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Abstract 22 

Dissolved Oxygen (DO) concentration in water is one of the key parameters for assessing river 23 

water quality. Artificial Intelligence (AI) methods have previously proved to be accurate tools for 24 

DO concentration prediction. This study presents the implementation of a Deep Learning approach 25 

applied to a Recurrent Neural Network (RNN) algorithm. The proposed Deep Recurrent Neural 26 

Network (DRNN) model is compared with Support Vector Machine (SVM) and Artificial Neural 27 

Network (ANN) models, formerly shown to be robust AI algorithms. The Fanno Creek in Oregon 28 

(USA) is selected as case study and daily values of water temperature, specific conductance, 29 

streamflow discharge, pH and DO concentration are used as input variables to predict DO 30 

concentration for three different lead times (“t+1”, “t+3” and “t+7”). Based on Pearson’s 31 

correlation coefficient several input variable combinations are formed and used for prediction. The 32 

model prediction performance is evaluated using various indices such as Correlation Coefficient, 33 

Nash-Sutcliffe Efficiency, Root Mean Square Error and Mean Absolute Error. The results identify 34 

the DRNN model (𝐶𝐶𝑇𝑒𝑠𝑡𝑖𝑛𝑔 =  0.97, 𝑁𝑆𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 0.948, 𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 =35 

0.43  and  𝑀𝐴𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 0.25) as the most accurate among the three models considered, 36 

highlighting the potential of Deep Learning approaches for water quality parameter prediction. 37 

Keywords: River Water Quality, Dissolved Oxygen Concentration, Predictive Algorithm, Deep 38 

Recurrent Neural Network, Artificial Neural Network, Support Vector Machine 39 

1- Introduction 40 

Water quality modelling is an important part of environmental modeling (Tomić et al. 2018; 41 

Khaleefa and Kamel 2021). The Dissolved Oxygen (DO) concentration in water is a key parameter 42 

for water quality evaluation (Ahmed 2017), because DO sustains aquatic ecosystems (Zhu and 43 
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Heddam 2019), which is significant for managing water quality and river ecology (Tomić et al. 44 

2018). DO also plays a critical role in regulating biogeochemical processes and biological 45 

communities in rivers (Zhu and Heddam 2019). In addition, DO is important in relation to 46 

aquaculture, because it determines the quality of culture environment and the growth of the aquatic 47 

species (Wang et al. 2008), the feed conversion rate, and disease resistance (Xiao et al. 2017). DO 48 

concentration is generally a key variable in aquatic environments (e.g., rivers and lakes) for the 49 

aquatic beings (e.g., fish and plants) and both high and low values of DO are not good for aquatic 50 

environments (Post et al. 2018). Sources of DO in rivers are the photosynthesis of plants (e.g. algae 51 

and phytoplankton), diffusion processes and aeration (Boyd et al. 2018). Because these sources 52 

are generally limited, management of water quality for maintenance of acceptable DO levels in 53 

aquatic environments is critical (Reeder et al. 2018). The DO concentration in rivers depends on 54 

many biotic and abiotic parameters, such as the amount of aquatic plants, nutrient concentration, 55 

streamflow discharge, water specific conductance, pH, and temperature (Khan and Valeo 2017), 56 

as well as their complex interactions (He et al. 2011). Because the spatial and temporal 57 

distributions of DO concentration is influenced by a number of environmental factors (Liu et al. 58 

2011), their estimation is challenging. The accurate estimation and prediction of DO concentration 59 

is significant from an environmental (ecosystem health) (Zhu and Heddam 2019) and economic 60 

(aquaculture production) viewpoint (Xiao et al. 2017).  61 

Many studies have previously focused on estimating/predicting DO concentration (Huan et al. 62 

2018). Various methods have been adopted (Poole 1976), either numerical or physical (Guo et al. 63 

2019). Physical models producing deterministic equations are somewhat limited because they are 64 

typically time-consuming and costly and because the complexity of biotic and abiotic processes 65 

cannot fully be taken into account during the experiments and in the resulting mathematical 66 
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equations. Additionally, traditional statistical methods lack accuracy because of the natural noise 67 

of data, missing background information, incomplete data, inaccurate initial conditions, and 68 

limited spatial resolution (Kisi and Cimen 2011; Armanuos et al. 2021). Errors in hydrobiological 69 

data also add to the uncertainty in DO estimation (Cox 2003; Ahmed 2017). Practical, economic 70 

and accurate tools are therefore needed for water quality managers and decision makers.  71 

