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Abstract: The location of the interface of geological formations is an important piece of 11 

information for tunneling construction. As site investigation data are usually limited, the 12 

uncertainties in locating geological interfaces for the sections between boreholes can be large and 13 

challenging to estimate. A suitable geostatistical method is thus needed for spatial prediction of 14 

the geological interfaces. In this paper, the performance of three commonly used spatial prediction 15 

methods, namely the multivariate adaptive spline regression (MARS), conditional random field 16 

(CRF) method, and thin-plate spline interpolation (TPSI) methods, are evaluated for two-17 

dimensional cases using the boreholes data from three sites in Singapore. The prediction accuracies, 18 

patterns of the predicted surfaces, and prediction uncertainties obtained from the three methods 19 

are compared. A zonation is also proposed to improve the prediction accuracy of the MARS 20 

method. The results indicate that the MARS method can show the spatial trend of the geological 21 

interface more clearly than the other two methods. The TPSI method produces undesirable 22 

oscillations of the surface of geological interfaces and the CRF method may underestimate the 23 

extreme values of the geological interface elevations. In general, the prediction accuracy of the 24 

MARS method is similar to that of the CRF method, but higher than that of the TPSI method. For 25 

cases with very limited data in geologically complex areas, the MARS may have larger errors than 26 
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the CRF method. However, the accuracy of the former can be significantly improved if a 27 

reasonable zonation is performed.  28 

Keywords: Geological interface, rockhead, spatial prediction, multivariate adaptive regression 29 

spline, Bayesian-based conditional random field, thin-plate spline interpolation  30 
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1. Introduction 31 

In tunneling constructions, engineers usually need to know the location of the interface of 32 

geological layers such as the interface between soil and rock or the so-called rockhead (Zheng et 33 

al. 2021, Li et al. 2021). This is because when different geological formations with distinctly 34 

different geotechnical properties are encountered, different excavation or support methods may be 35 

required. Due to complex tectonic and environmental factors, the location of the geological 36 

interface often has a large spatial variability (e.g., Qi et al. 2020a, b). Moreover, the available site 37 

investigation data providing information on the geological interfaces are sometimes not sufficient 38 

or lacking due to the early termination of the boreholes. For example, in engineering practices, the 39 

boreholes are customarily drilled at a spacing of 30 to 60 m or larger. It is a challenging task to 40 

accurately identify the geological interfaces in the zones between boreholes.  41 

Various methods have been developed to interpolate the geological interfaces. These methods 42 

can be classified into two groups according to the ability to quantify the prediction uncertainty, 43 

i.e., the deterministic method and probabilistic method. Examples of the former include the inverse 44 

distance weighting method, spline interpolation, and triangulated irregular network (e.g., Lark et 45 

al. 2013, Aswar and Ullagaddi 2017), non-uniform rational basis spline fitting, and neural 46 

networks. The disadvantage of this category of methods is that it cannot provide any confidence 47 

interval for the prediction. Although it is possible to know the general accuracy of these methods 48 

through a process called cross-validation, the error from the cross-validation depends on the 49 

selection of training data. Also, the cross-validation cannot reasonably address the issue of non-50 

stationary errors, that is, the errors in various locations such as in geologically complex areas and 51 

geologically more uniform areas may be quite different. As a result, attention has been gradually 52 

shifted to the probabilistic methods such as the Bayesian-based conditional random field method 53 
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(e.g., Qi and Liu 2019a), the kriging method (e.g., Dasaka and Zhang 2012), coupled Markov chain 54 

method (Elfeki and Dekking 2001, Li D et al. 2016, Qi et al. 2016, Deng et al. 2017), Markov 55 

random field method (Wang H et al. 2017, Wang X et al. 2018) and Bayesian compressive method 56 

(Wang and Zhao 2016, 2017, Wang Y et al. 2017, Zhao et al. 2018). The kriging method and 57 

conditional random field (CRF) method can consider the spatial variability information of a 58 

considered parameter but require a large number of data to estimate the random field parameters 59 

or semi-variogram parameters, as pointed out by Qi and Liu (2019b). The coupled Markov chain 60 

method does not need large quantities of data. Nevertheless, the method is applicable only to cases 61 

where the transition of different types of soil or geological layers possesses a Markovian property 62 

(Qi et al. 2016). The Markov random field method is capable of modeling complex geological 63 

structures. But some parameters of the method lack clear physical meanings, as pointed out by 64 

Mariethoz and Caers (2014). The recently proposed Bayesian compressive sampling method is 65 

versatile as it can model both stationary and non-stationary random fields and deal with both one-66 

dimensional and multiple-dimensional problems (Montoya-Noguera et al. 2019, Wang Y et al. 67 

2018, 2019, Wang Y et al. 2020, Zhao and Wang 2020). A potential problem of the method is that 68 

it is not robust when the number of measurements is much smaller than the length of the discrete 69 

signal or when the measurement noise is relatively large, as discussed in Huang et al. (2014).  70 

To overcome these limitations, Qi et al. (2020a) have proposed to use the multivariate 71 

adaptive regression spline (MARS) method to spatially predict the location of the geological 72 

interface. The MARS is a non-parametric regression method and can automatically model the 73 

nonlinear relations between independent parameters and a response parameter. This method has 74 

been widely applied to geotechnical engineering such as pile problems (e.g., Zhang and Goh 2016, 75 

Zhang et al. 2019), slope problems (e.g., Wang L et al. 2020), and tunnel problems (e.g., Zhang et 76 
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al. 2020). For the prediction of geological interfaces, Qi et al. (2020a) illustrated that the method 77 

can provide a reasonable prediction interval that reasonably reflects the data density and geological 78 

complexity. However, the performance of the MARS relative to other spatial prediction methods 79 

is not well understood. Most comparative studies (e.g., Samui et al. 2015, Zhang and Goh 2016, 80 

Zhang et al. 2019) only focused on the prediction accuracy and ignore some important aspects 81 

such as the prediction uncertainty. Although Qi et al. (2020b) compared the spline regression 82 

method with other methods, the study focused only on one-dimensional problems.  83 

This study compares the performance of the MARS method with another two commonly used 84 

spatial prediction methods, namely the CRF method and the thin-plate spline interpolation (TPSI) 85 

method. The CRF method is a geostatistical method and is analysed as it can also quantify the 86 

prediction uncertainty. The TPSI is a deterministic method and is considered because similar to 87 

the MARS method, it also uses spline functions. The performances, including prediction 88 

accuracies, patterns of predicted surfaces, and prediction uncertainties of various methods in 89 

dealing with two-dimensional problems are compared through a cross-validation procedure. The 90 

pattern of the predicted surface determines whether the surface is realistic while prediction 91 

uncertainty controls how much confidence should be assigned to the predicted surfaces. These 92 

aspects are rarely considered in previous studies. Borehole data from three sites located in 93 

