Response of the Akrotiri Marsh, island of Cyprus, to Bronze Age climate change

Calian J Hazell*, Matthew J Pound and Emma P Hocking

Department of Geography & Environmental Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

*Corresponding author contact information: email- calian.j.hazell@northumbria.ac.uk; address- Department of Geography & Environmental Sciences, Ellison Building, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom

Abstract
Here we present two multiproxy records covering the last 5000 years from the Akrotiri Marsh in southern Cyprus. Pollen and diatom analysis of radiocarbon dated marsh sediments with an average chronological resolution of one date every thousand years, reveal expansion and contraction of the marsh in response to mid-late Holocene climate events, with peak aridity reconstructed in the early Bronze Age, inferred between 4.3 and 4.1 cal ka BP, and repeated dry intervals in the Late Bronze Age, inferred between 3.4 and 3.1 cal ka BP. The record provides important contextual climate data to the debate surrounding reported Early and Late Bronze Age societal collapse events present in numerous archaeological archives throughout the Mediterranean and Near Eastern region. This is the first multiproxy record from the island of Cyprus potentially displaying the 4.2 ka BP event. The characteristics of the inferred 3.2 ka BP event are very similar to the manifestation of the event in the east of Cyprus and on the southern Levantine mainland. These results contribute to the regional understanding of Bronze Age climates on Cyprus, give insight into the expression of global climate forcing mechanisms such as the North Atlantic Oscillation and the Siberian High, and provide potential evidence for reduced anthropogenic land-use during the 4.2 ka BP and 3.2 ka BP Events supporting what is documented in archaeological archives.

Keywords: Pollen, diatoms, 4.2 ka BP Event, 3.2 ka BP Event, palaeoenvironmental change.
1. Introduction

Climate change has been proposed as a major driver of societal collapse during the Bronze Age of the eastern Mediterranean, with two key periods of decline and collapse having been identified in the archaeological record - the Early Bronze Age collapse (Weiss and Courty, 1993; Weiss et al., 1993; Cooper, 1997; Nigro, 2000; Kennedy, 2016; Weiss, 2017) at ca. 4.45 to 3.95 cal ka BP (Kennedy, 2016), and Late Bronze Age collapse (Weiss, 1982; Bryce, 2005; Cohen and Singer, 2006; Knapp, 2011; Kaniewski et al., 2013; Cline, 2014; Langgut et al., 2014; Knapp and Manning, 2016) at ca. 3.20 to 3.05 cal ka BP (Cline, 2014; Knapp et al., 2016; Weiss, 1982). Palaeoenvironmental research has linked each of these intervals of politico-economic decline and settlement abandonment with specific climatic events (Carpenter, 1966; Neumann and Parpola, 1987; Weiss et al., 1993; Weiss, 1997; Tarasov et al., 1998; Cullen and DeMenocal, 2000; Kaniewski et al., 2008, 2010, 2013, 2015; Roberts et al., 2011; Drake, 2012; Langgut et al., 2013, 2015; Kennedy, 2016). The climatic event often associated with the Early Bronze Age collapse is termed the 4.2 ka BP event, whereby the statistical analysis of nearly 50 proxy records suggests a Mediterranean-wide period of centennial scale climate change from 4.50 – 4.20 cal ka 3P (Finné et al., 2019), and extending up to 3.80 cal ka BP in some records (Bini et al., 2019). The 4.2 ka BP event in the archaeological records is associated with the collapse and settlement disruption events that began on the plains of Jezireh at ca. 4.20 cal ka BP and became region-wide by ca. 4.00 cal ka BP (Kennedy, 2016). The end of Early Bronze Age urban culture in the southern Levant might have begun earlier at ca. 4.50 cal ka BP (Höflmayer, 2017). The climatic event often associated with the Late Bronze Age collapse is termed the 3.2 ka BP event. This event occurred in two distinct parts, the first comprising a cold and arid interval from 3.50 – 3.30 cal ka BP (Kaniewski et al., 2008, 2010; Finné et al., 2019) and a second cold interval that typically featured a three-pulse (“W-shaped”) arid-wet-arid event between 3.35 – 2.80 cal ka BP (Drake, 2012; Kaniewski et al., 2013, 2019). Despite widespread palaeoenvironmental evidence for climate change during both of these events, it is not the only proposed cause of these societal collapse events. Individual site destruction or region-wide disruption has been attributed to tsunamis and earthquakes, destabilisation of centralised economies, collapse of international trade and foreign invasion (Cline, 2014; Kennedy, 2016; Knapp and Manning, 2016). It should also be considered that all of these causes of collapse can both be influenced by climatic change and influence a societal response to changing climates.
Three main external climate-forcing mechanisms are often cited as controlling the distribution of Mediterranean climates throughout the different seasons, the Intertropical Convergence Zone/African-Arabian/Asian monsoon 2.3-2.5 kyr summertime cycle (Russell et al., 2003; Alpert et al., 2006), the continental 2.3 kyr Siberian High winter/spring cycle (Rohling et al., 2002; Roberts et al., 2012), and the maritime 1.5 kyr North Atlantic Oscillation wintertime cycle (Bond, 1997; Bond et al., 2001; Rohling et al., 2002; Davis and Brewer, 2009). It has been documented that throughout the Holocene, a positive NAO accompanies a relatively cold and dry winter climate across the northern Mediterranean borderlands (López-Moreno et al., 2011; Di Rita et al., 2018), northern Italy and the Balkans between 43° and 45°N (Di Rita and Magri, 2019; Isola et al., 2019), and the Aegean (Katrantsiotis et al., 2019). Typically in the Levantine region, more emphasis is given to the effects of the continental Siberian High cycle (Lingis and Michaelides, 2009; Geraga et al., 2010), the African-Arabian monsoon cycles (Baioumy et al., 2010; Triantaphyllou et al., 2014), or a combination of both regimes (Jalut et al., 2009; Desprat et al., 2013).

Cyprus, as a semi-arid island, has been identified as an area where biodiversity and agriculture are facing a triple threat from future climate change (Vogiatzakis et al., 2016). A combination of increasing temperatures and decreasing precipitation threatens the lowland vegetation and agriculture through water scarcity and shifting human activity, whilst the mountain ecosystems of the Troodos are subject to altitudinal pressures from warming (Vogiatzakis et al., 2016). This vulnerability to temperature and precipitation variability likely existed throughout the Holocene and may be a contributing factor to societal collapse on Cyprus in the late Bronze Age (Kaniewski et al., 2013). The early Bronze Age collapse, 4.2 ka BP event (4.50 – 4.20 cal ka BP), would fall within the Philia Phase on Cyprus (Kearns and Manning, 2019; Supplementary Table S1). When compared to the preceding Chalcolithic, this is a time interval of a myriad of cultural, material and social innovations that marks a distinct change in the island’s archaeological record (Knapp, 2008). The degree of archaeological change has led to inferences of ethnic migration to the island, which Catling, (1975) attributed to Early Bronze Age refugees from Anatolia (Knapp, 2008). Palaeoenvironmental records on Cyprus come primarily from sedimentological, shallow marine faunas and pollen analysis (e.g. Morhange et al., 2000; Kaniewski et al., 2013; Ghilardi et al., 2015). On Cyprus, palynological research was initially conducted as a minor supplement to books documenting archaeological surveys on the island for landscape reconstruction (e.g. Bottema, 1966, 1976; Renault-Miskovsky, 1985; Renault-Myskovsky, 1989). More recently, palynological research has been conducted to investigate climatic and environmental change, at the Akrotiri (Limassol) Salt Lake (Allen et al., 2009), the Larnaca Salt Lake/Hala Sultan Tekke (Kaniewski et al., 2013; 2020), and a terrestrial shaft at the nearby
coastal site of Pyla Kokkinokremnos (Kaniewski et al., 2019). Pollen records from near Larnaca have shown both the 4.2 ka BP and 3.2 ka BP events (Kaniewski et al., 2020). The Larnaca Salt Lake record shows a temperature anomaly of ~ -2.5°C at 4.2 cal ka BP and 3.15 cal ka BP (Kaniewski et al., 2020). This record and the nearby Pyla Kokkinokremno site show a three-pulse (“W-shaped” – original author term) arid-wet-arid event, with increased aridity at ca. 3.15 cal ka BP and ca. 2.90/2.85 cal ka BP framing a wetter period from ca. 3.00 – 2.95 cal ka BP (Kaniewski et al., 2019; 2020). This corresponds to widespread abandonment of sites and the destruction of monumental structures at the end of the Second Late Cypriot Period (Knapp, 2013; Knapp and Manning, 2016). By contrast, a pollen record from the Akrotiri Peninsula does not display any climatic event during the Bronze Age due to inadequate dating resolution (Allen et al., 2009). Presently, there are no Holocene diatom studies known from Cyprus that might also contribute to our understanding of hydrology during these Bronze Age climate events. The 4.2 ka BP and 3.2 ka BP events are present in records from around Larnaca on Cyprus, and that there was also an island-wide societal shift at the end of the Late Bronze Age. However palaeoenvironmental research is lacking for the rest of the island meaning any potential relationships between archaeological events and environmental change is reliant on extrapolation from the Larnaca coastal region. We therefore need more detailed and geographically-widely climate reconstructions from Cyprus that allow improved understanding of both Bronze Age, and wider Holocene, palaeoenvironments that can provide context to archaeological records.

