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ABSTRACT

The concept of Flexible A.C. Transmission Systems (FACTS) technology was developed to

enhance the performance of electric power networks (both in steady-state and transient-state) and to

make better utilization of existing power transmission facilities. The continuous improvement in

power ratings and switching performance of power electronic devices together with advances in

circuit design and control techniques are making this concept and devices employed in FACTS

more commercially attractive. The Unified Power Flow Controller (UPFC) is one of the main

FACTS devices that have a wide implication on the power transmission systems and distribution.

The purpose of this paper is to explore the use of Radial Basis Function Neural Network (RBFNN)

to control the operation of the UPFC in order to improve its dynamic performance. The

performance of the proposed controller compares favourably with the conventional PI and the off-

line trained controller. The simple structure of the proposed controller reduces the computational

requirements and emphasizes its appropriateness for on-line operation. Real-time implementation

of the controller is achieved through using dSPACE ds1103 control and data acquisition board.

Simulation and experimental results are presented to demonstrate the robustness of the proposed

controller against changes in the transmission system operating conditions.

1. INTRODUCTION

The Unified Power Flow Controller (UPFC) is the only versatile device within the concept of

Flexible A.C. Transmission Systems (FACTS) technology that can provide direct control of the

three transmission system parameters: voltage, impedance and phase-angle. It can independently

and dynamically control the real and reactive power flow through a transmission line while

regulating the system voltage [1-3].

The UPFC consists of two voltage source converters sharing a common d.c. link, as shown in

Figure 1. As can be seen, one converter (inverter 2) is connected in series with the transmission
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line while the other (inverter 1) is shunt connected. The former injects a series voltage which may

be controlled in magnitude and phase. This voltage can be decomposed into quadrature and in-

phase components (with respect to the system bus voltage) and the two components may be used to

influence the flow of real and reactive power flow in the line, respectively. Inverter 1, generates the

shunt compensation voltage which can also be viewed as two orthogonal components. The in-phase

component is used to control the reactive power exchange with the system (to provide voltage

support) whilst the quadrature component is used for regulating the UPFC d.c. link voltage.

Methods to determine optimum values for the compensation voltages have been investigated [4, 5]

and robustness against changes in grid conditions has always been a major concern.

The operating conditions of a real power system continuously change as a result of network and

load changes or system faults and/or disturbances. It follows that a conventional controller with a

set of fixed control parameters which provide an acceptable dynamic performance under certain

operating conditions may no longer do so when there is a change in the system conditions, e.g.

system Short Circuit Level (SCL).

Previous studies have showed that PI controllers could not always perform satisfactorily over a

wide operating range and knowledge based systems using the classical fuzzy logic control have

been proposed [6, 7]. However, complexities to adapt membership functions and computation

requirements for defuzzification hindered its application. Recent studies turned to artificial neural

networks (ANN) to achieve the desired robustness [8, 9]. A multi-layer ANN to emulate the

damping control of well-tuned PI controllers under different conditions has been reported [10]. The

proposed network requires a large number of neurons in the hidden layer. Hence, a Radial Basis

Function Neural Network (RBFNN) was proposed which features a much simpler structure [11].

Its application in real-time control however has not been studied.

This paper presents an analysis of the dynamic performance of the UPFC when used for power flow

control and voltage support. Conventional and advanced control techniques are investigated.

Accordingly, due to its simple structure and good performance, an RBFNN for on-line adaptive

control of a UPFC is proposed. To meet the desired performance of the UPFC, a single neuron is

designated for each of the control variables. A new gradient descent algorithm is proposed for on-

line tuning of the neurons. Kalman filtering could also be used, but was avoided in the present

study due to the intensive computation involved. The control algorithm is simulated and

experimentally implemented using a dSPACE ds1103 real time control system working in

Matlab/Simulink environment. Comparative results are presented to demonstrate the performance

of the proposed system.
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2. THE UPFC MODEL

A single-line diagram of a simplified transmission system including a transmission line, two voltage

sources and a UPFC is shown in Figure 2. The UPFC is modelled by two controllable voltage

sources, V ser for the series converter and V sh for the shunt converter. The reactance (kX) behind

the system busbar at the sending-end determines the supply Short Circuit Level (SCL). Figure 3

shows the vector diagram for the system voltages. The series voltage has two components !Vi and

"Vi where ! and " represent the level of compensation relative to the nominal voltage Vi .