In recent years, numerous studies have adopted Artificial Intelligence (AI) approaches to model 72 

complex nonlinear environmental processes (Elzwayie et al. 2017; Khozani et al. 2019; Tur and 73 

Yontem 2021). AI algorithms have also been widely used for estimation purposes in studies related 74 

to water resources management and quality (Chen et al. 2020; Lu and Ma 2020; Naganna et al. 75 

2020; Asadollah et al. 2021). (Najah et al. 2014) compared the accuracy of Adaptive Neuro-Fuzzy 76 

Inference System (ANFIS) and Multilayer Perceptron Neural Network (MLP-NN) prediction 77 

models for DO concentration, using as input water temperature, nitrate, ammoniacal nitrogen and 78 

pH for the Johor River in Malaysia. Their analysis showed a better performance by the ANFIS 79 

model compared to the Neural Network based algorithm. (Heddam 2014), in a similar comparative 80 

study, evaluated the prediction performance of two different ANFIS structures, ANFIS-GRID and 81 

ANFIS-SUB, using U.S. Geological Survey (USGS) data for the Klamath River in Oregon, USA, 82 

with the input variables including sensor depth, water temperature, specific conductance and pH. 83 

(Ay and Kisi 2012) simulated the DO concentration by employing two different neural network 84 

algorithms, Radial Basis Neural Network (RBNN) and Multilayer Perceptron (MLP), again using 85 

USGS observations from upstream and downstream locations along the Foundation Creek in 86 

Colorado, USA, and considering as inputs pH, water temperature, Electric Conductivity (EC) and 87 

discharge; adopting different performance indicators, they showed a better prediction performance 88 

by the RBNN model. With the same comparison objective, (Antanasijević et al. 2013) considered 89 
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three different Artificial Neural Network (ANN) algorithms, Recurrent Neural Network (RNN), 90 

Backpropagation Neural Network (BPNN) and General Regression Neural Network (GRNN), to  91 

use discharge, temperature, pH and EC data for the period 2004-2009 from the Bezdan station on 92 

the Danube River to predict DO concentration; in this case the RNN algorithm produced the better 93 

prediction performance. (Zhu and Heddam 2019) developed two prediction models based on 94 

Multilayer Perceptron Neural Network (MLPNN) and Extreme Learning Machine (ELM) 95 

algorithms to estimate daily DO concentrations; as case study, they considered observations belong 96 

to four urban rivers from the Three Gorges Reservoir in China and showed with different 97 

prediction performance indices that the MLPNN model outperformed the ELM model. 98 

While the above “classic” AI algorithms have proved to be efficient prediction tools, recently 99 

developed Machine Learning (ML) methods have shown to reach higher performance levels with 100 

less time and effort. Among these methods, the Support Vector Machine (SMV) has been 101 

extensively adopted in various engineering problems including water quality. Regarding DO 102 

concentration prediction, (Olyaie et al. 2017) evaluated the SVM applicability for DO 103 

concentration estimation for the Delaware River in Trenton (USA),  comparing it with various 104 

“classic” models such as two ANN algorithms and a Linear Genetic Programming (LGP) 105 

algorithm; considering various prediction performance evaluators the SVM model outperformed 106 

both ANN and LGP models. Similarly, (Li et al. 2017) examined SVM against Multiple Linear 107 

Regression (MLR) and BPNN using 16 different chemical parameters as inputs for DO 108 

concentration prediction. All the models were optimized using a Particle Swarm Optimization 109 

(PSO) algorithm. Once again all the evaluation criteria showed an excellent performance of the 110 

PSO-SVM hybrid algorithm, superior to that of PSO-MLR and PSO–BPNN algorithms. In a very 111 

recent research, (Dehghani et al. 2021) evaluated the standalone and hybrid SVM DO prediction 112 
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performance for the Cumberland River in USA, using monthly data from 2008 to 2018. Social 113 

Ski-Driver (SSD), Chicken Swarm Optimization (CSO), Algorithm of the Innovative Gunner 114 