This paper seeks to provide the first multiproxy Bronze Age record on Cyprus, from a previously unstudied environmental archive in southern Cyprus, in order to provide the opportunity to identify and better understand the 4.2 ka BP and 3.2 ka BP climatic events on the island. The aim is to provide a climatological context to the Cypriot Bronze Age, allowing for future comparison to local archaeological records, and therefore improving our understanding of potential climate-societal relationships in the Mediterranean Bronze Age.

2. Study area
The island of Cyprus has a Mediterranean climate of hot, dry summers and relatively mild, moist winters (Delipetrou et al., 2008; Fall, 2012). The distribution of modern vegetation and climate patterns are primarily controlled by topographical variation across the island (Pantelas, 1996; Delipetrou et al., 2008; Fall, 2012); two mountain ranges, the Troodos (1950 m peak) and the Kyrenia Range (1000 m peak), create high elevation moist environments by drawing up and condensing moist air off the Mediterranean Sea. Pollen taxa on the island demonstrate clear
relationships with climatic variables allowing for a strong basis for interpreting palaeoenvironmental records from the island (Pantelas, 1996; Fall, 2012). The Akrotiri Peninsula is the southernmost point of the island of Cyprus, most of the peninsula lies within the British Overseas Territory of the Sovereign Base Areas of Akrotiri and Dhekelia (Fig. 1). The peninsula is dominated by the Limassol Salt Lake with two smaller freshwater marshes, Phassouri/Fassouri (here termed Akrotiri) and Zakaki to the northwest and northeast (Birol et al., 2011), which collectively form the Akrotiri wetlands Special Protection Area (Kassinis and Charalambidou, 2021). The hydrology of the Akrotiri Marsh is controlled by precipitation and by groundwater coming from the Akrotiri Aquifer, which is part of the Kouris River basin (Birol et al., 2011). The strong precipitation control, both directly and indirectly from groundwater, means this study site is particularly sensitive to periods of drought and aridity (Birol et al., 2011).

[Insert Figure 1]

3. Materials and methods
Six cores were retrieved from the Akrotiri Marsh (34°37'54.3"N, 32°55'59.5"E; 34.631740"N, 32.933184"E) with a Russian peat corer in March 2018, and two were selected for microfossil proxy analysis. Sediments were analysed for pollen and diatoms (92 samples each) and dated using AMS radiocarbon dating. Core AM18-1 was sampled at 4 cm resolution, increasing to 0.5 cm resolution through the Bronze Age section of the core, specifically the Protohistoric Bronze Age II and Protohistoric Bronze Age III of Knapp (2008) (Supplementary Table S1). Core AM18-5 was sampled at 1-4 cm resolution through the Late Chalcolithic to Byzantine Age peat unit (unit 6 of Fig. 2). Materials that were appropriate for radiocarbon dating (above ground plant fragments, wood) were selected for radiocarbon dating and analysed at the Gliwice Absolute Dating Methods (GADAM) Centre in the Silesian University of Technology, Poland. Raw radiocarbon results (uncalibrated 14C years) were calibrated using the IntCal13 calibration curve in the R software computing environment (“R Core Team T,” 2017) using the Bacon package (Blaauw and Christen, 2019) and reported to 95.4% confidence intervals. Age-depth models were also produced by the Bacon package using a Bayesian statistical modelling method by estimating an implicit variable accumulation rate assuming a gamma distribution pattern. By dividing the core into varying numbers of vertical sections (a variable manually programmed by the user allowing for the visual
inspection of numerous outputs) Bacon processes millions of Markov Chain Monte Carlo (MCMC) iterations in order to estimate the accumulation rate (in years/cm) for each of these sections (Blaauw and Christen, 2019). The calculated variable accumulation rate is then compared to the calibrated radiocarbon date points for accuracy, allowing for re-calculation using different accumulation rate internal variables - “accumulation shape” and “accumulation mean” (Blaauw and Christen, 2019). For core AM18-1, forty-one 5 cm sections were analysed, with an optimal accumulation shape value of 1.5, and an optimal accumulation mean value of 20. For core AM18-5, eighteen 10 cm sections were analysed, with an optimal accumulation shape value of 1.5, and an optimal accumulation mean value of 50. For both cores, the optimal “memory strength” value was 4, and the optimal “memory mean” value was 0.7.

Samples for pollen analysis were spiked with *Lycopodium clavatum* tablets to enable pollen concentration calculation and 10% hydrochloric acid (HCl) was used to dissolve each tablet and remove carbonates. Samples were then treated with 10 ml of 10% Potassium hydroxide (KOH digestion) in a 80°C water bath for 4 minutes to disperse the material, and sieved at 125 μm. Following this, silicates were removed using 10 ml of 48% hydrofluoric acid and flushed with HCl. Acetolysis was conducted, in order to dissolve any remaining unwanted organic content in the samples, by washing with 10 ml Glacial Acetic Acid (GAA), heating for 3 minutes in a 9:1 ratio of Acetic Anhydride to Sulphuric acid, followed by a second GAA rinse. Samples were then sieved at 10 μm to remove residual clay material, rinsed with Isopropyl Alcohol, and mounted onto a glass microscope slides in silicone oil. Pollen taxonomic identification was achieved using a variety of sources (Bouchal et al., 2016, 2017; Chester and Raine, 2001; Cugny et al., 2010; Dennis et al., 2013; “PalDat – a palynological database,” 2000; El-Amier, 2015; Gelorini et al., 2011; Martin and Harvey, 2017; Poliakova and Behling, 2016; Praglowski, 1962; Shubharani et al., 2013; Stebler, 2015; Van Geel, 1972; Van Wichelen et al., 1999; Willard et al., 2004; Yilpid, 2006; Yildiz et al., 2009).

Samples for diatom analysis were initially sieved at 10 μm to remove clay and then processed in 20 ml of 30% hydrogen peroxide solution at 80°C until all non-silicate material is dissolved (Battarbee, 1986; Battarbee et al., 2001). Residues were then mounted onto glass slides using the affixant Naphrax. Pollen and diatoms were analysed under a Leica DM2500 LED light microscope, with a target minimum of 300 pollen grains and 300 diatom valves counted per sample. Following the generation of a modern day Cypriot diatom taxonomy list (Kelly et al., 2012; Álvarez-Blanco and Blanco, 2014; Cantonati et al., 2016, 2018; Stocchetti et al., 2016), fossil diatom identification was achieved using a variety of photographic sources (Álvarez-Blanco and Blanco, 2014; Bahls et al., 2018; Blanco, 2016; “iNaturalist Diaton Database”, 2013; Ministère de
Pollen counts were transformed into relative percentages for each sample depth in order to compare abundance fluctuations through time, and pollen concentrations were calculated for each sample by counting *Lycopodium* grains alongside pollen quantities, enabling confirmation that percentage fluctuations are genuine representations of pollen assemblage turnover and not statistical artefacts. This data was tabulated and visualised in TILIA software version 2.0.41 (Grimm, 2011). Stratigraphically constrained cluster analysis using the incremental sum of squares method provided by the CONISS program was used to identify statistically significant assemblage changes and determine proxy zones (Grimm, 1987), with no zones being identified below a sum of squares value of 7. Pollen–vegetation taxa ecological inferences follow Kaniewski et al., (2013), with further ecological inferences, such as water availability, made using Brullo et al., (2005), Fall, (2012), Gucel et al., (2012, 2013), and Hadjichambis et al., (2004). As a result of the lack of Holocene diatom research on Cyprus there is no tailored diatom training set for allowing palaeoenvironmental inferences from analogous modern day settings, an issue that extends to the rest of the eastern Mediterranean (Woodbridge and Roberts, 2011). In order to draw meaningful environmental interpretation from fossil assemblages, fossil diatom taxa are identified, quantified, and related to the modern day ecologies of those species present (Battarbee et al., 1998; Juggins, 2001; Reed et al., 2001).