Similarly, the shunt converter voltage has components ( )1#$ Vi and%Vi . The real and reactive

power transmitted at the sending-end of the transmission line as functions of these compensation

voltage components may be expressed as:
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3. THE UPFC CONTROL SYSTEM

3.1 Open loop control

A block diagram of an open loop control scheme for the UPFC is shown in Figure 4. Two

controllers are shown; one for the series converter and the other for the shunt converter. The level

of series voltage injection, represented by ! and " , is calculated from Equations 1 and 2. For the

shunt converter, its quadrature component (%Vi ) is calculated by rearranging Equation 3 in order to

balance, in an open loop sense, the real power flow between the two converters. The in-phase

component [(1+$) Vi] is used to adjust the exchange of reactive power with the system, as given by

Equation 4.
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Practically, the series converter may operate in an open loop control to provide any desired power

change in the line (within system limits). However, the shunt converter must operate in a closed

loop control in order to regulate the d.c. link voltage.

3.2 Closed loop control

Series converter controller

The injected series voltage components are controlled such that the real and reactive power flow in

the transmission line follow their reference values. In this case, the in-phase ( !Vi ) and quadrature

("Vi ) components are continuously updated by the controller. As given by Equations 1 and 2, the

desired real power change is used to obtain the control signal " whilst the desired reactive power

change is used to determine ! . For a standard PI controller, the control signals for the series

converter may be expressed as follows:
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where, K K KPP IP PQ, , and KIQ are the corresponding gains of the controller.

Shunt converter controller

The shunt converter output voltage is controlled to generate or absorb a certain amount of reactive

power required to maintain the system bus voltage at a set value. In addition, the shunt converter

should be controlled to provide, through the d.c. link, the real power demand of the series converter.

Therefore, the quadrature component of the shunt voltage ( %Vi ) may be determined from the

deviation of the d.c. bus voltage from its reference value. Hence, for a standard PI controller, the

control signal is given as:
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The control signal ($) to generate the in-phase component [(1+$) Vi] is driven by the deviation of

the system bus voltage from its reference value. That is:
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where K K KPdc Idc Pvi, , and KIvi are the corresponding gains of the controllers.
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4. THE RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN)

The RBFNN is a supervised neural network which may be realised in different ways. The back

propagation training algorithm for the design of Muti-Layer Perceptron (MLP) neural network is

widely used in load forecasting. However, for control purpose, the training process may not be

acceptable as it can be very time consuming. In this paper, a different approach is described which

consider the neural network design as an approximation problem in a multi-dimensional space. In

this approach, the concept of the RBFNN is used where the learning process is equivalent to

defining a surface that provides the best fit to the training data set and interpolate between the data.

The RBFNN offers a simple structure and gives an understanding of how the learning process is

achieved. As will be shown in section 6, for a real-time implementation of the RBFNN to control a

UPFC, it is found that a single neuron network trained on-line by gradient descent will be suitable

from the computation time and memory space point of view, as to be shown below.

An RBFNN involves three layers of different rules, as shown in Figure 5. The input layer connects

the network to its environment. The second layer, the only hidden or radial basis layer in the

network, applies a non-linear transformation from the input space to the hidden space. The output

layer is linear, providing the response of the network to the active input. The output is described as:

),,(* 122 BxWBa 3+#' (9)

where 3 and B1 are the centre and spread of the hidden neuron; B2 and W are the bias and

weight of the linear layer. Note that, the network free parameters 3, ,B W1 and B2 need to be tuned

during the learning process.

Each neuron in the radial basis layer calculates the Euclidean distance between the centre vector

( 3 ) and the network input vector ( x ). The result is passed through a non-linear function; a

Gaussian activation function is used in this study. As shown in Figure 6, this function is

normalised, radially symmetrical around its centre and can well approximate a power integrable

function. The output of the radial basis layer is determined according to how close is the input

vector to the neuron centre. Thus, a radial basis network with a centre quite different from the input

vector will have an output which is near to zero. In contrast, a radial basis neuron with a centre

close to the input vector will produce a value near to one. The output of the hidden layer is then

scaled and biased through W and B2 , respectively, to produce the network output.

In general, there are two learning paradigms for artificial neural networks. The first is batch

learning (off-line learning) where the training data is available from analysis or previous operation.

The updating action of network parameters takes place only after the whole training data set has
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been presented to the network. The second paradigm is pattern learning (on-line learning) where

the network parameters are updated after each new input pattern has been presented.

