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Degrading permafrost river catchments and their impact on 23 

Arctic Ocean nearshore processes 24 

Abstract 25 

Arctic warming is causing ancient perennially frozen ground (permafrost) to thaw, resulting in ground 26 
collapse, and reshaping of landscapes. This threatens Arctic peoples' infrastructure, cultural sites, and 27 
land-based natural resources. Terrestrial permafrost thaw and ongoing intensification of hydrological 28 
cycles also enhance the amount and alter the type of organic carbon (OC) delivered from land to Arctic 29 
nearshore environments. These changes may affect coastal processes, food web dynamics and marine 30 
resources on which many traditional ways of life rely. Here, we examine how future projected 31 
increases in runoff and permafrost thaw from two permafrost-dominated Siberian watersheds - the 32 
Kolyma and Lena, may alter carbon turnover rates and OC distributions through river networks. We 33 
demonstrate that the unique composition of terrestrial permafrost-derived OC can cause significant 34 
increases to aquatic carbon degradation rates (20 to 60% faster rates with 1% permafrost OC). We 35 
compile results on aquatic OC degradation and examine how strengthening Arctic hydrological cycles 36 
may increase the connectivity between terrestrial landscapes and receiving nearshore ecosystems, 37 
with potential ramifications for coastal carbon budgets and ecosystem structure. To address the 38 
future challenges Arctic coastal communities will face, we argue that it will become essential to 39 
consider how nearshore ecosystems will respond to changing coastal inputs and identify how these 40 
may affect the resiliency and availability of essential food resources.     41 

Keywords 42 

Arctic rivers, Carbon cycle, Carbon fluxes, Erosion  43 

Introduction 44 

The Arctic region is experiencing unprecedented change to its physical environment in response to 45 
global climate disruptions, causing a multitude of social, geopolitical and ecosystem instabilities. One 46 
of the greatest challenges facing the region is due to the loss of permafrost- perennially frozen ground 47 
that remains at or below 0oC for at least two consecutive years (Everdingen, 2005). Almost five million 48 
people live and rely on permafrost ground across the Arctic (4.9 million in 2017; Ramage et al. 2021) 49 
and are susceptible to on-going surface permafrost thaw in response to warming Arctic air 50 
temperatures (Biskaborn et al. 2019). Loss of terrestrial permafrost causes direct damage to essential 51 
infrastructure and impacts upon the livelihoods and culture of local people (Ford and Pearce 2010; Fig 52 
1).  Food and water security have been, and will be, negatively impacted by changes in lake, river and 53 
shore-fast ice, as well as permafrost in many Arctic regions (Strauss et al. 2021a). These changes have 54 
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disrupted access to herding, hunting, and fishing grounds (Fig. 1), and caused the instability of 55 
agricultural land (IPCC, 2019).  56 

 57 

Figure 1. Future response of nearshore environments to climate change, and potential impacts to ecosystem 59 
processes and coastal biogeochemistry. Terrestrial permafrost thaw causes landscape collapse and changing 60 
resources, affecting terrestrial infrastructure (drawn as house and pipeline) and distributions of food and 61 
traditional lands (represented by reindeer on land). Permafrost thaw on land can affect terrestrial gas fluxes, 62 
or be mobilised into freshwaters, affecting OC reactivity and carbon budgets from the river, delta or gulf 63 
regions (input/ output arrows). Changing terrestrial OC supply (black arrows) may influence nearshore carbon, 64 
nutrient budgets, and food web dynamics, altering air-sea gas fluxes (coastal inputs/ outputs/ processes) or 65 
essential coastal food resources (represented as fish/ whale). Drawn by Yves Nowak (AWI). 66 
 67 
 68 

Terrestrial permafrost thaw across river catchments can liberate peat and permafrost-derived OC 69 
from soils to inland aquatic ecosystems (Frey & Smith, 2005; Wild et al. 2019), modifying stream food 70 
web dynamics by changing nutrient or carbon availabilities to aquatic microorganisms (Slavic et al, 71 
2004). Permafrost, specifically ice- and organic-rich Yedoma permafrost (Fig 2 insets, Yedoma 72 
definition in Strauss et al. 2021), has been shown to be of ‘high quality’ for microbial communities 73 
(Jongejans et al. 2018; Strauss et al. 2015, 2017, 2021; Haugk et al., in review) likely due to its rapid 74 
formation limiting prior processing during the Late Pleistocene. Once mobilised into inland waters, 75 
permafrost-derived OC can be rapidly utilized by aquatic microorganisms, increasing bulk OC 76 
degradation rates in riverine and coastal Arctic water incubations (Drake et al. 2015; Mann et al. 2015; 77 
Vonk et al. 2013) and potentially enhancing riverine CO2 losses from river basins (Vonk & Gustafsson 78 
2013; Drake et al. 2018; Fig 1).  79 

Permafrost OC inputs to Arctic headwaters have been shown to be preferentially utilised by aquatic 80 
microorganisms, leading to patterns of decreased permafrost contributions in OC pools with increased 81 
water residence times (Mann et al. 2015). In addition, a general pattern of decreasing dissolved OC 82 
(DOC) reactivity has been demonstrated with increasing retention time of waters across diverse global 83 
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river catchments, highlighting a universal decline in DOC reactivity along the aquatic-ocean continuum 84 
(Catalán et al. 2016; Soares et al. 2019). Any hydrologic changes, such as increases to river discharge 85 
or extreme flow events, causing shorter transit times would therefore result in OC bypassing 86 
headwater streams and being metabolized in mainstream and nearshore coastal waters, in agreement 87 
with the pulse-shunt concept (Raymond et al. 2016).  88 

Arctic hydrological cycles are already intensifying. Pan-Arctic freshwater runoff rates to the Arctic 89 
Ocean have increased from 3900 ± 390 km3 in 1980-2000 to 4200 ± 420 km3 by 2000-2010 (Haine et 90 
al. 2015). Global climate model projections indicate that future freshwater runoff will continue to 91 
increase and that the rate of increase may accelerate over much of the Arctic during the coming 92 
decades (Brown et al. 2019; Haine et al. 2015). Combined hydrologic models informed using climate 93 
projections estimate freshwater discharge increases of ~25-50 % to the Laptev and East Siberian Shelf 94 
by 2100 (Andreson et al. 2020; Arnell, 2005; Koirala et al. 2014; Shiklomanov et al. 2013; van Vliet et 95 
al. 2013; Wang et al. 2021). Higher rates of continental freshwater runoff patterns will alter the 96 
distribution of terrestrial OC within river networks, and likely deliver greater quantities of OC from 97 
degrading river catchments to the coastal ocean. This has the potential to alter the availability of 98 
nutrients and carbon across the nearshore and modify the physiochemical environment (e.g., light 99 
penetration or carbonate system).     100 

