Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces

Cao, Yunyi, Jana, Saikat, Tan, Xiaolong, Bowen, Leon, Zhu, Yufeng, Dawson, Jack, Han, Rui, Exton, John, Liu, Hongzhong, McHale, Glen, Jakubovics, Nicholas S. and Chen, Jinju (2020) Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces. Langmuir, 36 (45). pp. 13396-13407. ISSN 0743-7463

AAM - Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces.pdf - Accepted Version

Download (2MB) | Preview
Official URL:


The concept of slippery lubricant-infused surfaces has shown promising potential in antifouling for controlling detrimental biofilm growth. In this study, nontoxic silicone oil was either impregnated into porous surface nanostructures, referred to as liquid-infused surfaces (LIS), or diffused into a polydimethylsiloxane (PDMS) matrix, referred to as a swollen PDMS (S-PDMS), making two kinds of slippery surfaces. The slippery lubricant layers have extremely low contact angle hysteresis, and both slippery surfaces showed superior antiwetting performances with droplets bouncing off or rolling transiently after impacting the surfaces. We further demonstrated that water droplets can remove dust from the slippery surfaces, thus showing a “cleaning effect”. Moreover, “coffee-ring” effects were inhibited on these slippery surfaces after droplet evaporation, and deposits could be easily removed. The clinically biofilm-forming species P. aeruginosa (as a model system) was used to further evaluate the antifouling potential of the slippery surfaces. The dried biofilm stains could still be easily removed from the slippery surfaces. Additionally, both slippery surfaces prevented around 90% of bacterial biofilm growth after 6 days compared to the unmodified control PDMS surfaces. This investigation also extended across another clinical pathogen, S. epidermidis, and showed similar results. The antiwetting and antifouling analysis in this study will facilitate the development of more efficient slippery platforms for controlling biofouling.

Item Type: Article
Additional Information: Funding information: Engineering and Physical Sciences Research Council (EP/R512692/1EP/K039083/1EP/R025606/1) China Scholarship Council Newcastle University
Uncontrolled Keywords: Electrochemistry, Spectroscopy, Surfaces and Interfaces, Condensed Matter Physics, General Materials Science
Subjects: H800 Chemical, Process and Energy Engineering
H900 Others in Engineering
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Rachel Branson
Date Deposited: 03 Nov 2021 09:53
Last Modified: 03 Nov 2021 10:00

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics