
Northumbria Research Link

Citation: Fattahi, Mohammad, Keyvanshokooh, Esmaeil and Govindan, Devika Kannanc
Kannan (2023) Resource planning strategies for healthcare systems during a pandemic.
European Journal of Operational Research, 304 (1). pp. 192-206. ISSN 0377-2217 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.ejor.2022.01.023
<https://doi.org/10.1016/j.ejor.2022.01.023>

This  version  was  downloaded  from  Northumbria  Research  Link:
https://nrl.northumbria.ac.uk/id/eprint/48207/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


 

Journal Pre-proof

Resource planning strategies for healthcare systems during a
pandemic

Mohammad Fattahi , Esmaeil Keyvanshokooh ,
Devika Kannanc Kannan Govindan

PII: S0377-2217(22)00043-1
DOI: https://doi.org/10.1016/j.ejor.2022.01.023
Reference: EOR 17682

To appear in: European Journal of Operational Research

Received date: 16 February 2021
Accepted date: 10 January 2022

Please cite this article as: Mohammad Fattahi , Esmaeil Keyvanshokooh ,
Devika Kannanc Kannan Govindan , Resource planning strategies for healthcare sys-
tems during a pandemic, European Journal of Operational Research (2022), doi:
https://doi.org/10.1016/j.ejor.2022.01.023

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V.

https://doi.org/10.1016/j.ejor.2022.01.023
https://doi.org/10.1016/j.ejor.2022.01.023


1 
 

Highlights: 

 We address integrated resource sharing and demand redistribution during a pandemic. 

 We propose a multi-stage stochastic program under resources’ demand uncertainty. 

 We propose a data-driven decision-making framework. 

 We investigate two real-life case studies for the COVID-19 pandemic. 
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Abstract. We study resource planning strategies, including the integrated healthcare resources’ allocation and 

sharing as well as patients’ transfer, to improve the response of health systems to massive increases in demand 

during epidemics and pandemics. Our study considers various types of patients and resources to provide access 

to patient care with minimum capacity extension. Adding new resources takes time that most patients don’t have 

during pandemics. The number of patients requiring scarce healthcare resources is uncertain and dependent on 

the speed of the pandemic’s transmission through a region. We develop a multi-stage stochastic program to 

optimize various strategies for planning limited and necessary healthcare resources. We simulate uncertain 

parameters by deploying an agent-based continuous-time stochastic model, and then capture the uncertainty by a 

forward scenario tree construction approach. Finally, we propose a data-driven rolling horizon procedure to 

facilitate decision-making in real-time, which mitigates some critical limitations of stochastic programming 

approaches and makes the resulting strategies implementable in practice. We use two different case studies 

related to COVID-19 to examine our optimization and simulation tools by extensive computational results. The 

results highlight these strategies can significantly improve patient access to care during pandemics; their 

significance will vary under different situations. Our methodology is not limited to the presented setting and can 

be employed in other service industries where urgent access matters.  

Keywords: OR in health services, COVID-19 pandemic, resource sharing and allocation, patients’ transfers, multi-stage 

stochastic programming, data-driven rolling horizon. 

1. Introduction 

COVID-19 was first identified in Wuhan, China in December 2019 and it has since become a global pandemic (Hui et al., 

2020; Ferreira et al., 2020). As of December 2021, there have been more than 250 million reported COVID-19 cases 

worldwide. As the result of the COVID-19 pandemic, the world has seen more than five million deaths until now; most 

healthcare systems have faced extraordinary challenges. As one of the most important challenges, outbreaks of the SARS-

CoV-2 infection in local communities yield a massive increase in demand for limited resources such as intensive care unit 
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(ICU) beds, healthcare personnel, and mechanical ventilators. Several governments established widespread closures and 

stay-at-home orders to intervene in this issue (Mervosh et al., 2020; Govindan et al., 2020). However, the accelerated 

number of COVID-19 cases forced many hospitals to cancel or postpone elective procedures or even to discharge existing 

patients earlier to preserve care capacity for COVID-19 patients (Parker et al., 2020; American College of Surgeons, 

2020; Tonna et al., 2020) as part of the guidelines from the Centers for Disease Control and Prevention (CDC, 2020). 

Although these approaches were effective to treat a greater number of COVID-19 patients, they resulted in poor outcomes 

for non-COVID-19 patients and a substantial financial loss for healthcare systems.  

Extending healthcare resources’ capacity is impossible for many countries in a short time, according to Adelman (2020). 

Ramping up production of complex medical equipment, such as ventilators, in facilities configured for other products will 

require time that several COVID-19 patients don’t have. In such critical situations, two other primary strategies are 

resource sharing and demand redistribution, which can minimize shortages in response to massive hospitalization 

demand with the minimum extension of resources’ capacity. Some facts demonstrate the applicability of these strategies 

in countries or local communities. Indeed, the infection spreads at varying rates in different regions, and COVID-19 cases 

peak at different times in different regions. This variance provides an opportunity for sharing some scarce resources such 

as ventilators; these devices can be transported over large distances or within regions to alleviate capacity shortfalls 

caused by an epidemic surge in a particular area. In addition, regarding demand redistribution, patients tend to select 

hospitals/healthcare centers in accordance with their reputation or distance on a local level, which leads to unbalanced 

patient loads across hospitals/healthcare centers and a decrease in the overall quality of patient care (Drevs, 2013; 

Varkevisser et al., 2012). Parker et al. (2020) demonstrated that the operationally feasible redistribution of newly admitted 

patients through the network of healthcare systems can reduce the patients’ overflow. Healthcare systems can consider 

system-level interventions and patient transfers to maximize the utilization of available resources.  

From the medical literature, qualitative studies propose some strategies to deal with the capacity shortage under a 

potential surge in demand (Mills et al., 2020). This study is motivated by the healthcare capacity concerns created during 

the COVID-19 pandemic. Its theory and practice are directly relevant to the capacity planning through healthcare systems, 

and the objective is to optimize the use of resources during a pandemic by various strategies. We develop a novel data-

driven multi-stage stochastic programming approach for managing healthcare resources as well as demand redistribution 

to provide care for patients during a pandemic. In particular, we provide an answer to the question, “what could have been 

done to mitigate shortages due to a massive increase in the demand for limited resources during a pandemic such as 

COVID-19?”  

Our decision-making framework considers two types of healthcare resources: 1) direct, in use resources (such as ICU beds 

and ventilators) and 2) service resources (such as personnel and laboratories). We also then explore various possible 

capacity planning options for healthcare resources, including capacity extension and relocation, as well as demand 

redistribution strategies that are modeled to provide hospitalization services to patients. This methodology considers 

uncertainty in the disease spread and, therefore, demand for healthcare resources in various regions or hospitals. We 

deploy a simulation approach based on an agent-based continuous-time stochastic model to capture the COVID-19 spread 
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providing a daily forecast for the hospitalization demand over time, and this model can be adapted to any county or 

geographical region. Our modeling study provides critical insights into how regions or hospitals could cope with a surge 

in demand for healthcare resources. 