(AIG), Black Widow Optimization (BWO) and Chicken Swarm Optimization (CSO) were used 115 

for optimization in this study. (Dehghani et al. 2021) found that  the hybrid algorithms enhanced 116 

the accuracy up to 6.52%, with the SVR-AIG (coefficient of determination R2 of 0.963) generating 117 

the best predictions. Extreme Learning Machine (ELM) algorithms, another type of ML 118 

algorithms, have been applied in various investigations related to DO concentration and showed 119 

high prediction performance (Huan and Liu 2016; Heddam and Kisi 2017). 120 

While ML algorithms have generally shown very good prediction performance for DO 121 

concentration, their parameter tuning can be difficult and time consuming. This issue was 122 

addressed in studies employing a novel ML approach based on Ensemble Algorithms (EAs). EAs 123 

comprise algorithms such as tree-based (e.g. M5, Random Forest (RF) and Extreme Tree (ET)) 124 

and boosting (e.g. Gradient Boost and Ada-Boost). (Heddam and Kisi 2018) compared M5 (basic 125 

tree-based model) with a hybrid SVM algorithm and a Multivariate Adaptive Regression Splines 126 

(MARS) model for DO concentration prediction. Although the M5 is considered as a weak EA 127 

algorithm, results revealed that it could produce equal or even better predictions compared to SVM 128 

and MARS for the three different USGS stations considered in the study. Other comprehensive 129 

studies by (Abba et al. 2020; Heddam 2021) compared RF and ET algorithms with numerous other 130 

AI, ML and EA algorithms, revealing the high performance of RF and ET hybrid models compared 131 

to alternatives such as MLR, Bidirectional Recurrent Neural Network (BRNN), Long Short-Term 132 

Memory (LSTM) and ELM algorithms. 133 

The algorithms adopted in the studies presented above have proved to provide accurate predictions 134 

of DO concentration. However, newer Deep Learning approaches have not yet been applied to this 135 
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field. To this end, this study aims to evaluate the performance of a Deep Recurrent Neural Network 136 

(DRNN) model, which applies Deep Learning to a Recurrent Neural Network (RNN) structure, 137 

for DO concentration prediction. The case study considered is that of the Fanno Creek in USA. 138 

Data were obtained from the USGS database as done in similar previous contributions. The 139 

proposed novel DRNN algorithm was then compared with two “classic” ML algorithms, ANN and 140 

SVM. 141 

2- Materials and Methods 142 

2.1. Study Area 143 

The Fanno Creek is located in Oregon state in USA. It has a length of 24 kilometers and a 144 

catchment of about 100 km2 including Multnomah and Clackamas counties and a section of 145 

Portland city. Based on the Oregon Department of Environmental Quality (DEQ) report (Nestler 146 

and Heine 2020), the Fanno Creek is characterized by very poor water quality, which is mostly 147 

caused by urban pollution but also industrial and agricultural effluents (Anderson and Rounds 148 

2003; Goldman et al. 2014). This makes the Fanno Creek a suitable case study for water quality 149 

analysis and DO concentration estimation. To this end, observations in the Fanno Creek at Durham 150 

station were obtained from the USGS database (USGS 14206950, longitude 122°45′13′′, latitude 151 

45°24′13′′, Figure 1). Specifically, DO concentration data for a period of 16 years (2003-2018) 152 

were used as input dataset of predictive algorithms. 153 

[Fig 1] 154 

The dataset comprised data of daily water temperature (T), pH, discharge (Q), specific 155 

conductance (SC) and DO concentration. In the 5844-day period considered, 70% of the data, from 156 

the first day (1/1/2003) until day 4092 (03/15/2014), were selected for use as training data; the 157 
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remaining 30% of the data, from day 4093 (03/16/2014) until the last day (12/31/2018), were 158 

selected as testing data. Figure 2 shows the DO concentration time series for the period considered.  159 

 [Fig 2] 160 

 161 

2.2. Deep Recurrent Neural Network (DRNN) Method 162 

Although Artificial Neural Network (ANN) algorithms are widely and successfully used in various 163 

fields of study, they cannot be extended to more than one or two hidden layers (Liu et al. 2017). 164 

In recent years, Deep Learning networks with multilayer architecture have been developed to 165 

successfully solve complex problems (Bengio 2009). Multilayer Recurrent Neural Networks, 166 

developed in 1980,  are one of the most common models in Deep Learning (Schmidhuber 1993) 167 

and are a powerful model for sequential data (time series) (Graves et al. 2013), in which the 168 

previous output is used to predict the next output and the networks themselves have iterative loops. 169 

The output of a hidden layer is again sent to the hidden layer multiple times. The output of a 170 

recurring neuron is sent to the next layer only after a set number of iterations. The errors based on 171 

these returns are multiplied backwards to update the weights. These networks have short-lived 172 

memory, which cannot preserve the simple long-term time series (Bengio et al. 1994). A simple 173 

recurrent network has only one internal memory ht, which is calculated as follows 174 