Here, we examine how future projected increases in runoff and permafrost thaw from two 101 
permafrost-dominated Siberian watersheds - the Kolyma and Lena, may alter carbon turnover rates 102 
and OC distributions through river networks. We present experimental results from the Kolyma River 103 
examining how rates of OC degradation in riverine carbon pools will shift with compositional changes 104 
associated with permafrost thaw OC. We then explore potential for future permafrost thaw and 105 
hydrological intensification in these basins to alter terrestrial OC loads to East Siberian Arctic Shelf 106 
(ESAS) nearshore waters, by scaling our findings to the Lena River. We finally explore potential for 107 
future permafrost thaw and hydrological intensification in these basins to alter terrestrial OC loads to 108 
East Siberian Shelf nearshore waters. We conclude that there is a substantial paucity of information 109 
on how the rapidly changing terrestrial environment may affect coastal ecosystems and processes, 110 
and that future research and modelling work is needed to predict how ecosystem functioning and 111 
essential food webs may change under future scenarios.  112 

 113 

Materials and Methods 114 

Study region 115 

Our study focused on the Lena and Kolyma River catchments, two great watersheds that together 116 
comprise 19% of the pan-Arctic watershed and drain a watershed area of 3.11 million km² from the 117 
permafrost-dominated continental region into the ESAS. The shallow ESAS (average depth 58 m; 118 
Jakobsson, 2002) represents a quarter of the Arctic shelf area (Shakhova et al. 2010) and is particularly 119 
vulnerable to changing inputs of terrestrial OC, with extreme regional climate warming already 120 
causing these Siberian terrestrial permafrost-rich watersheds to thaw (Graversen et al. 2008; 121 
Shakhova et al. 2010). 122 
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The Lena and Kolyma rivers account for a combined annual terrestrial OC flux of 7.0 to 9.4 TgC yr-1 123 
(McClelland et al. 2016, Holmes et al. 2012, Juhls et al. 2020), which is approximately 17 to 28% of 124 
total terrestrial OC loads to the Arctic Ocean (Raymond et al. 2007). Large quantities of permafrost OC 125 
are stored in Pleistocene Yedoma deposits (Strauss et al. 2017), which when degraded or eroded, can 126 
represent hotspots of old terrestrial OC release to river catchments (Wetterich et al. 2020). Both the 127 
Kolyma and Lena River watersheds contain relatively similar coverage in Yedoma deposits, 128 
representing 7.7 % of the watershed area in the Kolyma watershed area, and 3.5 % of the Lena. 129 
Examples of such rapidly eroding Yedoma riverbanks include the Sobo-Sise cliff on the Lena River 130 
(Fuchs et al. 2020) and the Duvanny Yar cliff (Fig 2 inset) on the Kolyma River (e.g., Strauss et al. 2012). 131 
Riverine OC loads to coastal waters from both rivers are predominantly (> 80 %) in the dissolved form. 132 
The composition of the dissolved OC pools in the Kolyma and Lena Rivers are similar with comparable 133 
fractions of hydrophobic acids, transphilic acids, and hydrophilic organic matter as a percentage of 134 
total OC concentrations (Table 1; Mann et al. 2016). Additionally, the overall aromaticity of the OC 135 
pools are comparable, as inferred from organic matter absorbance measurements (specific ultraviolet 136 
absorbance; Mann et al. 2016). The two river catchments differ significantly in the type and 137 
morphometry of their estuaries, with the Lena River feeding into an extensive delta before reaching 138 
the coastal ocean. The Kolyma, by contrast, runs directly through a gulf feeding directly onto the East 139 
Siberian Sea shelf (Fig 2). Coastal erosion also delivers large amounts of OC into the nearshore, for 140 
example from the Mamontovy Khayata coastal cliff on the Bykovsky Peninsula (Fig 2) (Lantuit et al. 141 
2011; Rolph et al. 2021) or other Yedoma coastal segments along the Laptev Sea coast (Günther et al. 142 
2013, Strauss et al 2021b). 143 

 144 
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Figure 2. Permafrost (after Obu et al. 2019) and Yedoma permafrost (Strauss et al. 2021) distribution (map) 146 
with two sites of rapidly eroding cliffs as examples. Site 1: Mamontovy Khayata cliff on the Bykovsky Peninsula 147 
near the coast of the Lena Delta (credit: P.P. Overduin) and, Site 2: the Duvanny Yar exposure (site 2) on the 148 
Kolyma river (credit: A. Stubbins). Freshwater discharge measurement stations at Kusur (Lena) and 149 
Kolymskoye (Kolyma) are shown (orange dots). Drawn by S. Laboor. 150 

Contemporary river OC degradation rates  151 

We measured river OC degradation rates (n = 34) using oxygen loss measurements on Kolyma lower 152 
mainstem waters (within 100km of river mouth), collected during the summers of 2011 and 2012 153 
(Table S1). Water samples were also collected from under-ice (May) and during the spring freshet 154 
(June) during 2012 from the Kolyma mainstem. Unamended biological oxygen demand (BOD) assays 155 
(i.e., waters were not seeded or primed) were run over a 5-day period on unfiltered waters at room 156 
temperature (~20 °C; Jiao et al. 2021). Waters were slowly decanted into triplicate 300 mL glass BOD 157 
bottles and total oxygen concentrations measured using self-stirring optical optode oxygen probes 158 
(YSI, ProOBOD, ± 0.1 mgL-1) after 0, 1 and 5 days. BOD assays measure the amount of dissolved oxygen 159 
used by microbial communities during degradation of OC and are converted to OC carbon 160 
concentrations using a commonly applied respiratory quotient of 1 (assuming a ratio of 1 between 161 
CO2 production and O2 consumption). BOD assays are sensitive to small changes in the OC pool and 162 
are suitable for capturing OC rates associated with rapidly available and fast turnover OC pools. As 163 
such, rates determined using this method are henceforth considered to represent a rapid OC pool.    164 

To supplement our OC degradation measurements, we collated our results with previously published 165 
rates determined in Kolyma River mainstem waters (Mann et al. 2012; 2015; n = 18, Table S1). Samples 166 
from these studies were collected in the Kolyma River across a similar region of the lower river 167 
catchment (approximately 100 km of the mouth: site locations Table S1), during the freshet and late 168 
autumn periods. These studies calculated OC degradation rates using direct dissolved OC (DOC) losses 169 
measured over a 28-day incubation period to provide insights into a slower OC fraction turn over 170 
approximately monthly timescales. Rates determined using this method are henceforth considered to 171 
represent a slow OC pool.  172 

Direct and inferred OC loss measurements from all studies were fitted to an exponential decay to 173 
determine OC degradation rates (k) from incubation experiments:      174 

OCt = OCinite-kt         Equation 1  175 

where OCt represents the OC concentration at time (t in days), OCinit represents the initial OC 176 
concentration and k the degradation rate (d-1).   177 

OC degradation rates (k) were corrected to the in-situ water temperature measured at the study site 178 
during sampling (or other as stated below) , using a form of the Arrhenius equation: 179 