The existing scientific literature suffers from a lack of decision support tools for managing healthcare resources during a 

pandemic, which simultaneously considers the above-mentioned strategies and demand uncertainty. In this study, the 

proposed data-driven decision-making tool encompasses a large scope of operational situations. The proof of concepts 

will be given for allocation and relocation of ventilators among several healthcare regions of the US and, secondly, 

allocation of resources and demand redistribution among hospitals in an area of Iran.  A summary of the contributions of 

this work is as follows: 

 We propose a multi-stage stochastic program (MSSP) for the integrated healthcare resources planning and 

demand redistribution during a pandemic. This model accounts for various patient types and healthcare resources 

during pandemics. 

 We extend our model into a data-driven resource planning approach by developing a rolling horizon procedure, 

which will help decision-makers make real-time decisions. 

 We deploy an agent-based continuous-time stochastic model for modeling the COVID-19 transmission and then a 

scenario tree construction approach to capture the stochasticity of the number of infected individuals requiring 

hospitalization. 

 We investigate two different case studies by our proposed tools. 

The organization of the paper is as follows: Section 2 provides the literature review. In Section 3, the problem definition 

and MSSP are described. The data-driven decision-making approach based on the rolling horizon approach is explained in 

Section 4. The agent-based simulation approach and scenario tree construction approaches are presented in Section 5. 

Computational results based on two case studies are provided in Section 6. Several managerial insights derived from our 

computational results are presented in Section 7. Finally, Section 8 concludes the paper. 

2. Literature review 

Regarding disaster management and humanitarian operations, abundant literature exists (see e.g., Altay and Green III, 

2006; Wex et al., 2014; Gupta et al., 2016; Rodríguez-Espíndola et al., 2018) and several papers investigate the healthcare 

operations for emergency situations (see e.g., Adan et al., 2011; Sung and Lee, 2016; Luscombe and Kozan, 2016; Chi et 

al., 2017). However, the nature of epidemic outbreaks and pandemics are meaningfully different from other disasters in 

terms of their dynamic nature, resources’ demand, global scale, and length. The World Health Organization has defined 

practical phases in epidemics and pandemics management: Anticipation, Early detection, Containment, Control and 

mitigation, and Elimination or eradication (World Health Organization, 2018). Literature focusing specifically on the 

allocation of healthcare resources during emergencies often concentrates on the distribution of life-saving medical devices 

(Dasaklis et al., 2012). Resource allocation helps in Containment and Control and mitigation phases when it comes to 

healthcare resources planning. Generally, the resource allocation problem has been deeply investigated since the 1990s by 
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the operations research community (see e.g., Elmaghraby, 1993; Bakuli and Smith, 1996; Hegazy, 1999; Fiedrich et al., 

2000). 

Mills et al. (2020) investigated possible actions of hospitals to provide immediate additional healthcare services in the 

case of urgent massive demand. They focused on strategies related to the Containment and Control and mitigation phases. 

Further, in the medical literature, there are some research studies, such as Hick et al. (2004), Kaji et al. (2006), and 

Rothman et al. (2006), which identified response components and developed conceptual frameworks to propose 

qualitative methods for creating the surge capacity without quantification of capacity allocation and relocation 

approaches. Practical reports in the healthcare systems of the Netherlands indicated that the lack of cooperation between 

hospitals is a major cause for trauma patients to be transported outside the region because of shortages in ICU capacity 

and their corresponding nurses (Litvak et al., 2008). Litvak et al. (2008) addressed the capacity problem related to ICU 

beds, in which many hospitals in a geographical region reserve a small number of ICU beds for the regional emergency 

patients. Scheduling of nurse shifts and planning of workforce are also addressed by Otegbeye et al. (2015) and Willis et 

al. (2019), respectively. Farley et al. (2013) highlighted that emergency department information systems constitute a 

unique and important role in hospitals’ electronic health records, and the information system performance affects 

physician clinician workflow, decision-making, communication, overall patient safety, and quality of care. Most research 

works in resource planning in healthcare systems deal with standard and forecastable leadwork of a single healthcare 

center. Some other studies address mass casualty incidents that demonstrate short-term effects on hospitals, but those 

works contrast with the long-lasting effects of a pandemic outbreak. 

During the influenza pandemic preparedness, Toner and Waldhorn (2006) emphasized the significance of cooperation 

between different healthcare centers to decrease the extreme healthcare system stress. Bertsimas et al. (2020) showed the 

advantages of inter-regional collaboration in sharing ventilators across states in the U.S. Assuming a perfect demand 

forecast, their deterministic optimization model allocates the federal stockpile of ventilators and determines how many 

ventilators to transfer between states to minimize ventilator shortage costs. Considering the same problem, but with 

stochastic demand, Mehrotra et al. (2020) presented a two-stage stochastic model for allocating and sharing ventilators. 

They demonstrated that sharing ventilators across states could reduce shortages. Parker et al. (2020) studied the problem 

of finding demand and healthcare resource transfers between hospitals during the COVID-19 pandemic to minimize the 

required new capacity and shortage for healthcare resources. They used robust optimization to address demand 

uncertainty. The concern of this study, resource planning strategies for healthcare systems during epidemics and 

pandemics, is recently highlighted by the operations research community to improve the response to pandemics, 

especially to COVID-19. Further, modeling the effects of pandemics on a region’s individuals and their progression is 

also investigated; some of the studies related to COVID-19 are Lewnard et al. (2020), Perk et al. (2020), Nabi (2020), 

Silva et al. (2020), Levin et al. (2020), and Reddy et al. (2020). 

Methodologically, in the healthcare operations management area, the two-stage stochastic programming approach is 

commonly employed to formulate various problems that incorporate uncertainty (see e.g., Mehrotra et al., 2020). 

However, the uncertainty in stochastic parameters such as the number of patients is usually realized progressively and the 
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decisions at each period or stage are a function of uncertainty observations, previous decisions, and observed feedback 

outcomes up to that stage (Erdogan et al., 2013; Govindan et al., 2017). Therefore, multi-stage stochastic programming 

will be a more suitable optimization tool that we utilize in this work.   

There are key differences between the above papers and ours. First, the focus of most studies in resource planning during 

a pandemic is a single mitigation strategy to improve the healthcare systems’ response; however, our model with realistic 

features considers various patient types, demand redistribution, and different capacity planning options aligned with the 

type of healthcare resources. Second, an MSSP is developed to incorporate the uncertain number of patients requiring 

treatment during a pandemic. Third, the decisions made by MSSPs are not implementable in practice, and a data-driven 

decision-making approach with the help of a rolling horizon procedure is developed to deal with this issue and to 

determine real-time decisions. 

3. Problem formulation 

During a pandemic such as COVID-19, surges in demand for the healthcare system often occur; it’s common for the 

healthcare resources of a hospital to be lower than the required capacity. We categorize resources in terms of patients’ 

usage types. The first is direct in use resources (DUR), which a hospital assigns them to a patient as long as he/she is 

hospitalized. For example, suitable beds and ventilators are in this category for COVID-19. The second category is service 

resources (SER) such as personnel or laboratories that a hospital utilizes as needed.  