Singapore and with different geological formations are analyzed. Site 1 reveals the interface of 94 

Kallang Formation (KF) and Old Alluvium (OA) while Sites 2 and 3 reveal the rockhead of an 95 

igneous rock formation, Bukit Timah Granite (BTG). Herein the rockhead is taken as the interface 96 

of the soil layer and rock layer in a rock formation. It is worth noting that the study also proposes 97 

to perform a zonation for the MARS method, which is rarely seen in previous applications of the 98 

MARS method.  99 
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2. Methods 100 

The section first briefly introduces the MARS method used in the comparative study. A zonation 101 

is proposed in this subsection to improve the prediction accuracy of the MARS method. The CRF 102 

method can be found in Li X et al. (2016), Lo and Leung (2017), and Qi et al. (2020b) while the 103 

TPSI method can be found in Harder and Desmarais 1972, Duchon (1977), and MathWorks (2014). 104 

These two methods are not repeated herein. Afterward, a cross-validation procedure is used for 105 

evaluating the accuracy of various methods. 106 

2.1 MARS and Zonation 107 

The MARS method is a well-established non-parametric regression method, which can 108 

automatically model the nonlinear relation between predictors (independent parameters) and a 109 

response (dependent parameter). The method can be regarded to be a generalization of the 110 

piecewise polynomial regression. The built MARS model is a continuous piecewise polynomial 111 

function of the predictors, which depicts how the mean trend of the response varies with the 112 

predictors. The trend can be linear or nonlinear, depending on the order of the adopted spline basis 113 

functions. The connection point where two neighboring pieces of polynomial function meet is 114 

called a knot. The basic idea of the MARS method is determining a suitable number of knots to 115 

maximize the prediction accuracy. Unlike a linear regression which just considers the fitting error, 116 

the MARS method finds out the optimal number and location of knots through k-fold cross-117 

validations. To be specific, the whole data are divided into k groups and each group is successively 118 

used as testing data to evaluate the prediction errors. The number of knots that correspond to the 119 

minimum averaged prediction error of the testing data is taken to be the optimal number of knots. 120 

In addition, the MARS method can also quantify the prediction uncertainty, especially non-121 

stationary prediction uncertainty where the various areas have different levels of prediction errors. 122 
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More information on the prediction uncertainty can be found in Qi et al. (2020a). Details of the 123 

MARS method can be found in Friedman (1991), Hastie et al. (2008), and Zhang and Goh (2016).  124 

It is worth noting that the variability of the location of a geological interface can be quite 125 

large, especially when geological structures such as faults or folds exist. The data points nearby 126 

these geologically complex areas are quite different from the data in geologically more uniform 127 

areas and the former can be considered to be outliers of the latter. When the available data are 128 

limited and the outliers are used together with the normal data for regression analyses, a misleading 129 

geological surface will be obtained. Under this condition, a zonation can be performed. The idea 130 

of the zonation is to find out the partition line between areas with significantly different spatial 131 

trends of geological interface and the data within different zones are separately used for regression 132 

analyses. The zonation ensures that the data used for regression do not contain any outliers. Ideally, 133 

if information regarding geological structures is available, the zonation can be performed 134 

according to the locations of geological structures, such as placing the partition lines of various 135 

zones along the strike of the faults. If the geological structure information is not available, one can 136 

visually inspect the areas with sharp variations of geological intervals and then place partition lines 137 

to differentiate the data with distinct differences in the elevations of geological interfaces. Multiple 138 

partition lines might be necessary if one line is not sufficient to differentiate the data. Furthermore, 139 

different zonation schemes can be tried if it is difficult to determine the locations of the partition 140 

line and the optimal one can be chosen by finding out the scheme with minimum prediction errors 141 

in cross-validations. To facilitate understandings, a flowchart of the zonation is plotted in Fig. 1.  142 

2.2 Cross-validation 143 

In this paper, the prediction accuracies of various spatial prediction methods are compared using 144 

a cross-validation procedure. In cross-validation, certain percentages of data are randomly drawn 145 
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as the training data while the remainder as testing data. The accuracy is denoted by two indexes, 146 

root mean squared error, RMSE and root mean squared relative error, RMSRE, as shown by 147 
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where pN  is the number of points in the testing group; iE  is the observed value of the geological 150 

interface elevation for the ith testing borehole; iÊ  is the predicted value of the geological interface 151 

elevation for the ith testing borehole and iD  is the depth of the geological interface at the ith 152 

testing borehole. Herein, the depth is the difference value between the elevation of the ground 153 

surface and that of the geological interface. Depth rather than elevation is used in the denominator 154 

of Eq. 1(b) because sometimes the observed elevation of the geological interface is close to zero. 155 

3. Borehole data and geology at the three sites 156 

Borehole data collected from three sites in Singapore are used for the comparative study. These 157 

three sites are Site 1 for an integrated metro and bus depot project at Upper Changi Road, Site 2 158 

for a residential project at Canberra Link, Sembawang and Site 3 for a downtown metro line project 159 

and a project involving widening the Kranji Expressway at Woodland. The borehole data were 160 

extracted from site investigation reports of the three sites. However, only boreholes that have 161 

reached the rockhead or interface of KF-OA were used. Typical geological profiles at the three 162 

sites are shown in Figs. 2(a, b, c), respectively. The geological profiles were extracted from a 3D 163 

geological model constructed by geologists using a 3D geological modeling software, Subsurface 164 

Viewer, (Armstrong 2012). As shown, the main geological interfaces at the three sites are the KF 165 

– OA interface at Site 1 and the rockhead of BTG at Sites 2 and 3. The KF and OA are two deposit 166 
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formations formed from the late Pleistocene to the present and Plio-Pleistocene, respectively (Pitts 167 

1984; Sharma et al. 1999). The former consists mainly of soft marine clay, loose alluvial muddy 168 

sand, loose beach sand, soft peaty and organic mud, and coral. This formation is distributed around 169 

river valleys, river mouths, river plains, coastal and offshore areas. The KF represents poor ground 170 

conditions for excavation and foundation works. The Ka and Km in Fig. 2(a) denote the alluvial 171 

member and marine member of the KF, respectively. The OA comprises primarily dense to 172 

cemented muddy sand and gravel, which were brought down by close-connected rivers and 173 

deposited in a deep basin located on the eastern Singapore Island (Chiam et al. 2003). The OA 174 

generally has good geotechnical properties and is one of the major sources of sand used as fill 175 

materials for land reclamations. For the safety of construction activity, it is also important to 176 

identify the location of the interface of these two formations. The BTG is an igneous rock 177 

formation developed in the early to middle Triassic period. It contains a variety of acid rocks 178 

including granite, adamellite, granodiorite, and acid and intermediate hybrids. The BTG underlies 179 

around one-third of Singapore Island and is the base rock of Singapore. The intact rock of Bukit 180 

Timah Granite has high strength and is suitable for cavern construction. However, due to the 181 

tectonic plate movements, the humid tropical weather, and other environmental factors in 182 