4. Results

4.1. Radiocarbon results

The chronology comes from six radiocarbon dates, three from each core AM18-1 and AM18-5 (Table 1; Fig. 2). Five additional dates were discounted from age modelling, specifically four from AM18-1 and one from AM18-5 (Table 1). Two of these were discounted (GdA-6013, 5664) as modern day ages were reported, which cannot be possible due to the sample depths. It is likely these samples were contaminated by
modem plant root material. Two bulk sediment ages from the peat unit (GdA-5871, 6010) appear to have been contaminated by 'old' carbon, which is a known issue in dating bulk peat material (Shore et al., 1995; Fahmi et al., 2021), and a bulk sediment age from the organic clay unit underlying the peat returned an anomalously young age, assumed to be due to percolation of humic acid. Supplementary Table S2 provides the complete Bacon age-depth modelling output data for both cores, including the full range of potential dates, however unlikely, at each centimetre depth interval.

[Insert Table 1, and Figure 2]

Core AM18-1 features an average chronology resolution of one sample every 33 cm, or 3043 years, through the dated length, while core AM18-5 features an average chronological resolution of one sample every 18 cm, or 1933 years, through the dated length. This is not a high-resolution chronological dataset, and the study would have benefit from the greater occurrence of datable radiocarbon material. Furthermore, as with any radiocarbon analyses, the 95.4% ranges used in calibration and the final statistically generated age-model each feature inherent uncertainties and limitations (e.g. Table 1 “Calibrated age range” column, Supplementary Table S2 “Minimum” and “Maximum” cal yrs BP ranges). Despite this, the confidence in these age-depth models is relatively high. This is because only the most reliable material was selected for production of the age model diagrams, and as such, it is the opinion of the authors that any future addition of more radiocarbon dates would be unlikely to cause a dramatic shift in the age model, but instead provide a finer resolution chronology and a more robust age model.

This study and its results may therefore be considered an initial study at this site, in the interest of gathering contextual data that can be compared and correlated with past and future climatic and archaeological Cypriot research. While the positive correlation between our age-depth model derived mean dates and the dating of identical inferred climatic events on southern and eastern Cyprus adds support to the chronological accuracy, all dates are based on this current age-model, and therefore must be viewed with the associated uncertainty and date ranges identified in Table 1 and Supplementary Table S2 in mind. For added clarity, the precise radiocarbon data points and their ranges are added to the lithology axis of each Figs. 3, 4, 5 and 6.
4.2. Pollen analysis

Environmental summary diagrams for pollen analysis are presented for cores AM18-1 (Fig. 3) and AM18-5 (Fig. 4). The corresponding full taxonomic pollen diagrams are available online in supplementary figures S1, S2 and S3. Results are described by Pollen Assemblage Zone (PAZ).

[Insert Figures 3 and 4]

4.2.2. Core AM18-1

PAZ-1: 4.85 to 3.38 cal ka BP (150-95 cm)

Wetland marsh and bog taxa (63.3 – 16.8%), Mediterranean woodland (24.7 – 8.9%) and dry steppe taxa (42.6 – 0%) dominate PAZ-1 (Fig. 3). The relative abundance of wetland taxa decrease from 50 to 17% between 4.50 and 4.30 cal ka BP, before increasing through to the top of the zone (Fig. 3). Conversely, Mediterranean woodland taxa, largely driven by Cupressaceae, increase up to ca. 4.10 cal ka BP (15 - 24.5%) and decrease towards the top of the zone (4%). (Fig. 3). After recording initial low relative abundances up to ca. 4.50 cal ka BP, dry steppe taxa begin to increase in relative abundance largely driven by pollen of the Cichorieae, which peak in abundance between ca. 4.33 – 4.10 cal ka BP (20-41%) and at ca. 3.40 cal ka BP (37%). During the initial interval of low dry steppe between ca. 4.85 – 4.50 cal ka BP, the cultivated species and weeds group forms 5 – 11% of the assemblage, before a decrease to 2% between ca. 4.50 – 4.00 cal ka BP as dry steppe expands (Fig. 3). At the start of this zone the fen trees and riverine forest taxa group form 10% of the pollen and spore assemblage (Fig. 3). The presence of pollen assigned to this group then decreases in the record until it is absent between 4.40 – 4.20 cal ka BP, coincident with the peak in dry
steppe taxa (Fig. 3). As the wetland marsh and bog group increases in relative abundance, following this peak in dry steppe taxa, first the deciduous oak grove group returns to the record and then the fen trees and riverine forest groups return (Fig. 3).

PAZ-2: 3.38 to 3.15 cal ka BP (95-86 cm)

PAZ-2 is dominated by the pollen and spores of taxa characteristics of wetland marsh and bog (Fig. 3). These pollen and spores form >40% of the assemblage with the exception of two short intervals at 3.33 cal ka BP and 3.20 – 3.15 cal ka BP (Fig. 3). The first of these intervals shows an increase in dry steppe taxa (20.5-39%) and cultivated species and weeds (4%) (Fig. 3). Whilst the second, and longer interval, of decreased wetland marsh and bog taxa is marked by the dominance of Mediterranean woodland taxa (55-74%) and low relative abundances (0.5%) to complete absence of cultivated species and weeds (Fig. 3). Between these two minima in wetland marsh and bog taxa are sporadic occurrences of fen trees and riverine forest taxa and deciduous oak grove taxa (1-2% and 0.7% respectively).

PAZ-3: 3.15 to 2.40 cal ka BP (86-65 cm)

The first few centimetres of PAZ-3 show an increase in wetland marsh and bog taxa following the peak of the Mediterranean woodland group at the end of PAZ-2 (Fig. 3). This culminates at 2.97 cal ka BP with wetland marsh and bog taxa forming 61% of the total assemblage, Mediterranean woodland a further 21% and deciduous oak groves and fen trees and riverine forests groups 7% (Fig. 3). This is followed by a decrease in wetland marsh and bog to 28.5% of the assemblage, deciduous oak groves (0.8%) and fen trees and riverine forests absent at 2.70 cal ka BP (Fig. 3). Initially, this decrease also includes Mediterranean woodland taxa which decrease from 21% of the assemblage at 3.00 cal ka BP to 9% at 2.80 cal ka BP and an increase in dry steppe taxa to 23% (Fig. 3). However, by 2.70 cal ka BP Mediterranean woodland taxa (28%) are more abundant than the dry steppe group (16%) (Fig. 3). There then follows an increase in wetland marsh and bog, deciduous oak groves, fen trees and riverine forests, moist forbe-grass and meadow steppe and cultivated species and weeds environmental groups towards the top of PAZ-3 at the expense of the dry steppe group (Fig. 3).
PAZ-4: 2.40 cal ka BP to present (65 cm-top)

The final zone of core AM18-1 is interrupted by core loss between 60 and 50 cm, an interval barren of palynomorphs from at least 24 to 20 cm and potentially as large as 27 to 17 cm, and two samples with poor pollen preservation at 36 and 16 cm (Fig. 3). Despite this disjointed nature, PAZ-4 begins with a continuation of the increase in wetland marsh and bog, deciduous oak groves and fen trees and riverine forests that characterised the top of PAZ-3 (Fig. 3). With deciduous oak groves reaching 17% at 2.25 cal ka BP, whilst cultivated species and weeds become absent (Fig. 3). Following a 10 cm section of core loss, a period of decreasing abundance of wetland marsh and bog, deciduous oak groves and fen trees and riverine forests pollen and spore taxa culminates at 1.70 cal ka BP with a peak in abundance of the dry steppe group of 19% (Fig. 3). After 1.50 cal ka BP, the sedimentology of core AM18-1 changes and the pollen and spore record becomes less continuous with interruptions caused by poor preservation and absence (Fig. 3). A shift in abundance from Mediterranean woodland to wetland marsh and bog and a decrease in dry steppe and cultivated species and weeds groups can be seen from 1.34 to 1.25 cal ka BP (Fig. 3). A final peak of wetland marsh and bog taxa is also seen at 0.85 cal ka BP, before an increase in Mediterranean woodland and taxa with wide environmental tolerances towards the top of the core (Fig. 3).

