-Dagbui, D.D. (2018a). Future-proofing 'Next
636	Generation' Infrastructure Assets. Frontiers of Engineering Management 5(3), pp. 407-
637	410.
638	
639	Love, P.E.D., Zhou, J., Matthews, J. Lavender, M. and Morse, T. (2018b). Managing rail
640	infrastructure for a digital Future: Future-Proofing of asset information. Transportation
641	Research A Policy and Practice, 110, 161-176.
642	
643	Love, P.E.D., Ika, L. Matthews, J., and Fang, W. (2020). Shared leadership, value and risks in
644	large scale transport projects: Re-calibrating procurement policy for post COVID-19.
645	Research in Transportation Economics, 100999.
646	
647	Love, P.E.D., Ika, L.A., Matthews, J., Li, X. and Fang, W. (2021). A procurement policy-
648	making pathway to future-proof large-scale transport infrastructure assets, Research in
649	Transportation Economics, 10.1016/j.retrec.2021.101069.
650	

651	Loo, B.P.Y. and Leung, K.Y.K. (2017). Transport resilience: The occupy central movement in
652	Hong Kong from another perspective, Transportation Research Part A: Policy and
653	<i>Practice</i> , 100-115.
654	
655	McMillian, D. (2014). Disruption at Gatwick Airport: Christmas Eve 2013, Report to the Board
656	of Gatwick Airport Limited, UK.
657	
658	Masood T, McFarlane D, Parlikad A, Dora J, Ellis A and Schooling J (2015). Toward future-
659	proofing of UK infrastructure. Infrastructure Asset Management. 3(1): 26-41
660	
661	NetworkRail (2019). Five years since we reopened Dawlish (https://www.networkrail.co.uk/
662	stories/five-years-since-we-reopened-dawlish/) (accessed 06 January 2021).
663	
664	Otte, E. and Rousseau, R. (2002). Social network analysis: a powerful strategy, also for the
665	information science, Journal of Information Science, 28(6), 441-453.
666	
667	Pregnolato, M., Ford, A., Gelnis, V., and Wilkinson, S. (2017). Impact of climate change on
668	disruption of urban transport networks from pluvial flooding. ASCE Journal of
669	Infrastructure Systems, (ASCE)IS.1943-555X.0000372
670	
671	Raffoni, A., Visani, F., Bartolini, M. and Silvi, R. (2018). Business performance analytics:
672	exploring the potential for performance management systems, Production Planning and
673	Control, 29(1), 51-67.
674	
675	Reggiani, A. (2013). Network resilience for transport security: Some methodological
676	considerations, Transport Policy, 28, 63-68.
677	
678	Reggiani, A. Nijkamp, P. and Lanzi, D. (2015). Transport resilient and vulnerability: The role
679	of connectivity, Transportation Research Part A: Policy and Practice, 81, 4-15.
680	
681	Santos, J.R., Herrera, L.C. and Yu, K.D.S. (2014). State of the art in risk analysis of workforce
682	criticality influencing disaster preparedness for interdependent systems, Risk Analysis,
683	34(6), 1056-1068.
684	

685	Sapeciay, Z., Wilkinson, S. and Costello, S.B. (2017). Building organisational resilience for
686	the construction industry, International Journal of Disaster Resilience in the Built
687	Environment, 8(1), 98-108.
688	
689	Saunila, M., Pekkola, S. and Ukko, J. (2014). The relationship between innovation capability
690	and performance: The moderating effect of measurement, International Journal of
691	Productivity and Performance Management, 63(2), 234-249.
692	
693	Schöpfel, J., and Farace, D.J. (2010). Grey Literature. In Encyclopedia of Library and
694	Information Sciences, M. J. Bates and M. N. Maack, Eds. 3rd Ed.: CRC Press, pp. 2029-
695	2039.
696	
697	Scott, J. (1988). Trend report: Social network analysis, Sociology, 22(1), 109-127.
698	
699	Shaw, D.R., Achuthan, K., Sharma, A. and Grainger, A. (2019). Resilience orchestration and
700	resilience facilitation: How government can orchestrate the whole UK ports market with
701	limited resources - the case of UK port resilience, Government Information Quarterly,
702	36, 252-263.
703	
704	Sircar, I., Sage, D., Goodier, C., Fussey, P. and Dainty, A. (2013). Constructing resilient
705	futures: Integrating UK multi-stakeholder transport and energy resilience for 2050,
706	<i>Futures</i> , 49, 49-63.
707	
708	Smallwood, N. and Ulrich, D. (2004). Capitalising on capabilities. Harvard Business Review,
709	82(6), 119-127
710	
711	Søndergaard, F.T., Andersen, J. and Hjørland, B (2003). Documents and the communication
712	of scientific and scholarly information, Journal of Documentation, 59(3), 278-320.
713	
714	Spaans, M. and Waterhout, B. (2017). Building up resilience in cities worldwide – Rotterdam
715	as the participant in the 100 Resilient Cities Programme, Cities, 61, 109-116.
716	