Singapore, the BTG has experienced intensive weathering, leading to highly variable rockhead 183 

profiles. There is also a need to identify the location of the relatively unweathered or fresh rock 184 

layer of the Bukit Timah Granite. The detailed information for the three formations can be found 185 

in Pitts (1984) and Sharma et al. (1999). Note that the elevation used in this study is the height 186 

relative to the mean sea level determined by the tide gauge at Victoria Dock in Singapore from 187 

1935 to 1937.  188 
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The geological interface data from boreholes at the three sites are plotted in Figs. 2(d, e, f), 189 

respectively. In each figure, a surface of the geological interface is plotted along with the data 190 

points. These surfaces are obtained by linear interpolations using the ‘fit’ function in MATLAB. 191 

In total, 154, 135, and 47 data points are distributed at the three sites, which are around 1200 m × 192 

400 m, 550 m × 350 m, and 500 × 1000 in size, respectively. The data points at site 3 were limited 193 

because limited boreholes were drilled in the direction perpendicular to the metro line direction. 194 

The KF-OA interface elevation of the 154 boreholes ranges from −27.0 m to −1.4 m, while the 195 

rockhead elevation for the boreholes at Sites 2 and 3 ranges from −50.8 m to 3.6 m, and – 38.8 m 196 

to 25.3 m, respectively. The standard deviations of the geological interface elevation at the three 197 

sites are 4.6 m, 11.6 m, and 16.1 m, respectively. Clearly, the BTG rockhead elevations have a 198 

larger variability than that of the KF-OA interface elevation. The reason is that the BTG is older 199 

than the two deposit formations and has undergone more tectonic events. The coordinates of the 200 

boreholes and associated rockhead elevations at Site 3 are listed in Table A1 in the appendix while 201 

those for the other two sites can be found in Qi et al. (2020a). Note that elevation rather than depth 202 

is used to indicate the location of the geological interface because the depth parameter can be 203 

affected by localized excavation activities and it may vary with time. 204 

In the engineering practice of Singapore, the weathering degree of rock masses is classified 205 

into six grades including residual soil (RS, Grade VI), completely weathered rock (CWR, Grade 206 

V), highly weathered rock (HWR, Grade IV), moderately weathered rock (MWR, Grade III), 207 

slightly weathered rock (SWR, Grade II) and fresh rock (FR, Grade I). The weathering grade of 208 

the rock mass in Singapore is determined according to a British code (British Standard Committee 209 

1999). The rock masses with weathering grades IV to VI are considered to be soils while those 210 

with weathering grades I to III are considered to be rocks, as described in Shirlaw et al. (2000). 211 
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The rockhead is considered to be the top of the formations layers with weathering grades I to III. 212 

However, it should be noted that sometimes a thin layer (e.g., thickness < 2 m) is described to be 213 

MWR, SWR or FR, but overlies certain soil layers. This thin layer is likely to be a boulder and not 214 

considered to be a rock layer. In this study, the weathering grade information of the BTG and 215 

geological interface information is obtained from borehole logs in site investigation reports.  216 

4. Spatial prediction of the location of geological interfaces  217 

In this section, the accuracies of the MARS method, CRF method, and TPSI method in predicting 218 

the geological interface elevations are compared using a cross-validation procedure. Patterns of 219 

the predicted surfaces and the prediction intervals of the geological interface elevation evaluated 220 

by different methods are also compared. To obtain a comprehensive understanding of the 221 

performance of various methods, the comparisons are performed using borehole data from three 222 

sites in Singapore, as described in section 3. The borehole data in the three sites are discussed in 223 

subsections 4.1, 4.2, and 4.3, respectively. Note that the zonation method is only used in Sites 2 224 

and 3 since the geological data at Site 1 have a relatively small variability and there are no major 225 

geological structures present at this site, which can significantly complicate the geological profiles.  226 

4.1 Kallang Formation – Old Alluvium interface at Site 1 227 

The KF-OA interface surfaces are firstly evaluated using all the KF-OA data to obtain an overall 228 

understanding of the KF-OA interface trend in the site. Afterward, the accuracies of various 229 

methods are compared through cross-validations. 230 

4.1.1 Predicted KF-OA surface using all the data 231 

The surfaces and curves of the KF – OA interface predicted by different methods using all the KF 232 

– OA data are plotted in Fig. 3. Since the MARS and CRF methods can evaluate the prediction 233 

uncertainty, the 95% prediction intervals of the KF – OA interface elevation for the cross-section, 234 
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y = 200 m are also plotted in Figs. 3(b) and (d). The 95% prediction interval is bounded by the 235 

mean value ± 1.96 times the standard deviation. Note that for the CRF method, a model selection 236 

using the Bayesian information criterion indicates that the optimal form of trend function, T(x, y), 237 

of the KF-OA interface elevation is a linear function of y as shown by 238 

yyxT ×+= 10),( ββ  (2) 239 

where 0β ·and· 1β  are regression coefficients; x and y are the coordinate values. A widely-used 240 

separable single exponential is used to express the autocorrelation of the geological interface 241 

elevation. The estimated random field parametric values are xSoF  = 99 m, ySoF  = 66.6 m, 242 

standard deviation σ = 4.5 m, β0 = -20.9 m, β1= 1.64×10-02. Besides, for the MARS method, the 243 

spline functions for the predicted mean trend of the KF–OA interface, z and the standard deviation 244 

of prediction are given by (Qi et al. 2020a) 245 

z = −19.3 + 1.20 ×10−3 × max(0, 934.13−x)  + 1.75 ×10−2 × max(0, x−934.13) −2.53× 10−2 × 246 

max(0, 262.54−y)  + 3.71 ×10−2 × max(0, y−262.54)  + 1.09 ×10−4 × max(0, 619.17−x) × max(0, 247 

262.54−y)  + 2.82×10−5 ×max(0, x−619.17) × max(0, 262.54−y) (3a) 248 

Standard deviation of prediction = 5.27− 5.50 × 10−4 × x−3.29 × 10−3 × y (3b) 249 

For the thin-plate spline interpolation, the fitted surface is obtained using the MATLAB function 250 

‘fit’ with the ‘fitType’ parameter set to be ‘thinplateinterp’. From Fig. 3, the following phenomena 251 

can be observed.  252 

(1) The CRF method may underestimate the extreme values of the geological interface elevation. 253 

The reason is that the CRF method is similar to a weighted average method and the predicted 254 

value for a target point cannot be larger or smaller than the observed values within a 255 

neighborhood of the target point. As shown in Figs. 3(c-f), the surfaces produced by both the 256 

CRF and TPSI methods run across known data points. However, the surface for the former has 257 



13 
 

extreme values (i.e., peaks or valleys) located mainly at the borehole sites. In this regard, the 258 