ℎ𝑡 = 𝑔(𝑊𝑥𝑡
+ 𝑈𝑓ℎ𝑡−1 + 𝑏) (1) 

where 𝑔 indicates an activation function, W and 𝑈𝑓 are the adjustable weight matrices of layer h, 175 

x is the input vector, and b is the bias (Kratzert et al. 2018). Figure 3 shows a simple Recurrent 176 

Neural Network. 177 

 [Fig 3] 178 
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 179 

2.3. Support Vector Machine (SVM) Method 180 

Support Vector Machine (SVM) is one of the most well-known machine learning algorithms for 181 

classification and regression. Vepnik (1995) used SVM for the first time as a model for identifying 182 

and classifying problems (Cortes and Vapnik 1995). In this model, the data is first converted into 183 

a learning vector, each vector corresponds to an output vector, which can find the optimal value in 184 

nonlinear space. This method was first used by Biak et al. (2001) in the field of water to simulate 185 

rainfall-runoff (Dibike et al. 2001). The SVM method uses the inductive principle to minimize the 186 

error and results in an optimal overall solution (Eskandari et al. 2012). Figure 4 shows the structure 187 

of a SVM model. 188 

 [Fig 4] 189 

 190 

In a SVM model, the output y is estimated based on several independent variables x. The 191 

relationship between x and y is determined with a function 𝑓(𝑥) plus an allowable error (𝜀): 192 

𝑓(𝑥) = 𝑊𝑇 . ∅(𝑥) + 𝑏 (2) 

𝑦 = 𝑓(𝑥) + ε (3) 

where W is the coefficient vector, b is the constant of the regression function, and  is a kernel 193 

function, aiming to find a functional form for 𝑓(𝑥).  194 

Selecting an appropriate kernel function is key to achieve the optimal solution with a SVM 195 

model (Eskandari et al. 2012). The most widely used kernel function are; linear, radial basis 196 
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function (RBF) and polynomial function (Vapnik and Chervonenkis 1991; Basak et al. 2007; Liu 197 

2011). In this study, the RBF function was used. 198 

2.4. Artificial Neural Network (ANN) Method 199 

Artificial Neural Network (ANN) algorithms are inspired by the neural network of the human 200 

brain. An ANN consists of three layers of input, processing and output. In each layer, there are a 201 

number of neurons, which are connected to the next nodes through weights. Neurons are nonlinear 202 

mathematical functions, and a neural network is made up of a community of these neurons making 203 

a complex, nonlinear system. Figure 5 shows the overall structure of an Artificial Neural Network 204 

(Kia 2018). 205 

 [Fig 5] 206 

The number of neurons in the input layer depends on the number of input parameters and the 207 

number of neurons in the output layer is associated with the number of output parameters. The 208 

number of neurons in the hidden layer is not subject to a specific rule and the appropriate number 209 

is determined only through trial and error in the training stage. In an Artificial Neural Network, 210 

each neuron generally has more than one input, as each neuron multiplies the input vector by its 211 

weights and sums it considering a bias. 212 

 213 

2.5. Evaluation of Model Prediction Performance 214 

The prediction performance of the models considered in this study was assessed and compared 215 

using four indicators, specifically Correlation Coefficient (CC), Root Mean Square Error (RMSE), 216 

Mean Absolute Error (MAE) and Mean Percent Error (MPE), computed as follows 217 
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𝐶𝐶 = √
∑ ((𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�))
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𝑀𝐴𝐸 =
1

𝑁
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𝑁

𝑖=1

 

(7) 

𝑀𝑃𝐸 =
1

𝑁
∑|(𝑥𝑖 − 𝑦𝑖)/𝑥𝑖|

𝑁

𝑖=1

 

(8) 

where 𝑥𝑖 and �̅� indicate the observed values and the mean observed value, respectively; 𝑦𝑖 and �̅� 218 

indicate the predicted values and the mean predicted value, respectively; and 𝑁 is the number of 219 

observed/predicted DO concentration data (Misra et al. 2009). 220 

3- Results and Discussion 221 

In the initial phase, the correlation between DO concentration as target (predicted) parameter 222 

and T, pH, SC, Q and DO concentration as input variables for prediction was computed. To do 223 

this, the target DO concentration was considered for three forward time leads (“t+1”, “t+3” and 224 

“t+7”), while the input parameters were considered for seven backward time leads (“t” to “t-7”). 225 