�G�Í =  
�Þ�.�,

�ä�-�,
( �.�, �7�Å�Ð�Ø�Û)

�-�,

       Equation 2 180 

where kT is the corrected OC degradation rate (d-1), k20 the degradation rate in incubations at 20 oC 181 
(from Eq 1) and Temp the measured in-situ water temperature (oC) at the time of sampling. q10 is the 182 
temperature coefficient which was assumed to be 2.0 (following estimates from Wickland et al. 2012; 183 
Catalán et al. 2016). To allow direct comparisons with other studies which present terrestrial OC 184 
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lifetimes in reciprocal time units (the time by which an OC pool [X] is degraded to a value equal to 185 
[X]/kT) as per Hansell (2013) we additionally present these alongside measured rates (d-1).   186 

 187 

Freshwater discharge measurements   188 

River discharges associated with degradation experiments (Table S1) were determined using data 189 
from the Arctic Great Rivers Observatory website (Shiklomanov et al. 2021). Discharge measurements 190 
from gauging stations at Kolymskoe, located approximately 160 km upstream of our sampling sites 191 
were used (Fig 2). Adjustments were made to account for the transit time of water between the 192 
gauging station and our lower Kolyma River �•�]�š���•�����Ç�����•�•�µ�u�]�v�P���Œ�]�À���Œ���À���o�}���]�š�]���•���}�(���í�X�ñ���u0�•�>1 as in Holmes 193 
et al. (2011).  194 

To assess past trends and contemporary discharge rates for the Kolyma and Lena rivers, we analysed 195 
discharge measurements from gauging stations at Kolymskoe (1978 - 2020) and Srednekolymsk (1927-196 
2016, with gaps) from the Kolyma River basin, and at Kyusur (1936 - 2020) on the Lena river (Fig 2). 197 
Both were monitored by the Russian Federal Service for Hydrometeorology and Environmental 198 
Monitoring (Roshydromet). Climate projections estimate mean annual runoff increases of ~50 % (±25 199 
%) in the Kolyma River and 25 % (+ 25 %/ -20 %) for the Lena River by the end of the 21st century 200 
(Arnell, 2005; Shiklomanov et al. 2013; van Vliet et al. 2013; Koirala et al. 2014). To estimate future 201 
discharge rates, we applied these projected increases relative to a baseline period of 1971 - 2000 from 202 
both rivers. 203 

 204 

Impact of permafrost thaw OC on freshwater degradation rates 205 

We conducted an experiment to assess if inputs of permafrost thaw OC, and the associated change in 206 
aquatic carbon composition, cause changes to bulk OC degradation rates. We specifically examined if 207 
the compositional changes alone, independent from concentration changes, cause changes to carbon 208 
turnover.  209 

Frozen ice-wedge samples were collected from the Duvanny Yar exposure within the Kolyma River 210 
Basin during early September 2013 (Fig 2). Yedoma deposits at Duvanny Yar accumulated between 211 
�ý40 and 13 ky BP (Vasil’chuk et al. 2001) and are believed to be of polygenetic origin (Strauss et al. 212 
2012). Total average ice content is approximately 75% by volume (35 wt% for ground ice, plus about 213 
50 vol% for ice wedges) and total OC content averages 1.5 ± 1.4 wt% (Strauss et al. 2012). Ice wedge 214 
thaw waters carry old terrestrial OC from Yedoma exposures (19,350 to 29,400 years; Vonk et al. 2013; 215 
Spencer et al., 2015) directly into the Kolyma River mainstem.  216 

Combined ice-wedge and permafrost samples were chiselled from the cliff and kept cool and dark 217 
until laboratory preparation (< 48 h). A bulk Kolyma River water sample was collected upstream of the 218 
exposure, representing mainstem waters unaffected by Duvanny Yar permafrost thaw subsidies in our 219 
experiment. In the laboratory, ice-wedge and permafrost were thawed in a double acid-rinsed glass 220 
container, before filtration through glass fibre filters (pre combusted Whatman GF/F, nominal pore 221 
size of 0.7 µm). Filtration removes a proportion of the microbial community, but this approach has 222 
been shown to provide comparable results to degradation experiments using a starting inoculum 223 
(Vonk et al. 2015). Kolyma mainstem waters were filtered in an identical manner. DOC concentrations 224 
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were then measured (as below) in the Kolyma River (4.8 ± 0.5 mg/L; n = 6) and ice-wedge mix waters 225 
(86.4 ± 2.1 mg/L; n = 6), and the ice-wedge waters diluted with Milli-Q waters to match the DOC 226 
concentration of the Kolyma River waters.  227 

A series of sample mixtures were then produced containing 0, 1, 10, 25, 50, 75, 99% final contributions 228 
of ice-wedge Kolyma River waters (Average initial concentrations = 5.8 ± 0.7 mg/L; n = 27). A minimum 229 
of two incubations were run per mixture. Samples were stored dark at room temperature 230 
(approximately 20 oC) and agitated daily to ensure sample mixing. Duplicate vials were sacrificed after 231 
14 and 28-days, filtered as above and then acidified with H3PO4 until pH 1–2 and kept in the dark at 232 
�ð0�£���� �µ�v�š�]�o�� ���v���o�Ç�•�]�•�X�� ���K���� ���}�v�����v�š�Œ��tions were measured using the combustion catalytic oxidation 233 
method (Shimadzu TOC-L, ± 0.1 mg/L). The differences in DOC concentrations over 28-days were 234 
calculated and assigned to turnover rates of the slow OC pool as above. The differences in DOC 235 
concentrations over 14-days were used to determine a separate fast OC pool.   236 

To supplement our permafrost experimental results, we collated published OC degradation 237 
measurements from Arctic River waters amended with Yedoma additions to examine the impact of 238 
permafrost thaw on inland waters (n = 39; Table S2).  239 

Results 240 

Terrestrial OC degradation rates in Arctic freshwaters 241 

Natural mean degradation rates in the rapid OC fraction measured using short-term oxygen loss 242 
measurements were 0.0139 d-1 (s.d. ± 0.0152 d-1), corresponding to lifetime estimates of 0.20 yr-1 (± 243 
0.18 yr-1; Table 1) for this fraction. Mean degradation rates in the slow turnover OC pool were lower 244 
(0.0029 ± 0.0021 d-1), with correspondingly longer lifetime estimates of 0.95 yr-1 (± 1.34 yr-1; Table 1) 245 
for this fraction. Our mean (0.0029 d-1) and median (0.0024 d-1) bioactivity rates in the slow OC pool 246 
compare closely yet slightly lower than the median k value of 0.0034 ± 0.0219 d-1 reported from forty-247 
six separate global river systems (Catalán et al. 2016).  248 

Table 1. First-order OC degradation rates (d-1) and OC lifetimes for each fraction determined in our 249 
experiments (Rapid OC) and in previous literature (Slow OC).  250 