CRF method cannot produce a realistic surface because it fails to capture potential peaks or 259 

valleys of the geological interface surface, which might pose a risk in underground 260 

constructions.  261 

(2) The surface from the MARS method has less fluctuation and can show the spatial trend of the 262 

geological interface more clearly than those from the other two methods. As shown in Figs. 263 

3(c-f), the surfaces and curves predicted by the CRF and TPSI methods have many oscillations. 264 

These oscillations are caused by the constraint that the surface has to run across all the known 265 

points. Consequently, one can easily see the trend of the geological interface from the surface 266 

or curve predicted by the MARS (see Fig. 3(a, b)), but cannot from those by the CRF and TPSI 267 

methods. Because of this, it may be easier to use the MARS method to impose some trend or 268 

shape constraints to assist the application of engineering judgement to the predicted surface or 269 

profile, as shown in Wood (1994), Abraham and Khadraoui (2015). 270 

(3) The prediction interval produced by the MARS method well reflects the data density and 271 

geological complexity while that by the CRF method reflects the distance from a location to 272 

the nearest data point. As shown in Fig. 3(b), the width of the prediction interval from the 273 

MARS method generally decreases with an increasing x because of the relatively high density 274 

of data points on the right-hand side as well as the relatively complex trend on the left-hand 275 

side. By contrast, the CRF method provides a prediction interval with a width increasing 276 

rapidly from 0 at known borehole sites to a certain level at another site, the magnitude of which 277 

depends on the distance from the site to the nearest borehole. In this regard, the prediction 278 

interval of the MARS method is more useful to guide future site investigations as it directly 279 
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reflects the data density and geological complexity, which was also discussed in Qi et al. 280 

(2020a).  281 

4.1.2 Comparison of the prediction accuracies of different methods 282 

In this subsection, the overall prediction accuracies of various spatial prediction methods are 283 

compared using the cross-validation procedure described in Section 2. In total, 100 rounds of 284 

cross-validations are performed and in each round, 70% of data are randomly drawn as training 285 

data. The prediction accuracies for different methods are summarized in Table 1. For brevity, Table 286 

1 only lists the results for 30 experiments. Since the MARS and CRF methods can quantify the 287 

uncertainty of the predictions and provide a prediction interval, the coverage percentage (CP) of 288 

the 95% prediction intervals for these two methods are also summarized in Table 1. Herein the 289 

coverage percentage is the percentage of the testing data with observed values of the KF-OA 290 

interface elevation covered by the prediction interval. The following phenomena can be observed. 291 

(1) Both the MARS method and CRF method produce satisfactory prediction intervals in the sense 292 

that the coverage percentage of the prediction interval is close to the confidence level. As 293 

shown in the last row of Table 1, the average value of the coverage percentage is close to the 294 

confidence level, 95%. This consistency indicates that both methods can produce a prediction 295 

interval that reasonably reflects (neither overestimate nor underestimate) the uncertainty of 296 

geological interface elevations in unexplored areas.  297 

(2) The MARS and CRF methods have similar prediction accuracies, and their accuracies are 298 

generally higher than the TPSI method. As shown in the last row of Table 1, the mean values 299 

of RMSE for the MARS and CRF methods are similar but lower than those of the TPSI 300 

method. 301 
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To obtain a clearer picture of the performances of various methods, three typical examples of 302 

the cross-validation cases are analyzed, including experiments 2, 5, and 21 in Table 1. Experiment 303 

2 is a case where the TPSI is found to be inferior to the other two methods, while experiment 5 is 304 

a case where the MARS has a lower accuracy than the CRF method. Furthermore, experiment 21 305 

illustrates a case where the MARS outperforms the CRF method in prediction accuracy. The three 306 

examples are plotted in Figs. 4-6, respectively. In each figure, the plan view of training and testing 307 

boreholes and the predicted surfaces and curves of the KF-OA interface are plotted. The following 308 

phenomena can be observed from Figs. 4-6 and Table 1.  309 

(1) In most cases such as experiment 2 in Table 1, the MARS method and CRF method have higher 310 

accuracies than the TPSI. As shown in Fig. 4(b), the KF-OA interface curve for y = 339 m 311 

predicted by the TPSI method is farther away from the testing point (x, y) = (372 m, 339 m) 312 

than those by the MARS and CRF methods. The reason is that the TPSI uses data points in a 313 

relatively small neighborhood of a target point in spatial predictions. For example, in Fig. 4(a), 314 

the testing borehole at (x, y) = (372 m, 339 m) is surrounded by three training boreholes 315 

revealing KF-OA interface elevation of -10.3 m at (x, y) = (248 m, 340 m), -13.5 m at (x, y) = 316 

(333 m, 308 m), and -7.4 m at (x, y) = (452 m, 344 m). For the TPSI method, these three 317 

boreholes give rise to a dramatically increasing trend of the KF-OA interface along the y-318 

direction in the local area. Consequently, the predicted elevation of the KF-OA interface at (x, 319 

y) = (372 m, 339 m) is much higher than the actual value (-22.6 m) (see Fig. 4(b)). By contrast, 320 

for the MARS and CRF methods, the spatial prediction of a target point is affected by 321 

boreholes in a larger neighborhood (see Figs. 4(c, d)). The reason is that the MARS essentially 322 

is a regression method (mean trend determined by all the data points in one spline piece) while 323 

the CRF method makes use of the prior mean trend inferred from all the boreholes. As shown 324 
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in Fig. 4(b), the KF-OA interface elevations at (x, y) = (372 m, 339 m) predicted by the MARS 325 

and CRF methods are closer to the actual value (-22.6 m) than that by the TPSI because 326 

neighboring boreholes on the left reveal a relatively deep KF-OA interface.  327 

(2) Although the overall accuracies for the MARS and CRF methods are similar, the two methods 328 

still have some differences in individual cases. As shown in Fig. 5, the MARS method has 329 

larger prediction errors than the CRF method for two testing boreholes at the lower-left corner. 330 

The reason is that the area has erratic geological conditions (see Fig. 3(a)) and only two 331 

neighboring training boreholes reveal similar elevation of KF-OA interface as these testing 332 

boreholes. As a result, the MARS cannot correctly detect the trend of the KF-OA interface at 333 

the lower-left corner. As shown in Fig. 5(c), the spline contains only two pieces separated by 334 

y = 201 m. The spline piece with y < 201 m has a relatively low surface because the training 335 

boreholes in this piece such as several distant boreholes on the right-hand side generally have 336 

deep KF-OA interfaces. As a result, the KF-OA interface elevations at the lower-left corner 337 

are significantly underestimated by the MARS. By contrast, for the CRF method, the distant 338 

boreholes do not have so great influence on the spatial prediction as the predicted surface needs 339 

to run across the training data points close to the several testing boreholes (see Fig. 5(b, d)). 340 

The errors for these testing boreholes, hence, are relatively small for the CRF method. 341 