Given the ongoing capacity concerns, based on the types of resources, three main strategies are used by various countries 

during pandemics (especially COVID-19), as follows: 

Demand redistribution: to address the balance of loads, redistribution of patients between hospitals is implemented, 

Resource allocation (extension): the government or policy makers provide more external resources for regions or hospitals 

such as increasing capacity through calling in additional personnel and creating new suitable beds. 

Resource relocation (sharing): the sharing of capacity between regions (hospitals) is applicable for portable resources, 

such as healthcare personnel and ventilators. 

In this section, we propose a multi-stage stochastic program (MSSP) to determine the optimal demand redistribution, 

resource allocation, and sharing decisions to minimize shortages, medical treatment refusals or delays, and resource 

extension. Following practical requirements, the foremost priority is to minimize shortages (non-accepted patients), and 

the second goal is to minimize the allocation of new resources to healthcare regions or hospitals. 

By using an MSSP, the optimization problem has several decision layers, where random parameters are progressively 

realized, and decisions should be adapted to this process. Typically, an N-stage stochastic program includes a sequence of 

stochastic parameters              with a discrete support. A scenario is a realization of these stochastic parameters 

over the problem’s stages (periods), and a scenario tree represents the progressive observation of these parameters. During 

a pandemic such as COVID-19, a healthcare system faces various patient types in different regions or hospitals requiring 

treatment (unlike healthcare equipment). The number of patients in various types at different regions or hospitals is a 

stochastic parameter in our study, which is thought of as the healthcare system’s demand. 
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The decisions in each stage of an MSSP can be categorized into two groups: (i) the decisions that are made before the 

uncertainty realization at that stage, (ii) the decisions that are made based on the uncertainty realization. In our problem 

setting, both resource sharing and extension belong to the first group of decisions, and other decisions, including the 

acceptance or refusal of patients and demand redistribution, belong to the second group. Fig. 1 illustrates these decisions 

in our problem in period     where   {            } is the set of time periods.  

 

Fig. 1. Different decision types and the decision-making process over | | period. 

A policy should be non-anticipative in an MSSP, which means the decisions made at each stage must not be dependent on 

the future realization of stochastic parameters. There are two common ways to formulate an MSSP (Kall & Wallace, 

1994; Dupačová, 1995). In the first, an MSSP is formulated as a sequence of nested two-stage stochastic programs in 

which non-anticipativity is implicitly imposed. In the second (used in this paper), a set of non-anticipativity constraints 

(NAC) is explicitly modeled and these constraints should be considered for the decisions that are determined before 

uncertainty realization (Kall & Wallace, 1994; Dupačová, 1995; Erdogan & Denton, 2013).  

To model stochasticity related to various patient types in healthcare regions or hospitals as a scenario tree, a set of 

scenarios   with countable size | | is taken into account. The corresponding scenarios’ probabilities are          | |  If 

we denote a realization for patient number of type     at region     on period     under scenario     by     
  and 

  
  (    

          ), then the realization of stochastic parameters in scenario     from period    to period    is 

(   
       

       
 ). Fig. 2a shows an example of a scenario tree with three periods and five scenarios for our problem with 

three regions. As an example, for scenario s and period t, (|    
 | |    

 | |    
 |) is a realization related to the number of 

patients in type 1 and |    
 | |    

 | and |    
 | are corresponding to region 1, 2, and 3, respectively. Fig. 2b is an 

alternative representation of the scenario tree, which is called scenario fan, where the individual scenarios observed in the 

particular stages are disaggregated to form five scenarios.  
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Fig. 2a. A scenario tree example  Fig. 2b. The corresponding scenario fan 

In this section, the proposed MSSP is presented. However, the solution obtained from solving the MSSP is scenario-

dependent and, hence, it is not implementable in the real-world practice and does not allow the information attained over 

time to be used. Indeed, the critical limitation of scenario-based stochastic programs is that their optimal policy is only 

valid for a limited set of scenarios. To resolve this issue, we develop a new data-driven Rolling Horizon Procedure (RHP). 

Our approach, presented in Section 4, addresses this issue and provides real-time day-to-day sharing policy and demand 

redistribution in a rolling horizon manner. The required notations for presenting the mathematical model are defined in 

Table 1. 

Table 1. Notations 

Sets and indices 

  The set of periods indexed by         
  The set of scenarios         
  The set of regions        (it is possible to consider hospitals set instead of regions based on the problem 

setting). 

  The set of healthcare resources           and      denote the direct in use and service resources, 

respectively.     and     denote the set of resources with the possibility of capacity extension and sharing, 

respectively. Finally,    
  and    

  are the complement of set     and    , respectively. 

  The set of patient types,      
 ( ) The set of required healthcare resources for patient type k. 

 (   ) The set of regions, which can receive (forward) resource     from (to) region       
 (   ) The set of regions, which can receive (forward) patient type     from (to) region      It is assumed the 

patient transfer should be done by a lead time of less than one day (period). 

Parameters 

    
  The number of patients’ arrival in type     at region     in period     under scenario    . 

   Average discharge time of an accepted patient in     .  

      Lead time for transshipment of resource       between regions                           . 
 ̅    

 The number of hospitalized patients in type     at region     at the beginning of planning horizon. 

 ̃    The number of accepted patients in type     in region     in periods before   , which they will be 

discharged at period   based on   .  This parameter is zero for             

      The number of available resources        in region     at the beginning of planning horizon.  

      The capacity of resource        in region     at the beginning of planning horizon. 

    The capacity usage coefficient of patient type     for resource       . 

Decisions 
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  The number of added healthcare resources   (        ) at region     in period     under scenario 

   .  

    
  The amount of new capacity for healthcare resource   (        ) added at region     in period   

  under scenario    .  

      
  The number of healthcare resource      , which are transshipped from region     to      at the beginning 

of period     under scenario    . 

    
  The capacity of healthcare resource        at region     in period     under scenario    . 

    
  The number of accepted patients in type     in region     during period     under scenario    . 

    
  The number of non-accepted patients in type     in region     in period t under scenario      

     
  The number of non-accepted patients in type     in region     in period t under scenario     that cannot be 

met even with transferring them to other regions, so sent to the next period.  

     
  The number of available healthcare resource        in region     at the beginning of period     under 

scenario    . 

     
  Secondary variable that represents the number of healthcare resource        in region     at the end of 

period     under scenario    . 

      
  The number of patients in type    , which are sent from region     to      at period     under scenario 

   . 

    
  Auxiliary binary variable that represents the refusal of patients that occurred in region     at period     under 

scenario    . 
 