The correlation coefficients are presented in Table 1. 226 

[Table 1] 227 

From Table 1, the highest correlations are between DO(t) as input variable and DO(t+1), 228 

DO(t+3) and DO(t+7) as target variables. Among the other input variables, water temperature is 229 

the one that shows the highest correlation with DO concentration. Based on the correlation analysis 230 

in Table 1, nine different input variable combinations were considered for DO concentration 231 

prediction using DRNN, SVM and ANN models, as shown in Table 2. These combinations were 232 

constructed based on elimination of the lowest correlated input variables in every stage, so that the 233 
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8th and 9th combination only includes [DO(t), T(t)] and [DO(t)], respectively, as the most correlated 234 

inputs with the target parameter.   235 

[Table 2] 236 

In the DRNN model, three hidden layers were used, with 150 neurons in the first layer and 150 237 

neurons in the second and third layers (the optimal value of neurons was found by trial and error). 238 

The output of the last network layer in the last time step is connected to a dense layer with a single 239 

output neuron, with 10% random drop-out between the layers. In the ANN model, two hidden 240 

layers with 150 neurons per layer were used. In the SVM model, a Radial Basis Function kernel 241 

with C = 1, γ = 0.01 and ε = 0.001 was used.  242 

The prediction performance indices for DRNN, SVM and ANN models, in both training and 243 

testing stages, are presented in Tables 3, 4, and 5, respectively. 244 

[Tables 3] 245 

[Tables 4] 246 

[Tables 5] 247 

From the analysis of the values of CC, MAE and RMSE for the DRNN model in Table 3, it 248 

can be observed that the difference in prediction performance between a model with nine input 249 

variables (C1) and a model with only one input variable (C9) is negligible, for all three lead times 250 

(t+1, t+3 and t+7). This is also the case for SVM model (Table 4) and ANN model (Table 5). 251 

Therefore, the use of a single input variable, DO(t), is recommended because allowing for accurate 252 

predictions and cost-effective. 253 
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The prediction performance of the three different models for the same input combination (C9), is 254 

compared visually for DO(t+1), DO(t+3) and DO(t+7) in Figure 6, 7 and 8, respectively. The 255 

figures specifically show observed and predicted DO values as time series and observed vs 256 

predicted plots.  For DO(t+1) prediction, the correlation coefficient CC (mean percent prediction 257 

error MPE) between observed and computed values is 0.97 (3.5%), 0.94 (3.9%), and 0.89 (10%) 258 

for DRNN, ANN and SVM models, respectively. The values are 0.94 (6.5%), 0.87 (6.8%), and 259 

0.87 (9.5%) for DO(t+3) and 0.91 (8.1%), 0.82 (8.2%) and 0.83 (10.8%,) for DO(t+7). The DRNN 260 

model improves the CC prediction performance by an average of 6%, 8% and 10% for DO(t+1), 261 

DO(t+3) and DO(t+7), respectively, compared to the other two models considered. 262 

[Figs 6, 7 and 8] 263 

For further evaluation of the DRNN algorithm in DO prediction over different lead times, two 264 

more graphical evaluators have been employed. Figure 9 measures the SVM, ANN and DRNN 265 

prediction capability via Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), Root 266 

Mean Squared Error (RMSE) and Mean Absolute Error (MAE) performance metrics. The bar 267 

charts highlight the decrease of prediction accuracy for increasing lead time from t+1 to t+7; they 268 

also confirm the above finding of a better DRNN model prediction performance compared to SVM 269 

and ANN models for t+1, t+3 and t+7 lead times. 270 

[Fig 9] 271 

The previously presented prediction performance indices and visualizations assess the models 272 

based on error calculations and deviation between observed and predicted data. Figure 10 273 

quantifies SVM, ANN and DRNN prediction performance based on the distribution of observed 274 

and predicted DO concentration values, in the form of combination of violin and box plots. The 275 
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box plots in Figure 10 contains three numerical values, which from bottom to top denote the 0.25, 276 

0.5 and 0.75 quartiles (𝑄0.25, 𝑄0.5, and  𝑄0.75  respectively). These distribution values again reveal 277 

that better prediction performance by the DRNN for lead times t+1 (𝑄0.5
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 8.6, 𝑄0.5