On the contrary, if sufficient boreholes exist at the zone with highly variable geological 342 

conditions, the MARS method can automatically detect this geologically complex area by 343 

placing proper knots. This is demonstrated by the case shown in Fig. 6, which includes two 344 

more training boreholes at the lower-left corner area than the case in Fig. 5. As shown in Fig. 345 

6(c), the MARS method places two knots at x = 694 m and y = 255 m, which separate the 346 

lower-left corner zone from the other zones. As a result, the trend of the KF-OA interface at 347 
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the lower-left corner can be reasonably detected and the MARS method produces a smaller 348 

prediction error than the CRF method (see Fig. 6(b, c, d)).  Based on the analyses of the two 349 

cases in Figs. 5 and 6, it can be concluded that the MARS method has higher prediction 350 

accuracies than the CRF method when relatively sufficient data are available in the zone with 351 

erratic geological conditions. 352 

4.2 Bukit Timah Granite rockhead at Site 2 353 

This section investigates the spatial prediction of the BTG rockhead at Site 2 using the MARS and 354 

CRF method. These BTG data represent a more geologically complex condition than that in the 355 

last subsection. For the CRF method, a model selection using the Bayesian information criterion 356 

indicates that the optimal form of trend function of the BTG rockhead at this site is a constant. The 357 

random field parametric values estimated from the maximum likelihood estimation using all the 358 

data points are xSoF  = 84.3 m, ySoF  = 164.7 m, standard deviation σ = 10.2 m, mean 0β  = -21.3 359 

m. Figs. 7(a, b, c) plot the fitted surfaces and curves of rockhead for the MARS and CRF methods. 360 

As shown in Fig. 7(a, c), the MARS method cannot capture the deep rockhead located around (x, 361 

y) = (300 m, 150 m). For example, the fitted curve of the BTG rockhead is more than 15 m higher 362 

than the observed value at (x, y) = (282 m, 166 m) (see Fig. 7(c)). The reasons are that only four 363 

boreholes reveal deep rockhead (i.e., elevation < - 43 m) around the location (x, y) = (300 m, 150 364 

m) and these four boreholes are surrounded by boreholes revealing much shallower rockheads (see 365 

Fig. 1(b)). Ideally, two knots should be placed at x ≈ 300 m and y ≈ 150 m to capture the local deep 366 

rockhead. However, the MARS method fails to make a knot placement at y ≈ 150 m because the 367 

deep-rockhead data are so limited that the fitting error cannot be reduced significantly if a knot is 368 

placed around y ≈ 150 m. By contrast, the CRF method can well capture the local trend of rockhead 369 

(see Fig. 7(b)) because the predicted surface has to run across all the known data points.  370 
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For this site, the site investigation report indicates that some faults exist at the site based on 371 

the geological map but does not provide the strike and location information. Hence, zonations are 372 

performed to improve the performance of the MARS method. As shown in Fig. 1(e) and Fig. 7(d), 373 

three boreholes located around (x, y) = (300 m, 150 m) reveal significantly deep rockhead than the 374 

neighboring boreholes. Based on this observation, two zonation schemes that divide the 375 

investigated area into three zones are proposed, as shown in Figs. 7(d) and 7(e). In Fig. 7(d), the 376 

three zones are separated by the lines x = 260 m and y = 200 m (x > 260 m) while in Fig. 7(e), the 377 

three zones are separated by the lines x = 260 m and x = 325 m. These boundary lines are chosen 378 

because all can separate the deep-rockhead data from certain shallow-rockhead data. The predicted 379 

rockhead curves and surfaces are plotted in Figs. 7(c), 7(f), and 7(g), respectively. As shown, both 380 

schemes can detect the deep rockhead located around (x, y) = (300 m, 150 m), although the two 381 

produce significantly different surfaces in the area with x > 260 m. However, it is difficult to tell 382 

which scheme is better until additional boreholes are drilled around (x, y) = (300 m, 150 m). 383 

Furthermore, 50 rounds of cross-validations are performed to evaluate the prediction accuracy 384 

of the two methods. In each round, 70% of data points are randomly drawn for training and the 385 

remainder is used for testing. Note that when a zonation is performed, spatial predictions are 386 

performed independently in each zone. The RMSE, RMSRE and CP of cross-validations for 387 

different methods are summarized in Table 2. For brevity, only the results for 30 cross-validation 388 

cases are listed. As shown, the CRF and TPSI methods have a higher prediction accuracy than the 389 

MARS method when no zonation is conducted. However, after zonation, the MARS method has a 390 

prediction accuracy similar to that of the CRF method and higher than that of the TPSI method, 391 

indicating that a zonation can improve the prediction accuracy of the MARS when limited data are 392 

available in a geologically complex area. Note that another zonation scheme containing two zones 393 
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separated by the line x = 260 m is also evaluated. This zonation scheme produces a mean RMSE 394 

and RMSRE of 8.0 m and 1.02, respectively. This performance is better than the scheme with no 395 

zonation but slightly worse than the two schemes with three zones. This result is expected because 396 

the boundary line, x = 260 m separates the deep-rockhead data from the shallow-rockhead data on 397 

the left-hand side but cannot from the shallow-rockhead data on the right-hand side or in the area 398 

with y > 200 m. Zonation schemes with more (≥ 4) zones are not considered because a large 399 

number of zones may induce too limited data in each zone. Furthermore, the average values of the 400 

CP for the 95% confidence intervals produced by the MARS method are close to 95%, no matter 401 

whether the zonation is performed, indicating the reasonableness of the confidence intervals 402 

produced by the MARS method.  403 

4.3 Bukit Timah Granite rockhead at Site 3 404 

This section further investigates the performance of the MARS and CRF methods using the BTG 405 

data at Site 3. The rockhead data at this site are sparser and have a larger variability than those at 406 

Site 2 (see section 3). For the CRF method, a model selection using the Bayesian information 407 

criterion indicates that the optimal form of trend function of the BTG rockhead elevation at this 408 

site is a linear function of the coordinate x and y, given by  409 

yxyxT ×+×+= 210),( βββ  (4) 410 

The random field parametric values estimated from the maximum likelihood estimation method 411 

using all the data points are xSoF  = 296.6 m, ySoF  = 89.3 m, standard deviation σ  = 11.1 m, 0β  412 

= -18.0 m, 1β  = 1.05 ×10-1, 2β  = -2.51 ×10-2. Figs. 8(a, b, c) plot the fitted surfaces and curves of 413 

rockhead for the MARS and CRF methods. As shown in Fig. 2(f), Figs. 8(a, c), the MARS method 414 

cannot capture the relatively shallow rockhead located in the area with 280 m < x < 420 m, and 415 

500 m < y < 600 m. For example, the residual of fitting for the point located at (x, y) = (293.6 m, 416 
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575.0 m) is larger than 25 m (see Fig. 8(c)). The reason for this large residual is that only three 417 

boreholes reveal relatively shallow rockhead in the area with 280 m < x < 420 m, and 500 m < y < 418 