The MSSP is presented as follows:  

    ∑  

   

[ (∑∑∑      
 

         

) ∑∑ ∑ (| |     )    
 

            

 ∑∑ ∑ (| |     )    
 

            

  (∑∑∑∑      
 

             

)  (∑∑∑∑       
 

             

)] 

 

 

(1) 

      
       

                      (2-1) 

     
      (   )

              {  }                (2-2) 

     
       

  ∑  
    (   

    
)

 

    (   )

     
  ∑     

 

       ( )

 ∑  ̃   

       ( )

 ∑    (    )
 

       ( )

 ∑       
 

    (   )

 
                           (2-3) 

    
                       

        (2-4) 

      
                              

        (3) 

    
       

 ∑      
 

    

 ∑ ∑  
    (    

    
)

 

    (   )    

 ∑ ∑        
 

    (   )    

                            (4-1) 

    
                       

        (4-2) 

∑    ( ̅    
  ∑     

 

    

 ∑    (     )
 

       
   

 ∑  ̃    

    

)

       ( )

     
                              (5) 

    
      

  ∑       
 

    (   )

     
  ∑       

 

    (   )

     (   )
                         (6-1) 
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  ∑       
 

    (   )

                        (6-2) 

    
     

    
{    

  }      
                         (6-3) 

∑       
 

    (   )

    
    

{    
  }  (      

 )                        (6-4) 

    
      

             (        )                (   
       

        
 )  (   

        
         

  ) (7-1) 

    
      

             (        )                (   
       

        
 )  (   

        
         

  ) (7-2) 

    
      

                                 (   
       

        
 )  (   

        
         

  ) (7-3)  

     
       

                                 (   
       

        
 )  (   

        
         

  ) (7-4) 

      
        

                                     (   
       

        
 )  (   

        
         

  ) (7-5) 

                                 {   }| | | | | | | |. (8) 

Our main goal in relation (1) is to minimize the amount of cumulative non-accepted patients in the considered healthcare 

system over the planning horizon, the total number of added DUR resources, the total number of added SER resources, 

and the total amount of patient transfers and resource sharing. According to the practical aspects, the weights    , and   

are set such that the minimization of non-accepted patients has the highest priority. The second priority is to minimize the 

total number of new resources. Since the supply of new resources is time-consuming for policy makers, it is desirable to 

have as much time as possible before new supplies of healthcare resources. In order to account for this aspect in our 

formulation, the weight | |      is considered for new resources in each period t. Furthermore, this weight can be 

interpreted as some rental cost per day in the objective function. Finally, we minimize the amount of resource sharing and 

patients’ transfer, by considering coefficients   and  , respectively, with the lowest priority in comparison with other 

goals. In practice, policy makers can set coefficients   and   based on their necessities. 

Based on constraints (2-1)-(2-4), the available DUR at the beginning and end of each time period are calculated. The 

possibility of the extension of DUR resources and resource sharing over the planning horizon are considered by 

constraints (2-4) and (3), respectively. In addition, relations (4-1) show the available capacity of SER resources in each 

period and under each scenario. The possibility of adding SER resources over the planning horizon is considered by 

constraints (4-2). For the acceptance of patients’ hospitalization, constraints (5) guarantee the available capacity for 

serving them in terms of SER resources. Based on constraints (6-1)-(6-4), the amount of patients’ acceptance, non-

acceptance, and redistribution are calculated. Constraints (6-2) obtain the number of refused patients that cannot be met 

even by transferring them to other regions (hospitals). Further, constraints (6-3) and (6-4) guarantee that a region 

(hospital) can accept the patients from other regions (hospitals) in each period if it does not refuse any patients at that 

period. Constraints (7-1)-(7-5) are NACs in our MSSP, which are considered for the decisions that are made before 

uncertainty realization at each stage. Variable types and ranges are defined in constraints (8). It is worth noting that the 

proposed model is flexible to be used for a set of regions as well as hospitals. 
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4. Data-driven decision-making by the RHP 

Here, we propose a data-driven resource planning framework under uncertainty by using an RHP to implement our MSSP 

in real time. The rolling horizon approach makes the obtained policy implementable in practice and evaluates the policy 

empirically. By this approach, the latest data that is revealed as time progresses enables us to adjust our decisions over 

time. In other words, we observe the realization of the uncertain parameters in one period and, then, dynamically update 

the uncertainty set for the following periods and input parameters of the MSSP.  

To explain how the proposed approach works for the real data over a horizon of | | periods (days), we consider a sample 

path, denoted by  , as real data. The sample path includes the realized number of patients over | | periods. In planning 

horizon   {            } , to obtain a policy for      , we solve the MSSP with a scenario tree for the number of 

patients over periods              | |   . Then for the implementation of the obtained policy, we solve the MSSP 

with a horizon of | | periods in which for the first period   , the uncertain parameters are known (based on sample path 

 ) and the optimal decisions are fixed. For the next period, we update some input parameters of the stochastic model and 

in addition to model’s parameters that should be updated in each period, we repeatedly update the uncertainty set after a 

predetermined number of periods by calibrating parameters of our simulation model based on our observations (See the 

RHP in Fig. 3). 

The explained procedure should be repeated in each period, and we roll the patients’ arrival planning horizon forward one 

day by adding a new period to the calendar at every step. In obtaining policy in each specific period   , we should update 

some parameters of the stochastic model and consider some modification in the presented model to capture the impacts of 

previous realized data and decisions. In Table 2, we provide the definition of some parameters, which are used for the 

model’s modifications, and we entitle this model the rolling horizon model. It is worth noting that period    is the first 

period of the horizon in the rolling horizon model. 

Table 2. Parameters for updating the rolling horizon model 

      The amount of resource        , which are available in region     at the beginning of period   . 

      The capacity of resource        in region     at the beginning of period   . 

 ̅    
  The number of hospitalized patients in type     at region     at the beginning of period   . 

 ̃     The number of accepted patients in type     in region (hospital)     in periods before   , which they will be 

discharged at period   based on   .  This parameter is zero for             

 ̂    The number of accepted patients in type     in region (hospital)     in periods before   , which is supposed to be 

discharged in period   based on   , but they are discharged in periods before   .  

 ̅    The number of healthcare resources      , which are transshipped from other regions to region     in periods before 

   and will be available at the beginning of period    .  

  ̅̅ ̅̅
    The number of patients in type     at region     , which are not accepted in any regions in period      (previous 

period of the beginning period).  
 

In the rolling horizon model, parameters       and       should be changed to       and      , respectively, and their 

values are based on the available information at the beginning of each period. Constraints (2-3) should be updated as 

follows: 
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By constraints (9) in the rolling horizon model, the impact of patients’ acceptance, resource sharing decisions, and 

realized uncertainty will be captured. Furthermore, constraints (4-1) should be modified as follows: 

    
        ∑     

 

    

 ∑ ∑  
    (    

    
) (    

    
)   

 

    (   )    

 ∑ ̅    

    

 ∑ ∑        
 

    (   )    

 

 

 

                           

 

 

(10) 

 

Constraints (5) is also modified in the rolling horizon model as follows: 
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Finally, the patients which are not accepted in any region before period    should be considered in constraints (6-1) for the 

first period by substituting parameter   ̅̅̅̅
   instead of     (    )

 .  

The RHP has been applied for MSSPs in a few studies (Fattahi and Govindan, 2018; Fattahi and Govindan, 2020) and one 

can refer to these studies for more information about the estimation of the true objective function in real time by rolling 

horizon simulation. In other words, by assuming enough realized sample paths, we can evaluate the policies from MSSPs 

by the rolling horizon simulation. Fig. 3 shows the RHP in this study. 

