Asadi, Yasin, Ahmadi, Amirhossein, Mohammadi, Sasan, Amani, Ali Moradi, Marzband, Mousa and Mohammadi-ivatloo, Behnam (2021) Data-Driven Model-Free Adaptive Control of Z-Source Inverters. Sensors, 21 (22). p. 7438. ISSN 1424-8220
|
Text
sensors-21-07438-v2.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (798kB) | Preview |
Abstract
The universal paradigm shift towards green energy has accelerated the development of modern algorithms and technologies, among them converters such as Z-Source Inverters (ZSI) are playing an important role. ZSIs are single-stage inverters which are capable of performing both buck and boost operations through an impedance network that enables the shoot-through state. Despite all advantages, these inverters are associated with the non-minimum phase feature imposing heavy restrictions on their closed-loop response. Moreover, uncertainties such as parameter perturbation, unmodeled dynamics, and load disturbances may degrade their performance or even lead to instability, especially when model-based controllers are applied. To tackle these issues, a data-driven model-free adaptive controller is proposed in this paper which guarantees stability and the desired performance of the inverter in the presence of uncertainties. It performs the control action in two steps: First, a model of the system is updated using the current input and output signals of the system. Based on this updated model, the control action is re-tuned to achieve the desired performance. The convergence and stability of the proposed control system are proved in the Lyapunov sense. Experiments corroborate the effectiveness and superiority of the presented method over model-based controllers including PI, state feedback, and optimal robust linear quadratic integral controllers in terms of various metrics.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Z-source, non-minimum phase, data-driven, model-free adaptive control, uncertainties |
Subjects: | H600 Electronic and Electrical Engineering |
Department: | Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering |
Depositing User: | John Coen |
Date Deposited: | 12 Nov 2021 08:38 |
Last Modified: | 12 Nov 2021 08:45 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/47712 |
Downloads
Downloads per month over past year