4.2.3. AM18-5

PAZ-1: 4.90 to 3.99 cal ka BP (84-64 cm)

Unlike AM18-1, PAZ-1 in AM18-5 is less dominated by the wetland marsh and bog group (Fig. 4). Whilst the oldest sample at 4.90 cal ka BP comprises 67% of pollen and spore taxa attributed to the wetland marsh and bog group, this decreases to 13.5% by 4.77 cal ka BP, with increases in Mediterranean woodland, dry steppe and cultivated species and weeds groups (Fig. 4). Wetland marsh and bog taxa recover to 28% at 4.65 cal ka BP, at the expense of dry steppe taxa (Fig. 4). This peak leads into an interval from 4.58 to 4.20 cal ka BP when the wetland marsh and bog group accounts for ≤10% of the assemblage and there are high relative abundances of Mediterranean woodland and dry steppe
groups. MarshFrom 4.20 cal ka BP to the top of the zone, wetland marsh and bog group taxa increase in abundance, initially at the expense of dry steppe taxa and alongside an increase in the Mediterranean woodland group up to ca. 4.10 cal ka (Fig. 4). Pollen and spores assigned to the deciduous oak groves and fen trees and riverine forests groups have a sporadic occurrence throughout most of PAZ-1 until 4.00 cal ka BP (Fig. 4). The top of PAZ-1 is constrained by an interval of core loss from ca. 4.00 – 3.00 cal ka BP (Fig. 4).

PAZ-2: 3.01 to 2.00 cal ka BP (49-32 cm)

PAZ-2 begins with increasing amounts of pollen and spores attributed to the wetland marsh and bog group from 31% at 3.01 cal ka BP to 63.5% at 2.83 cal ka BP (Fig. 4), and notable presence of taxa attributed to the moist forb-grass and meadow steppe group (Fig. 4). It is then followed by a brief reappearance of cultivated species and weeds taxa, including the only Late Bronze Age occurrence of Cerealia in core AM18-5 (18%) at 2.78 cal ka BP (Fig. 4, Figure S3). Deciduous oak grove taxa decrease in absence during the interval of increasing wetland marsh and bog group, but reappears at 2.78 cal ka BP (Fig. 4). The fen trees and riverine forests group increases in abundance from 2.78 to 2.56 cal ka BP, and then decreases, along with the wetland marsh and bog group to a minimum at 2.33 cal ka BP (Fig. 4). There is a 10% increase in dry steppe taxa at 2.33 cal ka BP, and also a 10% increase in taxa with wide environmental tolerances (Fig. 4). From 2.33 cal ka BP to the top of PAZ-2 there are increases in the wetland marsh and bog group, the fen trees and riverine forests group and the moist forb-grass and meadow steppe group (Fig. 4).

PAZ-3: 2.00 to 1.38 cal ka BP (32-18 cm)

The final zone of core AM18-5 is dominated by the Mediterranean woodland group, which accounts for 62% of the assemblage at 1.90 cal ka BP (Fig. 4), and relatively high amounts of the deciduous oak groves, which reaches 13-15.5% at 1.90-1.78 cal ka BP, and fen trees and riverine forests groups (Fig. 4). These increased abundances occur at the expense of the formerly high amounts of pollen in the wetland marsh and bog group present at the end of PAZ-2, which now decrease to a minimum of 9% at 1.90 cal ka BP, while the moist forb-grass and
meadow steppe group is also briefly absent from the record (Fig. 4). Following this the wetland marsh and bog group increases to 21% by 1.55 cal ka BP that is coincident with a final peak in the fen trees and riverine forests group (Fig. 4). By 1.49 cal ka BP, the pollen assemblage is dominated by Mediterranean woodland taxa and whilst the wetland marsh and bog group increases towards the top of the core, the dry steppe group remains a minor component of the assemblage (Fig. 4).

4.3. Diatom analysis

Ecological summary diagrams for diatom analysis are presented for cores AM18-1 (Fig. 5) and AM18-5 (Fig. 6). The corresponding full taxonomic diatom diagrams are available online in supplementary files Fig. S4 and S5. Results are described by Diatom Assemblage Zone (DAZ). Diatom ecology inferences for taxa with >5% abundance in at least one sample are summarised in Supplementary Table S3. Any further supporting literature for diatom ecology inferences are cited in the text of the discussion.

[Insert Figures 5 and 6]

4.3.2. Core AM18-1

Barren: 4.85 to 3.73 cal ka BP (148-108 cm)

DAZ-1: 3.73 to 3.21 cal ka BP (108-88 cm)

Fresh-brackish taxa and oligosaprobus (high water quality) taxa, in particular *Epithemia argus*, generally make up the majority of the diatom assemblage throughout the core. In DAZ-1, after an initial decline in percentage abundance from ca. 3.70 cal ka BP there is an expansion in these groups at ca. 3.35 cal ka BP, followed by a second decreasing phase to the top of the zone at ca. 3.22 cal ka BP (Fig. 5). Marine and brackish-marine taxa record an inverse signal, increasing through to 3.40 cal ka BP, decreasing at ca. 3.35 cal ka BP, and increasing again to
the top of DAZ-1 (Fig. 5). The temporary inversion in trends at ca. 3.35 cal ka BP is approximately coincident with the boundary between the traditional archaeological intervals Late Cypriot IIA and IIB (Supplementary Table S1). Following this boundary freshwater taxa also increase in representation, indicating a highly sensitive environment. Taxa suggestive of a more trophic environment initially mirror the trend in taxa preferring higher salinities, increasing up to 3.40 cal ka BP, decreasing at ca. 3.35 cal ka BP, and increasing again up to ca. 3.30 cal ka BP (Fig. 5). After this point however, relative abundances of oligosaprobic taxa increase through to the top of the zone (Fig. 5). Other ecological trends following ca. 3.35 cal ka BP suggest a more nitrogen rich, alkaline, and oxygen depleted environment (Fig. 5).

DAZ-2: 3.21 to 3.10 cal ka BP (88-84 cm)

The continued expansion of higher salinity environments are observed in DAZ-2, with relatively low abundances of *Epithemia argus* and *Ulnaria vitrea*, while *Paralia sulcata* and *Diploneis bombus* abundances remain elevated (Fig. 5). The further reduction of oxygen saturation and the continuation of eutrophic and elevated nitrogen conditions are also suggested by diatom assemblages (Fig. 5). *Navicula oblonga* is a species sensitive to human impacts (Biological Condition Gradient [BCG] category 3) (Davies and Jackson, 2006; Sutula et al., 2016) and remains elevated in DAZ-2, while taxa tolerant of human disturbance (the BCG category 5) record decreased percentage relative abundances (Fig. 5). This may indicate reduced human impact on the landscape.

DAZ-3: 3.10 cal ka BP to present (84-0 cm)

At the onset of DAZ-3, salinity is inferred to decrease, which continues throughout the remainder of the Bronze Age (Fig. 5). Taxa tolerant of human disturbance (BCG category 5) also recover at the base of this zone at ca. 3.00 cal ka BP (Fig. 5), potentially indicating an increase in anthropogenic effects on the landscape.

4.3.3. Core AM18-5
Barren: 4.90 to 4.77 cal ka BP (84-78 cm)

DAZ-1: 4.77 to 4.18 cal ka BP (78-67 cm)

DAZ-1 features two distinctive sections either side of the Late Chalcolithic – Philia Early Cypriot traditional archaeological interval boundary. Beginning with the lower section of DAZ-1, once again *Epithemia argus* dominates diatom assemblages, however decreases in abundance throughout the section, and combined with other diatom taxa (e.g. decreasing *Surirella crumena*, increased *Gomphonema minutum*, *Navicula oblonga*, and *Ulnaria vitrea*), suggests a shift from a mesotrophic to a more eutrophic setting (Fig. 6, Supplementary Figure S5). Fresh to fresh-brackish species dominate the assemblage in this zone, along with taxa indicating a pH neutral setting (Fig. 6). Decreasing water quality and oxygen saturation is suggested from the upper samples of this lower section at ca. 4.55 – 4.50 cal ka BP (Fig. 6).

