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Abstract This paper deals with the problem of dis-

tributed fault detection and isolation (FDI) in multi-

agent systems (MASs) with disturbed high order dy-

namics subject to communication uncertainties and faults.

Distributed finite-frequency mixed H− /H∞ unknown

input observers (UIOs) are designed to detect and dis-

tinguish actuator, sensor and communication faults. Fur-

thermore, an agent is capable of not only detect its own

faults but also faults in its neighbouring agents. Suffi-

cient conditions are then derived in terms of a set of lin-

ear matrix inequalities (LMIs) while adding additional

design variables to reduce the conservatism. A numer-

ical simulation is carried out in order to demonstrate

the effectiveness of the proposed approach.

Keywords Fault detection and isolation · Attack

detection · Multi-agent systems · Networked Systems ·
Unknown input observers · Linear matrix inequalities

1 Introduction

During the past couple of decades, multi-agent systems

have received considerable amount of attention from

researchers thanks to their wide range of potential ap-

plications in different areas, such as formation control,
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constellations in satellite systems [1,2], cooperative un-

manned aerial vehicles [3], transport systems [4], power

grids and mobile robots [5–7], to mention a few.

The growing size and complexity of such systems

render their safe operation and reliability critical top-

ics of research. Indeed, in order to achieve their mis-

sion, the agents communicate between themselves over

a given network. Hence, their vulnerability does not

only stem from the fact that each agent can be faulty

at any given time instant but also from the fact that

the communication links between them can be faulty

or subject to an attack. Indeed, on top of actuator and

sensor faults, MASs can be subjected to multiple types

of cyber-attacks [8–13].

In fact, many cyber-attacks have recently occurred

around the world. Some examples include: multiple power

blackouts in some countries like Brazil [14], the attack

on the water distribution system in Australia [15], the

Stuxnet attack that took control of actuators and sen-

sors in an Iranian nuclear facility prompting the re-

placement of thousands of failed centrifuges [16], the

cyber-attack against an Ukrainian power grid [17], etc.

Clearly, these types of malicious attacks aim at de-

grading or interrupting the operation of connected sys-

tems, exploit their aforementioned vulnerabilities and

can have extremely detrimental effects, not only from

a process point of view but also from an environmental

and financial one as well. It is shown in [18] that infor-

mation security techniques such as adding encryption

and authentication schemes can help make some attacks

more difficult to succeed, but that they are far from be-

ing sufficient against cyber-attacks. Indeed, these mali-

cious attacks may go unnoticed and lead to erroneous

behaviours in the overall MAS’s dynamics and com-

promising the mission. This makes understanding their

effects on the MAS dynamics, modelling them, detect-
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ing them, identifying them as well as isolating them,

important issues.

There is a multitude of ways to detect and isolate

faults and cyber-attacks in MASs. The reader is referred

to [19] for a recent comprehensive survey. Some works

proposed centralised architectures to detect faults or at-

tacks [20,21], due to their simplicity, whereby the anal-

ysis of all data is done by a central unit. However, in

order to avoid long distance data transmissions, reduce

complexity and improve scalability namely in larger

systems, the detection and isolation process should be

distributed.

A great deal of existing works in the literature ei-

ther focus on linear MASs [22–29], do not consider the

effect of disturbances [22,30], or do not consider the ef-

fect of measurement and communication noise [23,31,

32]. However, it is a well known fact that disturbances

and noise are practically inevitable. Furthermore, some

works focus only actuator faults [23,29,31,33] or on sen-

sor faults [25–27].

In [26,30,31,34], UIOs were used for fault detec-

tion. Nevertheless, most of the existing works on fault

detection using UIOs consider that the generated resid-

ual signals are completely decoupled from the unknown

input. Indeed, they usually require a strict rank condi-

tion to decouple the unknown input vector, which can

be infeasible. In [31] for instance, an UIO residual based

scheme for nonlinear homogeneous MASs with actuator

faults was proposed, where faults and disturbances were

decoupled from the error dynamics assuming some rank

conditions. In [26], UIOs were combined with the mixed

H−/H∞ method for fault detection purpose where only

sensor faults were considered. Furthermore, theH− per-

formance index method proposed therein, as well as in

[25,27] for instance, is only applicable when the dis-

tribution matrix of the sensor faults is of full column

rank. In our work, one contribution is to relax such con-

dition using the finite frequency approach introduced

in [35]. Furthermore, in [27,36] for instance, multiple

faults cannot occur in the MAS, which is a drawback,

especially in large-sized MASs.

In [23,27–29,31], information from neighbouring FDI

filters was transmitted among agents, which may weaken

the distributed property of the detection scheme. In-

deed, if and when an observer fails to accurately give an

estimate at a given instant for an agent, all surrounding

observers in its neighbourhood are compromised, which

in turn compromises their respective neighbours’ ob-

servers, thus creating a destructive snowball effect that

might lead to confusing results, trigger false alarms, etc.

In our work, such drawback is removed since observers

do not communicate between themselves.

Unlike [23,28,29,31], where the topology is assumed

to be undirected, a directed communication graph is

considered in this work. Additionally, the proposed scheme

in this paper, does not require knowledge beyond its 1-

hop neighbourhood and is independent on the graph

topology of the overall MAS, making it more scalable.

Furthermore, as opposed to the detection filters pro-

posed in [23,29,31,33] where their size increases as the

graph topology grows, in the proposed scheme, the size

of the filter is only limited to the size of the neighbour-

hood of each agent independently, hence, improving the

scalability and reducing the computational burdens.

Given the limitations discussed above with respect

to the existing studies, the main contributions of this

work are summarised as follows:

– A more general problem is studied where actuator,

sensor and communication faults are considered in

the robust detection and isolation process for Lip-

schitz nonlinear heterogeneous MASs with distur-

bances and communication parameter uncertainties,

without global knowledge about the communication

graph and under directed graphs.

– A distributed finite-frequency mixed H−/H∞ non-

linear UIO based FDI scheme is designed such that

actuator and sensor faults along with the commu-

nication faults are treated separately. Hence, the

rank condition on the measurement fault distribu-

tion matrix as required by [27,28] for instance, is

relaxed. Additionally, the scheme is capable of de-

tecting and distinguishing multiple faults and at-

tacks at a given time instant.

– Sufficient conditions in terms of a set of LMIs are

provided for the proposed finite-frequency H−/H∞
UIO based method, where the coupling between Lya-

punov matrices and the observer matrices is avoided.

This LMI characterisation enables to reduce conser-

vatism by introducing additional design variables.

A brief comparison of the proposed method with

some existing works in the literature is given in Table

1. To the best of the authors’ knowledge, a distributed

finite-frequency mixed H−/H∞ nonlinear UIO based

scheme for FDI in heterogeneous networked MASs sub-

ject to disturbances, noise, actuator faults, sensor faults

and communication attacks, is investigated for the first

time in this paper.

The rest of the manuscript is organised as follows.

Section 2 presents the problem formulation and some

preliminaries. The proposed finite-frequency H−/H∞
UIO based method and the corresponding algorithms

are laid out in Section 3. In Section 4, an illustrative

example is given to show the effectiveness of the pro-

posed scheme. Finally, some conclusion are inferred in
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Section 5.

Notations: Given a transfer function Txy(s) linking

y to x, its H∞ norm is defined as

||Txy||∞ = supωσ̄(Txy(jω)).

where σ̄ is the maximum singular value of Txy(s). Its

H− index is defined as

||Txy||− = infωσ(Txy(jω)).

where σ is the minimum singular value of Txy(s). For

a square matrix A, He(A) = A + A∗ where the super-

script A∗ corresponds to the conjugate of A. tr(A) is the

trace of A. 1n and In refer to a column of all entries 1

and an identity matrix respectively and of dimensions

n. 0m×n denotes a null matrix of dimension m × n.

diag(a1, a2, ..., an) denotes the diagonal matrix contain-

ing a1, a2, ..., an on the diagonal. Blkdiag(A1, A2, ..., An)

denotes the block diagonal matrix with matrices A1,

A2,..., An on the diagonal. Col(A1, A2, ..., An) denotes

the column block matrix (AT1 , A
T
2 , ..., A

T
n )T . Through-

out this paper, for a real square matrix P ∈ Rn×n,

P > 0 implies that P is symmetric and positive-definite.