For the RBFNN batch learning, there are two learning schemes depending on how the centres of the

neurons are specified. The centres of the neurons in the hidden layer may be chosen randomly from

the data set which covers the input space with a fixed spread. The Gaussian activation function in

this case is expressed as;
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where m is the number of centres and dmax is the maximum distance between the chosen centres.

The spread 4 is then fixed and may be expressed as;
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d
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The only parameters that would need to be trained in this approach are the weights and biases of the

network linear layer. This may require a large training data set for determining the best centre

locations and achieve a good performance. One way to overcome this limitation is to use a hybrid

learning process [14].

For the RBFNN pattern learning, the network free parameters ( 3, ,B W1 and B2 ) are updated as a

result of minimising a certain cost function 5 , e.g. the error function given below;
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where N is the size of the training sample and

e T aj j j
' * 2 (13)

is the error signal defined as the difference between the system target and the network output for

pattern j.

5. DESIGN OF THE OFF-LINE RBFNN FOR UPFC CONTROL

The network shown in Figure 5 is used to determine the compensation voltage of the series

converter in the UPFC. Batch learning strategy with modified fixed centres is introduced to train

the network. The learning algorithm built in MATLAB environment introduces random centres for

the neurons, and then it adjusts these centres in a way to reduce the network output error. For the

simple transmission system model shown in Figure 2, training data are obtained from the analytical

relationship (described in section 2) between the UPFC compensation voltages and the resultant
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change in the real and reactive power. The data presented to the network’s input layer comprises

two main vectors representing the possible changes in reactive and active power values [15]. The

target for the network output is represented by the desired inserted voltage components ! and " .

Therefore, two neural networks are required which are trained in a similar way.

The algorithm implemented for training is shown in Figure 7, where the network iteratively creates

one neuron at a time. The input pair (7 7Q Pj j, ) which represent an accepted network error, is used

to create a neuron. Neurons are added to the network until the Mean Squared Error (MSE) falls

within an error goal margin or a maximum number of neurons has been reached (determined by the

size of the input data set).

In order to minimize the error, the centres (weights) of the radial basis layer are assigned to be the

transpose of the input vector. That is:

3 j j j

T

Q P' 7 7 (14)

The spread )(4 determines the width of an area in the input space to which the neuron responds.

4 is chosen to be fixed in this training algorithm in order to reduce the number of tuning

parameters and network complexity. The biases are set to be:

B1 08326' . /4 (15)

Therefore, the Gaussian function output crosses 0.5 at weighted inputs of 84 which reflect the

closeness between the input data and the centres. The output of the radial layer for each network is

described as:

)*(
,, 1,1 3+
"!"! "! Ba ' (16)

The weights (W) and biases (B2) of the output linear layer are determined in such a way to

minimise the sum-squared error ( 9 :6
;

*
j

aT
2

2,"! ) between the target values of ! or " and the

network output. In order to define W and B2, the following equation is solved in every iteration.

W B a T2 1* ' (17)

RBFNN training parameters for the UPFC series converter application are summarized in Table 1.

It is obvious that the training time for the RBFNN is relatively short. The RBFNN produces an

adequate approximation of the given test data as the MSE of the training data is close to that of the

test data.
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Table 1 RBFNN parameters.

Network parameters ! "

Training data set 961 961

Test data set 441 441

Training time (sec) 6.12 5.50

Training error 2.2140e-4 2.4456e-4

Test error 2.2138e-4 2.4454e-4

6. ON-LINE RBFNN TRAINED BY GRADIENT DESCENT

As described in the previous section, the performance of the RBFNN depends on the number and

centres of the radial basis functions in the hidden layer, their spread and method used for learning

the input-output mapping. In this section, a simple RBFNN is designed using only one neuron to

control each of the UPFC parameters. This simple network is easy to implement in a real-time

control system, as the computation time is relatively short. Also, there is no need for prior training

of the system data since the network parameters are dynamically adjusted every sample step. The

gradient descent learning algorithm is used to update the network free parameters ( 3 4, ,W and B2 ).

The error generated from the system controlled variables (change in real and reactive power for

series converter and deviation of d.c. link voltage and bus voltage for the shunt converter) are used

to update the network parameters. Therefore, there is no need for training data to generate the

inserted voltage components of the series and shunt converters, as it will be defined on-line at every

sample step.

Figure 8 shows the designed RBFNN controller. The network output is given as:

),,(2 43+ xWBy #' (18)

The Gaussian activation function used in the hidden layer is:

-
-

.