 

Fig. 3. The RHP in this study. 
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5. Scenario tree construction for multivariate stochastic parameters 

In this study, we focus on one category of COVID-19 pandemic patients, those who get the SARS-CoV-2 virus from 

infected individuals in a cohort. This group includes patients with a critical state who will die if they remain untreated. 

These patients should be hospitalized, and their treatments, including an ICU with mechanical ventilation or high-flow 

supplemental oxygen, can prevent a subset of deaths among them. To construct a scenario tree for the MSSP, we follow 

the approach presented by Ekici et al. (2014) for the simulation of the number of patients who need hospitalization in a 

region. Accordingly, an agent-based continuous-time stochastic model is constructed for the COVID-19 transmission.  

Firstly, the entire population is divided into three age groups (0-19y, 20-59y, or ≥60y), that helps model the various types 

of interactions between people in the population. The population in a region is classified into Susceptible (S), Exposed 

(E), Infected (IT), Quarantined (IQ), Hospitalized at the critical stage (IH), Recovered (R), and Deceased (D). In our model, 

a proportion of the exposed individuals in an age subgroup are quarantined as soon as they get into the Infected stage, 

which means they are isolated from the population and do not infect additional individuals. Our simulation network 

related to defined compartments is illustrated in Fig. 4.  

 

Fig. 4. The simulation network of our model 

We construct the base model for each group and the disease spread is modeled through two main parts: 1) the disease 

progress for an infected individual, and 2) the spread of the disease between the members of the population. In other 

words, we assume that each individual will lie in one of the compartments in Fig. 4.        and    are the probabilities 

of self-quarantine of an infected individual, recovery of an infected individual without hospitalization, and death of a 

hospitalized individual, respectively. In the model, we assume 80% of 0-19y group, 50% of 20-59y, and 90% of ≥60y 

group quarantine themselves after getting the infection. Generally, we model a defined cohort of individuals (e.g., 

population of a region) for a given number of days (simulation horizon). The simulation time unit is one day. Susceptible 

individuals can acquire SARS-CoV-2 infection from infected individuals in the cohort. Once an individual is infected, 

he/she progresses through various infection states until either recovery or death. The severity of disease and the length of 

stay in each disease state are based on age-specific transition probabilities of COVID-19 natural history, estimated from 

historical data and scientific reports (Haridy, R., 2020; Hu et al., 2020; Zhou et al., 2020; Liu et al., 2020; Wang et al., 

2020; Yang et al., 2020; Mizumoto et al., 2020). In this study, we considered that the individuals who are in the critical 

disease state should be managed in an ICU with mechanical ventilation or high-flow supplemental oxygen. 
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Effective reproduction number (R0) is another important parameter of our model which is the average number of 

secondary cases caused by an infectious individual; it determines the infectivity of the virus. We update the transmission 

multipliers each week to account for the variation of effective reproduction number due to stay-at-home orders and 

closure of schools, restaurants, bars, gyms, and other non-essential businesses, which were introduced in multiple phases. 

In collaboration with partner medical schools, we have obtained the other parameters and constructed the described 

disease spread model.  

By running the simulation model, we obtain the number of patients in critical state at each region/hospital over a planning 

horizon. The results of the simulation model depend on the values of         , and R0, which can change within some 

small intervals based on the literature’s data. Therefore, by running the simulation model several times, we can obtain a 

set of discrete scenarios for the stochastic parameter as a scenario fan. We then construct a scenario tree based on the 

generated scenario fan and reduce the number of scenarios in order to avoid computationally intractable stochastic 

programs. To do so, we deploy a forward scenario tree construction method proposed by Heitsch and Romisch (2005) 

based on the proposed heuristics by Dupačová et al. (2003). They proposed two approaches to transform a scenario fan 

into a scenario tree called as the forward and backward constructions. The generated scenario fan follows a probability 

distribution   and if we transform it into a scenario tree with probability distribution   , the Kantorovich distance (  ) 

between   and    should be less than a predetermined value  . In other words, the reduction algorithms apply maximal 

reduction strategy such that   (    )   .  

We use forward scenario tree construction approach in this paper and bundle the scenarios for each period    . For 

detailed explanations related to the scenario construction approach, one can refer to Fattahi et al. (2018), Fattahi and 

Govindan (2018), and Fattahi and Govindan (2020). Further, parameter    is considered as         where    is a 

constant value between zero and one representing a scale for the amount of reduction in the initial scenario fan and      

is the minimum distance between   and one of its scenarios with probability one.  It is worth noting that by increasing the 

reduction scale   , the number of obtained scenarios decreases, so the information loss increases. However, as the number 

of scenarios decreases, we have a better computational tractability for solving the MSSP. Therefore, there is a trade-off 

between the number of scenarios and computational tractability. 

The RHP enables us to deal with the uncertainty realization over time. The uncertainty vector at each time period   , 

    (                | |  ), depends on uncertainty at periods before time period   . If we consider the realized 

uncertainty before    as  ̅[    ], the dependency of     to  ̅[    ] can be presented as    ( ̅[    ]). During any pandemic, 

many parameters can affect disease spread and transmission and we capture    ( ̅[    ]) by our simulation model and 

update the scenario trees in predetermined time periods over the planning horizon. 
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6. Computational results 

We will give a proof of concept for our data-driven MSSP methodology using two case studies during COVID-19 

pandemic: 1) sharing mechanical ventilators among a subset of regions in the U.S., 2) sharing nurses and ventilators and 

demand transfers between hospitals in a geographical area of Iran. 

6.1. Case study 1: sharing ventilators among a subset of U.S. healthcare regions  

In this case study, we address sharing of ventilators among healthcare regions in two states of the USA that contain 16 

regions. During the first peak of the pandemic in March 2020, additional ventilators were obtained from state and federal 

stockpiles to cope with the surge in ventilator demand. Our data-driven optimization model informs an optimal ventilator 

allocation and relocation policy so that the uncertain demand can be satisfied with the fewest possible ventilators. This 

ensures that hospitals can better serve non-COVID patients and potentially cancel fewer elective procedures by 

accommodating the needs of patients with as few ventilators as possible. It should be mentioned, in this case study, we 

address one type of critical patients needing ventilators, and patient transfer between regions is not reasonable and 

applicable since we have not considered hospitals in this case study.  

In solving the MSSP, 150 scenarios in the form of a scenario fan are simulated by using the agent-based continuous-time 

stochastic model for COVID-19 transmissions, and then the scenarios are reduced and converted into a scenario tree by 

the forward scenario construction approach. In our implementations, parameter    is set to 0.7. It is worth noting for 

setting the value of   , we have done stability analysis based on the approaches proposed by Fattahi and Govindan (2018), 

and the in-sample and out-of-sample stability error are 2.2% and 1.8%, respectively. Regarding computational tractability, 

in examined case studies, our model is solvable with various settings by the CPLEX solver in less than 5 minutes.  

The impact of sharing ventilators strategy. In order to investigate the importance of sharing strategies, 200 sample 

paths are generated based on our simulation model that represent the realized number of new patients in need of 

ventilators on each day over the planning horizon (90 days) and the length of ventilator use for each patient. Considering 

this set of samples, we implement our data-driven approach to obtain the optimal sharing policy corresponding to each 

sample path. The average number of new ventilators required to cope with the demand and its cumulative value under two 

strategies (sharing and no sharing strategies) are shown in Fig. 5 and Fig. 6, respectively. 