 OC degradation OC lifetime 
rate (d-1) (y-1) 

 Rapid OC  Mean 0.0139 0.20 
 fraction Median 0.0095 0.29 
 (n = 34) Stdev 0.0152 0.18 
  Min 0.0022 1.25 
  Max 0.0632 0.04 
 Slow OC Mean 0.0029 0.95 
 fraction Median 0.0024 1.14 
 (n = 18) Stdev 0.0021 1.34 
  Min 0.0013 2.11 
  Max 0.0098 0.04 
     



9 

River hydrology patterns  251 

The overall load and timing of freshwater discharge from the Kolyma and Lena Rivers have varied over 252 
the observational periods available (Fig 3). Spring river break-up occurs earlier in the season and clear 253 
patterns of increased winter discharge are apparent across both river catchments (Fig 3A, B). Overall 254 
mean annual freshwater discharge has increased over the last decade (2010 - 2020) by 27.7% for the 255 
Kolyma River (94.6 to 120.7 km3 yr-1) and 9.9 % in the Lena River (626.9 to 689.1 km3 yr-1) compared 256 
to a baseline period of 1971 - 2000 (black lines - Fig 3).  257 

Assuming climate projections of mean annual runoff increases of ~50 % (±25 %) in the Kolyma River 258 
and 25 % (+25 %/ -20 %) for the Lena River (Arnell, 2005; Shiklomanov et al. 2013; van Vliet et al. 2013; 259 
Koirala et al. 2014), we applied projections up to 2100 (Fig 3C, D). A rapid increase in freshwater 260 
discharge since the 1971-2000 baseline meant future projections of +25% on the Kolyma, or +5% in 261 
the Lena, now represent a reduction in discharge relative to the freshwater loads observed over the 262 
last two decades (Fig 3).  263 

By 2100, we estimate annual mean discharge rates under these assumptions of 141.8 km3 yr-1 (± 28.7 264 
km3 yr-1) and 783.6 km3 yr-1 (± 81.9 km3 yr-1) in the Kolyma and Lena Rivers, respectively. 265 

 266 

Figure 3. Upper panel: Hydrograph of A) Kolyma River for all years from 1927-2020 and B) Lena River from 268 
1936-2020. Lower panel: Observed and projected freshwater discharge (km3 yr -1) for C) the Kolyma and, D) 269 
Lena Rivers. Blue line on each plot represents the decadal running mean and filled blue colour the second 270 
standard deviation of the observed discharge. Red dashed lines show different projection scenarios to 2100 271 



10 

against the baseline period from 1971-2000 (black line). Filled red colour indicates the observed second 272 
standard deviation applied on chosen minimum and maximum projection scenarios.  273 

 274 

Role of permafrost OC composition on OC degradation rates 275 

Mean OC degradation rates in both the slow and fast OC pools increased relative to Kolyma mainstem 276 
rates (0% permafrost input: Fig 4), with additions of permafrost-derived terrestrial OC (Fig 4). 277 
Terrestrial OC degradation rates increased almost linearly with increasing permafrost OC 278 
contributions to the total DOC pool, up to approximately a 25% subsidy (Fig 4). After approximately 279 
25% of the total OC pool had been replaced by permafrost-derived OC, no further increases in bulk 280 
OC degradation rates were observed, and at very high permafrost-OC contributions (95%), 281 
degradation rates appeared to decline.  282 

Our results demonstrate that increased OC degradation rates will be observed in waters receiving 283 
permafrost-thaw derived OC, and that these increases were definitively due to compositional shifts in 284 
organic matter composition and not simply by concomitant increases in DOC concentrations. The 285 
levelling off and potential decline in OC degradation with permafrost-OC contributions greater than 286 
25%, suggests additional constraints such as limited nutrient availability acted to limit faster terrestrial 287 
OC rates.   288 

Figure 4. OC degradation rates in carbon-normalised Kolyma River waters with increasing percent 290 
permafrost-derived OC contributions. Fast and slow rates relate to OC losses measured over 14 and 28-day 291 
incubation periods, respectively. 0% permafrost input (=100% Kolyma) represents contemporary mainstem 292 
waters, whereas 100% permafrost are permafrost and thaw stream derived waters. OC degradation rates 293 
have been normalised to September Kolyma mainstem in-situ water temperature of 7.3 oC.  294 

 295 
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OC degradation with permafrost subsidies and changing runoff 296 

To combine our permafrost-OC experimental results above with previous studies, we collated and 297 
pooled data from published literature (Mann et al, 2014; Vonk et al. 2013; Table S3). To ensure data 298 
were comparable across studies, rates were binned into OC pools as above (rapid, fast, slow) and all 299 
normalised to 15oC, an approximate nominal summer Kolyma mainstem surface water temperature.  300 

Mean OC degradation rates measured in all terrestrial pools were substantially faster with increasing 301 
permafrost-derived OC contributions (Table 2). Mean OC degradation rates increased by a factor of 302 
ten in the rapid OC pool (0.0093 to 0.1029 d-1) and doubled in the fast OC fraction (0.0046 to 0.0093 303 
d-1), with a 10 % subsidy to bulk OC pools. Small relative contributions of permafrost-derived OC (e.g., 304 
1% of total OC) decreased overall OC lifetimes between 250 % in the rapid OC pool to 125 % in the 305 
fast OC fraction. Significant linear relationships (simple regression; p < 0.001) were found between 306 
increased permafrost-OC contributions up to 25 %, and OC degradation rates in each OC fraction (Fig 307 
5A; n = 85; nominal 15 oC).  308 

Table 2. OC degradation rates in experimental incubations of waters with up to 25 % permafrost-thaw OC. 309 
Rapid OC fraction determined using oxygen loss measurements over 5-days. Fast and Slow OC pools are 310 
determined via dissolved OC loss over 14 or 28-days, respectively. All degradation rates were normalised to 311 
15 oC, enabling comparison between experiments. 312 

 Permafrost OC OC biodegradation OC lifetime 
(%) rate (d-1) (yr-1) 

  0 0.0093 ± 0.0008 0.30 ± 0.02 
 Rapid OC pool 1 0.0223 ± 0.0010 0.12 ± 0.01 
  10 0.1029 ± 0.0056 0.03 ± 0.001 
  0 0.0091 ± 0.0010 0.31 ± 0.03 
  0.5 0.0103 ± 0.0003 0.27 ± 0.01 
  Fast OC pool 1 0.0112 ± 0.0007 0.25 ± 0.02 
  10 0.0163 ± 0.0047 0.18 ± 0.06 
  25 0.0239 ± 0.0020 0.11 ± 0.01 
  0 0.0046 ± 0.0005 0.60 ± 0.06 
  0.5 0.0056 ± 0.0008 0.50 ± 0.08 
 Slow OC pool 1 0.0058 ± 0.0007 0.48 ± 0.06 
  10 0.0093 ± 0.0025 0.31 ± 0.09 
  25 0.0132 ± 0.0004 0.21 ± 0.01 
     