600 m (see Fig. 2(f) and 8(d)). Such limited data are not sufficient for the MARS method to detect 419 

the local trend. By contrast, the CRF method can capture the trend because the predicted surface 420 

runs through all the known data points. 421 

However, the above-mentioned problem can still be resolved by performing a zonation. Fig. 422 

8(d) plots a zonation scheme in which the three boreholes with shallow rockheads are separated 423 

from the deep-rockhead boreholes on the lower side. The resultant curve and surface of the 424 

rockhead predicted by the MARS are plotted in Figs. 8(c, e), respectively. As shown, the predicted 425 

curve and surface reasonably capture the rockhead trend in the local erratic area. The residual of 426 

fitting for the point located at (x, y) = (293.6 m, 575.0 m) is around 7 m, which is much smaller 427 

than the value (> 25 m) when no zonation is conducted (see Fig. 8(c)).  428 

To explore the effect of zonation on the spatial predictions, 47 rounds of leave-one-out cross-429 

validation are performed. Due to the limited data, only one data point is drawn as testing data while 430 

the remainder is set as training data in each round of cross-validations. The prediction errors for 431 

30 rounds of cross-validations are summarized in Table 3. As shown by the average prediction 432 

errors shown in the last row in the table, the MARS method has a prediction error higher than the 433 

CRF method but lower than the TPSI method when no zonation is performed. Nevertheless, after 434 

zonation, the MARS method achieves a prediction accuracy similar to that of the CRF method but 435 

much higher than that of the TPSI method. These observations are similar to those for Site 2. This 436 

result further shows the capability of the MARS in dealing with complex geological conditions. 437 

Analyses of the individual cases are similar to those in section 4.1 and are not presented herein.  438 

5 Summary and conclusions 439 
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This study compares three commonly used spatial prediction methods for predicting the location 440 

of the interface of geological formations in a two-dimensional space using borehole data from 441 

three sites in Singapore. The three methods are the multivariate adaptive regression spline method, 442 

conditional random field method, and thin-plate spline interpolation method, respectively. The 443 

interfaces studied are the interface between Kallang Formation and Old Alluvium for Site 1, the 444 

rockhead of the Bukit Timah Granite for Site 2 and Site 3. The prediction accuracies, patterns of 445 

predicted surface, and prediction uncertainties for various methods are evaluated. A zonation is 446 

proposed to improve the prediction accuracy of the multivariate adaptive regression spline method. 447 

The following conclusions can be drawn from the analyses. 448 

(1) The TPSI method may produce a geological interface surface with undesirable oscillations 449 

because it uses data in a very small neighbourhood. The CRF method may underestimate the 450 

extreme values of geological interface elevation as the method is similar to the weighted 451 

average method and extreme values occur mainly at the known borehole sites. By contrast, 452 

the surface evaluated from the MARS clearly shows the spatial trend of the geological 453 

interface and it is also easier to implement engineering judgement or knowledge by imposing 454 

constraints on the trend and shape of the profile of geological interfaces. This implementation 455 

can be realized by combining the Bayesian method with the spline regression methods, which 456 

will be investigated in the future.  457 

(2) Both the MARS and CRF methods provide a reasonable prediction interval of the geological 458 

interface elevation in the sense that the 95% prediction intervals produced by both methods 459 

can cover around 95% of testing data in cross-validation experiments. The width of the 460 

prediction interval from the CRF method depends mainly on the distance from the target 461 

location to the nearest borehole. By contrast, the width of the prediction interval from the 462 
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MARS method reflects the data density and geological complexity and can provide useful 463 

guidance for future site investigations to be conducted.  464 

(3) In general, the MARS method has a prediction accuracy similar to the CRF method but higher 465 

than the TPSI method. In cases where a geologically complex area is occupied by limited 466 

data, the MARS method may have a lower prediction accuracy than the CRF method. 467 

However, this problem can be well resolved by a zonation to separate the geologically 468 

complex areas from the geologically more uniform areas. The zonation can be readily 469 

performed by visual inspection to identify areas with sharp variations of geological intervals 470 

and then placing partition lines between boreholes with distinct differences in the elevations 471 

of geological interfaces. After zonation, the MARS method can achieve a prediction accuracy 472 

similar to that of the CRF method.  473 
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Table 1 Prediction accuracies for the spatial prediction of the Kallang Formation – Old Alluvium 

interface elevation at Site 1 

 MARS CRF TPSI 

Experiment 
RMSE 

(m) 
RMSRE CP (%) RMSE 

(m) 
RESRE CP (%) RMSE 

(m) 
RMSRE 

1 5.17 0.61 98 4.50 0.43 89 5.23 0.39 
2 4.25 0.19 93 4.44 0.20 89 5.19 0.24 
3 3.99 0.17 93 4.13 0.19 96 5.81 0.28 
4 4.75 0.20 96 4.53 0.20 89 5.47 0.24 
5 5.47 0.59 93 4.95 0.52 93 5.83 0.42 
6 5.33 0.61 91 5.17 0.55 89 4.98 0.31 
7 4.60 0.50 93 4.60 0.47 93 4.09 0.32 
8 4.50 0.21 96 3.87 0.18 93 5.39 0.29 
9 4.13 0.24 93 4.33 0.24 91 5.35 0.31 

10 4.82 0.55 89 4.60 0.48 91 5.03 0.34 
11 3.51 0.20 98 3.94 0.21 96 4.70 0.27 
12 4.43 0.23 100 3.87 0.20 100 4.17 0.24 
13 4.87 0.23 89 4.32 0.19 87 5.58 0.28 
14 4.39 0.40 96 4.39 0.46 98 4.05 0.32 
15 4.90 0.56 96 4.43 0.49 93 5.31 0.41 
16 4.55 0.23 93 4.26 0.24 93 5.80 0.33 
17 4.43 0.46 96 4.64 0.45 89 5.52 0.39 
18 4.50 0.46 91 4.57 0.44 91 5.80 0.43 
19 3.95 0.20 98 4.11 0.22 93 5.94 0.34 
20 4.46 0.21 93 4.46 0.21 89 5.35 0.24 
21 3.94 0.43 98 4.28 0.47 96 4.37 0.34 
22 3.57 0.17 100 3.73 0.18 98 4.32 0.22 
23 4.30 0.21 98 4.31 0.21 98 4.92 0.28 
24 3.75 0.19 98 3.67 0.18 96 4.73 0.24 
25 4.51 0.40 91 4.67 0.40 89 5.10 0.34 
26 4.25 0.20 98 4.31 0.21 96 6.46 0.35 
27 5.02 0.56 96 4.56 0.51 96 4.29 0.35 
28 3.39 0.18 100 3.68 0.20 100 5.69 0.32 
29 4.54 0.47 98 4.53 0.44 91 5.77 0.39 
30 4.07 0.20 96 3.72 0.17 100 5.21 0.28 

