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Abstract

Many dynamical effects in biology, social and technological complex systems have recently
revealed their relevance to group interactions beyond traditional dyadic relationships between in-
dividual units. In this paper, we propose a growing simplicial network to model the higher-order
interactions represented by clique structures. We analytically study the degree distribution and
clique distribution of the network model. As an important degree-based topological index, Som-
bor index of the model has been derived in an iterative manner and an approximation method
with closed expression is proposed. Moreover, we observe power-law and small-word effect for
the simplicial networks and examine the effectiveness of the approximation method for Sombor
index through computational experiments. We discover the scaling constant for Sombor index
with the evolution of the network when the initial seed network is modeled as an Erdős-Rényi
random graph. Our findings suggest the relevance and potential applicability of simplicial net-
works in modelling higher-order interactions in complex networked systems.

Keywords:
Sombor index, degree distribution, clique distribution, distance, complex network, random
graph.
2000 MSC: 05C07, 05C69, 05C82, 05C80.

1. Introduction

Networks provide a fundamental system-level description of complex interconnected sys-
tems made of interacting units through the edges in the networks. Despite the success of network
presentation during the past decades, the strong limitation of a single type of pairwise or dyadic
interactions falls short in effectively capturing many empirical systems [5, 6]. The significance of
higher-order interactions has been highlighted recently in a variety of real-world systems in na-
ture [22], biology [47] and technology [39], with examples ranging from scientific collaboration
[48] to neuronal activity in brains [9], from social contagion [29] to competition and cooperation
in ecosystems [30]. With higher-order interaction modeled at the the level of groups of nodes, it
is found that collective behaviors in neuroscience can be more faithfully predicted [46, 21] and
essential nonlinearity emerges in diffusion processes [34].

Statistical physics and network science methods are originally devised to describe pairwise
interactions. These methods have been generalized to include building blocks like small sub-
graphs and motifs to account for higher-order organization of complex networked systems [8].
Higher-order structures are often encoded in mathematical frameworks of hypergraphs, Petri nets
and simplicial complexes. Hypergraphs [7, 12] extend the standard networks by allowing group
Preprint submitted to Applied Mathematics and Computation



interactions through hyperedges of different sizes such as pairs (2-tuple edges), triples (3-tuple
edges), quadruples (4-tuple edges) etc. Petri nets are also known as finite state machines, which
carry additional tokens and can be viewed as a type of directed hypergraphs [43]. In the sim-
plicial complex approach, a filled clique of k + 1 nodes for k ≥ 1 is called a k-simplex [38].
A simplicial complex is formed by binding simplexes along their faces of any dimension. Em-
ploying their geometric interpretation and algebraic topology tools, simplicial complexes have
played an central role in topological data analysis [40]. These higher-order structures are found
to be instrumental in shaping varied dynamical processes such as spreading [29], social dynamics
[3, 43], synchronization [21, 46] and random walks [33].

In parallel to the development of organization of complex networks, there has been a lot of
research on degree-based topological indices, which are capable of characterizing network struc-
ture and dynamics with interdisciplinary applications across mathematics, chemistry, informatics
and physics [15, 17, 23]. A recent addition to the long list of topological indices is the Sombor
index [24], which has prompted a wave of research enthusiasm in a very short time. Building on a
geometric approach to interpreting degree-based topological indices, Sombor index is introduced
as the sum of degree radii of all edges in a graph. Fundamental properties and bounds of Sombor
indices have been studied for different graphs; see e.g. [2, 13, 14, 16, 18, 25, 31, 36, 37, 50].
It is unraveled in [20] that Sombor index can characterize physicochemical properties of poly-
cyclic aromatic compounds. With a good correlation with the Shannon entropy, Sombor index is
proposed in [1] as a complexity measure for random graphs.