/

0
0

1

2 *
*

'

2

),,(
4
3

43+

x

ex (19)

For UPFC application, four RBFNN’s are required to determine the control variables " , ! , % and

$ . The network output set can be expressed as:

a2 ' " ! % $ (20)
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The input of each network is the error signal used to derive the corresponding control variable.

Referring to Equation 20, the network input set can be expressed as:

x P Q P Vtr' 7 7 7 7 (21)

where, 7 7 7P P P Q Q Q P P Pref ref tr ex sh' * ' * ' *, , and 7V V Vref' *

In this algorithm each RBFNN is trained by minimising the error E y y' *! . Substituting for y

from Equation 18:

)),,(( 2 43+ xWByE #*' (22)

The gradient of E with respect to the neural network parameters is given as:
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Note that the bias of the linear layer is assumed to be fixed in order to reduce the number of neural

network parameters to be updated.

Updating the Network Weight (W )

The change of the error with respect to the network weight is given as:

),,( 43+ x
W

E
*'

<
<

(24)

The increment in the weight can be described as:
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where =W is the learning rate of the network weight.

The updated weight value is then given as;

9 : 1,, *#' kkWk WxEW 43+= (26)

where k represents the current time step and (k-1) represents the previous time step.

Updating the Network Centre (3 )

The change of the error with respect to the neuron centre is described as:
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The increment in the centre may be given as:
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where = 3 is the learning rate of the network centre.

The updated centre value is then given as;

9 : 12
,,

)(
*#

*
' kk x

x
WE 343+

4
3

=3 3 (29)

Updating the Network Spread (4 )

The change of the error with respect to the neuron spread may be given as:
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The increment in the spread can be described as:

9 : 9 :43+
4
3

=4
4 4 ,,

3

22

x
x

WE
E *

'7'
<
<

(31)

where =4 is the learning rate of the network spread.

The updated spread value is then given as;
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Adaptive Learning Rate

The learning rate coefficient (= ) in the gradient descent learning algorithm determines the size of

the weight adjustments made at each iteration and hence influences the rate of convergence. The

value of = is important since large variations in the learning rate can result in different choices of

= . If the chosen value of = is too large, the network response may oscillate about the steady-state

value and slowly converge or diverge. If the chosen value of = is too small, the descent progresses

very slowly and the total time for convergence is increased. Defining the best value for = depends

on the system parameters and may require some trail and error.
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In this study, an adaptive mechanism for choosing the learning rate is introduced by continuously

monitoring the error during the training process and adjusting the value of = i ( i w' , ,3 4 ) to best

fit the local region of descent. An exponential function is used to describe the change of the

learning rate with respect to the error. For the network parameters which decrease the error, the

learning rate is increased as the current value is too conservative for the local minima. Conversely,

when the error is too big, the learning rate is reduced to avoid overshooting of the system response

by a fast decay of the past parameter history.

7. SIMULATION STUDY

The transmission system shown in Figure 2 is used to investigate the performance of the suggested

RBFNN based controllers to regulate the UPFC operation for different operating conditions. Note

that when the off-line trained RBFNN is applied, the series converter parameters are controlled by

the neural network controller described in Section 5 whilst the shunt converter parameters are

regulated using a conventional PI controller. This is due to; the series converter control variables

can be extracted from their relationship with the desired changes in the power flow which is not the

case for the shunt converter control variables. However, for the on-line trained RBFNN, the

controller described in Section 6 is used to control both the series and shunt converters.

The response to step changes in the power reference signal is used to test the controllers’

performance. Figure 9 shows the system response to a step change in the real power flow at time

0.5 s (reactive power is unchanged) and a step change in the reactive power flow which occurs at

time 1.0 s (active power is constant). These results show that the real power control loop gives

similar results using either off-line trained controller or on-line controller but the former produces

less interaction between the real and reactive power flow. This is due to the fact that during the

training phase, changes in both power components are presented to the neural network. Hence, the

correct value of ! and " are determined which minimize this interaction. However, the on-line

trained controller gives faster and more robust response for the reactive power control loop. The

off-line trained controller response suffers from steady-state error which may reflect poor quality

training (i.e. inadequate number of neuron within the trained network). This can be explained as

follows: As given by equation 2, the UPFC series converter parameters (! and ") have almost the

same effect on the reactive power flow. Therefore, the desired change in reactive power will be the

result of a “competition” between these two parameters. At the other hand, " is controlled by the

changes in real power where it is the dominant component in real power flow (Equation 1).
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To further improve the response of the reactive power control loop, extra training data set is

required, especially around the origin, this may increase the network complexity and the required

allocated dynamic memory of the host computer.