To examine if changing hydrologic patterns influence bulk OC degradation rates within river 313 
catchments, we compare natural OC degradation rates reported above for the rapid (this study) and 314 
slow OC pools (Mann et al. 2012; 2015) with river discharge on that sample date. No relationship 315 
between OC rates in the slow turnover pool and discharge were found, but discharge was shown to 316 
be significantly and positively correlated with OC degradation rates of the rapid turnover pool (Fig 5B; 317 
R2 = 0.82; Table S4).  318 

This relationship most closely fit the equation:  319 
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log k = 0.00013 x discharge -5.51246     Equation 3 320 

 where log k represents the log OC degradation rate in the rapid OC pool (d -1) and discharge Kolyma 321 
River discharge (m3 s-1). The relationship was strongly influenced by extreme higher and lower OC rates 322 
measured in freshet waters (sampled during very high discharge) and under-ice waters (very low 323 
discharge conditions), respectively. This likely reflects the substantial shift in OC composition across 324 
the hydrograph (Mann et al. 2012).     325 

 326 

Figure 5. OC degradation rates in Kolyma River waters A) calculated across all permafrost addition 328 
experiments with contributions up to and including 25% permafrost contributions (n = 55; normalised to 15 329 
oC), and B) determined in unamended waters and plotted on a log scale against river discharge. All rates have 330 
been corrected to in-situ temperature on sample date and discharge normalised to site location. All linear 331 
relationships shown are significant (R2 > 0.8, p < 0.0001). Full detail on linear regression fits provided in Table 332 
S4). 333 

Discussion  334 

Terrestrial permafrost thaw and landscape evolution 335 

The source and quantity of terrestrial OC mobilised from Arctic catchments will change in response to 336 
widespread landscape evolution due to climate warming. Both gradual and abrupt processes are 337 
taking place across river basins (Fuchs et al. 2020) releasing old permafrost-derived OC for 338 
decomposition and enabling its mobilisation and potential utilization within nearshore waters (Vonk 339 
& Gustafsson 2013). However, the rate of permafrost OC release to waters is dependent upon still 340 
uncertain projections of terrestrial permafrost thaw. The ice-rich permafrost across northeastern 341 
Siberia has been projected to remain relatively stable beyond 2100 even under extreme climate 342 
warming (RCP 8.5) (Koven et al. 2011, 2015), yet these estimates did not incorporate landforms such 343 
as thermokarst resulting from permafrost thaw, which are known to accelerate OC release 344 
substantially (Schneider von Deimling et al. 2015; Turetsky et al. 2020). A recent study has shown that 345 
substantial quantities of additional permafrost-derived OC thaw could occur in NE Siberia under future 346 
warming scenarios (Nitzbon et al. 2020). They show that when thermokarst-related permafrost thaw 347 
processes are included in models, a three-fold (RCP4.5) to twelve-fold (RCP8.5) increase (compared 348 
to over previous projections) more OC can be thaw-affected to OC (Nitzbon et al. 2020). 349 
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Terrestrial OC collected from Pleistocene Yedoma permafrost have been found to be of good quality 350 
for future biological degradation (Haugk et al. in review). Both our studied rivers cut into extensive 351 
Yedoma deposits, like at the Sobo Sise cliff (Fuchs et al. 2020) and the Kurungnakh cliff (Stettner et al. 352 
2017) on the Lena River, and the Duvanny Yar cliff (Strauss et al. 2012, Vonk et al. 2013) on the Kolyma 353 
River indicating that future landscape degradation or increased erosion and thermokarst in these 354 
catchments will liberate permafrost OC to nearshore environments. 355 

Permafrost thaw enhances aquatic OC degradation 356 

Greater subsidies of permafrost-derived OC from land will increase mean degradation rates of OC in 357 
inland waters. We demonstrated that this was due to compositional shifts in the bulk OC pool, and 358 
irrespective of total DOC concentrations (Fig 4). Our experimental results from waters collected during 359 
autumn months (e.g., 1% permafrost OC lifetime 0.38 y-1 at 7.3 oC) compare well with those previously 360 
reported in summer samples (1% permafrost OC lifetime 0.31 y-1 at 16.9 oC; Vonk et al. 2013), 361 
suggesting an enhanced degradation to OC from permafrost supply could be expected over the entire 362 
open water season.  363 

Contrary to previous studies, OC degradation rates did not increase with additional permafrost-thaw 364 
contributions > 25% (Fig 4) indicating that additional regulatory factors such as nutrient availability 365 
began to limit additional reactivity enhancements (Frey et al. 2009; Fouché et al. 2020; Mann et al. 366 
2014; Reyes & Lougheed, 2015). Associated enrichment of aquatic systems with nutrients from 367 
permafrost-derived OC additions could also therefore play an important role in determining future OC 368 
degradation rates. Linear increases in OC degradation rates with permafrost thaw contributions up to 369 
one-quarter of the total OC pool (Table 2), show that permafrost-derived OC additions will significantly 370 
enhance inland OC turnover over upcoming decades. Future thaw impacts may potentially be 371 
modelled using simple empirical relationships such as those we found (Fig 5A), although additional 372 
research is needed across other Arctic catchments to confirm if similar relationships exist, especially 373 
across basins containing different permafrost types and formation histories. 374 