Motivated by the above lines of research, we here study the Sombor index of a simplicial
network model, which is proposed as a generative network displaying a rich structure of cliques.
In general, simplicial networks represent the underlying graph structure of clique complexes
from the perspective of topology [28] and are a powerful tool in characterizing higher-order
interactions in neural networks and learning algorithms [10, 19]. We analytically derive the
degree distribution and clique distribution of our simplicial network model, and reveal that its
degree follows a power law regulated by the model parameter. The degree exponent is found to
sit within the interval [2, 3] resembling many real-life networks [49]. We establish recursively
the Sombor index of the simplicial networks and develop an approximate computation formula
with a closed expression. Finally, extensive computational experiments are performed to further
illustrate the topological properties (including degree, cliques, and distance) over some random
variants of the simplicial network model. The approximation of Sombor index is shown to be
good in all considered cases. When the initial network is chosen as an Erdős-Rényi random
graph, we determine the right scaling constant for Sombor index.

The remainder of the paper is organized as follows. Sections 2 and 3 are devoted to the
network model and its topological properties. Section 4 deals with the Sombor index. Computa-
tional studies are performed in Section 5 with a conclusion drawn in Section 6.

2. Simplicial network model

We consider a simplicial network model constructed iteratively from an initial graph G(0) =
(V(G(0)), E(G(0))) at time step t = 0, where V(G(0)) and E(G(0)) are the vertex set and the edge
set, respectively. Assume the number of vertices is n(0) := |V(G(0))| ≥ 2 and the minimum
degree in G(0) is at least 1, i.e., dmin(G(0)) ≥ 1. Hence, the number of edges m(0) := |E(G(0))| ≥
1. The network sequence {G(t)}t≥1 is built by the following process:
Model A. The initial graph is G(0). Given t ≥ 1, for each edge e ∈ E(G(t − 1)), let Kre be a
re-clique associated with e, where re ≥ 1. G(t) is obtained by joining the two end vertices of e to
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every vertex of Kre , where e ∈ E(G(t − 1)).

Figure 1: An example of Model A, where G(0) = K2. In G(t), the newly added vertices and edges at time t are coded in
red. Here, ñ(2) = 4 and m̃(2) = 9.

Note that re is a function of time, i.e., re can be different when e is viewed as edges in G(t1)
and G(t2) with t1 , t2. An example is shown in Fig. 1. Let n(t) = |V(G(t))| and m(t) = |E(G(t))|
for t ≥ 0. Moreover, the newly added numbers of vertices and edges are denoted by ñ(t) and
m̃(t), respectively. Clearly, we have ñ(0) = n(0) and m̃(0) = m(0). For t ≥ 1, we have

ñ(t) =
∑

e∈E(G(t−1))

re (1)

and

m̃(t) =
∑

e∈E(G(t−1))

[(re + 2
2

)
− 1

]
=

∑
e∈E(G(t−1))

(re + 3)re

2
. (2)

It follows from (1) and (2) that

m(t) =
∑

e∈E(G(t−1))

(
re + 2

2

)
and n(t) = n(t − 1) +

∑
e∈E(G(t−1))

re. (3)

The Model A belongs to a broad class of heterogenous network models [11, 45], which have
been used, for example, in analyzing group interactions in social dynamics [44]. These models
are highly flexible and versatile in that different attributes (such as weights, probabilities, types,
actions etc.) can be attached to different edges. Given the model generality and the recursive
formulas in (3), we will only be able to derive degree-related properties in the form of iteration.
Therefore, we present a special type of model having a homogeneous (in terms of both time and
space) expanding parameter r, which facilitates closed-form analytical expressions.
Model B. The initial graph is G(0). Given t ≥ 1 and r ≥ 1, we take m(t − 1) copies of r-clique
Kr. G(t) is obtained by joining the two end vertices of the i-th edge in G(t − 1) to every vertex of
the i-th copy of Kr, where 1 ≤ i ≤ m(t − 1).