2 Problem Formulation

Consider a heterogeneous MAS composed of N agents

labelled by i ∈ {1, ..., N}, and described by the follow-

ing uncertain dynamics
ẋi(t) = Aixi(t) +Buiui(t) +Bdidi(t) +Bfifai(t)

+ϕi(xi(t))

yi(t) = Cixi(t) +Ddidi(t) +Dfifsi(t)

,

(1)

where xi ∈ IRnx , ui ∈ IRnu , yi ∈ IRny , di ∈ IRnd ,

fai ∈ IRnfa , fsi ∈ IRnfs are the state vector, the control

input, the output, the L2-norm bounded disturbances

and noise, the actuator fault and the sensor fault signals

respectively. Matrices Ai ∈ IRnx×nx , Bui ∈ IRnx×nu ,

Bdi ∈ IRnx×nd , Bfi ∈ IRnx×nfa , Ci ∈ IRny×nx , Ddi ∈
IRny×nd , Dfi ∈ IRny×nfs are known constant matrices.

ϕi(xi(t)) ∈ IRnx is a known function representing the

nonlinearity of agent i.

2.1 Graph theory and communication faults

The topology is represented by a directed graph G =

(V, E), where V = {1, . . . , N} is the node set and E ⊆
V×V is the edge set. It is described by an adjacency ma-

trix A ∈ IRN×N that contains positive weight entries.

If information flows from node j to i, then aij > 0,

otherwise aij = 0. The neighbouring set of node i, de-

noted by Ni ⊆ V, is the subset of nodes that node i can

sense and interact with. Alternatively, one could note

Ni = {i1, i2, ..., iNi} ⊆ [1, N ], where Ni = |Ni|.
The measured outputs are exchanged between neigh-

bouring agents. Hence, an agent i receives from each

neighbour j ∈ Ni its output (resp. input), corrupted

by parameter uncertainties associated with the com-

munication link between i and j, ∆aij(t) ∈ IR and

by faults due to link faults, packet losses or potential

cyber-attacks denoted fzij(t) ∈ IR
nfzij (resp. fuij(t) ∈

IRnfu ), i.e.

zij(t) = aij(1 +∆aij(t))yj(t) +Dzijf
z
ij(t),

uij(t) = aij(1 +∆aij(t))uj(t) +Duijf
u
ij(t),

(2)

with zii(t) = yi(t) and uii(t) = ui(t). Dzij ∈ IR
ny×nfzij

and Duij ∈ IRnu×nfu are known constant matrices. It is

also assumed that the parameter uncertainties ∆aij(t)

satisfy |∆aij(t)| < aij .

Remark 1 It is worth noting that the considered faults

cover a wide range of cyber-attacks that have been stud-

ied in the literature. For instance, assume that ∆aij = 0

for the sake of clarity,

– In the case of a communication parametric fault

[30] for i, affecting all its incoming information from

agent j, one has

zij(t) = (aij + faij(t)(t))yj(t)

= aijyj(t) + faij (t)yj(t),

where analogously to (2), one could note that fzij(t) =

faij (t)yj(t) andDzij = Iny . faij (t) represents a para-

metric fault affecting the communication parameter

aij .

– In a denial of service attack situation affecting all

incoming information from agent j, one has fzij(t) =

−aijδ(t− tij)yj(t) and Dzij = Iny [39], where

δ(t− tij) =

{
1, t > tij
0, else

,

and tij is the instant at which the attack occurs.

– Conversely, in a false data injection situation in the

transmitted information, agent j transmits or agent

i receives fake/invalid information, that is, fzij(t)

contains the injected malicious information [12]. In

the case where the malicious information fzij(t) ∈ IR

affects all incoming transmitted data equally, then

one could set Dzij = 1ny .

– Under replay attacks, the attacker intercepts the

transmitted information and replays it with a de-

lay instead of the actual information. In this case,
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Reference Linear D&N Heterogeneous A&S Faults Attacks UTR RISR ACIR GK
[22] Yes No No No Yes Yes No No Yes
[23] Yes No No No No Yes No No Yes
[27] Yes Yes No No No Yes Yes No Yes
[30] Yes No No No Yes Yes No No Yes
[26] Yes Yes Yes No No Yes Yes No No
[34] No No No No No Yes No Yes Yes
[37] Yes No No No Yes Yes No No Yes
[38] Yes No No No Yes Yes No No No
P. S. No Yes Yes Yes Yes No No No No

Table 1: Brief comparison with some existing works, where the following acronyms are used: P.S.: Proposed Scheme;

D&N: Both Disturbances and Noise; A&S Faults: Both Actuator and Sensor Faults; UTR: Undirected Topology

Required; RISR: Relative Information Sensors Required; AGIR: Access to the Collective Input Required; GK:

Global Knowledge.

one could write [10], fzij(t) = δij(t− tij)(−aijyj(t)+

yj(t− Tij)) and Dzij = Iny , where

δij(t− tij) =

{
1, t > tij
0, else

,

and tij > 0 is the instant at which the attack occurs

and Tij ∈ IR is the time delay.

The same remarks could be made w.r.t. uij(t). Contrary

to agent/node attacks or faults in the form of the signals

fai(t), fsi(t), edge/communication attacks cannot be

detected locally by an emitting agent j, and thus need

its neighbours to detect them. It is worth mentioning

that the introduced problem can represent many poten-

tial practical applications to FDI in networked MASs.

As discussed in the introduction Section, such applica-

tions include electric power networks and micro-grids,

multi-robot and multi-vehicle systems, etc. [37,38,40].

2.2 Concatenated local model

In this Subsection, a concatenated model is developed

for each agent. Let us first denote

xvi = [xTi , x
T
i1
, ..., xTiNi

]T ∈ IRnix ,

dvi = [dTi , d
T
i1
, ..., dTiNi

]T ∈ IRnid ,

fvsi = [fTsi , f
T
si1
, ..., fTsiNi

]T ∈ IRnifs ,

fvai = [fTai , f
T
ai1
, ..., fTaiNi

]T ∈ IRnifa ,

zi = [(yi − yi1)T , ..., (yi − yiNi )
T ]T ∈ IRniz ,

yvi = [yTi1 , ..., y
T
iNi

]T ∈ IRniz ,

uvi = [uTi1 , ..., u
T
iNi

]T ∈ IRniu ,

(3)

the concatenated state, disturbance, fault signals, rela-

tive information, output and input of agent i (ij ∈ Ni),
where nix = nx(Ni+1), nid = nd(Ni+1), nifa = nfa(Ni+

1), nifs = nfs(Ni + 1), niz = nyNi and niu = nuNi. A

virtual output is given as

zvi = Zi
(
yi
zi

)
+∆Zi

(
yi
yvi

)
+Dvzif

z
i ∈ IRniz , (4)

where

Zi =

(
Iny 0ny×niz

0niz×ny Ai

)
∈ IRniz×n

i
z ,

∆Zi =

(
0ny×ny 0ny×niz
0niz×ny Ai∆Ai

)
∈ IRniz×n

i
z ,

∆Ai = diag(∆aii1 , ...,∆aii1︸ ︷︷ ︸
ny times

, ...,∆aiiNi , ...,∆aiiNi )

∈ IRniz×n
i
z ,

Ai = diag(aii1 , ..., aii1︸ ︷︷ ︸
ny times

, ..., aiiNi , ..., aiiNi )

∈ IRniz×n
i
z ,

Dvzi =

(
0ny×nifz

−Blkdiag[Dzii1
, Dzii2

, . . . , DziiNi
]

)
∈ IRniz×n

i
fz ,

zvi = [yTi , z
T
ii1
, ..., zTiiNi

]T ∈ IRniz ,

fzi = [fzii1 , f
z
ii2
, ..., (fziiNi

)T ]T ∈ IRnifz ,

with nifz =
∑
j∈Ni nfzij 6= 0, niz = ny(Ni + 1). zvi and

fzi are the concatenated measured vector available for

agent i and the associated communication fault signals,

respectively. Āi = Ai+∆Ai ∈ IRniz×n
i
z is the actual lo-

cal adjacency matrix of agent i which takes into account

the parametric uncertainty associated with the commu-

nication links. Replacing outputs and inputs with their

respective values from (1) yields

ẋvi(t) = Ãixvi(t) + B̃uiuvi(t) + B̃uiui(t) + B̃didvi(t)

+B̃fifvai(t) + ϕvi(xvi(t))

zvi(t) = Zi(C̃ixvi(t) + D̃didvi(t) + D̃fifvsi(t))

+Dvzif
z
i (t) +∆Zi

(
yi(t)

yvi(t)

) ,
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(5)

where

ϕvi(xvi(t)) = Col(ϕi(xi(t)), ..., ϕiNi (xiNi (t))),

Ãi = Blkdiag(Ai, Ai1 , ..., AiNi ),

B̃ui = Col(Bui , 0nx×nu , . . . , 0nx×nu),

B̃ui = Col(0nx×niu ,Blkdiag(Bui1 , ..., BuiNi
)),

B̃di = Blkdiag(Bdi , Bdi1 , ..., BdiNi
),

B̃fi = Blkdiag(Bfi , Bfi1 , ..., BfiNi
),

C̃i, D̃di and D̃fi correspond to the following tilde no-

tation

Θ̃i =


Θi 0 . . . 0

Θi −Θi1 . . . 0
...