In the upper section of DAZ-1 (the Philia Early Cypriot phase, ca. 4.45 – 4.30 cal ka BP) there is a recorded increase in higher salinity and eutrophic groups, alongside a continued decrease in the greater water quality taxa (Fig. 6). Furthermore, a combined decrease in *Surirella crumena* and *Epithemia argus* may suggest a restriction in most subaerial habitats, while exclusively alkaliphilous and low nitrogen taxa suggest the onset of a more alkaline, nitrogen depleted environment (Fig. 6). At 4.30 cal ka BP continued oxygen depletion is suggested from diatom assemblages, and a decrease in *Navicula oblonga* combined with peak of *Nitzschia amphibia* may indicate an increase in anthropogenic impact (Fig. 6).

Barren: 4.18 to 3.99 cal ka BP (67-64 cm)

DAZ-2: 3.01 to 1.38 cal ka BP (49-18 cm)

A decreasing trend in *Navicula oblonga* from ca. 3.00 – 2.10 cal ka BP combined with the increase in both *Surirella ovalis* and *Campylodiscus hibernicus* from ca. 1.90 and ca. 1.50 cal ka BP respectively, may indicate an increasing human influence on the landscape throughout this
section. Decreasing trends in *Nitzschia amphibia*, *Diploneis ovalis* and *Gomphonema minutum* in coincidence with increasing *Epithemia argus* abundances from the base of the zone to ca. 1.90 cal ka BP may indicate increasing oxygen saturation and water quality through this section. Following ca. 1.90 cal ka BP these trends reverse to the top of the core, suggesting water quality decreases to the present day.

5. Discussion

5.1. Multiproxy history of the Akrotiri Marsh

Pollen and diatom proxy data from the Akrotiri Marsh are here combined to present a multiproxy history of the area, discuss palaeoclimatic events and their potential forcings (Fig. 7).

5.1.1 Pre-4.50 cal ka BP

Pollen assemblages between ca. 4.60 – 4.50 cal ka BP indicate the dominance of wetland taxa, and taxa such as *Ipomoea* suggest the early establishment of a marsh environment (Tarasov et al., 1998; Gondelle, 2012; Gucel et al., 2013). *Cerealia*, while never abundant, features most prominently from 4.75 – 4.50 cal ka BP, indicating a potential agricultural signal from the surrounding landscape, which is supported by the cultivation weed taxa *Plantago*, and is consistent with a Late Chalcolithic subsistence economy that was more dependent on agriculture than hunting (Knapp, 2013). In the Hala Sultan Tekke record this interval is one of high and relatively stable growing season precipitation and temperature (Kaniewski et al., 2020). Diatom assemblages support the inference of marsh conditions between ca. 4.70 – 4.50 cal ka BP, recording gradually increasing salinity, eutrophication, and saprobity through time, likely driven by the seasonally fluctuating conditions. In summary, prior to ca. 4.50 cal ka BP multiple proxies suggest marsh conditions with seasonal fluctuations in water availability (Fig. 7).

5.1.2. The 4.2 ka BP Event
From ca. 4.50 cal ka BP both proxy datasets indicate decreasing water availability on the landscape and a more restricted marsh setting (Figs. 3, 4, 6), as well as the disappearance of evidence for agricultural activities (Figs. 3, 4). In the diatom data, this is indicated by taxa indicative of a more saline, alkaline, nutrient-enriched, phosphoric, anoxic, saprobic, and drier environment (Figs. 5, 6). The pollen data at this time records a decrease in wetland taxa, alongside the disappearance of Cerealia from all but one assemblage in core AM18-5 from 4.50 – 4.00 cal ka BP, and an increase in dry steppe and Mediterranean woodland taxa (Figs. 3, 4, S1, S2, S3). The peak in aridity, as defined from the pollen data, is between 4.50 and 4.35 ka cal BP. In the AM18-1 core this is seen as an expansion of dry steppe taxa at 4.35 ka cal BP and a second reduction in wetland vegetation at ca. 4.20 cal ka BP (Fig. 3). In the AM18-5 core the aridity event, as inferred from a reduction in wetland taxa, lasts from ca. 4.60 – 4.20 cal ka BP, whilst Cerealia is last present at ca. 4.30 ka cal BP (Fig. S3). Diatom datasets also indicate reduced anthropogenic impact on the surrounding landscape after 4.30 cal ka BP (Fig. 6).

5.1.3. The 3.2 ka BP Event

The 3.2 ka BP Event is seen in the pollen record from the Akrotiri Marsh by a minimum in wetland vegetation at 3.17 cal ka BP followed by a peak in wetland taxa between 3.10 – 2.97 cal ka BP and finally a peak in dry steppe taxa at 2.80 cal ka BP (Fig. 3). The diatom data from the Akrotiri Marsh also suggest a period of aridity from 3.21-3.13 cal ka BP and the potential for reduced human impacts on the environment (Fig. 5). At Hala Sultan Tekke, peak aridity is centred on 3.15 cal ka BP when winter rainfall decreased by 30 mm and at 2.90/2.85 cal ka BP with a decrease in winter rainfall of 8 mm (Kaniewski et al., 2020). Spring rainfall also decreases in the Hala Sultan Tekke record, with the greatest minima recorded throughout the Bronze Age (Kaniewski et al., 2020). A return to more normal winter and spring rainfall is reconstructed in the humid interval at 3.00-2.95 cal ka BP (Kaniewski et al., 2019, 2020). Our new results are in agreement with this, showing the minimum in wetland vegetation during the first and driest peak of the 3.2 cal ka BP event and a turnover from Cupressaceae to Pinus and an increase in Urticaceae, which together could show a decrease in agricultural activity and abandonment of lower elevation sites (Bottema, 1982; Gucel et
al., 2013). Whilst the second aridity peak recorded at Hala Sultan Tekke is much less extreme, taking into account the full range of uncertainty, the drop during the second 3.2 cal ka BP arid peak was 2 – 17 mm in the winter and 2.6 – 9.3 mm in spring (Kaniewski et al., 2020). This more muted precipitation event is less pronounced in the Akrotiri Marsh record, indicated by a peak in dry steppe taxa at ca. 2.8 ka cal BP (Fig. 3). At ca. 3.15 cal ka BP, archaeological records display the widespread voluntary abandonment of both coastal centres, such as Hala Sultan Tekke, Ayios Dhimitrios, Alassa, Maroni, Morphou Tounta Tou Skourou, Maa Palaeokastro and Pyla Kokkinokremnos (Brown, 2013; Kaniewski et al., 2013, 2019; Knapp and Manning, 2016), and inland settlements specialising in agriculture, mining and pottery production, such as Myrtou Pigadhes, Athienou Bamboulari tis Koukounninas, and Apliki Karamallos (Knapp and Manning, 2016). Destruction of monumental structures and abandonment of town centres is also present at some of the largest societal structures on the island, including the nearest to the Akrotiri Marsh site Alassa Paleotaverna (Knapp and Manning, 2016). The abandonment of Alassa Paleotaverna further up the Kouris River catchment occurred before the second aridity peak of the 3.2 cal ka BP event (using dates provided in Knapp, 2013). Based on the extreme decline in rainfall recorded in the Akrotiri Marsh, which has a hydrology partly controlled by the Kouris River catchment, and supported by the reconstructions from distal Hala Sultan Tekke could indicate this agricultural centre was a victim of the first cold-arid peak of the 3.2 cal ka BP event.