Despite highly uncertain estimates for future terrestrial permafrost thaw, evidence is emerging to 375 
suggest the release of permafrost-derived OC to inland waters is underway (Mann et al. 2015; Abbott 376 
et al., 2015; Wickland et al., 2018; Wild et al. 2019; O’Donnell et al. 2020; Walvoord et al. 2020; Kokelj 377 
et al. 2020). Contemporary permafrost contributions to bulk Kolyma mainstem OC calculated using 378 
dual-isotopic (�414C/ �w13C) signatures are estimated to be 0.7 ± 0.1 % during August-September (Mann 379 
et al. 2015), and between 0.8 -7.7 % in late summer via a combination of ultrahigh-resolution mass 380 
spectrometry and ramped pyrolysis oxidation techniques (Rogers et al., 2021). The fraction of 381 
permafrost and peat deposits to total DOC within the Kolyma and Lena Rivers have also been 382 
���•�š�]�u���š�������µ�•�]�v�P���414C and source apportionment across seasons (Table S8; Wild et al. 2018). Kolyma 383 
mainstem waters were estimated to contain between 4.6 to 18.7 % (best estimate of 7.9 %) of peat 384 
and permafrost during Spring, but up between 9.8 to 34.5 % (16.3 %) during winter months. Lena 385 
waters were estimated to contain 3.2 to 13.3 % (best estimate of 5.6 %) in spring and 6.9 to 25.4 % 386 
(11.6 %) during winter. The large differences in estimates between these studies demonstrate the 387 
difficulties in identifying permafrost contributions within river waters, although highlights relatively 388 
small current contributions, and suggest younger peat deposits contribute substantially to the bulk 389 
OC pool.  390 
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Using the relationship, we report between permafrost OC supply and increased OC degradation rates 391 
(Fig 5A), we test the sensitivity of river OC to increased future permafrost supply. Assuming a 392 
conservative doubling of permafrost-derived OC to bulk river carbon pools (i.e., a further 0.7 % 393 
permafrost contribution), we suggest mean OC degradation rates would increase from 0.0175 d-1 to 394 
0.0240 d-1 in the rapid OC fraction and from 0.0055 d-1 to 0.0057 d-1 in the slow OC pool (Fig 5A). These 395 
biolability rate increases translate to reductions in terrestrial OC lifetimes from 0.16 to 0.11 yr-1 and 396 
0.50 to 0.48 yr-1, respectively. Increasing freshwater runoff will additionally transport terrestrial OC 397 
from upstream headwaters to mainstem river and coastal waters more rapidly (Catalán et al. 2016). 398 
Headwater catchments have an intimate link with the landscape and currently receive significantly 399 
greater proportions of permafrost-derived OC. For example, smaller streams within the Kolyma River 400 
were shown to contain 13 ± 4% of permafrost-derived OC and those affected by erosional processes 401 
43 ± 21 % (Table 1 in Mann et al. 2015). This material is currently rapidly processed within river 402 
networks reducing observed permafrost-derived OC contributions downstream (Mann et al. 2015; 403 
Spencer et al. 2015). More efficient delivery of permafrost-derived enriched OC from headwaters and 404 
tributaries may therefore significantly increase downstream degradation rates. As an example, if 405 
mainstem waters were to contain OC with 5.7 % permafrost-derived OC as currently present within 406 
Kolyma minor tributaries (5.7 ± 3.5 % permafrost contributions; Mann et al. 2015), degradation rates 407 
in the slow OC pool would increase from rates of 0.0055 d-1 (lifetime of 0.50 yr-1; assuming current 408 
0.7% permafrost subsidy), to 0.0072 d-1 (lifetime of 0.38 yr-1). Associated increases in terrestrial OC 409 
degradation rates in upstream tributaries would also be expected, as they in turn receive greater 410 
subsidies from smaller headwater streams. It is however highly uncertain if mainstem waters will ever 411 
receive such subsidies, or how much they may make up of the bulk OC pool. Accurately constraining 412 
the amount of permafrost OC being released to headwaters, and improved methods for tracing 413 
permafrost OC through Arctic networks will be essential in understanding how permafrost underlain 414 
river catchments may adapt in response to future permafrost thaw and thermokarst events.  415 

Enhanced freshwater runoff increases aquatic OC degradation rates 416 

Increasing freshwater runoff rates delivered greater quantities of terrestrial OC that could be rapidly 417 
degraded in aquatic ecosystems over the order of a few days (i.e., Rapid turnover OC; Fig 5B). No 418 
comparable relationships between the rates measured in the ‘slow’ OC pools and discharge were 419 
identified (Fig 5B). Increased freshwater discharge rates therefore appear to be associated with 420 
greater delivery of highly reactive OC from the landscape, likely fueling higher OC degradation rates 421 
in receiving stream and river waters. The lack of an empirical relationship between discharge and ‘fast’ 422 
or ‘slow’ OC pools suggest that the changing hydrologic runoff will not directly alter their degradation 423 
rates.   424 

Assuming the relationship between rapid OC pool degradation rates and discharge holds under future 425 
scenarios (Equation 3), we apply this equation to discharge records from the Kolyma River (Fig 3) to 426 
project how rapid OC pool degradation rates may change under future runoff patterns (Fig 6). As noted 427 
above, OC pools in the Kolyma and Lena rivers are similar in composition (Mann et al. 2016) and thus 428 
we expect them to display comparable degradation rates as those reported in the Kolyma River. We 429 
therefore also examined how Lena River OC degradation rates may alter in response to increasing 430 
discharge but note that future studies are needed to test that these assumptions are valid. We scaled 431 
the Lena discharge to that of the Kolyma, using a scaling factor of 0.164 which was determined by 432 
dividing the mean annual Lena and Kolyma Rivers discharge. We then applied the scaled Lena River 433 
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discharge to Equation 3. Despite the many assumptions present in such calculations - especially in 434 
Lena River waters, it seems likely that an enhanced hydrological system will promote OC pools in river 435 
catchment that can be rapidly utilized by microorganisms.  436 

Figure 6. Observed and projected OC degradation rates (d-1) calculated using Eq 2 for: a) the Kolyma River 438 
and, b) Lena River. OC degradation rates for the Lena River are scaled by calculating a scale factor (0.164) 439 
correcting for relative differences in discharge.  440 

Increased OC degradation rates in the ‘rapid’ turnover OC pool under future enhanced runoff 441 
conditions will likely fuel greater greenhouse gas emissions from Arctic catchments. For example, the 442 
Kolyma River mainstem is supersaturated in dissolved CH4 (15,300 % relative to atmosphere) and CO2 443 
(235 %) fueling significant gas exchange fluxes from the river and gulf regions (Palmtag et al. 2021). 444 
Using a simple box model incorporating present-day runoff rates and field gas measurements, the 445 
authors estimate mean CH4 loads of 9.5 x 105 kg CH4 yr-1 enters the lower reach of the Kolyma River 446 
(ca. 100 km upstream of river mouth) during the open water period (1 Jun - 1 Nov). Of these loads, 447 
they calculate losses of 49 % (-4.7 x 105 kg CH4 yr-1) to the atmosphere via gas exchange in the gulf, 448 
with total fluxes to the coastal ocean of 6.0 x 105 kg CH4 yr-1 (with net oxidation accounting for small 449 
variations). Assuming conservative increases in freshwater discharge of 25% and identical water gas 450 
concentrations, CH4 loads would be expected to increase to 11.9 x 105 kg CH4 yr-1, with gas exchange 451 
losses of 50 % (-6.0 x 105 kg CH4 yr-1) and fluxes to the ocean of 7.2 x 105 kg CH4 yr-1. These findings 452 
suggest that higher discharge rates have the potential to strengthen both greenhouse emissions from 453 
Arctic catchments. as well as dissolved gas loads to coastal waters. Future work is therefore needed 454 
to understand how constituent river loads will increase under freshwater intensification.   455 

Future decreasing ice thickness and broader sub-ice pathways will further increase the connectivity of 456 
Arctic rivers. This connectivity could account for increased winter runoff signals (Juhls et al. 2021) as 457 
observed here (Fig 3A, B). Active layer thickening and Talik formations caused by warming may also 458 
cause increased connectivity and groundwater flow (Frey & McClelland, 2009). This will lead to 459 
increasing subsurface water flow and greater leaching and contributions of old reactive permafrost-460 
derived OC.  461 
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How could future increases in the supply of OC from land impact coastal biogeochemistry? 462 