...
. . .

...

Θi 0 . . . −ΘiNi

 ,
with Ãi ∈ IRnix×n

i
x , B̃ui ∈ IRnix×n

i
u , B̃fi ∈ IRnix×n

i
fa ,

C̃i ∈ IRniz×n
i
x , D̃di ∈ IRniz×n

i
d , D̃fi ∈ IRniz×n

i
fs . Let

us make the following assumption on the parametric

uncertainties

Assumption 1 There exist a time-varying matrix νi(t)

∈ IRniz×n
i
z and known matrices Xi and Mi with appro-

priate dimensions such that

∆Zi = Xiνi(t)Mi, (6)

with σ̄(νi) ≤ δM .

Remark 2 It is worth noting that this assumption stems

from the definition of the graph topology in this paper,

and is standard for bounded uncertainties [41].

Under this assumption, one could rewrite system (5)

as
ẋvi(t) = Ãixvi(t) + B̃uiuvi(t) + B̃uiui(t) + B̃didvi(t)

+B̃fifvai(t) + ϕvi(xvi(t)),

zvi(t) = ZiC̃ixvi(t) + ZiD̃didvi(t) +DFiFi(t)
−Xiφi(t),

,

(7)

where Fi(t) =

(
fvsi(t)

fzi (t)

)
, DFi =

(
ZiD̃fi Dvzi

)
,

φi(t) = −νi(t)Dφi

xvi(t)

dvi(t)

fvsi(t)

,

Dφi = Mi

 Blkdiag(CTi , ..., C
T
iNi

)

Blkdiag(DT
di
, ..., DT

diNi
)

Blkdiag(DT
fi
, ..., DfiNi

)


T

.

Note that, in the case where D̃fi = 0, DFi is selected

as DFi = Dvzi . The robust distributed FDI objective

is the design of residual generators for each agent us-

ing locally exchanged information capable of detecting

and isolating not only the agent’s own faults but also

the faults of its neighbours as well as attacks targeting

incoming communication links.

The following Assumption and Lemma are going to

be used in the next section.

Assumption 2 The nonlinear functions ϕi(xi(t)) are

Lipschitz, with Lipschitz constant θi, ∀i = {1, 2, ..., N},
i.e., ∀xi, x̂i ∈ IRnx

||ϕi(xi)− ϕi(x̂i)|| 6 θi||xi − x̂i||.

Remark 3 It is worth noting that Assumption 2 re-

stricts the class of considered nonlinearities in Eq. (1)

and has been considered in many works [42].

Lemma 1 ([43]) Given real matrices Fi and Ji of ap-

propriate dimensions, then the following inequality holds

for any strictly positive scalar εi:

FiJ
T
i + JiF

T
i 6 εiJiJ

T
i + ε−1i FiF

T
i .

3 Distributed Fault Detection and Isolation

Scheme

The aim here is to design robust residual generators

which are sensitive to all types of faults in spite of the

presence of uncertainties using UIOs. Consider the fol-

lowing observer
q̇vi(t) = Niqvi(t) +G1iui(t) +G2iUi(t) + Lizvi(t)

+Tiϕvi(x̂vi(t))

x̂vi(t) = qvi(t)−Hizvi(t)

ẑvi(t) = ZiC̃ix̂vi(t)

,

(8)

where Ui(t) = Col(uii1(t), ..., uiiNi (t)). The matrices

Ni, G1i, G2i, Li, Ti and Hi will be described hereafter.

Define the state estimation error as evi(t) = xvi(t) −
x̂vi(t). Then

evi(t) = (I +HiZ
iC̃i)xvi(t)− qvi(t) +HiVvivi(t),

where Di(t) =

(
dvi(t)

φ(t)

)
, Vvi =

(
ZiD̃di −Xi DFi

)
and

vi(t) =

(
Di(t)
Fi(t)

)
. Therefore, its dynamics is expressed
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as

ėvi(t) = Nievi(t) + (TiÃi − SiZiC̃i −Ni)xvi(t) + Tiϕ
evi
vi

+(TiB̃ui −G1i)ui(t) + SiXiφi(t)− SiDFiFi(t)
+(TiB̃di − SiZiD̃di)dvi(t) + TiB̃fifvai(t)

+TiB̃uiuvi(t)−G2i((Au,i∆Au,i +Au,i)uvi(t)
+Duifui(t)) +HiVvi v̇i(t)

(9)

where

Ti = I +HiZ
iC̃i, (10a)

Si = Li +NiHi, (10b)

ϕ
evi
vi (t) = ϕvi(xvi(t))− ϕvi(x̂vi(t)), and

fui(t) = Col(fuii1(t), ..., fuiiNi
(t)),

Dui = Blkdiag(Duii1
, ..., DuiiNi

),

∆Au,i = diag(∆aii1 , ...,∆aii1︸ ︷︷ ︸
nu times

, ...,∆aiiNi , ...,∆aiiNi ),

Au,i = diag(aii1 , ..., aii1︸ ︷︷ ︸
nu times

, ..., aiiNi , ..., aiiNi ).

with νi(t) = ∆Ai. By imposing the following

HiVvi = 0, (11a)

TiÃi − SiZiC̃i = Ni, (11b)

TiB̃ui −G1i = 0, (11c)

TiB̃ui −G2iAu,i = 0, (11d)

(9) becomes

ėvi(t) = Nievi(t) + (TiB̃di − SiZiD̃di)dvi(t)

+TiB̃fifvai(t)− SiDFiFi(t) + SiXiφi(t)

−TiB̃ui(A−1u,iAu,i)∆Au,iuvi(t)
−TiB̃uiA−1u,iDuifui(t) + Tiϕ

evi
vi (t).

(12)

By setting new concatenated uncertainties vector as

φ
i
(t) =

(
φi(t)

∆Au,iuvi(t)

)
, the error dynamics becomes

ėvi(t) = Nievi(t) + (TiB̃di − SiZiD̃di)dvi(t) + Tiϕ
evi
vi (t)

−SiDFiFi(t) + (SiXi − TiX̄i)φi(t)− TiBiF i(t),
(13)

where Bi =
(
−B̃fi B̃uiA−1u,iDui

)
, F i(t) =

(
fai(t)

fui(t)

)
,

Xi =
(
Xi 0niz×(nu·Ni)

)
, X̄i =

(
0nix×niz −B̃ui

)
.

On the other hand, define the following residual vec-

tor

ri(t) = Wi(zvi(t)− ẑvi(t)), (14)

where Wi is a pre-set post residual gain matrix used to

highlight the effects of the faults on the residual signals.

In this work, since it does not directly affect the residual

signals, it is considered that F i(t) affects the residual

signals over a finite frequency domain, which can be

uniformly expressed as [44]

ΩFi := {ωf ∈ IR | κ(ωf − ωf1)(ωf − ωf2) 6 0}, (15)

where κ ∈ {1,−1}, ωf1 and ωf2 are given positive scalars

characterizing the frequency range of the fault vector

F i. Indeed, if one selects

– κ = 1 and ωf1 < ωf2 , then the set ΩFi corresponds

to the middle frequency range

ΩFi := {ωf ∈ IR | ωf1 6 ωf 6 ωf2}.

– κ = 1 and −ωf1 = ωf2 = ωfl , then the set ΩFi
corresponds to the low frequency range

ΩFi := {ωf ∈ IR | |ωf | 6 ωfl}.

– κ = −1 and −ωf1 = ωf2 = ωfh , then the set ΩFi
corresponds to the high frequency range

ΩFi := {ωf ∈ IR | |ωf | > ωfl}.

The objective here is to simultaneously achieve lo-

cal state estimation (asymptotic stability of the error

dynamics) and fault/attack detection. Theorems 1 and

2 are proposed in this section to solve this problem

through a set of matrix inequalities using the H∞, H−
performance indexes. Hence, to summarise, the pro-

posed fault/attack detection scheme is obtained through

simultaneously satisfying the following, for some perfor-

mance scalar variables γi, βi and ηi ∀i ∈ {1, ..., N}.

(i) To guarantee asymptotic stability of the error dy-

namics (13).