Preceding the main 3.2 ka BP Event, there is evidence for increasing aridity in the Akrotiri Marsh as there are in many other Mediterranean records (Kaniewski et al., 2010, 2013, 2019; Bernhardt et al., 2012; Drake, 2012; Langgut et al., 2016). Diatom assemblages record an increase in salinity, alkalinity and nutrient enrichment between ca. 3.70 – 3.40 cal ka BP, along with a decrease in oxygen saturation and subaerial moist habitats (Fig. 5). Pollen assemblages record a peak in dry steppe taxa from ca. 3.40 – 3.35 cal ka BP (Fig. 3). Combined, these proxy records indicate a reduction in water availability during this interval (Fig. 7). This is coincident with a pan-Mediterranean wide centennial-scale cold and arid climate event that occurred between 3.50 – 3.30 cal ka BP (Finné et al., 2019). By contrast, at Hala Sultan Tekke this time interval is shown to have mostly warmer temperature anomalies and only a minor decrease in winter rainfall (Kaniewski et al., 2020). Following this, both proxy records from the Akrotiri Marsh suggest a short interval of increased water availability centred on ca. 3.35 cal ka BP (Figs. 3, 5) that is coincident with the Late Bronze Age peak in spring precipitation and a brief warming in an otherwise cooling trend reported from the Hala Sultan Tekke (Kaniewski et al., 2020), before water availability continues to decrease into the 3.2 ka BP event (Fig. 7). The pollen record at this
time shows strong fluctuations between wetland, Mediterranean woodland and steppe taxa, suggesting a period of variable precipitation (Fig. 3). Cyprus is latitudinally parallel with the Northern Levant mainland, where it has been previously established that the onset of 3.2 ka BP Event began earlier (ca. 3.45 cal ka BP) (Kaniewski et al., 2008; Sorrel and Mathis, 2016) than in the southern Levant (ca. 3.25 cal ka BP) (Schilman et al., 2002; Litt et al., 2012). Results from the Akrotiri Marsh indicate that this earlier onset time for the 3.2 ka BP Event in the northern Levant is also consistent for Cyprus, where pollen assemblages in core AM18-1 record increased aridity events from ca. 3.40 cal ka BP. This is however, not recorded in the eastern Larnaca Salt Lake region (Kaniewski et al., 2013, 2019, 2020).

5.1.4. Post-3.2 ka BP event

Following the second aridity peak at ca. 2.80 ka cal BP, there is a trend towards increased water availability in both the pollen and diatom records (Fig. 7). This is accompanied by a renewed signal for agricultural activity in the area, which is consistent with the pattern seen at Hala Sultan Tekke (Kaniewski et al., 2020). In the pollen records the increasing humidity trend reaches a peak in fen trees and riverine forest at around 2.60 cal ka BP and a minimum in the dry steppe vegetation at 2.40 cal ka BP (Figs. 3, 4). Diatom assemblages between ca. 3.10 – 2.10 cal ka BP suggest decreasing salinity and phosphorus concentrations, along with increasing oxygen concentration and anthropogenic influence (Figs. 5,6). In the Hala Sultan Tekke record this is an interval of above average winter rainfall and a peak in spring rainfall (Kaniewski et al., 2020). The increase of Mediterranean woodland and dry steppe vegetation at ca. 2.30 ka cal BP in core AM18-5 could relate to the below average spring rainfall and declining winter rainfall reported from the Hala Sultan Tekke record (Kaniewski et al., 2020). In AM18-1, the increase in wetland pollen taxa from ca. 1.50 – 1.55 cal ka BP is coincident with the highest winter and spring rainfall recorded in the Hala Sultan Tekke record (Kaniewski et al., 2020). At ca. 1.50 cal ka BP the sedimentology, pollen and diatom assemblages all change in the Akrotiri Marsh suggesting a major change in the local environment (Figs. 2, 3, 5). The reconstructions from near Hala Sultan Tekke show this is a period of cold-wet winters linked with a Late Antique cold interval (Kaniewski et al., 2020). It is also when a series of earthquakes affected the region with destruction at the nearby settlement of Kourion and the harbour at Dreamers Bay (James et al., 2021). Disentangling the relative roles of cold-wet winters and earthquakes on the development of the Akrotiri Marsh is beyond the scope of this paper. Diatom assemblages continue to record decreasing salinity and increasing oxygen concentration from ca. 1.80 – 1.38 cal ka BP, after which the marsh becomes
more saline once more (Fig. 5). From Hala Sultan Tekke, the period 1.00 – 0.50 cal ka BP is one of above average winter precipitation (Kaniewski et al., 2020) and corresponds to increased amounts of wetland plant pollen in the Akrotiri Marsh record (Fig. 3).

5.2. Palaeoclimatology of the Akrotiri Marsh

At the Akrotiri Marsh there is a clear correlation between the onset of lesser water availability inferred by pollen and diatom assemblages (Fig. 7, zone 1b in each proxy), and the North Atlantic Oscillation (NAO) inversion to a more positive state at ca. 4.45 cal ka BP (Fig. 7) (Olsen et al., 2012; Margaritelli et al., 2016). This turnover also occurs towards the end of an interval of increased Siberian High intensity, between 4.60 and 4.45 cal ka BP (Fig. 7) (Rohling et al., 2002; Mayewski et al., 2004). The following interval of increased Siberian High intensity between ca. 3.80 – 3.60 cal ka BP does not appear to correlate with any arid climate inferences from the Akrotiri Marsh proxy records. However, the onset of consistently positive NAO conditions from ca. 3.35 – 3.10 cal ka BP does correlate with a series of aridity peaks in pollen and diatom records (Fig. 7, AM18-1 zone 2 in each proxy), as well as an interval of increased Siberian High intensity between 3.40 – 3.00 cal ka BP (Rohling et al., 2002; Mayewski et al., 2004).

It appears therefore, that climate fluctuations at the Akrotiri Marsh, Cyprus, most closely correlate to the configuration of the NAO, and to a lesser extent the intensity of the Siberian High pressure system. It has been previously documented that the Siberian High anticyclone likely has a direct impact on modern monthly precipitation on Cyprus (Lingis and Michaelides, 2009), and that shifts in the Siberian High intensity have potentially induced large-scale climatic fluctuations in the at ca. 3.00 cal ka BP (Geraga et al., 2010). There is evidence that the NAO is connected to millenium-scale shifts in sea surface temperatures and climates in the eastern Mediterranean and Middle East (Rimbu et al., 2003; Wanner et al., 2008), as well as having been connected to increasing aridity in East Africa from ca. 3.50 cal ka BP (Kaniewski et al., 2015), and associated with Late Bronze Age droughts in the Aegean, eastern Mediterranean, and west Asia (Kaniewski et al., 2015). By better understanding the Holocene palaeoenvironments of Cyprus, we may better understand the distribution and expression of the dominant global climate forcing mechanisms in the eastern Mediterranean, particularly in relation to the lesser explored effects of the NAO in this region.
5.3. “Societal Collapse” or more nuanced societal changes linked to climate?

A number of authors have suggested an environmental cause to the Late Bronze Age Collapse (Alpert et al., 1989; Bryson et al., 1974; Butzer & Harris, 2007; Carpenter, 1966; Dalfes et al., 1997; Neumann et al., 1987; Weiss, 1982, 1997), however the role of climate change in eastern Mediterranean Bronze Age societal shifts is often subject to lively debate (Cline, 2014; Knapp and Manning, 2016; Schloen, 2017). One causal hypothesis is that climate change directly and primarily determined land cover and vegetation throughout the Mediterranean and thus provided the limitations for Bronze Age societies that, driven by necessity, would have predictable responses in order to fully adapt to climatic changes (Jalut et al., 2009; Di Rita et al., 2018). It is also hypothesised that climate change had a more direct impact on human society and populations through multiple pathways as well as through vegetation turnover, resulting in political and economic turmoil and migrations that then had a further direct effect on land cover (Rosen, 2007; Kaniewski and Van Campo, 2017). Lastly, there is a purely human hypothesis, that populations alone caused the observed changes in land cover and vegetation irrespective of climate influence (Hughes, 2014). A recent synthesis on pollen and archaeo-demographic archives suggests that during the Bronze Age (prior to ca. 3.00 ka BP), a combination of hypothesis one (climate affecting vegetation and human societies directly) and hypothesis two (purely anthropogenically induced vegetation alteration) were the main factors in changing landscapes (Roberts et al., 2019). Throughout the Mediterranean Bronze Age, long-term and medium-term climatic adversity has often destabilised civilisations through multiple pathways, whereas societies have often learnt to cope with recurring shorter-term climatic cycles (McMichael, 2012). There is also evidence that populations expanded not only in spite of long-term climatic shifts, but also due to them, with climatic adversity acting as a stimulus rather than a hindrance to adequately structured societal/organisational adaptive strategies (Roberts et al., 2019). While numerous proxy datasets suggest more arid conditions, societal set-up and human responses were a key factor (Holmgren et al., 2016; Knapp and Manning, 2016), and when considering agricultural shifts, single causes should be avoided and integrated environmental, economic, and social factors must be formed into a causal chain (Riehl et al., 2012).