The network generation mechanism in Model B can be thought of as a edge corona product of
the network and the complete graph Kr, namely, G(t) = G(t−1)�Kr. Edge corona is an important
graph operation that has been investigated intensively in spectral graph theory [26, 4, 51, 27, 32].
An example of Model B is shown in Fig. 2. It follows from (3) and re ≡ r that m(t) =

(
r+2

2

)
m(t−1)

and n(t) = n(t − 1) + rm(t − 1) for t ≥ 1. Solving these recursive relationships, we obtain

m(t) =
(
r + 2

2

)t

m(0) (4)
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Figure 2: An example of Model B, where G(0) = K2. In G(t), the newly added vertices and edges at time t are coded in
red. Here, ñ(2) = 3 and m̃(2) = 6.

and

n(t) =n(0) + rm(0)
[
1 +

(
r + 2

2

)
+ · · · +

(
r + 2

2

)t−1]
=n(0) +

2m(0)
r + 3

[(r + 2
2

)t

− 1
]
. (5)

The mean degree of G(t) can be calculated as d̄(G(t)) := 2m(t)
n(t) , which tends to r + 3 as t → ∞ by

using (4) and (5). This indicates that Model B is sparse. Since the mean degree grows asymp-
totically linearly with the expanding parameter r, we know that Model A, squeezing between a
minimum parameter rmin := mine re and a maximum parameter rmax := maxe re, is also sparse.
Here, the edge e runs over all edge sets, i.e., ∪t≥0E(G(t)).

3. Degree and clique distributions

In this section, we examine the distributions of vertex degrees and cliques for our models.
For t ≥ 0, denote by dv(t) the degree of vertex v at time t. Let tv be the time step that the vertex
v is born. By the construction of Model A, we have the following observation. For any vertex v
and t ≥ tv, we have

dv(t + 1) =
∑

e∈{e1,e2,··· ,edv (t)}
(re + 1), (6)

where {e1, e2, · · · , edv(t)} represents the set of edges incident to v at time t. For a vertex v with
tv = 0, namely, v ∈ G(0), its initial degree is given by dv(0). On the other hand, for a vertex v
with tv ≥ 1, its born degree is dv(tv) = re + 1, where e is associated with the clique Kre (v ∈ Kre )
at time tv. Combining these initial conditions with the recurrence relationship (6), the degree of
any vertex v at time t ≥ tv can be obtained.

In Model B, the relationship (6) reduces to dv(t + 1) = dv(t)(r + 1) for t ≥ tv. Solving the
geometric sequences, we derive

dv(t) = dv(0)(r + 1)t, t ≥ 0 (7)

for any vertex v with tv = 0, and

dv(t) = (r + 1)t−tv+1, t ≥ tv (8)
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for any vertex v with tv ≥ 1.
Another important observation for the homogeneous Model B is that all vertices v with a

fixed T := tv ≥ 1 share the same degree dv(t) given by (8) at any subsequent time t ≥ T . The
number of such vertices at time t ≥ T is ñ(T ), which is given by

ñ(T ) = rm(T − 1) = r
(
r + 2

2

)T−1

m(0) (9)

employing (1) and (4).
Let p(d, t) be the degree distribution of G(t) in Model B, namely, the probability that a ran-

domly chosen vertex in G(t) is adjacent to d vertices. Define F(d, t) =
∑∞

s=d p(s, t) to be the
complementary cumulative degree distribution of G(t).
Theorem 1. For Model B,

F(d, t) =
−2m(0) + n(0)(r + 3) + m(0)d1−α2−t[(r + 1)(r + 2)]t+1

−2m(0) + n(0)(r + 3) + m(0)21−t[(r + 1)(r + 2)]t . (10)

where α := 2 + ln(r+2)
ln(r+1) −

ln 2
ln(r+1) . Hence, p(d,∞) ∼ d−α.