(ii) To ensure a reasonable sensitivity of the residu-

als to the possible output attacks/faults over all

frequency ranges, by satisfying

||TrFiFi ||− > γi, (16)

where rFi is the residual signal defined for the

case with no disturbance dvi = 0, no uncertainty

φ
i

= 0 and no fault F i = 0.

(iii) To ensure a reasonable sensitivity of the residuals

to the possible input attacks/faults over a finite

frequency range defined in the set ΩFi , by satis-

fying

||TrFiFi ||− > %i, (17)

for all solutions of (13) such that,∫∞
0

(
κ(ωf1evi(t) + jėvi(t))(ωf2evi(t)− jėvi(t))T

)
dt

6 0,
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(18)

where κ, ωf1 , ωf2 are as defined in ΩFi , and rFi
is the residual signal defined for the case with no

disturbance dvi = 0, no uncertainty φ
i

= 0 and

no fault Fi = 0.

(iv) To guarantee a good disturbances and uncertain-

ties rejection performance w.r.t. to the residual

signals over all frequency ranges, i.e.

||TrDidvi ||∞ < ηi, ||TrDiφi ||∞ < βi, (19)

where rDi is the residual signal defined without

fault Fi = 0 and F i = 0.

For the rest of the manuscript, the time argument

is omitted where it is not needed for clarity.

Theorem 1 For dvi = 0, φ
i

= 0, F i = 0, Fi 6= 0, let

γi, θmi , σ1i and εi be strictly positive scalars, the error

dynamics (13) is asymptotically stable and the perfor-

mance index (16) is guaranteed if ∀i ∈ {1, ..., N}, there

exist symmetric positive definite matrices Pi, matrices

Ui, Ri and unstructured nonsingular matrices Yi such

that the following optimisation problem is solved

max
Pi,Yi,Ui,Ri

γi

subject to
Ψ1
i Ψ

2
i Ψ3

i Ψ4
i

∗ Ψ5
i 0 Ψ6

i

∗ ∗ −εiI Ψ7
i

∗ ∗ ∗ Ψ8
i

 < 0, (20)

UiVvi = 0, (21)

where

Ψ1
i = YiÃi + UiZ

iC̃iÃi −RiZiC̃i
+ÃTi Y

T
i + ÃTi (ZiC̃i)

TUTi − (ZiC̃i)
TRTi

+εiθmiI − (ZiC̃i)
TWT

i WiZ
iC̃i,

Ψ2
i = −RiDFi − (ZiC̃i)

TWT
i WiDFi ,

Ψ3
i = Yi + UiZ

iC̃i,

Ψ4
i = −Yi + Pi + σ1iÃ

T
i Y

T
i + σ1iÃ

T
i (ZiC̃i)

TUTi
−σ1i(ZiC̃i)TRTi ,

Ψ5
i = −DT

FiW
T
i WiDFi + γ2i I,

Ψ6
i = −σ1iDT

FiR
T
i ,

Ψ7
i = σ1iY

T
i + σ1i(Z

iC̃i)
TUTi ,

Ψ8
i = −σ1i(Yi + Y Ti ),

and the observer gains are specified as

Si = Y −1i Ri,

Hi = Y −1i Ui,

Ni = (I + Y −1i UiZ
iC̃i)Ãi − Y −1i RiZ

iC̃i,

G1i = (I + Y −1i UiZ
iC̃i)B̃ui ,

G2i = (I + Y −1i UiZ
iC̃i)B̃uiA−1u,i,

Li = Y −1i Ri −NiY −1i Ui.

(22)

Proof The performance index (16) corresponds to the

following function

JFi =

∫ ∞
0

(
rTFirFi − γ

2
i FTi Fi

)
dt > 0. (23)

Let us select the candidate Lyapunov function

Vi(evi) = eTviPievi , then

V̇ (evi) = eTvi(N
T
i Pi + PiNi)evi + (ϕ

evi
vi )TTTi Pievi

+eTviPiTiϕ
evi
vi + FTi (−SiDFi)TPievi

+eTviPi(−SiDFi)Fi.
(24)

On the other hand, (23) can be expressed as

JFi =
∫∞
0

(
[eTvi(t)(Z

iC̃i)
T + FTi (t)DT

Fi)]W
T
i Wi

×(ZiC̃ievi(t) +DFiFi(t))− γ2i FTi Fi − V̇ (evi)
)
dt

+
∫∞
0

(
V̇ (evi)

)
dt > 0.

(25)

According to Assumption 2, it can be shown that

(ϕ
evi
vi )Tϕ

evi
vi = ||ϕevivi ||2 6 θ2i ||xi(t)− x̂i(t)||2

+θ2i1 ||xi1(t)− x̂i1(t)||2 + ...

+θ2iNi
||xiNi (t)− x̂iNi (t)||

2

6 θmie
T
vievi ,

(26)

where θMi = max(θ2i , θ
2
i1
, ..., θ2iNi

).

Since V (evi) = eTviPievi ≥ 0 and using Lemma 1

and equation (26), (25) can be shown to be equivalent

to(
Υi −PiSiDFi − (ZiC̃i)

TWT
i WiDFi

? −DT
FiW

T
i WiDFi + γ2i I

)
< 0, (27)

where Υi = NT
i Pi + PiNi + εiθMi

I + ε−1i PiTiT
T
i Pi −

(ZiC̃i)
TWT

i WiZ
iC̃i. Using the Schur complement, (27)

can be re-written as

T1i + V1iS1i + ST1iVT1i < 0, (28)

with

T1i

=


εiθMi

I − (ZiC̃i)
TWT

i WiZ
iC̃i −(ZiC̃i)

TWT
i WiDFi 0

∗ −DTFi
WT
i WiDFi + γ2i I 0

∗ ∗ −εiI

 ,

S1i =
(
Ni −SiDFi Ti

)
, V1i =

Pi0
0

 .

Using the congruence transformation
(
I T T1i

)
, (28) is

equivalent to(
T1i +K1iS1i + ST1iKT1i −K1i + V1i + ST1iYT1i

∗ −(Y1i + YT1i)

)
< 0,
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(29)

for new general matrices K1i and Y1i. Hence, by select-

ing

KT1i =
(
Y Ti 0 0

)
, Y1i = σ1iYi,

for a scalar σ1i and a nonsingular general matrix Yi,

one can obtain the following sufficient condition


Π1
i Π

2
i YiTi Π3

i

∗ Π4
i 0 Π5

i

∗ ∗ −εiI σ1iT
T
i Y

T
i

∗ ∗ ∗ −σ1i(Yi + Y Ti )

 < 0,

with

Π1
i = YiNi +NT

i Y
T
i + εiθMiI − (ZiC̃i)

TWT
i WiZ

iC̃i,

Π2
i = −YiSiDFi − (ZiC̃i)

TWT
i WiDFi ,

Π3
i = −Yi + Pi + σ1iN

T
i Y

T
i ,

Π4
i = −DT

FiW
T
i WiDFi + γ2i I,

Π5
i = −σ1iDT

FiS
T
i Y

T
i .

Replacing Ni and Ti with their respective values,

and applying the linearising change of variables Ui =

YiHi, Ri = YiSi, (20) is obtained. Furthermore, pre-

multiplying (11a) with Yi yields (21). Therefore, solv-

ing (20) under the imposed constraints (21), and using

the observer gains (22) guarantees the residual perfor-

mance index (16) and the asymptotic stability of the

error dynamics (9).

Theorem 2 For dvi = 0, φ
i

= 0, Fi = 0, F i 6= 0,

let %i, θMi , σ2i and εi be strictly positive scalars, an

arbitrary design matrix Ki, the error dynamics (13) is

asymptotically stable and the performance index (17)

is guaranteed if ∀i ∈ {1, ..., N} over a finite frequency

domain defined in (15), there exist symmetric positive

definite matrices Xi, symmetric matrices Xi, matrices

Ui, Ri and unstructured nonsingular matrices Yi such

that the following optimisation problem is solved

max
Xi,Xi,Yi,Ui,Ri

%i

subject to


Σ1
i Σ

2
i Σ3

i Σ4
i

∗ Σ5
i Σ6

i Σ7
i

∗ ∗ −εiI Σ8
i

∗ ∗ ∗ Σ9
i

 < 0,

κXi > 0,

(30)

where

Σ1
i = YiÃi + UiZ

iC̃iÃi −RiZiC̃i + ÃTi Y
T
i

+(ZiC̃iÃi)
TUTi − (ZiC̃i)

TRTi − ωf1ωf2Xi
+εiθMiI − (ZiC̃i)

TWT
i WiZ

iC̃i,

Σ2
i = −UiZiC̃iBi + ÃTi Y

T
i K

T
i

+(ZiC̃iÃi)
TUTi K

T
i − (ZiC̃i)

TRTi K
T
i ,

Σ3
i = Yi + UiZ

iC̃i,

Σ4
i = −Yi +Xi − jωfaXi + σ2iÃ

T
i Y

T
i

+σ2i(Z
iC̃iÃi)

TUTi − σ2i(ZiC̃i)TRTi ,
Σ5
i = %2i I −KiYiBi −KiUiZ

iC̃iBi
−BTi Y Ti KT

i − BTi (ZiC̃i)
TUTi K

T
i ,

Σ6
i = KiYi +KiUiZ

iC̃i,

Σ7
i = −KiYi − σ2iBTi Y Ti − σ2iBTi (ZiC̃i)

TUTi ,

Σ8
i = σ2iY

T
i + σ2i(Z

iC̃i)
TUTi ,

Σ9
i = −(Xi + σ2iYi + σ2iY

T
i ),

and Bi =
(
−B̃fi B̃uiA−1u,iDui

)
. The observer gains are

then computed as in (22).