𝐷𝑅𝑁𝑁 =278 

8.59), t+3 ( 𝑄0.5
𝐷𝑅𝑁𝑁 = 8.56)  and t+7 (𝑄0.5

𝐷𝑅𝑁𝑁 = 8.49)  compared to the SVM model (𝑄0.5
𝑡+1 =279 

8.91, 𝑄0.5
𝑡+3 = 8.77, and 𝑄0.5

𝑡+7 = 8.71)  and the ANN model (𝑄0.5
𝑡+1 = 8.52, 𝑄0.5

𝑡+3 =280 

8.46  and 𝑄0.5
𝑡+7 = 8.41). 281 

[Fig 10] 282 

All prediction performance comparisons presented above identify the DRNN model as an excellent 283 

predictive tool for estimating DO concentration, improving on the performance of both ANN and 284 

SVM models. A further comparison can be made with other studies, such as that by (Kisi et al. 285 

2020). They predicted DO concentration using a USGS dataset for two rivers in Oregon, the Link 286 

and Klamath Rivers. Hourly observations of temperature, pH and specific conductance were used 287 

as inputs of ANFIS, ANN, ELM, Classification And Regression Tree (CART), MLR and Bayesian 288 

Model Averaging (BMA) algorithms and NSE and R2 were used as prediction performance 289 

indicators. Their proposed novel BMA algorithm was proved to outperform the other five 290 

algorithms considered, with results of  𝑁𝑆𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 0.921 𝑎𝑛𝑑 𝑅𝑇𝑒𝑠𝑡𝑖𝑛𝑔
2 = 0.921. This study 291 

improves on the work of (Kisi et al. 2020) with  𝑁𝑆𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 0.948 𝑎𝑛𝑑 𝑅𝑇𝑒𝑠𝑡𝑖𝑛𝑔
2 = 0.494. 292 

Another comparison can be made with the work of (Abba et al. 2021), who also predicted DO 293 

concentration using Emotional ANN-Genetic Algorithm (EANN-GA) and NN Ensemble (NNE) 294 

as novel forecasting tools and compare the results with two more classic NN algorithms namely 295 

Feedforward NN (FFNN) and standalone EANN. Again our results obtained with a DRNN model 296 

improve on those obtained by (Abba et al. 2021) with their most accurate algorithm, NNE 297 
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(𝑁𝑆𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 0.874 𝑎𝑛𝑑 𝑅𝑇𝑒𝑠𝑡𝑖𝑛𝑔
2 = 0.874). It is also worth mentioning that the above two 298 

studies only focused on DO predictions with a lead time of one day, while this study also considers 299 

forecasts with longer lead times (t+3 and t+7) that are characterized, as expected, by larger 300 

prediction errors the longer the lead time, as also previously observed (Sharafati et al. 2020). 301 

4- Conclusion 302 

The comparison between DRNN, ANN and SVM models for DO concentration prediction has 303 

shown the DRNN model to be the most reliable among the three, with accurate predictions 304 

especially for short lead time (t+1). For the DRNN model, the average percentage prediction error 305 

increases 1.8 and 2.3 times, when considering one-day versus three-day prediction and one-day 306 

versus seven-day prediction, respectively. These results are promising for use by environmental 307 

managers responsible for maintaining water quality and aquatic ecosystem and managers in the 308 

aquaculture industry. They also suggest a possible future application of the DRNN model for 309 

prediction of other water quality parameters. 310 
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Figure 1. Location of the case study site in Oregon, USA (USGS station 14206950) 
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Figure 2. Observed DO concentration throughout the study period. 
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Figure 3. A simple Deep Recurrent Neural Network (DRNN) model, a) structure of model, 

b) flowchart of prediction modeling 

 

 



 

Figure 4. A Support Vector Machine (SVM) model, a) structure of model, b) flowchart of 

prediction modeling 



 

Figure 5. An Artificial Neural Network (ANN) model, a) structure of model, b) flowchart of 

prediction modeling 



 

Figure 6. DO (t+1) time series (observed vs predicted) and comparison observed vs 

predicted values for SVM, ANN and DRNN models. 
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Figure 7. DO (t+3) time series (observed vs predicted) and comparison observed vs 

predicted values for SVM, ANN and DRNN models. 
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Figure 8. DO (t+7) time series (observed vs predicted) and comparison observed vs 

predicted values for SVM, ANN and DRNN models. 
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Figure 9. DO concentration prediction performance for SVM, ANN and DRNN models 

quantified through various prediction performance indices. 

 



 

Figure 10. DO concentration prediction performance for SVM, ANN and DRNN models 

visualized using a combination of violin and box plots. 



Table 1. Correlation coefficient between DO concentration time series and other variables. 