Average 4.40 0.32 95 4.24 0.31 94 5.17 0.31 
Note: the last row summarizes the average value for 100 experiments. For brevity, the table only lists the results for 
30 experiments. 
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Table 2 Prediction accuracies for the spatial prediction of the Bukit Timah Granite rockhead elevation at Site 2 

Experiment 
CRF MARS (no zonation) MARS (zonation scheme 

1) MARS (zonation scheme 2) TPSI 

RMSE 
(m) 

RMSRE CP 
(%) 

RMSE 
(m) 

RMSRE CP 
(%) 

RMSE 
(m) 

RMSRE CP 
(%) 

RMSE 
(m) 

RMSRE CP (%) RMSE 
(m) 

RMSRE 

1 7.04 0.91 93 8.24 0.89 98 6.73 1.24 95 6.57 1.23 98 7.44 0.71 
2 6.88 1.05 95 10.13 2.38 100 6.80 0.63 95 6.89 0.69 98 8.11 1.00 
3 7.08 0.66 95 10.72 0.49 92 5.69 0.90 95 6.60 0.91 100 7.35 0.81 
4 6.24 0.77 100 7.62 0.83 100 6.88 0.50 98 6.87 0.55 98 7.32 0.97 
5 6.53 1.38 98 9.30 2.00 98 6.99 1.65 100 6.99 1.65 100 7.57 1.56 
6 5.65 0.64 100 7.98 1.65 100 6.18 0.46 98 7.54 0.48 98 6.82 0.90 
7 7.40 0.88 90 9.30 1.72 98 7.09 0.78 93 8.29 0.93 88 8.27 0.86 
8 6.70 1.38 98 9.30 2.22 98 8.35 2.14 93 9.27 2.15 95 6.93 1.19 
9 7.49 1.09 93 9.36 1.27 98 6.42 1.14 100 6.95 1.14 100 8.17 1.05 

10 8.87 0.90 93 10.13 1.38 95 6.44 1.32 98 8.49 1.33 98 10.08 0.71 
11 6.31 0.28 98 8.51 0.50 98 6.61 0.32 95 6.99 0.49 83 7.94 0.36 
12 7.83 0.33 93 10.22 0.35 98 8.29 0.33 93 8.51 0.33 95 6.10 0.30 
13 7.10 1.13 95 9.39 1.08 100 8.83 0.93 85 8.81 0.94 90 8.09 0.91 
14 7.40 0.68 95 10.30 0.80 92 10.05 0.88 93 8.32 0.79 95 9.44 0.88 
15 7.37 1.15 98 7.65 0.71 100 6.42 0.60 95 7.76 0.64 93 8.50 0.92 
16 7.56 0.95 95 8.84 1.68 100 7.45 0.86 93 7.26 0.86 100 9.33 0.91 
17 6.00 1.29 100 9.49 1.85 100 7.79 2.22 98 6.26 1.40 98 6.15 1.54 
18 8.30 0.77 95 11.48 1.33 95 8.14 1.00 98 8.24 1.00 95 10.13 1.08 
19 7.42 1.29 95 10.83 2.04 95 9.61 1.97 98 9.03 1.68 95 8.19 0.83 
20 8.36 0.78 85 10.28 1.11 95 8.16 1.08 88 6.73 1.03 95 10.05 0.96 
21 5.51 0.74 100 9.39 2.71 95 7.14 1.54 100 6.75 1.54 98 8.32 1.00 
22 8.01 0.40 90 8.99 0.72 100 8.26 0.45 90 7.30 0.35 90 10.21 0.55 
23 7.00 0.82 95 9.29 2.43 98 7.86 1.34 95 6.97 1.33 95 8.31 0.94 
24 6.91 0.62 95 9.19 1.72 100 7.42 1.79 93 8.62 1.80 98 8.18 0.85 
25 7.27 0.70 95 9.11 1.37 100 6.00 1.00 98 9.40 1.16 100 8.01 0.94 
26 7.19 2.12 93 6.07 1.25 100 7.02 1.72 98 7.69 1.98 95 7.35 1.68 
27 5.67 0.76 100 8.74 2.31 100 6.75 0.85 100 7.41 1.27 98 7.44 1.31 
28 5.03 0.82 100 8.52 0.77 100 6.19 0.77 98 7.77 0.85 98 7.14 0.83 
29 7.96 0.51 90 9.38 1.20 95 8.52 0.99 98 8.48 0.99 93 9.30 0.44 
30 7.76 1.27 93 8.24 1.64 98 6.62 1.19 93 7.65 1.19 98 8.04 0.55 

Average 7.14 0.91 95 9.22 1.47 98 7.31 1.02 95 7.59 1.05 96 8.18 0.92 
Note: the last row summarizes the average value for 50 experiments. For brevity, the table only lists the results for 30 experiments. 
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Table 3 Prediction accuracies for the spatial prediction of the Bukit Timah Granite rockhead 

elevation at Site 3 

Experi
-ment 

CRF MARS (no zonation) MARS (zonation) TPSI 
RMSE (m) RMSRE RMSE  

(m) 
RMSRE RMSE  

(m) 
RMSRE RMSE 

(m) 
RMSR

E 
1 13.83 0.60 8.28 0.36 10.01 0.44 20.05 0.87 
2 16.69 2.26 33.37 4.51 27.63 3.73 31.74 4.29 
3 12.51 0.27 7.91 0.17 6.63 0.14 6.37 0.14 
4 1.14 0.03 1.70 0.05 13.17 0.36 11.26 0.31 
5 1.20 0.05 0.41 0.02 2.49 0.10 10.42 0.42 
6 7.17 0.56 5.49 0.43 3.65 0.28 8.89 0.69 
7 8.80 0.40 8.82 0.40 1.95 0.09 6.58 0.30 
8 15.20 0.31 10.80 0.22 8.34 0.17 13.78 0.28 
9 3.52 0.09 4.77 0.12 2.11 0.05 10.33 0.26 