Proof Let us select the candidate Lyapunov function

Vi(evi) = eTviXievi , then

V̇ (evi) = eTvi(N
T
i Xi +XiNi)evi + (ϕ

evi
vi )TTTi Xievi

+eTviXiTiϕ
evi
vi −FTi (TiBi)TXievi

−eTviXi(TiBi)F i.
(31)

To solve (17) over a finite frequency domain as defined

in (15), one could define the following function

JFi =
∫∞
0

(
%2iF

T
i F i − rTFirFi − tr(He(Wi)Xi)

+V̇ (evi)
)
dt < 0,

(32)

where Wi = (ωf1evi + jėvi)(ωf2evi + jėvi)
∗ and Xi is a

symmetric matrix. From (18), one gets∫ ∞
0

κWidt 6 0.

Moreover, it can be shown through the Parseval’s the-

orem [45] that∫ ∞
0

Widt =
1

2π

∫ +∞

−∞

(
(ωf1−ω)(ωf2−ω)ěi(ω)ěTi (ω)

)
dω,

where ěi(ω) is the Fourier transform of evi(t). Choosing

Xi such that κXi > 0, it yields

tr((
∫∞
0
Widt)

∗Xi) + tr((
∫∞
0
Widt)Xi) 6 0,

or equivalently, tr(He(Wi)Xi) 6 0. Therefore, (17) is

guaranteed for all solutions of (13) satisfying (18), if

%2iF
T
i F i − rTFirFi + V̇ (evi)− tr(He(Wi)Xi) < 0. (33)
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By setting ωfa =
ωf1+ωf2

2 , then

−tr(He(Wi)Xi)
= −eTviωf1ωf2Xievi − ė

T
viXiėvi − e

T
vijωfaXiėvi

+ėTvijωfaXievi
= −eTviωf1ωf2Xievi − e

T
viN

T
i XiNievi

−(ϕ
evi
vi )TTTi XiNievi + FTi BTi TTi XiNievi

−eTviN
T
i XiTiϕ

evi
vi − (ϕ

evi
vi )TTTi XiTiϕ

evi
vi

+FTi BTi TTi XiTiϕ
evi
vi + eTviN

T
i XiTiBiF i

+(ϕ
evi
vi )TTTi XiTiBiF i −F

T
i BTi TTi XiTiBiF i

−eTvijωfaXiTiϕ
evi
vi + eTvijωfaXiTiBiF i − e

T
vijωfaNievi

+eTviN
T
i jωfaXievi + (ϕ

evi
vi )TTTi jωfaXievi

−FTi BTi TTi jωfaXievi .
(34)

On the other hand, using Lemma 1 and (26), one has

V̇ (evi) < eTvi(N
T
i Xi +XiNi + εiθMi

I

+ε−1i XiTiT
T
i Xi)evi −F

T
i (TiBi)TXievi

−eTviXi(TiBi)F i.
(35)

Replacing (34) and (35) into (33) givesΞ1
1i Ξ

2
1i Ξ

3
1i

∗ Ξ4
1i Ξ

5
1i

∗ ∗ Ξ6
1i

 < 0, (36)

where

Ξ1
1i = −ωf1ωf2Xi −NT

i XiNi − jωfaXiNi + jωfaN
T
i Xi

+NT
i Xi +XiNi + εiθMi

I − (ZiC̃i)
TWT

i WiZ
iC̃i,

Ξ2
1i = NT

i XiTiBi + jωfaXiTiBi −XiTiBi,
Ξ3

1i = −NT
i XiTi − jωfaXiTi +XiTi,

Ξ4
1i = −BTi TTi XiTiBi + %2i I,

Ξ5
1i = BTi TTi XiTi,

Ξ6
1i = −TTi XiTi − εiI.

It can be re-written as

T2i + V2iS2i + ST2iVT2i − ST2iXiS2i < 0, (37)

with

T2i =

−ωf1ωf2Xi + εiθMiI − (ZiC̃i)
TWT

i WiZ
iC̃i 0 0

∗ %2i I 0
∗ ∗ −εiI

 ,

S2i =
(
Ni −TiBi Ti

)
, V2i =

Xi − jωfaXi
0

0

 .

Similarly to Theorem 1, (37) can be shown to be equiv-

alent to(
T2i +K2iS2i + ST2iKT2i −K2i + V2i + ST2iYT2i

∗ −(Xi + Y2i + YT2i)

)
< 0,

(38)

for new general matrices K2i and Y2i. Hence, by select-

ing

KT2i =
(
Y Ti Y Ti K

T
i 0
)
, Y2i = σ2iYi,

for a scalar σ2i, an arbitrary matrix Ki and a nonsin-

gular general matrix Yi, one can obtain the following

sufficient condition
Ξ1

2i Ξ
2
2i YiTi Ξ3

2i

∗ Ξ4
2i KiYiTi Ξ5

2i

∗ ∗ −εiI σ2iT
T
i Y

T
i

∗ ∗ ∗ Ξ6
2i

 < 0,

with

Ξ1
2i = YiNi +NT

i Y
T
i − ωf1ωf2Xi + εiθMi

I

−(ZiC̃i)
TWT

i WiZ
iC̃i,

Ξ2
2i = −YiTiBi +NT

i Y
T
i K

T
i ,

Ξ3
2i = −Yi +Xi − jωfaXi + σ2iN

T
i Y

T
i ,

Ξ4
2i = %2i I −KiYiTiBi − BTi TTi Y Ti KT

i ,

Ξ5
2i = −KiYi − σ2iBTi TTi Y Ti ,

Ξ6
2i = −(Xi + σ2iYi + σ2iY

T
i ).

By replacing Ni and Ti with their respective values, and

applying the linearising change of variables Ui = YiHi,

Ri = YiSi, (30) is obtained. This guarantees the resid-

ual performance index (17) and the asymptotic stability

of the error dynamics (9).

Remark 4 Given that the LMIs (30) ∀i are in the com-

plex domain, most solvers cannot directly handle them.

Hence, the following equivalent statements are used for

a complex Hermitian matrix L(x)

1. L(x) < 0.

2.

(
Re(L(x)) Im(L(x))

−Im(L(x)) Re(L(x))

)
< 0.

where Re(L(x)) represents the real part of L(x) and

Im(L(x)) its imaginary part. More details can be found

in [46].

Theorem 3 For Fi = 0, F i = 0, dvi 6= 0, φ
i
6= 0, let

βi, ηi, θMi , σ3i and εi be strictly positive scalars, the er-

ror dynamics (13) is asymptotically stable and the per-

formance indexes (19) are guaranteed if ∀i ∈ {1, ..., N},
there exist symmetric positive definite matrices Qi, ma-

trices Ui, Ri and unstructured nonsingular matrices Yi
such that for all possible uncertainties, under the im-

posed constraint (21)

min
Qi,Yi,Ui,Ri

βi + ηi

subject to
Φ1
i Φ

2
i Φ

3
i Φ4

i Φ5
i

∗ Φ6
i Φ

7
i 0 Φ8

i

? ∗ Φ9
i 0 Φ10

i

∗ ∗ ∗ −εiI Φ11
i

∗ ∗ ∗ ∗ Φ12
i

 < 0, (39)
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where

Φ1
i = YiÃi + UiZ

iC̃iÃi −RiZiC̃i + ÃTi Y
T
i + εiθMi

I

+(ZiC̃iÃi)
TUTi − (ZiC̃i)

TRTi
+(ZiC̃i)

TWT
i WiZ

iC̃i,

Φ2
i = YiB̃di + UiZ

iC̃iB̃di −RiZiD̃di

+ZiC̃iW
T
i WiZ

iD̃di ,

Φ3
i = RiXi − YiX̄i − UiZiC̃iX̄i − (ZiC̃i)

TWT
i WiXi,

Φ4
i = Yi + YiHiZ

iC̃i,

Φ5
i = −Yi +Qi + σ3iÃ

T
i Y

T
i + σ3i(Z

iC̃iÃi)
TUTi

−σ3i(ZiC̃i)TRTi ,
Φ6
i = (ZiD̃di)

TWT
i WiZ

iD̃di − η2i I,
Φ7
i = −XT

i W
T
i WiZ

iD̃di ,

Φ8
i = σ3iB̃

T
di
Y Ti + σ3iB̃

T
di

(ZiC̃i)
TUTi − σ3iZiD̃T

di
RTi ,

Φ9
i = XT

i W
T
i WiXi − β2

i I,

Φ10
i = σ3iX

T
i R

T
i − σ3iX̄

T
i Y

T
i − σ3iX̄

T
i (ZiC̃i)

TUTi ,

Φ11
i = σ3iY

T
i + σ3i(Z

iC̃i)
TUTi ,

Φ12
i = −σ3i(Yi + Y Ti ).