Proof. Define a number x satisfying minv∈V(G(0)) dv(0) = (r + 1)x. Hence,

x =
ln(minv∈V(G(0)) dv(0))

ln(r + 1)
. (11)

By our model assumption dmin(G(0)) ≥ 1 and r ≥ 1, we obtain 0 ≤ x < ∞.
For any v ∈ V(G(0)), we have dv(t) ≥ (r + 1)t+x for t ≥ 0 in view of (7). Noting that the

degrees of vertices in G(t) are discrete, we set

d = (r + 1)t−tv+min{1,dxe}. (12)

By the comments above Theorem 1 and considering two cases x ≥ 1 and 0 ≤ x < 1, we obtain

F(d, t) =
∑tv+1−min{1,dxe}

s=0 ñ(s)
n(t)

, (13)

where d is given by (12). Using (9), the numerator in the expression (13) becomes

n(0) + m(0)
tv+1−min{1,dxe}∑

s=1

r
(
r + 2

2

)s−1

=n(0) +
2m(0)
r + 3

[(r + 2
2

)tv+1−min{1,dxe}
− 1

]
. (14)

Combining (14) with (5), (12) and (13), we obtain

F(d, t) =
n(0)(r + 3) + m(0)d1−α2−t[(r + 1)(r + 2)]t+1 − 2m(0)

n(0)(r + 3) + m(0)21−t[(r + 1)(r + 2)]t − 2m(0)
. (15)

where α := 2 + ln(r+2)
ln(r+1) −

ln 2
ln(r+1) . Let t go to infinity and we derive limt→∞ F(d, t) = (r+1)(r+2)

2 d1−α.
Hence, p(d,∞) = F(d,∞) − F(d + 1,∞) ∼ d−α. 2
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The degree of Model B follows asymptotically a power-law distribution with degree exponent
α, which is between 2 and 3. This is consistent with many real-life scale-free networks [49].
Noting that α is an increasing function with respect to the parameter r, the construction of our
networks indicates that Model A also follows a power-law distribution. An example is shown in
Fig. 3 in Section 5 below.

Next, we investigate the clique distribution of the simplicial network and start with Model
B. For t ≥ 0, let ωk(G(t)) be the number of k-clique G(t). Obviously ω1(G(t)) = n(t) and
ω2(G(t)) = m(t), which are given by (5) and (4), respectively.
Theorem 2. For Model B,

ωk(G(t)) = ωk(G(0)) +
2m(0)

r(r + 3)

(
r + 2

k

)[(r + 2
2

)t

− 1
]
, k ≥ 3. (16)

Proof. Note that the combinatorics number
(

r+2
k

)
= 0 when k > r + 2. Hence (16) holds for

k > r + 2 and t ≥ 0. When t = 0, (16) is true by the model construction. What remains to show
is the case for t ≥ 1 and 3 ≤ k ≤ r + 2.

Fix any k satisfying 3 ≤ k ≤ r + 2. Based on the model construction, it is easy to see that any
k-clique at step t − 1 will always be present at time t and that each edge in G(t − 1) will generate
a (r + 2)-clique, in which

(
r+2

k

)
new k-cliques will appear. Therefore,

ωk(G(t)) = ωk(G(t − 1)) + m(t − 1)
(
r + 2

k

)
(17)

for t ≥ 1. Solving (17) in view of (4), we obtain

ωk(G(t)) = ωk(G(0)) + m(0)
(
r + 2

k

)
2

r(r + 3)

[(r + 2
2

)t

− 1
]
, (18)

which concludes the proof. 2

Denote by ω(G(t)) the clique number of G(t). Then ω(G(t)) = maxωk(G(t))>0 k, where ωk(G(t))
is given by (16). It is easy to see that ω(G(t)) = max{r + 2, ω(G(0))}.