8. EXPERIMENTAL STUDY

A laboratory model of a transmission system incorporating a UPFC was used in the experimental

set up, as shown in Figure 10. The experimental set up contains a host computer interfaced with the

UPFC inverters and transmission system through a dSPACE ds1103 data acquisition board. The

control algorithm is developed in SIMULINK platform then downloaded to the ds1103 board

through the real time workshop toolbox. In this work, the shunt converter is controlled to support

the bus voltage and maintain the d.c. link voltage at prescribed level while the series converter is

used to control the real and reactive power flow in the transmission line. Each converter is a 6-

pulse PWM inverter connected to the a.c. system through an appropriate transformer. The

switching frequency pattern of both converters is set to 450 Hz to avoid even and triplen harmonics.

To avoid asynchronisation of the PWM, a sampling rate of 288 samples per cycle has been used

(this is 32 times the frequency modulation index which is 9 in this study).

A phase shifting transformer, consisting of a three-phase series transformer and a variac, is

employed to introduce a phase difference between the sending-end and receiving-end voltages of

the transmission line, respectively. The phase shifting transformer injects a 900 leading voltage

with respect to the sending-end voltage. In this study, the transmission angle is set to 60 in order to

produce sufficient active and reactive power flow suitable for the lab tests.

Due to large memory and computation time requirements, it was not possible to implement the off-

line trained controller in real-time. Therefore, only the simple structure on-line trained control

algorithm has been tested in real-time, its performance compared with an equivalent conventional

PI controller. Three case studies were conducted. The first examines the UPFC capability to

control the power flow and support the bus voltage; the second examines the robustness of the

proposed controller against changes in the system SCL; the last examines the capability of the

controller to recover the UPFC operation after short circuit fault.

For the first case, a series of step changes in the main reference signals were applied in order to

investigate the UPFC capability in controlling the power flow, regulating the system bus voltage

and adjusting the d.c. link voltage. Figures 11 and 12 show the resultant waveforms. It is obvious

that the RBFNN controller trained on-line by gradient descent gives better response than the PI
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controller, with the output smoothly reaching the desired steady-state. At the same time, the

RBFNN controller reduces the interaction between the controlled variables. The PI controller

parameters are chosen to produce the lowest possible overshot and to reduce the interaction between

real and reactive power changes.

For the second case, the source impedance is changed on-line to represent a sudden change in the

system SCL. The system response when using a PI controller and RBFNN controller is compared

in Figure 13. It is clear from these results that the PI controller, not being adaptive, becomes

unstable under the new system operating conditions. However, the RBFNN controller is capable of

accommodating system changes and generates the appropriate control signal. This is due to the on-

line tuning mechanism of the network parameters (weight and bias).

For the third case, the UPFC operation is investigated post to the clearness of a three phase short

circuit fault. However, investigation of the UPFC operation during the fault is beyond the scope of

this study, it is clear from Figure 14 that the RBFNN controller is capable to recover the UPFC

operation faster and robust than the conventional PI.

9. CONCLUSIONS

The research presented in this paper investigates the performance of the UPFC when implementing

conventional and knowledge based control schemes. A single-neuron (on-line) RBFNN controller

for the UPFC is developed and its performance is evaluated. The proposed control scheme employs

control signals that are locally available, 7 7 7P Q Vi, , and 7Vdc . The controller has a simple

architecture and hence has the potential for real-time implementation. In the experimental work

conducted in this research, a ds1103 data acquisition board has been used to interface the hardware

with the host computer. The parameters of the on-line trained single neuron RBFNN controller are

adjusted using the gradient descent algorithm. Simulation and experimental results show that the

proposed RBFNN controller for UPFC provides good performance under different operating

conditions. The on-line trained closed-loop RBFNN controller produces minimum steady-state

error and reduces the interaction between the system measured quantities.
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Figure 1 Schematic diagram of a transmission system, incorporating a UPFC
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Figure 5 Radial basis “ Gaussian” activation function.

Figure 6 The Gaussian activation function
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(a)

(b)

Figure 9 System’s response to step changes in active and reactive power.
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Figure 10 Block diagram of the experimental set-up.
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Figure 11 System’s response to changes in real and reactive power.
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Figure 12 System’s response to changes in test bus and d.c. link voltages.
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Figure 13 System’s response to sudden change in the source impedance.
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Figure 14 System’s response post to three phase short circuit fault.