 

Fig. 5. Average number of required ventilators in each day in Case study 1. 
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Fig. 6. Average cumulative number of required ventilators in Case study 1. 

As seen in Fig. 5, when resource sharing is not done, a new supply of ventilators is needed earlier than when ventilators 

are shared. Under the sharing strategy, some of the early shortages can be eliminated by moving ventilators from regions 

with excess ventilators to those experiencing a shortfall. More importantly, we can see in Fig. 6 that the no sharing 

strategy requires significantly higher number of additional ventilators to cope with the demand. While 1574.7 additional 

ventilators are needed in average to avoid refusal of patients’ care as much as possible across the two states under the no 

sharing strategy, the states under the sharing strategy requires only 662.5 additional ventilators to achieve the same 

outcome. The more details of information obtained from simulating case study 1 are reported in Table 3. Through solving 

our case study by the RHP over 90 days, we have constructed a scenario tree for each day and updated the input 

parameters of our agent-based simulation model, weekly. It is worth noting that the average number of scenarios in the 

constructed scenario trees by     0.7 is 22.8. 

Table 3. Ventilator needs and sharing outcomes under two strategies 
 Total new ventilators 

required, Mean (SD) 

Total transshipments between 

regions, Mean (SD) 

Total shortages (non-

accepted patients), Mean 

(SD) 

Maximum number of shortages 

(non-accepted patients) over 

scenario paths 

No sharing 1574.7 (114.4) 0 (0) 16.1 (8.1) 34 

Sharing 662.5 (21.2) 2898 (132.1) 14.8 (7.9)  27 

From Table 3, we can see the amount of sharing between the regions is significant under the sharing strategy. In addition, 

although the impact of sharing strategy on the non-accepted patients’ number is not meaningful based on our 

mathematical modeling, the total number of needed ventilators in the case of no sharing increases significantly. In other 

words, in our optimization problem, we have assumed the needed ventilators will be supplied by the government in the 

US and because of this issue, we have not any significant increase in the value of shortages.   

6.2. Case study 2: demand redistribution and sharing resources among a subset of Iranian hospitals 

In this case study, main hospitals in some cities of Iran are considered during the COVID-19 pandemic that contains 20 

hospitals in a healthcare region. Each hospital has an initial capacity of ventilators, ICU beds, and medical personnel 

(nurses). The ICU beds and ventilators correspond to the DUR and medical personnel relate to the SER. Here, sharing of 

ventilators and medical personnel and patients’ transfer are possible to provide services to infected patients requiring the 

hospitalization. The horizon of three months in the third peak of COVID-19 is considered for this case study. Our data-

driven model optimizes various strategies such that demand can be satisfied with fewest resources possible. 
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6.2.1. The impact of sharing resources and patients transfer strategies 

We investigate the importance of our strategies in this section. Considering a set of samples as realized uncertainty, we 

implement our data-driven approach to obtain the optimal resource planning corresponding to each sample path. The 

average total number of new nurses and ventilators required to cope with the demand under four strategies (no sharing 

and no patient transfer, sharing and no patient transfer, no sharing and patients transfer, sharing and patients transfer 

strategies) are shown in Fig. 7 and 8, respectively. More details of information obtained from simulating case study 2 are 

reported in Table 4. It is worth noting that through solving case study 2 by the RHP over 90 days, the average number of 

scenarios in the constructed scenario trees by     0.7 is 24.1.   

 

Fig. 7. Average total number of required nurses in case study 2. 

 

Fig. 8. Average total number of required new ventilators in case study 2. 

Table 4. Ventilators and nurses needed under four strategies 
 Total new ventilators 

required, Mean (SD) 

Total new nurses required, 

Mean (SD) 

Total shortages (non-

accepted patients) 

Mean (SD) 

Maximum number of 

shortages (non-accepted 

patients) over scenario paths 

No sharing, No patients transfer 1877.1 (129.2) 397.8 (28.9) 18.8 (9.9) 27 

Sharing, Patients transfer 1498.1 (112.7) 342.5 (26.1) 2.1 (1.01) 5 

Sharing, No patients transfer 1558.5 (113.1) 359.3 (27.9) 9.3 (3.7) 14 

No sharing, Patients transfer 1661 (115.4) 366.2 (25.0) 7.4 (2.8) 10 

Presented results in Table 4 show that we can improve the required ventilators and nurses by about 20% and 14%, 

respectively, by using both sharing and patients’ transfer strategies. Further, the sharing strategy in this case study is more 
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effective than patients transfer strategy in terms of required new resources.  However, patients transfer strategy has a 

better impact on the reduction of non-accepted patients in compared to the sharing strategy. Fig. 9 shows the main patients 

transfer through the considered region in the sharing and patients transfer strategy. 

 

Fig. 9. Main patients’ transfers through the considered region in case study 2 (more than 10 over the planning horizon in average) 
 

6.2.2. Demand redistribution vs resource sharing 

The presented results in the previous section highlight the importance both of resource sharing and demand redistribution 

strategies. However, some policy makers may have different priorities in using these strategies based on the existing 

healthcare infrastructure. In this sub-section, we investigate how different priorities can be embedded in our model. 

In our results in the previous sub-section, the same weights are considered for   and   in the sharing and patients transfer 

strategy. Here, we report the sensitivity of the average amount of ventilators transshipments, nurses’ transshipments, and 

patients transfers in this strategy to 
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Fig. 10. the sensitivity of the average amount of nurses’ transshipments, ventilators transshipments, and patients transfers to 
 

 
 

As shown in Fig. 10, the sensitivity of nurses and ventilators transshipments to  
 

 
  value are relatively the same. On the 

other hand, we can obtain various policies in terms of using resource sharing and patients transfer by setting parameters    

and  . 

6.3. The significance of data-driven decisions 

One of the main advantages of our proposed data-driven methodology is the progressive information update based on 

uncertainty realization over time. In this sub-section, we assess the impact of data-driven decision-making in terms of one 

aspect. The discharge time of a patient, denoted by  , has a significant impact on the optimal decisions. In this paper, we 

have assumed that the discharge time of patients in critical state and the resources’ release are the same. Using published 

data on the duration of ventilator use for patients with COVID-19, we used a lognormal distribution for    (Ludwig et al., 

2021). Based on our historical data, the value of    follows log-normal distribution and   (  ) has normal distribution 

with mean 2.5 and standard deviation 0.93. Fig. 11 shows the release time of ventilators in our historical data.  