The observer gains are then computed as in (22).

Proof Let us select the candidate Lyapunov function

Vi(evi) = eTviQievi , then

V̇ (evi) = eTvi(N
T
i Qi +QiNi)evi + (ϕ

evi
vi )TTTi Qievi

+eTviQiTiϕ
evi
vi + φT

i
(t)(SiXi − TiX̄i)

TQievi
+eTviQi(SiXi − TiX̄i)φi(t)

+dTvi(TiB̃di − SiZ
iD̃di)

TQievi
+eTviQi(TiB̃di − SiZ

iD̃di)dvi(t).

(40)

The performance index is equivalent to

JDi =

∫ ∞
0

(
rTDirDi − β

2
i φ

T

i
φ
i
− η2i dTvidvi

)
dt < 0. (41)

Combining the two yields

JDi =
∫∞
0

([
eTvi(Z

iC̃i)
T

+dTvi(Z
iD̃di)

T
]
WT
i Wi

[
ZiC̃ievi(t) + ZiD̃didvi(t)

]
−η2i dTvidvi − e

T
vi(Z

iC̃i)
TWT

i WiXiφi(t)

−dTvi(Z
iD̃di)

TWT
i WiXiφi(t)− β

2
i φ

T

i
φ
i

+φT
i
XT
i W

T
i WiXiφi − φ

T

i
XT
i WiW

T
i Z

iC̃ievi

−φT
i
XT
i W

T
i WiZ

iD̃didvi + V̇ (evi)
)
dt−

∫∞
0
V̇ (evi)dt

< 0.

(42)

The above inequality can be expressed as(
Γi1 Γi2 + Υ dei
? Υ ddi

)
< 0,

where Γi1 = NT
i Qi + QiNi + (ZiC̃i)

TWT
i WiZ

iC̃i +

εiθMi
I + ε−1i QiTiT

T
i Qi,

Γi2 = Qi

(
TiB̃di − SiZiD̃di (SiXi − TiX̄i)

)
,

Υ dei =
(
ZiC̃iW

T
i WiZ

iD̃di −(ZiC̃i)
TWT

i WiXi

)
and

Υddi =

(
(ZiD̃di)

TWT
i WiZiD̃di − η2i I −XTi WT

i WiZiD̃di
? XTi W

T
i WiXi − β2

i I

)
.

Similarly to Theorem 1, the above is equivalent to

T3i + V3iS3i + ST3iVT3i < 0, (43)

where

T3i

=


(ZiC̃i)

TWT
i WiZ

iC̃i + εiθMiI ZiC̃iW
T
i WiZ

iD̃di
∗ (ZiD̃di )

TWT
i WiZ

iD̃di − η
2
i I

∗ ∗
∗ ∗

−(ZiC̃i)TWT
i WiXi 0

−XT
i W

T
i WiZ

iD̃di 0

XT
i W

T
i WiXi − β

2
i I 0

∗ −εiI

 ,

S3i =
(
Ni TiB̃di − SiZiD̃di SiXi − TiX̄i Ti

)
,

V3i =


Qi
0

0

0

 .

By selecting

KT3i =
(
Y Ti 0 0 0

)
, Y3i = σ3iYi,

for a scalar σ3i and a nonsingular general matrix Yi,
one can obtain the following sufficient condition
Λ1
i Λ

2
i Λ3

i YiTi Λ4
i

∗ Λ5
i −XTi WT

i WiZiD̃di 0 Λ6
i

? ∗ Λ7
i 0 Λ8

i

∗ ∗ ∗ −εiI σ3iTTi Y
T
i

∗ ∗ ∗ ∗ −σ3i(Yi + Y Ti )

 < 0,

where

Λ1
i = YiNi +NT

i Y
T
i + (ZiC̃i)

TWT
i WiZ

iC̃i + εiθMi
I,

Λ2
i = YiTiB̃di − YiSiZiD̃di + ZiC̃iW

T
i WiZ

iD̃di ,

Λ3
i = YiSiXi − YiTiX̄i − (ZiC̃i)

TWT
i WiXi,

Λ4
i = −Yi +Qi + σ3iN

T
i Y

T
i ,

Λ5
i = (ZiD̃di)

TWT
i WiZ

iD̃di − η2i I,
Λ6
i = σ3iB̃

T
di
TTi Y

T
i − σ3iZiD̃T

di
STi Y

T
i ,

Λ7
i = XT

i W
T
i WiXi − β2

i I,

Λ8
i = σ3iX

T
i S

T
i Y

T
i − σ3iX̄

T
i T

T
i Y

T
i .

Replacing Ni and Ti with their respective values, and

applying the linearising change of variables Ui = YiHi,

Ri = YiSi, (39) is obtained. This guarantees the resid-

ual performance index (19) and the asymptotic stability

of the error dynamics (9).

Remark 5 One could note that it is possible to relax

constraint (21). Indeed, this equality constraint implies

that the span of the rows of Ui is included in ker(Vvi).

Hence, one could turn this into a minimisation of its
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maximum singular value which could be minimised, i.e.,

for a scalar ϑi > 0

min
Ui

ϑi

subject to

−ϑiI + UiVviϑ
−1
i (UiVvi)

T < 0. (44)

Applying the Schur complement to (44) yields the fol-

lowing LMI(
ϑiI UiVvi
∗ ϑiI

)
< 0. (45)

Remark 6 Note that here, as opposed to what is typi-

cally done in literature, we do not impose that TiB̃di −
SiZ

iD̃di = SiXi = 0. Indeed, maintaining this con-

straint while solving the proposed inequalities can be

unfeasable for some systems. Contrary to other works

using unknown input observer, our approach does not

require invertibility conditions except on Yi which is in-

herently required by the proposed LMIs. Thus, no rank

condition is required for the existence of the unknown

input observer to solve the LMIs.

Residual evaluation:

In order to isolate the faulty element (the specific faulty

agent and/or faulty link), the residuals are evaluated

by comparing them with an off-line computed thresh-

old defined hereafter. For this purpose, let us select the

following root mean square evaluation functions [41],

∀p ∈ Ni ∪ i

Jei,p(t) = ||rpi (t)||rms

=
( 1

Tw

∫ t+Tw
t

(rpi (τ))T rpi (τ)dτ
) 1

2

,
(46)

where Tw is a finite evaluation window with

rTvi(t) = [(rii(t))
T , (ri1i (t))T , ..., (r

iNi
i (t))T ],

and rpi (t) ∈ IRny ,∀p ∈ Ni∪ i. Noise, disturbances, com-

munication uncertainties (etc.) are treated as unstruc-

tured unknown inputs and the RMS threshold is com-

puted as

Jeipth = sup
attack/fault free

||rpi (t)||rms, (47)

where one could set Jeith = max{Jeiith , ..., J
e
iiNith

}. For

isolation purpose, let us define the secure detection flags

πi, such that if Jei,i(t) 6 Jeith then πi = 0 and πi = 1

when Jei,i(t) > Jeith. An agent i is assumed to request

the secure detection flag of its neighbours when a fault

or an attack has been detected through the generated

residual functions Jei,j(t), j ∈ Ni.
In order to summarise the proposed scheme, two al-

gorithms are proposed hereafter. The optimisation Al-

gorithm 1 is ran offline and proposes steps to compute

the observer matrix gains using a finite-frequency mixed

H∞/H− approach by simultaneously combining Theo-

rems 1-3 and Remark 5. Define the multi-objective cost

function

si =
λi1ηi + λi2βi + λi3ϑi

λi4γi + λi5%i
, (48)

where λi1, λi2, λi3, λi4, λi5 are positive trade-off weigh-

ing constants.