Turning to Model A, a similar argument leads to the following recurrence relationship anal-
ogous to (17):

ωk(G(t)) = ωk(G(t − 1)) +
∑

e∈E(G(t−1))

(
re + 2

k

)
, t ≥ 1, (19)

where the initial condition is the same ωk(G(0)). The clique number of G(t) in Model A is

ω(G(t)) = max
{

max
e∈∪t

s=0E(G(s))
re + 2, ω(G(0))

}
. (20)

4. Sombor index

Recall that Sombor index is a degree-based graph invariant defined as [24]

S O(G(t)) =
∑

e={u,v}∈E(G(t))

√
du(t)2 + dv(t)2. (21)

6



The initial Sombor index is S O(G(0)). The following result determines the Sombor index for
Model B.
Theorem 3. For Model B,

S O(G(t)) =
√

2m(0)
(
r + 2

2

)t−1(r
2

)
(r + 1) + S O(G(t − 1))(r + 1)

+ 2r(r + 1)
[ ∑

v∈V(G(0))

√
1 + dv(0)2(r + 1)2(t−1)

+
∑

v∈V(G(t−1))\V(G(0))

√
1 + (r + 1)2(t−tv)

]
, t ≥ 1. (22)

Proof. Fix time step t ≥ 1. In each Kr+2 created at time t, there is one edge (say {u, v}) which
belongs to G(t − 1), and 2r new edges containing only one old vertex (i.e., u or v), and the re-
maining

(
r
2

)
new edges with two newly added end vertices. Summing these contribution together,

we derive

S O(G(t)) =
∑

{u,v}∈E(G(t−1))

[(r
2

)√
(r + 1)2 + (r + 1)2

+
√

(r + 1)2du(t − 1)2 + (r + 1)2dv(t − 1)2

+ r
√

(r + 1)2 + (r + 1)2du(t − 1)2 + r
√

(r + 1)2 + (r + 1)2dv(t − 1)2
]

=m(t − 1)
(
r
2

)√
2(r + 1)2 + (r + 1)

∑
{u,v}∈E(G(t−1))

√
du(t − 1)2 + dv(t − 1)2

+ r(r + 1)
∑

{u,v}∈E(G(t−1))

[ √
1 + du(t − 1)2 +

√
1 + dv(t − 1)2

]
=
√

2m(0)
(
r + 2

2

)t−1(r
2

)
(r + 1) + (r + 1)S O(G(t − 1))

+ 2r(r + 1)
∑

v∈V(G(t−1))

√
1 + dv(t − 1)2, (23)

where we have applied (4) in the last equality. Thanks to (7) and (8), the last term in (23) can be
further decomposed as∑

v∈V(G(t−1))

√
1 + dv(t − 1)2 =

∑
v∈V(G(0))

√
1 + dv(t − 1)2 +

∑
v∈V(G(t−1))\V(G(0))

√
1 + dv(t − 1)2

=
∑

v∈V(G(0))

√
1 + dv(0)2(r + 1)2(t−1)

+
∑

v∈V(G(t−1))\V(G(0))

√
1 + (r + 1)2(t−tv). (24)

Feeding (24) into (23), we complete the proof. 2

For Model A, using a similar idea, we can derive the Somber index by recursively invoking
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the following formula for t ≥ 1:

S O(G(t)) =
∑

e={u,v}∈E(G(t−1))

{(re

2

)√
2(re + 1)2

+

√[ ∑
ẽ={u,ũ}∈E(G(t−1))

(rẽ + 1)
]2
+

[ ∑
ẽ={v,ṽ}∈E(G(t−1))

(rẽ + 1)
]2

+ re

√
(re + 1)2 +

[ ∑
ẽ={u,ũ}∈E(G(t−1))

(rẽ + 1)
]2

+ re

√
(re + 1)2 +

[ ∑
ẽ={v,ṽ}∈E(G(t−1))

(rẽ + 1)
]2
}
. (25)