 

Fig. 11 The release time of ventilators after usage for the COVID-19 patients 

In the optimization model, we set the value of   to the mean duration of ventilator use (14 days). Then, by implementation 

of our data-driven approach, we account for the released ventilators in each region on each day. In order to investigate the 

importance of this data-driven approach, we assume that all ventilators will be released after 14 days and use our model 

without updating released ventilators on each day. As shown in Fig. 12, without a data-driven approach in case study 1, 

764.5 additional ventilators are called on to ensure demand is met as much as possible, whereas with a data-driven 

approach, the same is achieved with only 662.5 ventilators. Further, in case study 2, the average amount of required 

ventilators and nurses increase about 11% and 9%, respectively, if we assume a constant value for   and do not update the 

input parameters based on the obtained information. 
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Fig. 12. Average number of required ventilators in case study 1 and in the case of no update, which is assumed that ventilators would 
be released after 14 days 

Note we have only examined the importance of parameter   in this sub-section, and in our data-driven model, we update 

the discharge of patients as well as the uncertainty set through our data-driven RHP. 

6.4. Risk-averse decisions 

Here, we determine a risk-management policy by using the Conditional Value at Risk (CVaR) as a well-defined risk 

measure. Linear programming techniques are used for formulating the problem by this risk measure (Ahmed, 2006). By 

assuming the cumulative distribution function of random variable Q as   ( ), the Value at Risk at the confidence level c 

(    ) is     ( )      {   |   ( )   } and hence      ( )   ( |      ( )). Additionally, based on the 

formulation presented by Rockafellar and Uryasev (2002),      ( )        {  
 

   
 [(   ) ]}.  

One important issue related to the risk-averse MSSPs is the time consistency. Recently, it has been highlighted by several 

studies as a desirable property of a problem. Informally, in order to preserve the time consistency in MSSPs, by given the 

available information at the time when a policy is determined, the optimality of the policy should only be with respect to 

possible future realizations (Homem-de-Mello & Pagnoncelli, 2016). Ruszczyński (2010) defined the time consistency in 

dealing with sequences of random variables in the dynamic programming approach, and Shapiro (2009) focused on the 

stability of decision variables at each stage in risk-averse MSSPs.  

We consider       of total non-accepted patients instead of its expected value and, we have used the approach of Yin 

and Büyüktahtakin (2021) for modeling the risk-averse MSSP. Yin and Büyüktahtakin (2021) confirmed that their 

modeling approach preserves the time consistency. In other words, our formulation enforces the time consistency by non-

anticipativity constraints.  

In case study 1, we examine the total number of new ventilators over 90 days for risk-averse decisions where c is equal to 

0.8 and 0.95. In Fig. 13, the needed ventilators for risk neutral and risk-averse decisions are illustrated. 

 

Fig. 13. Average total number of required ventilators in case study 1 for risk-neutral and risk-averse policies 

As shown in Fig. 13, the risk management policies call for about 8 % more ventilators. However, this comes with the 

benefit of fewer non-accepted patients and standard deviation of new ventilators in practice.       quantifies the 

expected value of the worst (   )  non-accepted patients. If we increase the value of parameter c,       accounts for 

the risk of higher number of non-accepted patients. As a consequence, larger values for parameter c result in larger values 
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for        Here, we have investigated two values for c, including 0.8 and 0.95, in case study 1, and the corresponding 

results are reported in Table 5. 

            Table 5. New ventilators required and the number of non-accepted patients with the risk-neutral and risk-averse policies. 

 New ventilators required, Mean 
(SD) 

Total non-accepted 
patients, Mean (SD) 

Maximum of non-accepted 
patients over scenarios 

Risk-averse Policy with c =0.95 710.8 (16.7) 3.2 (2.7) 9 

Risk-averse Policy with c =0.8 699.8 (17.2) 4.3 (2.2) 11 

Risk-neutral Policy  662.5 (21.2) 14.8 (7.9) 27 

Here, we report the new resources allocation as well as the number of non-accepted patients in both of case study 1 and 2 

under risk-averse and risk-neutral policies. Furthermore, we compare our results by the obtained policies from two-stage 

stochastic programming and deterministic models to highlight the importance of the uncertainty consideration and multi-

stage stochastic programming approach. In the two-stage stochastic model, all allocation and sharing decisions should be 

made at the beginning of the planning horizon. In Table 6 and 7, the results related to case study 1 and 2 are reported, 

respectively. 

Table 6. New ventilators required and non-accepted patients with the risk-averse, stochastic, and deterministic policies in case study 

1. 

 New Ventilators Required, Mean (SD) Total non-accepted patients, 

Mean (SD) 

Maximum non-accepted 

patients over scenarios 

Risk-averse Policy with c=0.95 710.8 (16.7) 3.2 (2.7) 9 

Risk-neutral policy by MSSP approach 662.5 (21.2) 14.8 (7.9) 27 

Risk neutral policy by two-stage stochastic 
programming approach 

677.2 (23.7) 15.1 (9.2) 27 

Deterministic Policy 619.3 (24.9) 26.2 (15.3) 53 

 

 

 

Table 7. New ventilators and nurses required and non-accepted patients with the risk-averse, stochastic, and deterministic policies in 

case study 2. 

 New ventilators required, 

Mean (SD) 

New nurses required, 

Mean (SD) 

Total non-accepted 

patients, Mean (SD) 

Maximum non-accepted 

patients over scenarios 

Risk-averse Policy with c=0.95 1541.7 (78.1) 355.1 (14.8) 0.81 (0.22) 2 

Risk-neutral policy by MSSP 
approach 

1498.1 (112.7) 342.5 (26.1) 2.1 (1.01) 5 

Risk neutral policy by two-stage 
stochastic programming approach 

1589.4 (128.1) 353.8 (32.9)            2.9 (0.92) 6 

Deterministic Policy 1382 (189.7) 307.9 (48.1) 16.7 (2.9) 24 
 

From Table 6, we can see about 2.4% improvement of the MSSP in compared with the two-stage stochastic program in 

terms of the total number of new ventilators in case study 1. In addition, as shown in Table 7 for case study 2, the 

improvement of required ventilators and nurses are 5.7% and 3.2%, respectively. In the two-stage stochastic model, all 

allocation and sharing decisions should be made at the beginning of the planning horizon. Additionally, the poor 

performance of the deterministic policy is highlighted in terms of the amount of non-accepted patients in which the 

average number of patients is considered instead of stochastic patients’ number.  

The importance of lead times. Our extensive computational experiments indicate that the number of non-accepted 

patients is mainly dependent on the sharing of lead-times in both of risk-neutral and risk-averse policies. For case study 1, 

Fig. 14a presents the sensitivity of the average non-accepted patients on lead time values related to the risk-neutral and 
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risk-averse policies, and Fig. 14b illustrates the sensitivity of the average cumulative new ventilators’ requirement on lead 

time values. In the sensitivity analysis various multiplier coefficients are considered for lead times. 

 
 

Fig. 14a. sensitivity of non-accepted patients to lead-times Fig. 14b. sensitivity of resource allocation to lead-times 

As shown in Fig 14, the sharing lead time of resources has a main negative impact on the output of resource planning 

during a pandemic in both of risk-averse and risk-neutral policies. However, presented results show that the risk-averse 

policy has a more stability against the increase of lead times in terms of non-accepted patients amount. If policy makers 

are able to decrease the sharing lead time of resources, the responsiveness of healthcare systems would be improved 

during a pandemic. 