Algorithm 1: Observer-Detector module pa-

rameter computation at agent i (offline)

1. Construct the local model (7)
2. Define ΩFi and choose the multi-objective weights

λi1, λi2, λi3, λi4 and λi5,
3. Set σ1i, σ2i, σ3i, Wi, Ki and εi,
4. Minimise si by simultaneously solving Theorems 1-3

and (45) in Remark 5,
5. Compute the observer matrix gains Si, Hi, Ni, G1i,

G2i and Li from (22) and Ti from (10a),
6. Compute the thresholds (47).

Remark 7 It should be noted that Algorithm (48) en-

sures that the best solution with respect to the cost

function (48) is obtained. This renders the residual func-

tions as sensible as possible to the fault and attack

signals while guaranteeing the best possible attenua-

tion performance of the disturbances and communica-

tion uncertainties with respect to the residual evalu-

ation functions. It is also worth mentioning that the

proposed method introduces additional design variables

to the optimisation problem (e.g. matrix variables Yi),

and no products between Lyapunov matrices (Pi, Qi
or Xi) and the observer matrices Ni. It allows the use

of different Lyapunov matrices for each Theorem, and

solving Algorithm 1 with the common design variable

Yi which, unlike Lyapunov matrices, is only required

to be nonsingular. This fact, along with the addition

of variables σ1i, σ2i, σ3i and matrix Ki, allows more

degree of freedom and reduces the conservatism of the

overall solution.

Algorithm 2 given in the following, is ran on-line

and summarises the detection and isolation logic where

an agent i is said to be faulty if fai(t) 6= 0 and/or

fsi(t) 6= 0.
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Algorithm 2: Decision logic for agent i (on-

line)

1. Apply the evaluation functions (46),
2. If ∃j ∈ Ni such that Jei,j(t) > Jeith, and Jei,i(t) 6 Jeith

then request πj . If πj 6= 0 then node j is faulty,
else the link (i, j) incident to agent i is faulty,

3. If Jei,p(t) > Jeith, ∀p ∈ Ni ∪ i, then agent i is faulty.
Request πj , j ∈ Ni, if πj 6= 0 then agent j is also
faulty, else the link {i, j} incident to node i is faulty,

4. If Jei,p(t) < Jeith, ∀p ∈ Ni ∪ i, then no fault/attack
has occurred.

4 Illustrative Example

To show the effectiveness of the proposed algorithm,

let us consider a heterogeneous MAS composed of one-

link flexible joint manipulator robots. In the following,

there are three followers labelled 1 to N = 3 and one

virtual leader labelled 0. They are connected according

to the directed graph topology represented in Fig. 1.

The associated adjacency matrix is given as

A =

0 0.5 0.5

1 0 0

0 0 0

 .

Fig. 1: Communication topology

Their dynamics is expressed as [42]



θ̇mi = ωmi ,

ω̇mi =
ki
Jmi

(θli − θMi
)− Bi

Jmi
ωmi +

Kτi

Jmi
ui,

θ̇li = ωli ,

ω̇li = − ki
Jli

(θli − θMi
)− mighi

Jli
sin(θli),

where θmi is the rotation angle of the motor, θli is the

rotation angle of the link, ωmi and ωli are their angular

velocities. The following table summarises the parame-

ters.

Parameter Unit

Link inertia Jli kgm2

Motor inertia Jmi kgm2

Viscous friction coefficient Bi NmV −1

Amplifier gain Kτi NmV −1

Torsional spring constant ki Nm · rad−1
Link length hi m

Mass mi kg

Gravitational acceleration g ms−1

By setting, for all i = 1, 2, 3, xTi =
(
θmi ωmi θli ωli

)
=(

xi1 xi2 xi3 xi4
)

and xT0 =
(
x01 x02 x03 x04

)
where x0

is the virtual leader state, the state space representation

can be given as

Ai =


0 1 0 0

− ki
Jmi

− Bi
Jmi

ki
Jmi

0

0 0 0 1
ki
Jli

0 − ki
Jli

0

 , Bui =


0
Kτi

Jmi
0

0

 ,

Bdi =


0

0.1

0

0.5

 , ϕi(xi(t)) =


0

0

0

−migbi
Jli

sin(θli)

 ,

Bfi = Bui , Df1 =

(
1

1

)
, Df2 = Df3 =

(
0

0

)
,

Dd1 =

(
0.05

0.1

)
, Dd2 =

(
0.1

0.2

)
, Dd3 =

(
0.5

0.7

)
,

C1 =

(
1 0 0 0

0 1 0 0

)
, C2 =

(
0 0 1 0

0 0 0 1

)
,

C3 =

(
1 0 0 0

0 0 1 0

)
,

Dz13 = 1, Du13 = 1, Dz31 = 1, Du31 = 1, Dz12 = I,

Du12
= 1, Dz21 = I, Du21

= 1.

In the following simulations, the parameter uncer-

tainties are considered as ∆aij(t) = 0.1 sin(aijt) and

the perturbations di(t) as Gaussian white noise with

values in [−0.2, 0.2]. For the followers, the parameters

are chosen as m1 = m2 = m3 = 0.21kg, k1 = 0.18Nm ·
rad−1, k2 = 0.1Nm ·rad−1, k3 = 0.22Nm ·rad−1, B1 =

4.6×10−2NmV −1, B2 = 3.6×10−2NmV −1, B3 = 5.6×
10−2NmV −1, Jm1

= Jm2
= Jm3

= 3.7 × 10−3kgm2,

Jl1 = Jl2 = Jl3 = 9.3× 10−3kgm2, Kτ1 = 0.08NmV −1,

Kτ2 = 0.085NmV −1,Kτ3 = 0.09NmV −1, g = 9, 8m/s2,

h = 0.3m. The leader parameters are given as m0 =

0.21kg, k0 = 0.18Nm · rad−1, B0 = 4.6×10−2NmV −1,

Jm0 = 3.7 × 10−3kgm2, Jl0 = 9.3 × 10−3kgm2, Kτ0 =

0.08NmV −1.

It is thus easy to verify that θM1 = θM2 = θM3 =

3.3. The initial conditions are given as x0(0) = (0, 0, 0, 0),
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x1(0) = (0.1, 0, 0.2, 0), x2(0) = (0.5, 0, 0.1, 0), x3(0) =

(0.3, 0, 0.4, 0). In this example, a tweaked version of

the leader-follower control algorithm proposed in [47]

is used based on the estimated state:

ui = −Mi

[∑3
j=1 aij(x̂i − x̂

j
i ) + g0i(x̂i − x0)

]
,

where x̂Tvi =
(
x̂ii x̂

i1
i ... x̂

iNi
i

)
, eTvi =

(
eii e

i1
i ... e

iNi
i

)
=(

eii1 ... e
i
i4 e

iNi
i1 ... e

iNi
i4

)
, x̂pi ∈ IR4, epi = xp − x̂pi ∈

IR4, ∀p ∈ Ni ∪ i, Mi is a control gain matrix and g0i
defines the communication link between agent i and

leader 0 (g0i = 1 when 0 communicates with i and

g0i = 0 otherwise). The control gains are given as
M1 =

[
1.6207 0.2210 −0.5444 3.2570

]
,

M2 =
[
1.6924 0.2308 −0.5685 3.4011

]
,

M3 =
[
1.7642 0.2405 −0.5925 3.5452

]
.

The multi-objective weights are chosen as λi1 = λi2 =

λi3 = λi4 = λi5 = 1, ∀i. The vector F i is assumed

to belong to the finite-frequency domain [0, 0.1). It is

worth noting that inequalities (20), (30), (39) and (45)

can be solved using an appropriate solver (YALMIP,

etc. [48]).

∀i ∈ {1, 2, 3}, Algorithm 1 is applied for σ1i = 1,

σ2i = 0.2, σ3i = 0.1, Ki = −2Bui , εi = 0.04 and Wi =

I, yielding η1 = 0.2, β1 = 0.2, ϑ1 = 0.01, γ1 = 0.1, %1 =

0.81, η2 = 0.15, β2 = 0.15, ϑ2 = 0.02, γ2 = 0.1, %2 =

0.85, η3 = 0.04, β3 = 0.4, ϑ3 = 0.01, γ3 = 0.7, %3 = 0.77.