The climatic inferences documented in this paper are congruent with, and build upon, other climate research from Cyprus during the Bronze Age interval, and we can begin to see a consistent and widespread climate reconstruction throughout the southern margins of the island. While Figure 7 certainly displays a co-incidence of climatic and societal shifts on Cyprus, it is important to note that it is beyond the scope of this paper - that is, to provide a contextual climatic reconstruction for archaeological research on the island and other research in these fields - to
conclude at this stage whether the documented climate shifts acted as contributors, instigators or exacerbators in societal shifts during the Cypriot Bronze Age. This question would likely benefit from the introduction of more proxy analyses at previously studied sites, such as geochemical analyses that could give insight to fluctuations in the mining and metal economies on Cyprus during the Bronze Age.

6. Conclusions

Pollen and diatom assemblages from the Akrotiri Marsh provide a consistent and detailed record of environmental change on Cyprus during the late Holocene. Two sediment cores featuring average chronological resolutions of one date per 1000 years, potentially allow for inferring that both the 4.2 ka BP and 3.2 ka BP climate events had an impact on the island’s water balance. Increasing aridity speculated to occur from 4.50 cal ka BP is shown by increasing Mediterranean woodland and dry steppe pollen types, whilst the diatom assemblage indicates gradually increasing salinity, eutrophication and saprobity at the Akrotiri Marsh, while oxygen saturation gradually decreased. Both proxies indicate maximum aridity potentially during the 4.2 ka BP event. The inferred 3.2 ka BP event in the pollen record is identified as an initial increase in aridity, followed by a brief interval of humidity, and then a second interval of increased aridity. This is very similar to the nature and timing of the “W-shaped” signal identified at the nearby site of Pyla Kókkino-Krommo (Kaniewski et al., 2019; 2020). These results also occur in close correlation with shifts in the NAO cycle, and Late Bronze Age reconstructions are coincident with the widespread abandonment of many coastal archaeological sites and inland urban centres on Cyprus. Our new record from the Akrotiri Marsh shows that a climatic influence on societal change cannot be dismissed at this site.

Acknowledgements

We are immensely grateful to Chris Hadjigeorgiou of the Geological Survey Department, Cyprus, Pantelis Charilaou of the Sovereign Base Area Administration Environmental Department, Thomas Hadjikyriakou of the Akrotiri Environmental Education and Information Centre, the Ministry of Defence and Defence Infrastructure Organisation for enabling us to undertake fieldwork and take samples. The fieldwork was kindly
supported by a grant from the Council for British Research in the Levant and CJH thanks Northumbria University for funding his PhD. Lesley Dunlop, Dave Thomas and Will Thomas are thanked for their kind assistance in the lab.

7. References

Baioumy, H., Kayanne, H., Tada, R., 2010. Reconstruction of lake-level and climate changes in Lake Qarun, Egypt, during the last 7000 years. J. Great Lakes Res. 36, 318–327. https://doi.org/10.1016/j.jglr.2010.03.004

Blaauw, M., Christen, J., 2019. rBacon Bayesian Age-Depth Modelling Approach 2.3.2. R Packag.

Archaeology, Jonsered.

https://doi.org/10.1080/00173130152987535

https://doi.org/10.1038/srep29623

https://doi.org/10.1002/1097-0088(20000630)20:8<853::AID-JOC497>3.0.CO;2-M

https://doi.org/10.1007/s00382-008-0480-9

Delgado, C., Ector, L., Novais, M., Blanco, S., Hoffmann, L., Pardo, I., 2013. Epilithic diatoms of springs and spring-fed streams in Majorca Island (Spain) with the description of a new diatom species Cymbopleura margalefii sp. nov. Fottea 13, 87–104.

James, S., Blue, L., Rogers, A., Score, V., 2021. From phantom town to maritime cultural landscape and beyond: Dreamer’s Bay Roman-Byzantine ‘port’, the Akrotiri Peninsual, Cyprus, and eastern Mediterranean maritime communications. Levant 1–24.

Margaritelli, G., Vallefuoco, M., Di Rita, F., Capotondi, L., Bellucci, L., Insinga, D., Petrosino, P., Bonomo, S., Cacho, I., Cascella, A., Ferraro,

Table 1. Raw and calibrated radiocarbon ages for cores AM18-1 and AM18-5. Ages were calibrated using the IntCal13 calibration curve (Reimer et al., 2013) and 95.4% ranges shown. Upper section displays the dates utilised in the age model, lower section displays the discounted dates.

<table>
<thead>
<tr>
<th>Lab Number</th>
<th>Core</th>
<th>Depth (cm)</th>
<th>Unit</th>
<th>Dated material</th>
<th>Raw radiocarbon age (14C yr BP)</th>
<th>Calibrated age range (cal yr BP)</th>
<th>Mean calibrated age (cal yr BP)</th>
<th>Archaeological Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>GdA-5779</td>
<td>1</td>
<td>37-40</td>
<td>4a</td>
<td>Bulk sediment</td>
<td>1565 ± 30</td>
<td>1361 – 1586</td>
<td>1466</td>
<td>Byzantine</td>
</tr>
<tr>
<td>GdA-5634</td>
<td>1</td>
<td>100</td>
<td>6</td>
<td>Wood fragment</td>
<td>3260 ± 30</td>
<td>3384 – 3601</td>
<td>3489</td>
<td>Late Cypriot IB</td>
</tr>
<tr>
<td>GdA-5872</td>
<td>1</td>
<td>136</td>
<td>7</td>
<td>Peaty wood</td>
<td>4090 ± 30</td>
<td>4455 – 4807</td>
<td>4594</td>
<td>Late Chalcolithic</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>GdA-5868</td>
<td>5</td>
<td>21.5-23</td>
<td>6</td>
<td>Bulk organic sediment</td>
<td>1610 ± 25</td>
<td>1384 – 1603</td>
<td>1487</td>
<td>Byzantine</td>
</tr>
<tr>
<td>GdA-5869</td>
<td>5</td>
<td>46-48</td>
<td>6</td>
<td>Bulk organic sediment</td>
<td>2775 ± 45</td>
<td>2741 – 3057</td>
<td>2873</td>
<td>Cypro-Geometric II</td>
</tr>
<tr>
<td>GdA-5870</td>
<td>5</td>
<td>74-76</td>
<td>6</td>
<td>Bulk organic sediment</td>
<td>4210 ± 40</td>
<td>4549 – 4909</td>
<td>4737</td>
<td>Late Chalcolithic</td>
</tr>
<tr>
<td>GdA-5664</td>
<td>1</td>
<td>40</td>
<td>4a</td>
<td>Large root</td>
<td>-325 ± 30</td>
<td>-6.2 – -55.5</td>
<td>-26.3</td>
<td></td>
</tr>
<tr>
<td>GdA-5871</td>
<td>1</td>
<td>81-84</td>
<td>6</td>
<td>Bulk organic sediment</td>
<td>4095 ± 55</td>
<td>4922 – 4442</td>
<td>4619</td>
<td></td>
</tr>
<tr>
<td>GdA-6010</td>
<td>1</td>
<td>85</td>
<td>6</td>
<td>Bulk organic sediment</td>
<td>4250 ± 31</td>
<td>4864 – 4708</td>
<td>4786</td>
<td></td>
</tr>
<tr>
<td>GdA-6011</td>
<td>1</td>
<td>115</td>
<td>7</td>
<td>Bulk organic sediment</td>
<td>2.85 ± 40</td>
<td>2355 – 2156</td>
<td>2256</td>
<td></td>
</tr>
<tr>
<td>GdA-6013</td>
<td>5</td>
<td>68</td>
<td>6</td>
<td>Bulk organic sediment</td>
<td>-237 ± 50</td>
<td>-5.4 – -6.4</td>
<td>-5.9</td>
<td></td>
</tr>
</tbody>
</table>

Figure Captions:

Figure 1. Location of the Akrotiri Marsh within the context of (A) Cyprus and (B) Akrotiri Peninsula; (C) Coring locations on the Akrotiri Marsh. Images from Google Earth.