Future changes in the quantity or composition of terrestrial OC delivered to the Arctic Ocean 463 
nearshore may play a significant role in shaping nearshore processes, largely through the supply of 464 
nutrients and terrestrial OC to coastal oceans. Increasing river discharge and coastal erosion across 465 
the Siberian Arctic is not only increasing terrestrial OC loads to coastal waters but is also likely to 466 
substantially alter its composition with greater subsidies of permafrost-derived OC translocated from 467 
river catchments (described above), and enhanced erosion of permafrost-rich coastlines (Günther et 468 
al., 2013). The future impact of terrestrial permafrost thaw and enhanced runoff rates on Arctic Ocean 469 
nearshore processes are however strongly influenced by estuarine removal processes, such as 470 
flocculation processes or biological or photochemical degradation before reaching the shelf. For 471 
example, only 5-15 % of the particulate OC measured within the river mainstem is estimated to leave 472 
the Lena River delta (Semiletov et al. 2011). By contrast, a minimal removal of DOC (< 5 %) was 473 
reported for a boreal river using a simple box model parameterized with river inputs, settling fluxes, 474 
advective export and solved for degradation (Gustafsson et al. 2000). This is in good agreement with 475 
the apparently linear and conservative mixing trends for DOC extending from the Lena River and into 476 
nearshore regions (Köhler et al. 2003; Amon, 2004; Juhls et al. 2019), although these studies have 477 
historically only focused on late summer seasons. Further offshore, the inner and outer Lena-Laptev 478 
Sea plume has been shown to contain riverine DOC that is approximately two months old, having lost 479 
approximately 10% of the initial DOC (Alling et al. 2011). Substantial losses of DOC (ca. 10 - 20%) 480 
delivered by the Kolyma River into the East Siberian Sea have also been reported (Alling et al. 2011). 481 
Increasing exports of terrestrial OC therefore have the potential to be reflected in coastal nearshore 482 
environments and play a crucial role in affecting nearshore degradation rates.  483 

Terrestrial lifetime estimates for the entire OC pool over the Laptev and East Siberian Shelf have 484 
previously been estimated from field dissolved OC measurements across the shelf, indicating lifetimes 485 
on the order of 3.3 yr-1 (Alling et al. 2010) and 10 yr-1 derived from ocean waters and used across the 486 
entire Arctic from a modelling study (Manniza et al. 2009). These are significantly longer than the 487 
lifetimes in contemporary Kolyma River mainstem waters calculated here which were on the order of 488 
0.95 ± 1.3 yr-1 (Slow OC pool; Table 1). Our results compare well with previous estimates of 0.7 yr-1 in 489 
Alaskan rivers (Holmes et al. 2008). Increasing lifetime estimates reported from waters moving 490 
offshore are consistent with expected decreases in OC degradation rates across the aquatic-ocean 491 
continuum (Catalán et al. 2016). These changes appear not to be driven by the capabilities of the 492 
coastal microbial community, as parallel OC degradation rates measured in Kolyma River and coastal 493 
waters containing their natural microbial communities showed highly similar OC loss rates (Vonk et al. 494 
2013). Future studies need to consider implementing different degradation rates for terrestrial OC 495 
throughout the nearshore, with faster rates within and near river mouths, and higher removal rate 496 
constants in Arctic shelf waters relative to the Arctic interior (Alling et al. 2010). The role of particulates 497 
across the nearshore also needs to be further understood, as adsorption and flocculation processes 498 
have the potential to change biodegradation rates and the ultimate fate of DOC (Keskitalo et al. in 499 
review).  500 

Future contributions of permafrost-derived OC to coastal waters will additionally exacerbate 501 
reductions in bulk OC lifetimes across shelf waters. Rapid losses of fluvial permafrost OC within river 502 
catchments may cause limited quantities of permafrost OC to be exported to the nearshore, but as 503 
river catchments continue to degrade, and catchment OC residence times continue to decline, it is 504 
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possible the composition of exported OC will shift. Direct inputs of particulate and dissolved 505 
permafrost-OC from increased coastal erosion may also increase. Here, we show that relatively small 506 
subsidies of permafrost could significantly increase degradation rates, with an additional 1 % 507 
contribution to mainstem waters increasing OC loss rates by 20 to 60%, depending on the OC pool 508 
studied (Table 2). Enhanced coastal OC degradation could result in CO2 accumulation in coastal waters 509 
slowing or potentially reversing annual Arctic Ocean sea-air uptake and acting as positive feedback 510 
upon Arctic climate change. The Arctic Ocean is currently considered a small net sink of atmospheric 511 
CO2, with uptake estimates ranging between 0.1 to 0.2 Pg C yr-1 (Jeansson et al. 2011; Schuster et al. 512 
2013; Arrigo et al. 2010; McGuire et al. 2009; Manizza et al. 2013). Model estimates of coastal 513 
nearshore environments however often use only a single OC degradation rate to represent 514 
degradation rates across the entire Arctic Ocean (e.g., Manniza et al. 2009). Recent modelling efforts 515 
using a biogeochemical model incorporating terrestrial OC dynamics identifies the degradation rate 516 
of terrestrial OC as a critical parameter in projecting the strength and direction of future CO2 emissions 517 
from shelf waters (Polimene et al. submitted). The authors examined a range of OC lifetimes spanning 518 
0.3 to 10 yr-1 under changing terrestrial OC supply scenarios (+ 0 to 100 % discharge) to the Laptev Sea 519 
and found that either increased OC loads or changing composition (reductions in OC degradation 520 
rates) significantly affected net shelf CO2 budgets. Furthermore, changes to terrestrial OC loads or 521 
composition to coastal waters had profound impacts upon light penetration, and in turn rates of 522 
primary production, as well as phytoplankton community dynamics.  Recent suggestions that the 523 
riverine and erosional supply of terrestrial dissolved nitrogen may strengthen the Arctic shelf as a net 524 
CO2 sink (Terhaar et al. 2021; McGuire et al. 2010) may be optimistic. Changes to net primary 525 
production rates and phytoplankton community dynamics in shelf waters may also modify essential 526 
food webs and their distributions across changing Arctic coasts. Coastal food webs may also need to 527 
respond to enhanced rates of ocean acidification. The Arctic Ocean is particularly sensitive to ocean 528 
acidification due to the greater quantities of CO2 that can dissolve in cold waters and the changing 529 
alkalinity load received from Arctic Rivers (Drake et al. 2018). Ocean acidification across the ESAS has 530 
been attributed to degradation of terrestrial organic matter and addition of CO2 rich waters from river 531 
runoff, rather than atmospheric CO2 uptake (Semiletov et al. 2016). Greater delivery of terrestrial 532 
materials, or any enhancement in OC degradation rates caused by increasing freshwater discharge or 533 
permafrost supply will therefore likely also cause a worsening of ocean acidification across coastal 534 
waters.  535 