Remark 8 It should be highlighted that the computa-

tion of the matrix gains is done offline and once. Based

on Theorems 1-3, for each agent, the observer matrix

gains are computed according to Algorithm 1. There-

fore, a set of LMIs has to be solved offline and once.

One can note that the dimension and number of LMIs

linearly increase as the state and number of agents in-

crease. Here, 4N LMIs (N is the number of agents)

should be solved. For an agent i, their dimensions are:

(3nix + nifs + nifz ) × (3nix + nifs + nifz ) for Theorem 1,

(3nix+nifa +Ninfu)× (3nix+nifa +Ninfu) for Theorem

2, (3nix+nid+niz+niu)×(3nix+nid+niz+niu) for Theorem

3 and nix×nix for Remark 5. These dimensions are given

in Table 2 for the illustrative example. Additionally, for

each agent, the size of the FDI modules (i.e. Eq. (8)) is

only dependent on the number of neighbouring agents

regardless of the agents’ control inputs, which makes

the proposed scheme highly scalable.

Remark 9 It is interesting to note that for implemen-

tation of the method proposed in this work, each agent

Agent LMIST1 LMIST2 LMIST3 LMISR5
1 40× 40 39× 39 46× 46 12× 12
2 27× 27 26× 26 30× 30 8× 8
3 13× 13 13× 13 14× 14 4× 4

Table 2: LMI dimensions for each agent, where:

LMIST1: LMI Size in Theorem 1, LMIST2: LMI Size in

Theorem 2, LMIST3: LMI Size in Theorem 3, LMIST1:

LMI Size in Remark 5.

sends its corrupted output and its corrupted control in-

put (dimension nu+ny). This can increase the commu-

nication cost in contrast with [27] for instance, where

the FDI modules only require estimated outputs to be

broadcasted (dimension ny). However, as opposed to

[27], the proposed method does not require the agents to

be equipped with relative information sensors. Indeed,

requiring that the agents are equipped with both rel-

ative information sensors and wireless communication

modules, can limit the cost effectiveness of the method

proposed therein.

Let us consider hereafter two scenarios. In the first

one, two faults occur in the network: a sensor fault

fs1(t) at agent 1 and an actuator fault fa3(t) at agent

3, as represented in Fig. 2. Figs. 3-5 show the gener-

ated residual evaluation functions by agents 1, 2 and 3

respectively. The worst case analysis of the evaluation

functions corresponding to the non faulty operation of

the network under disturbances and uncertainties leads

to the following thresholds Je1th = 0.048, Je2th = 0.03

and Je3th = 0.027 under the evaluation window Tw =

10s. It is usually not easy to accurately compute the

value of the supremum of the RMS function in (47) to

simultaneously prevent false alarms and avoid missed

detections. As such, a series of Monte-Carlo simulations

have been conducted where the supremum of the RMS

function in (47) is calculated under the healthy opera-

tion of the MAS, with different noises, disturbances and

uncertainties. The corresponding maximum value has

been taken as an appropriate threshold. The sampling

period is set as Ts = 10−1 s. One could see from Figs.

3-5 that the faults could be clearly distinguished. Ad-

ditionally, according to Algorithm 2, one can see from

Fig. 3 that all generated functions Je1,1(t), Je1,2(t) and

Je1,3(t) increase at around t = 20s and exceed the de-

fined threshold due to the sensor fault fs1(t) occurring

at agent 1. This confirms that a fault has occurred at

agent 1. Fig. 4 further confirms this, since only Je2,1(t)

increases due to this fault. At t = 40s, the actuator

fault fa3(t) occurs at agent 3, where one can see in Fig.

3 that agent 1 detects it (its residual evaluation func-

tion for agent 3, i.e. Je1,3(t), is greater than Je1th even

though both Je1,1(t) and Je1,2(t) are lower that Je1th).
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Hence, according to Algorithm 2, agent 1 can distin-

guish that the fault fs1(t) has disappeared and that

agent 3 is now faulty. This is confirmed for agent 3 in

Fig. 5.

Remark 10 It is worth mentioning that the sensor fault

matrices Df2 and Df3 are not full column rank. Hence,

the methods proposed in [27,28] for instance, cannot

be applied. Moreover, the effectiveness of the proposed

method has been shown for heterogeneous MASs un-

der directed topologies. Besides, compared with the de-

centralised observer proposed in [49] for example, in

which faults occurring at agent i can only be detected

by the agent itself, our distributed observer can detect

both the agent’s faults and its neighbours’ faults. At

last, it can be noticed that the matching condition, i.e.

rank(CiBfi) = nfa , required in many existing works

(e.g. [50]), is not needed in our methodology. Indeed,

this condition is not satisfied for agents 2 and 3.

Fig. 2: Faults signal in scenario 1.

In the second scenario, two types of faults are con-

sidered: a data injection attack incident to agent 1 tar-

geting the link going from agent 3 to 1, i.e. fz13(t) =

fu13(t) occurring at 15s 6 t 6 40s, and a replay attack

incident to agent 2 at the link going from agent 1 to 2 at

t = 70s, i.e. fz21(t) and fu21(t) with a delay of T12 = 70s.

fz13(t), fu13(t), fz21(t) and fu21(t) are represented in Fig.

6. Figs. 7-9 show the generated evaluation functions by

agents 1, 2 and 3 respectively in the second scenario.

The worst case analysis of the evaluation functions cor-

responding to the attack-less operation of the network

under disturbances and uncertainties leads to the fol-

lowing thresholds Je1th = 0.016, Je2th = 0.017, Je3th =

0.02. It is clear from the evaluation functions that the

attacks can be distinguished when surpassing the com-

puted thresholds. Indeed, from Fig. 7, one can see that

Fig. 3: Residual evaluation functions at agent 1 in sce-

nario 1. The dashed red lines represent the threshold.

Fig. 4: Residual evaluation functions at agent 2 in sce-

nario 1.

Fig. 5: Residual evaluation functions at agent 3 in sce-

nario 1.

the data injection attack in the link from 3 to 1 has been

detected according to Algorithm 2. It is confirmed that
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this fault is an edge fault upon requesting agent 3’s de-

tection flag, as Je3,3 stays below the defined threshold

throughout the duration of the attack. From Fig. 8, the

replay attack in the link from agent 1 to 2 has been

detected by Je2,1(t) at t = 70s which is confirmed by

the fact that Je1,1 does not react to the attack.

Fig. 6: Simulated attack signals in scenario 2, where

fz21(t) = [fz21,1(t), fz21,2(t)]T .

Fig. 7: Residual evaluation functions at agent 1 in sce-

nario 2.

The control efforts corresponding to the faultless

case and scenario 1 and 2 are depicted in Fig. 10. Fig. 11

shows the estimation errors generated by the FDI mod-

ules for agents 1, 2 and 3 respectively. It can clearly be

seen that the estimation errors converge to zero in the

absence of any fault or attack.

From these simulations, it can be seen that the pro-

posed FDI scheme is able to detect and isolate attacks,

actuator faults and sensor faults in the presence of dis-

turbances, noise and communication uncertainties.

Fig. 8: Residual evaluation functions at agent 2 in sce-

nario 2.

Fig. 9: Residual evaluation functions at agent 3 in sce-

nario 2.

5 Conclusion

In this paper, the problem of FDI in Lipschitz nonlin-

ear MASs with disturbances, subject to actuator, sensor

and communication faults has been addressed. A multi-

objective finite-frequency H−/H∞ design along with

nonlinear UIOs have been proposed. Sufficient condi-

tions have been derived in terms of a set of LMIs. The

combination of UIOs, removal of strict rank conditions

and finite-frequency method has been shown to provide

extra degrees of freedom in the FDI filter design. Ad-

ditionally, the multi-objective method guarantees that

the evaluation functions are robust with respect to all

admissible disturbances and uncertainties and sensitive

to all types of faults. A numerical example has been

studied in order to showcase the effectiveness of the

proposed scheme. As future works, instead of consider-

ing Lipschitz nonlinear systems, one could investigate

other classes of nonlinear uncertain systems including
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(a) (b) (c)

Fig. 10: Control efforts in: (a) the faultless case, (b) scenario 1, (c) scenario 2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11: Estimation errors: (a) at agent 1 in the faultless and attackless case, (b) at agent 2 in the faultless and

attackless case, (c) at agent 3 in the faultless and attackless case, (d) at agent 1 in scenario 1, (e) at agent 2 in

scenario 1, (f) at agent 3 in scenario 1, (g) at agent 1 in scenario 2, (h) at agent 2 in scenario 2 and (i) at agent 3

in scenario 2.
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chained-form dynamics. Based on the proposed FDI

scheme, it would also be possible to design some fault

accommodation strategies.
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