Figure 2. Stratigraphy and radiocarbon age-depth diagrams for cores AM18-1 and AM18-5. Age models produced using the Bacon package in R (Blaauw and Christen, 2019), with ages calibrated using the IntCal13 calibration curve and reported with 95.4% confidence intervals (see sections 3 and 4.1).
Figure 3. Pollen ecology summary diagram for core AM18-1 plotted against depth, age and archaeological periods. Expanded section shows the Bronze Age interval in higher resolution. The archaeological phases of Knapp (2008), Knapp (2013), and Kearns and Manning (2019) are used for providing archaeological context to the palaeoenvironmental results (Supplementary Table S1).

Figure 4. Pollen ecology summary diagram for core AM18-5 plotted against depth, age and archaeological periods. The archaeological phases of Knapp (2008), Knapp (2013), and Kearns and Manning (2019) are used for providing archaeological context to the palaeoenvironmental results (Supplementary Table S1).

Figure 5. Summary of diatoms from core AM18-1 by ecological preference. Ecological categories are explained as follows: Sensitivity value assigned depending on the concentration of filterable reactive nutrients (phosphorous) at which the taxa were most abundant, after Kelly et al. (1995), with category 1 indicating greatest sensitivity to the presence of phosphorous; category 1 <0.01 mg/l; category 2 ≥0.01, <0.035 mg/l; category 3 ≥0.035, <0.1 mg/l; category 4 ≥0.1, <0.3 mg/l; category 5 ≥0.3 mg/l. Moisture classified as category 1 = never, or only very rarely, occurring outside water bodies; category 2 = mainly occurring in water bodies, sometimes on wet places; category 3 = mainly occurring in water bodies and also regularly on wet or moist places; category 4 = mainly occurring on wet, moist or temporarily dry places; category 5 = nearly exclusively occurring outside water bodies (Van Dam et al., 1994). Biological Condition Gradient (BCG) describes changes in aquatic systems across increasing levels of human disturbance, whereby category 1 = environmentally specialist species requiring a natural environment; category 2 = highly sensitive species similar to a natural environment; category 3 = sensitive species – slight alteration of natural environment leads to a loss of highly sensitive species; category 4 = indiscriminate species – moderate changes to natural environment lead to replacement of some sensitive ubiquitous taxa by more tolerant taxa; category 5 = tolerant species – high level of changes to natural environment lead to a marked reduction in sensitive taxa, conspicuously unbalanced taxonomic distribution and reduced complexity; category 6 = anthropogenic specialist species (Davies et al., 2006; Sutula et al., 2016). Classification of diatoms by salinity, pH, trophic state, nitrogen uptake, oxygen saturation and saprobity taken from Vos et al. (1993), Van Dam et al. (1994) and Denys (1992).

Figure 6. Summary of diatoms from core AM18-5 by ecological preference (for explanation of categories used, see Fig. 5 caption).
Figure 7. Synthesis of all proxy records showing fossil pollen and diatom derived key water availability intervals alongside archaeological periods, Bronze Age configuration of the dominant North Atlantic Oscillation (NAO) (Olsen et al., 2012; Margaritelli et al., 2016; Di Rita et al., 2018) and increased intensity Siberian High intervals (Rohling et al., 2002; Mayewski et al., 2004). Archaeological end date for Alasia Paleotaverna from Knapp (2013). The archaeological phases of Knapp (2008), Knapp (2013), and Kearns and Manning (2019) are used for providing archaeological context to the palaeoenvironmental results (Supplementary Table S1).
Figure 1. Location of the Akrotiri Marsh within the context of (A) Cyprus and (B) Akrotiri Peninsula; (C) Coring locations on the Akrotiri Marsh. Images from Google Earth.
Figure 2. Stratigraphy and radiocarbon age-depth diagrams for cores AM18-1 and AM18-5. Age models produced using the Bacon package in R (Blaauw and Christen, 2019), with ages calibrated using the IntCal13 calibration curve and reported with 95.4% confidence intervals (see sections 3 and 4.1).
Figure 3. Pollen ecology summary diagram for core AM18-1 plotted against depth, age and archaeological periods. Expanded section shows the Bronze Age interval in higher resolution. In this paper the archaeological phases of Knapp (2008), Knapp (2013), and Kearns and Manning (2019) are used for providing archaeological context to the palaeoenvironmental results (Supplementary Table S1).
Lithological units:

- 4a Red-brown organic clayey silt
- 6 Black humified peat
- 7 Grey-brown organic silty clay with orange mottling

Environment:

- Deciduous oak groves
- Fen trees & riverine forest
- Wetland marsh & bog
- Mediterranean woodland
- Moist forb-grass & meadow steppe
- Dry steppe
- Cultivated species & weeds
- Wide environmental tolerance
- Unidentifiable (degraded)
Figure 4. Pollen ecology summary diagram for core AM18-5 plotted against depth, age and archaeological periods. In this paper the archaeological phases of Knapp (2008), Knapp (2013), and Kearns and Manning (2019) are used for providing archaeological context to the palaeoenvironmental results (Supplementary Table S1).

Figure 5. Summary of diatoms from core AM18-1 by ecological preference. Ecological categories are explained as follows: Sensitivity value assigned depending on the concentration of filterable reactive nutrients (phosphorous) at which the taxa were most abundant, after Kelly et al.
(1995), with category 1 indicating greatest sensitivity to the presence of phosphorous; category 1 <0.01 mg/l; category 2 ≥0.01, <0.035 mg/l; category 3 ≥0.035, <0.1 mg/l; category 4 ≥0.1, <0.3 mg/l; category 5 ≥0.3 mg/l. Moisture classified as category 1 = never, or only very rarely, occurring outside water bodies; category 2 = mainly occurring in water bodies, sometimes on wet places; category 3 = mainly occurring in water bodies and also regularly on wet or moist places; category 4 = mainly occurring on wet, moist or temporarily dry places; category 5 = nearly exclusively occurring outside water bodies (Van Dam et al., 1994). Biological Condition Gradient (BCG) describes changes in aquatic systems across increasing levels of human disturbance, whereby category 1 = environmentally specialist species requiring a natural environment; category 2 = highly sensitive species - similar to a natural environment; category 3 = sensitive species – slight alteration of natural environment leads to a loss of highly sensitive species; category 4 = indiscriminate species – moderate changes to natural environment lead to replacement of some sensitive ubiquitous taxa by more tolerant taxa; category 5 = tolerant species – high level of changes to natural environment lead to a marked reduction in sensitive taxa, conspicuously unbalanced taxonomic distribution and reduced complexity; category 6 = anthropogenic specialist species (Davies et al., 2006; Sutula et al., 2016). Classification of diatoms by salinity, pH, trophic state, nitrogen uptake, oxygen saturation and saprobity taken from Vos et al. (1993), Van Dam et al. (1994) and Denys (1992).
Figure 6. Summary of diatoms from core AM18-5 by ecological preference (for explanation of categories used, see Fig. 5 caption).
Figure 7. Synthesis of all proxy records showing fossil pollen and diatom derived key water availability intervals alongside archaeological periods, Bronze Age configuration of the dominant North Atlantic Oscillation (NAO) (Olsen et al., 2012; Margaritelli et al., 2016; Di Rita et al., 2018) and increased intensity Siberian High intervals (Rohling et al., 2002; Mayewski et al., 2004). Archaeological end date for Alassa Paleotaverna from Knapp (2013). In this paper the archaeological phases of Knapp (2008), Knapp (2013), and Kearns and Manning (2019) are used for providing archaeological context to the palaeoenvironmental results (Supplementary Table S1).

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Highlights

- Two 5000-year-old multiproxy records from the Akrotiri Marsh, southern Cyprus
- Both the 4.2K and 3.2K climate events had an impact on the island's water balance
- Pollen & diatoms infer Early Bronze Age peak aridity between 4.3 & 4.1 cal ka BP
- Repeat dry intervals in Late Bronze Age from 3.4 to 3.1 cal ka BP, W-Shaped event
- Insight into the expression of the North Atlantic Oscillation and the Siberian High