Variable Correlation with 

DO(t+1) 

Correlation with 

DO(t+3) 

Correlation with 

DO(t+7) 

DO(t) 0.966 0.926 0.881 

Temperature(t) -0.908 -0.885 -0.862 

Temperature(t-1) -0.897 -0.876 -0.86 

Temperature(t-2) -0.885 -0.869 -0.858 

Temperature(t-3) -0.876 -0.865 -0.858 

Temperature(t-4) -0.869 -0.862 -0.858 

Temperature(t-5) -0.865 -0.86 -0.858 

Temperature(t-6) -0.862 -0.858 -0.857 

Temperature(t-7) -0.859 -0.857 -0.857 

Specific Conductance(t) -0.573 -0.575 -0.578 

Specific Conductance(t-1) -0.578 -0.582 -0.586 

Specific Conductance(t-2) -0.579 -0.585 -0.587 

Specific Conductance(t-3) -0.576 -0.578 -0.585 

Specific Conductance(t-4) -0.575 -0.576 -0.582 

Specific Conductance(t-5) -0.576 -0.576 -0.585 

Specific Conductance(t-6) -0.578 -0.579 -0.585 

Specific Conductance(t-7) -0.582 -0.585 -0.588 

Discharge(t) 0.312 0.341 0.353 

Discharge(t-1) 0.33 0.341 0.354 

Discharge(t-2) 0.341 0.348 0.355 

Discharge(t-3) 0.341 0.343 0.354 

Discharge(t-4) 0.343 0.354 0.357 

Discharge(t-5) 0.348 0.355 0.357 

Discharge(t-6) 0.354 0.357 0.357 

Discharge(t-7) 0.358 0.357 0.358 

pH(t) 0.052 0.024 -0.041 

pH(t-1) 0.033 0.023 -0.034 

pH(t-2) 0.022 0.021 -0.029 

pH(t-3) 0.014 -0.015 -0.018 

pH(t-4) 0.004 -0.002 -0.007 

pH(t-5) -0.005 -0.007 -0.012 

pH(t-6) -0.012 -0.011 -0.015 

pH(t-7) -0.019 -0.018 -0.024 

Table Click here to access/download;Table;Tables.docx
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Table 2. Input variable combinations considered for DO concentration prediction. 

Input Variable Combination Input Variables 

1 DO(t), T(t), T(t-1), T(t-2), T(t-3), T(t-4), T(t-5), T(t-6), T(t-7) 

2 DO(t), T(t), T(t-1), T(t-2), T(t-3), T(t-4), T(t-5), T(t-6) 

3 DO(t), T(t), T(t-1), T(t-2), T(t-3), T(t-4), T(t-5) 

4 DO(t), T(t), T(t-1), T(t-2), T(t-3), T(t-4) 

5 DO(t), T(t), T(t-1), T(t-2), T(t-3) 

6 DO(t), T(t), T(t-1), T(t-2) 

7 DO(t), T(t), T(t-1) 

8 DO(t), T(t) 

9 DO(t) 

 



Table 3. DO concentration prediction performance indices for different input variable combinations for 

the DRNN model. 

 

Model 

 

Output 

 

Stage 

Evaluation 

Criteria 

Input Variable Combination 

1 2 3 4 5 6 7 8 9 

DRNN 

DO 

(t+1) 

 

Training 

CC 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 

MAE 0.32 0.32 0.32 0.33 0.33 0.33 0.33 0.33 0.35 

RMSE 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.57 

 

Testing 

CC 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 

MAE 0.25 0.25 0.25 0.25 0.25 0.26 0.28 0.28 0.34 

RMSE 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.43 0.56 

DO 

(t+3) 

 

Training 

CC 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 

MAE 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.55 0.56 

RMSE 0.72 0.72 0.73 0.72 0.72 0.73 0.75 0.75 0.76 

 

Testing 

CC 0.94 0.94 0.93 0.94 0.94 0.93 0.93 0.93 0.93 

MAE 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.51 0.52 

RMSE 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.73 

DO 

(t+7) 

 

Training 

CC 0.90 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.87 

MAE 0.66 0.67 0.68 0.68 0.69 0.70 0.70 0.71 0.74 

RMSE 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.93 0.96 

 

Testing 

CC 0.91 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.88 

MAE 0.62 0.62 0.63 0.63 0.63 0.64 0.65 0.65 0.67 

RMSE 0.82 0.82 0.82 0.82 0.83 0.84 0.85 0.85 0.88 



Table 4. DO concentration prediction performance indices for different input variable combinations for 

the SVM model. 