 536 

 537 

Conclusion 538 

We propose that nearshore regions across the Arctic are hotspots for environmental change requiring 539 
concerted and co-ordinated sampling efforts across river, estuary, coastal and shelf regions. An 540 
intensification of the hydrological cycle across the nearshore is underway and expected to continue 541 
well into the 21st century, with a range of complex and non-mutually exclusive impacts and greater 542 
dissolved organic carbon loads to coastal waters. Greater freshwater discharge rates may cause a 543 
lateral shift in terrestrial OC concentration and composition, efficiently translocating more 544 
biodegradable OC to mainstem and coastal waters for biodegradation or storage. Permafrost and 545 
peat-derived OC will be mobilised more rapidly into river networks from headwaters or via enhanced 546 
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river erosion supplying an additional source of highly available OC to aquatic organisms, subsidising 547 
higher atmospheric greenhouse gas emissions during river transit and greater loads of dissolved 548 
concentrations to coastal waters. Coastal erosion will further increase permafrost OC pools in shelf 549 
waters. The rapidity of changes across the Arctic nearshore will require studies that incorporate new 550 
and existing observations with improved modelling efforts that can capture changing hydrology and 551 
coastal freshwater dynamics, as well as a range of terrestrial OC degradation rates. There is an explicit 552 
need to capture seasonal variability more effectively across all seasons, especially in 553 
underrepresented areas such as the Russian Arctic. Effective use of in-situ monitoring platforms and 554 
remote sensing products could aid in delivering spatially consistent data on OC fluxes, but it remains 555 
a challenge to “observe” permafrost OC mobilisation to the nearshore. Monitoring changes in bulk 556 
DOC degradation may prove a useful, and fundamentally viable metric to help monitor any shifts in 557 
fluvial and coastal OC amount and composition. Future increased quantities of terrestrial OC within 558 
coastal waters will cause a suite of physical and biogeochemical changes including in the availability 559 
of light and nutrients, patterns of ocean acidification and ultimately coastal productivity and fisheries.    560 

 561 

Societal and policy implications 562 

Approximately 10 percent of the 4 million people who live in the Arctic are Indigenous. The Arctic has 563 
been their home for thousands of years and over the millennia they have developed the skills to 564 
survive in areas of harshest living conditions and to adapt to changes. However, the rapid and 565 
unprecedented climatic and environmental changes that we are seeing in the Arctic today are the 566 
biggest long-term challenge that the Indigenous Peoples are facing. These changes are affecting 567 
indigenous practices such as reindeer herding, hunting, fishing, and gathering, ultimately challenging 568 
food security (Plate et al. 2021). Hydrological changes and permafrost degradation in the river 569 
catchments are affecting reindeer herding indigenous peoples who are dependent on the migration 570 
routes and pasture lands of the herd to maintain food security. Additionally, permafrost thaw related 571 
changes in riverine carbon and nutrient supply could affect fish stocks both in rivers and nearshore 572 
marine waters. Changes to the amount and type of marine plants (phytoplankton) may cause changes 573 
to the distribution, availability and biomass of coastal fish and higher mammals. Increased coastal 574 
erosion and permafrost inputs also has the potential to increase the concentration of contaminants - 575 
such as inorganic and methyl mercury, in inland and potentially coastal waters (St Pierre et al. 2018; 576 
Zolkos et al. 2020). This may result in greater loads of contaminants within coastal foods and 577 
accumulating up the food chain to higher species, resulting in greater risk to local peoples’ who rely 578 
on nearshore marine resources.  579 

The Russian Arctic Rivers are important transportation routes both to supply the cities and settlements 580 
in the hinterland and to ship raw materials to the coastal zone and further via the Northern Sea Route. 581 
Port facilities and other infrastructure along the rivers and in the coastal and nearshore zone are 582 
vulnerable to an intensification of the hydrological cycle and to amplified permafrost degradation. 583 
Loss of nearshore sea-ice can be exacerbated by increasing coastal runoff and terrestrial loads (for 584 
instance through altering heat absorption into coastal waters). Greater volumes of shipping across 585 
Arctic coastal waters increases the risks of accidents and spillages across the nearshore, with the 586 
potential for long-term damage to coastal ecosystems and loss (or contamination) of essential species.       587 
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We therefore believe that this study´s topic is highly relevant for Arctic policymakers, in particular for 588 
the Arctic Council which promotes the cooperation between Arctic States, indigenous peoples and 589 
other Arctic residents with regard to sustainable development and environmental protection. The 590 
three Arctic Council working groups Conservation of Arctic Flora and Fauna (CAFF), Protection of the 591 
Arctic Marine Environments (PAME) and Sustainable Development Working Group (SDWG) as well as 592 
the Arctic Indigenous Peoples organizations, represented on the Council as Permanent Participants, 593 
are potential users of this study. 594 

 595 
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Table 1. First-order OC degradation rates (d-1) and OC lifetimes for each fraction determined in our 931 
experiments (Rapid OC) and in previous literature (Slow OC).  932 

 933 

  OC biodegradation 
rate (d-1) 

OC lifetime 
(y-1) 

Rapid-OC 
(n = 34) 

Mean 0.0139 0.20 
Median 0.0095 0.29 

 Stdev 0.0152 0.18 
 Min 0.0022 1.25 
 Max 0.0632 0.04 

Slow OC 
(n = 18) 

Mean 0.0029 0.95 
Median 0.0024 1.14 

 Stdev 0.0021 1.34 
 Min 0.0013 2.11 
 Max 0.0098 0.04 

 934 

 935 

Table 2. OC degradation rates in experimental incubations of waters with up to 25 % permafrost-thaw OC. 936 
Rapid OC fraction determined using oxygen loss measurements over 5-days. Fast and Slow OC pools are 937 
determined via dissolved OC loss over 14 or 28-days, respectively. All degradation rates were normalised to 938 
15 oC, enabling comparison between experiments. 939 

 Permafrost OC 
(%) 

OC biodegradation 
rate (d-1) 

OC lifetime 
(yr-1) 

Rapid OC 

0 0.0093 ± 0.0008 0.30 ± 0.02 

1 0.0223 ± 0.0010 0.12 ± 0.01 

10 0.1029 ± 0.0056 0.03 ± 0.001 

Fast OC  

0 0.0091 ± 0.0010 0.31 ± 0.03 

0.5 0.0103 ± 0.0003 0.27 ± 0.01 

1 0.0112 ± 0.0007 0.25 ± 0.02 

10 0.0163 ± 0.0047 0.18 ± 0.06 

25 0.0239 ± 0.0020 0.11 ± 0.01 

Slow OC 

0 0.0046 ± 0.0005 0.60 ± 0.06 

0.5 0.0056 ± 0.0008 0.50 ± 0.08 

1 0.0058 ± 0.0007 0.48 ± 0.06 

10 0.0093 ± 0.0025 0.31 ± 0.09 

25 0.0132 ± 0.0004 0.21 ± 0.01 

 940 
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