10 6.94 0.24 2.03 0.07 6.96 0.24 6.04 0.21 
11 2.79 0.17 22.72 1.38 5.04 0.31 7.60 0.46 
12 6.43 0.19 6.09 0.18 4.37 0.13 13.39 0.39 
13 11.04 0.24 13.63 0.30 1.25 0.03 8.71 0.19 
14 17.72 0.79 10.90 0.48 22.85 1.02 8.47 0.38 
15 0.01 0.00 1.78 0.05 4.36 0.11 13.91 0.36 
16 14.70 0.33 11.36 0.25 6.18 0.14 7.59 0.17 
17 1.40 0.06 5.65 0.23 7.90 0.32 6.81 0.28 
18 7.00 0.25 14.90 0.52 10.22 0.36 3.11 0.11 
19 9.70 0.26 6.20 0.17 10.44 0.28 6.84 0.18 
20 11.26 0.36 5.43 0.17 7.33 0.23 6.25 0.20 
21 11.19 0.25 8.08 0.18 14.39 0.33 19.04 0.43 
22 12.35 0.54 27.39 1.19 0.02 0.00 25.01 1.09 
23 22.83 1.25 29.93 1.64 29.87 1.63 32.54 1.78 
24 2.58 0.07 10.10 0.26 19.59 0.51 7.85 0.21 
25 7.73 0.17 10.34 0.23 6.93 0.15 6.17 0.14 
26 8.27 0.31 7.90 0.29 8.89 0.33 14.74 0.55 
27 17.23 0.38 14.21 0.31 20.26 0.45 21.87 0.48 
28 22.02 1.30 15.15 0.89 11.53 0.68 27.60 1.62 
29 10.37 0.51 0.30 0.01 12.72 0.62 12.86 0.63 
30 1.11 0.04 6.57 0.21 1.24 0.04 13.88 0.44 

Aver-
age 8.77 0.36 9.83 0.45 9.03 0.40 12.12 0.53 

Note: the last row summarizes the average value for 47 experiments. For brevity, the table only lists the results for 30 
experiments. 
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Caption of figures 

Fig. 1 Flowchart of zonation for the MARS method 

Fig. 2 Geological profiles of cross-sections and borehole data at the three sites 

Fig. 3 Kallang Formation –Old Alluvium interface elevation predicted by different methods using 

all the data at Site 1 

Fig. 4 A case where the MARS and CRF methods outperform the TPSI (cross-validation 

experiment 2 in Table 1) 

Fig. 5 A case where the CRF method outperforms the MARS method (cross-validation experiment 

5 in Table 1) 

Fig. 6 A case where the MARS method outperforms the CRF method (cross-validation experiment 

21 in Table 1) 

Fig. 7 Bukit Timah Granite rockhead predicted by different methods using all the data at Site 2 

Fig. 8 Bukit Timah Granite rockhead predicted by different methods using all the data at Site 3 
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Fig. 1 Flowchart of zonation for the MARS method 
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(a) Geological profile for a cross-section at Site 1             (b) Geological profile for a cross-section at Site 2 

 
(c) Geological profile for a cross-section at Site 3 (d) Kallang Formation – Old Alluvium interface data at Site 1 

 
(e) Rockhead data of Bukit Timah Granite at Site 2            (f) Rockhead data of Bukit Timah Granite at Site 3 

Fig. 2 Geological profiles of cross-sections and borehole data at the three sites 
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(a) Surface of KF-OA interface predicted by MARS (b) Predicted KF-OA interface elevation for y = 200 m (MARS) 

 
(c) Surface of KF-OA interface predicted by CRF       (d) Predicted KF-OA interface elevation for y = 200 m (CRF) 

   
(e) Surface of KF-OA interface predicted by TPSI       (f) Predicted KF-OA interface elevation for y = 200 m (TPSI) 
Fig. 3 Kallang Formation –Old Alluvium interface elevation predicted by different methods 
using all the data at Site 1 
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(a) Plan view of boreholes                          (b) Predicted curve of KF-OA interface for y = 339 m 

 
(c) Surface predicted by the MARS method                         (d) Surface predicted by the CRF  

 
(e) Surface predicted by the TPSI   Note: error = actual value – predicted value 

Fig. 4 A case where MARS and CRF methods outperform TPSI (cross-validation experiment 2 in 
Table 1)  
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(a) Plan view of boreholes                         (b) Predicted curve of KF-OA interface for y = 82 m 

 
(c) Surface predicted by the MARS                          (d) Surface predicted by the CRF   

(Note: error = actual value – predicted value) 
Fig. 5 A case where CRF method outperforms MARS method (cross-validation experiment 5 in 
Table 1) 
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(a) Plan view of boreholes                          (b) Predicted curve of KF-OA interface for y = 82 m 

 
(c) Surface predicted by the MARS                                     (d) Surface predicted by the CRF 

(Note: error = actual value – predicted value) 
Fig. 6 A case where MARS method outperforms CRF method (cross-validation experiment 21 in 
Table 1) 
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(a) Surface of rockhead predicted by MARS                        (b) Surface of rockhead predicted by CRF 

 
(c) Predicted curve of rockhead interface for y = 170 m         (d) A zonation of borehole data (scheme 1) 

  
(e) A zonation of borehole data (scheme 2)      (f) Surface of rockhead predicted by MARS (zonation scheme 1)   
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(g) Surface of rockhead predicted by MARS (zonation scheme 2) 
Fig. 7 Bukit Timah Granite rockhead predicted by different methods using all the data at Site 2  
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(a) Surface of rockhead predicted by MARS                    (b) Surface of rockhead predicted by CRF 

  
(c) Predicted curve of rockhead interface for x = 290 m                      (d) A zonation of borehole data  

 
(e) Surface of rockhead predicted by MARS (zonation)  

Fig. 8 Bukit Timah Granite rockhead predicted by different methods using all the data at Site 3 
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Appendix 

The coordinates (x, y) and rockhead elevation (Ele) of the Bukit Timah Granite at Site 3 are 

summarized in Table A1. 

Table A1 Borehole data used for spatial predictions at Site 3 

x (m) y (m) Ele 
(m) 

x (m) y (m) Ele 
(m) 

x (m) y (m) Ele 
(m) 

x (m) y (m) Ele 
(m) 

0.0 60.8 -16.9 56.6 168.5 -38.8 347.4 673.0 -18.5 316.1 641.8 -12.1 
139.7 32.9 6.1 243.8 186.1 2.9 211.8 787.8 -18.8 248.1 821.6 -25.4 
140.2 324.3 -35.5 96.1 254.9 -31.3 219.5 882.0 -38.5 285.8 0.0 8.5 
375.0 624.1 -2.8 171.3 222.7 -31.4 286.8 895.2 -7.5 408.2 119.9 15.6 
287.2 762.9 -16.0 313.8 270.5 -5.5 375.8 35.2 7.5 461.7 295.8 -4.2 
332.1 50.8 13.5 362.4 318.9 -11.6 370.7 434.7 -6.0 408.8 520.2 25.3 
386.1 196.9 0.3 290.7 388.6 -20.9 106.0 117.8 -31.8 287.9 836.8 -27.8 
235.0 471.6 -30.9 168.1 453.4 -20.8 235.2 302.3 -8.1 306.9 812.9 -14.3 
285.1 686.5 -20.3 323.0 448.8 -20.6 253.8 437.8 -17.1 327.5 825.4 -11.2 
251.4 709.2 -14.7 358.9 542.7 20.7 183.6 542.6 -21.7 350.2 802.5 -11.7 
247.3 30.8 8.7 293.6 575.0 15.6 211.5 653.4 -26.7 382.0 814.9 -17.6 
219.1 84.1 -9.2 168.1 630.8 -30.0 258.7 655.5 -17.1    
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