 

Model 

 

Output 

 

Stage 

Evaluation 

Criteria 

Input Variable Combination 

1 2 3 4 5 6 7 8 9 

SVM 

 

 

DO 

(t+1) 

 

Training 

CC 0.94 0.95 0.94 0.96 0.96 0.95 0.97 0.95 0.90 

MAE 0.55 0.46 0.56 0.47 0.45 0.51 0.39 0.40 0.89 

RMSE 0.91 0.64 0.75 0.62 0.61 0.65 0.57 0.58 1.06 

 

Testing 

CC 0.89 0.91 0.90 0.94 0.95 0.95 0.96 0.96 0.89 

MAE 0.72 0.54 0.70 0.50 0.48 0.48 0.41 0.38 0.90 

RMSE 1.01 0.79 0.96 0.67 0.64 0.63 0.60 0.54 1.04 

 

 

DO 

(t+3) 

 

Training 

CC 0.92 0.91 0.91 0.92 0.92 0.93 0.92 0.92 0.86 

MAE 0.62 0.72 0.86 0.58 0.64 0.60 0.62 0.58 0.81 

RMSE 0.79 0.90 1.07 0.77 0.84 0.78 0.83 0.78 1.02 

 

Testing 

CC 0.87 0.87 0.88 0.89 0.89 0.91 0.90 0.91 0.87 

MAE 0.69 0.84 1.02 0.67 0.73 0.62 0.70 0.59 0.80 

RMSE 0.96 1.11 1.30 0.90 0.97 0.80 0.93 0.78 1.00 

 

 

DO 

(t+7) 

 

Training 

CC 0.89 0.88 0.89 0.90 0.89 0.89 0.89 0.88 0.81 

MAE 0.70 1.20 0.84 0.69 0.69 0.70 0.70 0.71 0.91 

RMSE 0.90 1.42 1.04 0.88 0.89 0.90 0.90 0.93 1.19 

 

Testing 

CC 0.83 0.83 0.85 0.85 0.86 0.86 0.87 0.88 0.83 

MAE 0.79 1.39 0.86 0.76 0.75 0.76 0.74 0.72 0.86 

RMSE 1.07 1.70 1.06 1.00 0.98 1.00 0.95 0.93 1.10 



Table 5. DO concentration prediction performance indices for different input variable combinations 

for the ANN model. 

 

Model  

 

Output 

 

Stage 

Evaluation 

Criteria 

Input Variable Combination 

1 2 3 4 5 6 7 8 9 

 

 

 

 

 

 

 

 

 

ANN 

 

 

DO 

(t+1) 

 

Training 

CC 0.94 0.93 0.94 0.94 0.94 0.94 0.93 0.93 0.92 

MAE 0.32 0.32 0.32 0.32 0.31 0.29 0.33 0.33 0.34 

RMSE 0.50 0.50 0.49 0.49 0.47 0.46 0.51 0.51 0.52 

 

Testing 

CC 0.94 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.93 

MAE 0.29 0.29 0.28 0.28 0.27 0.26 0.29 0.29 0.29 

RMSE 0.44 0.42 0.42 0.42 0.41 0.41 0.43 0.43 0.42 

 

 

DO 

(t+3) 

 

Training 

CC 0.88 0.88 0.88 0.88 0.88 0.87 0.88 0.86 0.85 

MAE 0.52 0.52 0.52 0.52 0.52 0.53 0.51 0.54 0.56 

RMSE 0.68 0.68 0.68 0.68 0.68 0.70 0.68 0.73 0.75 

 

Testing 

CC 0.87 0.87 0.87 0.87 0.87 0.87 0.88 0.87 0.86 

MAE 0.51 0.51 0.51 0.51 0.51 0.52 0.50 0.51 0.52 

RMSE 0.69 0.69 0.69 0.69 0.69 0.70 0.66 0.69 0.70 

 

 

DO 

(t+7) 

 

Training 

CC 0.82 0.83 0.82 0.83 0.82 0.82 0.82 0.80 0.77 

MAE 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.67 0.74 

RMSE 0.84 0.82 0.84 0.84 0.83 0.83 0.83 0.88 0.96 

Testing CC 0.82 0.81 0.82 0.81 0.82 0.82 0.82 0.80 0.79 

MAE 0.63 0.65 0.62 0.66 0.64 0.64 0.64 0.66 0.67 

RMSE 0.82 0.83 0.81 0.82 0.83 0.83 0.83 0.85 0.89 

 

 