Although the above formulas (22) and (25) produce the Sombor index for any G(t), they do
not give an straightforward estimate of the magnitude of Sombor index. Here, we present an
approximation calculation method by underestimating the degrees of each old vertex in G(t − 1).
In Model A, we simply assume the two end vertices of an edge e = {u, v} ∈ E(G(t − 1)) have
degree qe + 1 in G(t). This means all edges incident to u or v in G(t − 1) are neglected in the
calculation of S O(G(t)). Since the network grows exponentially, we expect the approximation is
close. This is illustrated in the simulations below. For Model A, we derive

S O(G(t)) =
∑

e∈E(G(t−1))

S O(Kre+2) =
∑

e∈E(G(t−1))

(re + 2)(re + 1)2

√
2

, (26)

which is equivalent to the Sombor index of the graph ∪e∈E(G(t−1))Kre+2. For Model B, in the light
of (4), this reduces to

S O(G(t)) = m(t − 1)S O(Kr+2) = 2−t
√

2m(0)(r + 1)t+1(r + 2)t. (27)

To appreciate the expression (27) in the context of existing results of Sombor index, some
remarks are in order.
Remark 1. It follows from (5) that

n(t) − n(0) ∼ 2m(0)
r + 3

(
r + 2

2

)t

. (28)

Hence, (27) yields

S O(G(t)) ∼ (n(t) − n(0))(r + 1)(r + 3)
√

2
∼ n(t)

(r + 1)(r + 3)
√

2
(29)

for large t. It is shown in [16, Theorem 1] that a graph G over n vertices with minimum degree
dmin and maximum degree dmax has the Sombor index

nd2
min√
2
≤ S O(G) ≤ nd2

max√
2
. (30)

For large t, recall that dmin(G(t)) = r + 1, mean degree d̄(G(t)) ∼ r + 3 and G(t) is scale-free with
a large maximum degree. The estimate (29) is in line with (30).
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Remark 2. It is shown in [24, Theorem 2] that for any connected graph G over n ≥ 3 vertices:

2
√

5 + (2n − 6)
√

2 = S O(Pn) ≤ S O(G) ≤ S O(Kn) =
n(n − 1)2

√
2
, (31)

where Pn is a path over n vertices. By (29) we have the following limit

lim
t→∞

S O(G(t))
S O(Pn(t))

=
(r + 1)(r + 3)

4
. (32)

This suggests the structure of G(t) is much closer to that of Pn(t) as compared to the other extreme
Kn(t) of Sombor index O(n(t)3). This is in line with the sparse construction of G(t).

On the other hand, by (32) we know

lim
t→∞

S O(G(t))
S O(Pn(t))

= lim
t→∞

(r + 1) 2m(t)
n(t)

4
=

r + 1
2

lim
t→∞

m(t)
|E(Pn(t))|

. (33)

Note that the mean degree d̄(∪m(t−1) copiesKr+2) = r+1 and d̄(Pn(t)) = 2. Since the average Sombor
index from a mean-field theory perspective [1] can be calculated as 〈S O(G)〉 =

√
2|E(G)|d̄(G),

the equation (33) can be reproduced by considering the average Sombor index.
Remark 3. It has been shown in Section 3 that the clique number of G(t) in Model B is ω(G(t)) =
max{r + 2, ω(G(0))}. With a sparse initial graph G(0), we may assume ω(G(t)) = r + 2. In this
case, using (27) we obtain

S O(G(t)) =
(
r + 2

2

)t √
2m(0)(r + 1) =

(
ω(G(t))

2

)t √
2m(0)(ω(G(t)) − 1). (34)

It is shown in [18, Theorem 1] that any graph G over n vertices with clique number ω has Sombor
index lower bounded by

S O(G) ≥ S O(Kin,ω) ∼
(
ω − 1

2

)√
2(ω − 1) + 2

√
2n +

√
2ω2. (35)

where Kin,ω is a long kite graph over n vertices and with clique number ω as depicted in [18,
Figure 1]. In view of (34), (5) and recall ω(G(t)) = r + 2, we have

S O(G(t)) =
(
ω(G(t))

2

)√
2m(0)(ω(G(t)) − 1)