717	Stewart, G.T., Kolluru, R. and Smith, M. (2009). Leveraging public-private partnerships to
718	improve community resilience in times of disaster, International Journal of Physical
719	Distribution and Logistics Management, 39(5), 343-364.
720	
721	Sun, W., Bocchini, P. and Davison, B.D. (2020). Resilience metrics and measurement methods
722	for transportation infrastructure: the state of the art, Sustainable and Resilience
723	Infrastructure, 5(3), 168-199.
724	
725	Teece, DJ (2007). Explicating dynamic capabilities: the nature and micro foundations of
726	(sustainable) enterprise performance, Strategic Management Journal, 28, 1319-1350.
727	
728	Teece, D.J., Pisano, G. and Shuen, A. (1997). Dynamic capabilities and strategic management,
729	Strategic Management Journal, 18(7), 509-533.
730	
731	Thayaparan, M., Ingirige, M.J.B., Pathirage, C., Kulatunga, U. and Fernando, T.P. (2016). A
732	resilience framework for critical infrastructure. University of Salford, UK.
733	
734	Ton, G., Czajkowski, J., Kunreuther, K., and Angotti, K. (2020). Measuring infrastructure
735	resilience: Case study with Amtrak. ASCE Journal of Infrastructure Systems, 26(1),
736	(ASCE)IS.1943-555X.0000526.
737	
738	UK Parliament (2014). A303: Debated on Tuesday 4 March 2014 (https://hansard.parliament.u
739	k/Commons/2014-03-04/debates/14030456000001/A303) (accessed 06 January 2021).
740	
741	Vale, L. (2014). The politics of resilient cities: Whose resilience and whose city?, Building
742	Research and Information, 42(2), 191-201.
743	
744	Valero, J.N., Jung, K. and Andrew, S. (2015). Does Transformational Leadership Build
745	Resilient Public and Nonprofit Organisations, Disaster Prevention and Management,
746	24(1), 4-20.
747	
748	Van der Merwe, L. and Van der Waldt, G. (2018). City government's capability for resilience:
749	Towards a functional framework, Administratio Publica, 27(3), 57-76.
750	

751	Venkittaraman, A. and Banerjee, S. (2014). Enhancing resilience of highway bridges through
752	seismic retrofit, Earthquake Engineering and Structural Dynamics, 43, 1173-1191.
753	
754	Wan, C., Yang, Z., Zhang, D., Yan, X. and Fan, S. (2018). Resilience in transportation systems:
755	a systematic review and future directions, Transport Review, 38(4), 479-498.
756	
757	Winter, S. (2003). Understanding dynamic capabilities, Strategic Management Journal, 24,
758	991-995.
759	
760	Yin, R.K. (2013). Case study research: Design and methods, Sage Publications, UK.
761	
762	Young, C., Jones, R.N., Ooi, D., Lung, S., Parry, N., and Heenetigala, K. (2020). Reimagining
763	the workforce: building smart, sustainable and safe public transport, Workshop context
764	paper, Rail Manufacturing Cooperative Research Centre, Melbourne, Australia.
765	
766	Zahra, S., Sapienza, H. and Davidsson, P. (2006). Entrepreneurship and dynamic capabilities:
767	a review, model and research agenda, Journal of Management Studies, 43, 917-955.
768	
769	Zhang, X. and Li, H. (2018). Urban resilience and urban sustainability: What we know and
770	what do not know?, <i>Cities</i> , 72, 141-148.
771	
772	Zheng, X., Le, Y., Chan, A.P.C., Hu, Y. and Li, Y. (2016). Review of the application of social
773	network analysis (SNA) in construction project management research, International
774	Journal of Project Management, 34(7), 1214-1225.