+
[(ω(G(t))

2

)t

−
(
ω(G(t))

2

)]√
2m(0)(ω(G(t)) − 1)

≥
(
ω(G(t)) − 1

2

)√
2(ω(G(t)) − 1) +

4
√

2m(0)
r + 3

(
r + 2

2

)t

+
√

2(r + 2)2

∼S O(Kin(t),ω(G(t))) (36)

holds for t ≥ 3 by direct calculations. Therefore, this agrees with [18, Theorem 1]. The in-
equality (35) is violated for the cases t = 1 and 2, which is due to the fact that (27) is only an
approximation for S O(G(t)) from below.
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Remark 4. Finally, as pointed out in [23, 24], there is a whole list of degree-based topological
indices that can be represented in the form of T I(G) =

∑
{u,v}∈E(G) φ(du, dv), where φ is a sym-

metric function. In the case of Sombor index, φ(·, ·) is taken as φ(x, y) =
√

x2 + y2. Although
the exact calculation of T I(G(t)) may be not straightforward, the approximation method used in
(27) can be applied analogously. For example, the first Zagreb index Zg(G(t)) of G(t) in Model
B may be estimated as follows:

Zg(G(t)) ∼ m(t − 1)Zg(Kr+2) = 2m(0)
(
r + 2

2

)t

(r + 1). (37)

5. Computational examples

We perform numerical computations in this section to illustrate the properties of our simpli-
cial network models.
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Figure 3: (a) The degree distribution of G(t) for Model B in Example 1, where, t = 20, G(0) = K3 and r = 1. The
degree exponent as t → ∞ is α = 2.58. Inset: the degree distribution of G(t) for Model A in Example 1, where t = 10,
G(0) = K3 and re is chosen from {1, 2} uniformly at random at each step. (b) The distribution of number of k-cliques for
the above Model B with t = 1, 2 and 20. (c) The distribution of number of k-cliques for the above Model A with different
t = 1 and 10. The results are averaged over 20 independent implementations. (d) Average path length of G(t) for the
above Model B as a function of number of vertices. The inset shows the results for the above Model A. All data points
are averaged over 50 random runs.

Example 1. First, we consider Model B with the initial network being G(0) = K3, namely, a
triangle. If we choose r = 1, then the model resembles a triangular tiling or tessellation in the
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Euclidean plane [51]. In the main panel of Fig. 3(a) we show the degree distribution of the
network for G(20). The limit degree exponent is calculated as α = 2.58 by Theorem 1. We
then consider Model A by choosing the expanding parameter re from the set {1, 2} at random
independently for each edge e. In the inset of Fig. 3(a), we show the degree distribution for a
randomly generated network G(10), which again follows a power-law.

The corresponding distributions of numbers of k-cliques for these two models are shown in
Fig. 3(b) and Fig. 3(c). This clique distribution is defined as

p(ωk(G(t))) =
ωk(G(t))∑ω(G(t))

k=1 ωk(G(t))
. (38)

The clique number for Model B is 3 and that for Model A is 4 as one would expect. We observe
from Fig. 3(b) and Fig. 3(c) that the percentage of smaller cliques tends to decline and that of
larger cliques tends to increase as the network grows. This feature of our simplicial network
model is pertinent to the model selection for higher-order interactions in practical applications.
It is revealed in [52] that only an appropriate profile of higher-order structures commensurate
with the difficulty of the task would facilitate a solution in large-scale complex systems. In the
context of public goods games for instance, the effect of different profiles of clique size have
been investigated in [3].

We show in Fig. 3(d) the average path length ρ(G(t)) of G(t) for the above Model A and
Model B. The average path length of a graph is the average of shortest path lengths over the
graph, which is a key performance metric for network topology [35]. We observe from Fig. 3(d)
that ρ scales logarithmic with respect to the number of vertices for both models, which indicates a
small-world effect of the network. Similar phenomenon has been observed for a related growing
network model [41], where only new edges give birth to vertices.
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Figure 4: Sombor indices for (a) Model B and (b) Model A in Example 1. Blue pluses are approximation for the
Sombor index using (26) and (27), green triangles are the Sombor indices for Kin(t),ω(G(t)) using (35), black diamonds are
the calculated Sombor index of G(t) using (22) and (25), magenta circles and red crosses are upper and lower bounds,
respectively, using (30). The data points are averaged over 20 random networks.

In Fig. 4 we present the numerical calculations for the Sombor index of G(t) for the above
setting of Model A and Model B. For both models we observe that the Sombor index for G(t) is
close to the lower bound in (30) and that of the minimum Sombor index for graphs with a given
clique number (35). This is in line with the previous comments since G(t) follows approximately
a power-law distribution with the mean degree close to the minimum degree. It is worth noting

11



that the approximate calculation approach proposed in Section 4 offers a good estimate of the
actual Sombor index in all situations considered here.
Example 2. In this example we examine the influence of initial network for Sombor index. In
contrast to Example 1, we here deal with large G(0) by choosing G(0) ∼ Gn(0),p following the
Erdős-Rényi random graph model [11]. Each pair of vertices in G(0) are connected indepen-
dently with link probability p. Erdős-Rényi random graphs are often used as the null model for
studying structure and dynamics of complex networks [35]. They also form a vibrant branch of
study in combinatorial probability.
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0 0.2 0.4 0.6 0.8 1
10

4

10
5

10
6

10
7

10
8

10
9

p

S
O

 

 

n(0)=100
n(0)=200
n(0)=500

0 0.5 1
0

500

p

S
O

/n
(0

)2

 

 

(c) r=2, t=3
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Figure 5: Sombor index of G(t) in Example 2 for (a) r = 1 and t = 3, (b) r = 1 and t = 6, (c) r = 2 and t = 3, (d) r = 2
and t = 6. The initial network is an Erdős-Rényi random graph Gn(0),p. Rescaled Sombor index is shown in the insets.
All data points are averaged over 50 random implementations.

We show in Fig. 5 the Sombor index of G(t) in Model B with different expanding parameter r
and time step t. The initial network G(0) has size ranging from 100 to 500. In the insets of Fig. 5,
we display the Sombor index scaled by the square of the order of G(0), n(0)2, for our simplicial
network models. Remarkably, this normalization seems to work very well for different network
sizes, link probabilities and expanding parameters. This phenomenon is reminiscent of the recent
study in [1], where the order of the graph is found to be the correct normalization constant for
several random graph models. The fact that the square works here is rooted in the edge-initiated
expansion mechanism of our simplicial network model, where n(0)2 p indicates the seed average
edge number at the outset.
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6. Conclusion

In this paper we have introduced a growing simplicial network model G(t) featuring power-
law distributions, small-world effect and rich clique structure that can be used for studying
higher-order interactions in complex networked systems. We have analytically investigated the
degree and clique distributions of G(t) and the Sombor index S O(G(t)). A simple explicit cal-
culation is proposed to estimate the Sombor index of G(t) with good approximation. Through
computational studies, it is found that S O(G(t)) scales well with the square of the order of G(0)
in the case of Erdős-Rényi random graphs. As directed networks often predict complex dy-
namical behaviors more faithfully than undirected networks, it is desirable to bring directedness
to higher-order structures. An interesting research direction would be extending the simplicial
network model to accommodate directed cliques [42].
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[34] L. Neuhäuser, A. Mellor, R. Lambiotte, Multibody interactions and nonlinear consensus dynamics on networked

systems. Phys. Rev. E, 101(2020) 032310
[35] M. Newman, Networks, 2nd Ed., Oxford University Press, Oxford, 2018
[36] J. Rada, J. M. Rodrı́guez, J. M. Sigarreta, General properties on Sombor indices. Disc. Appl. Math., 299(2021)

87–97
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