 

 

 

6.5. The impacts of interventions on resources need 

Regarding case study 2, on several occasions, Iranian governors announced stay-at-home orders aimed to slow the spread 

of COVID-19. The closure of non-essential business along with social distancing measures were effective in reducing 

transmissions and can be captured by the reduction in estimated effective reproduction number (R0) of the disease.  

In this part, we investigate the effect of these interventions on optimal policy and resources need. In particular, we model 

two scenarios in which the transmission rate from the considered horizon is 50% higher or lower compared to the 

observed rate. If interventions were less effective, ventilator and nurse needs derived from our optimal policy would 

increase 18% and 12%, respectively. This is because less effective interventions would result in more infections and, 

subsequently, a higher demand for resources. On the other hand, if interventions were more effective, the need for 

ventilators and nurses from our optimal policy would decrease 7% and 5%, respectively.  

7. Managerial insights 

To meet potential surges in healthcare resources’ demand under pandemics, our optimization model considers various 

types of patients as well as resources (DUR and SER) simultaneously for the first time in the literature. Further, the model 

considers the sharing strategy and patients’ transfers to avoid non-accepted patients as much as possible by using the 
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fewest additional resources. The presented optimization setting is flexible and applicable for different healthcare resources 

planning problems, which is confirmed by our computational results for two real examples.  

Our empirical results provide insight into how hospitals in different regions could cope with the increase in demand for 

healthcare resources, which results from local surges in infections during COVID-19. Based on the computational results, 

by sharing ventilators among regions of two states of the USA, the average number of ventilators allocation to regions 

decreases about 58%. In the second case study (hospitals of a healthcare region of Iran), it decreases about 17%. The main 

reason for different significance of the ventilators sharing strategy between these two cases is that the infection spreads at 

varying rates in different regions in case study 1. Therefore, this provides an opportunity for sharing scarce resources such 

as ventilators, which can be transported over large distances within regions to alleviate capacity shortfalls caused by an 

epidemic surge in a region. More importantly, governors and decision makers have to ‘find’ significantly more ventilators 

to cope with the demand in the absence of sharing, which will take time; several patients don’t have time during 

pandemics. 

Based on our results from solving case study 2, we can find patients’ transfer as another efficient strategy in reducing the 

total required capacity in hospitals. In order to facilitate patients’ transfer between hospitals to manage the healthcare 

systems’ capacity, an infrastructure is necessary for transshipping patients between hospitals in a short time. Since the 

patients’ transfer has not any lead time compared with resource transshipments in our case study, it is more impactful in 

terms of the minimization of non-accepted patients (See Table 4). On the other hand, the integrated use of sharing 

resources and demand redistribution strategies improve the required resources about 21% while the improvement related 

to the usage of the single resource sharing and patients’ transfer strategy are about 17% and 12%, respectively. 

The proposed data‐driven decision-making framework can help decision makers adjust their decisions in real-time based 

on the past observation of uncertain parameters and their prior decisions. We highlight the importance of the information 

update related the release time of healthcare resources. In the accessible historical data, the release time of ventilators used 

for the COVID-19 patients follows a log-normal distribution and varies largely in different cases; our data-driven 

decision-making framework improves the additional capacity allocation in both  case study 1 and 2 by real-time decisions.  

We highlight the significance of the MSSP in compared with deterministic and two-stage stochastic programming model. 

Further, by developing the risk-averse MSSP with the CVaR of non-accepted patients instead of its expected value, we 

investigate the risk‐neutral and risk‐averse decision-making in healthcare resources planning. Our experimental results 

show that the risk‐averse decisions make the expected allocation of additional resources worse, its standard deviation 

lower, and reduces the amount of non-accepted patients in our case studies. Therefore, in many practical situations, we 

can increase the robustness of our decisions by employing a risk-averse objective function. 

Finally, interventions like closure of non-essential business, mask wearing, and social distancing protocols are very 

effective in reducing transmissions. Such mandates are captured by considering different values for the effective 

reproduction number in our simulator, and we show these strategies can meaningfully reduce the required additional 

resources in hospitals. 
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8. Conclusion 

We introduce a new integrated resource sharing and demand redistribution problem during pandemics. Our optimization 

is applicable for various patient types and required healthcare resources. Under a multi‐period setting, an MSSP with non‐

anticipativity constraints is developed to obtain the optimal sharing, patients’ transfer, and capacity allocation decisions. 

Methodologically, we formulate our problem as a mixed-integer linear programming model, which is solvable by the 

CPLEX as a commercial solver. The real‐world applicability of the proposed MSSP is deeply investigated by two real 

case studies. A new data‐driven decision‐making approach is developed to implement the decisions made by the MSSP in 

real-time. This approach enables decision-makers to employ the data that is realized over time and to adjust the 

corresponding decisions in a rolling horizon framework. 

In the computational results, we illustrate the validity of our model and its importance in resource planning during 

COVID-19 pandemic. Further, the significance of the MSSP is compared with both deterministic and two-stage stochastic 

programming models, data‐driven decisions, the sharing of healthcare resources, the demand redistribution, and risk-

averse decisions are discussed and analyzed. Our decision-making framework showcases its capabilities and flexibility 

with its exceptional performance in reducing required new healthcare resources during pandemics. 

To capture the demand uncertainty and create an efficient scenario tree in our optimization problem, a simulation 

approach based on an agent-based continuous-time stochastic model is used to model the disease spread. Next, by 

applying the forward scenario tree construction technique, we reduce the scenarios’ number and convert them into a 

scenario tree. The efficiency of this method is confirmed by in‐sample and out‐of‐sample stability analysis. 

Although our work is motivated by healthcare operations management under pandemics, our models and insights can also 

be applied to other service industries under massive increases in demand. Moreover, this study has a few limitations, 

which can be addressed by future researches. In our model, we do not consider priorities in responding to patients in the 

case of shortfalls and patients’ preferences in selecting hospitals. 

 

 

 

 

 

 

 

 

 

 

 

                  



25 
 

References 

Adan, I., Bekkers, J., Dellaert, N., Jeunet, J., & Vissers, J. (2011). Improving operational effectiveness of tactical master 
plans for emergency and elective patients under stochastic demand and capacitated resources. European Journal of 
Operational Research, 213(1), 290-308. 

Adelman, D. (2020). Thousands Of Lives Could Be Saved In The US During The COVID-19 Pandemic If States Exchanged 
Ventilators: Study examines how lives could be saved by allowing US states to exchange ventilators during the COVID-19 
pandemic. Health Affairs, 39(7), 1247-1252. 

Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathematical Programming, 106(3), 
433-446. 

Altay, N., & Green III, W. G. (2006). OR/MS research in disaster operations management. European journal of operational 
research, 175(1), 475-493. 

American College of Surgeons. (2020). COVID-19: recommendations for management of elective surgical procedures. 

Bakuli, D. L., & Smith, J. M. (1996). Resource allocation in state-dependent emergency evacuation networks. European 
Journal of Operational Research, 89(3), 543-555. 

Centers for Disease Control and Prevention National Center for Immunization and Respiratory Diseases, 2020. Overall 
Percentages of Visits for ILI and Percentage of Visits for ILI by Age Group Reported by A Subset of ILINet Providers. Cent. 
Dis. Control Prev. available at https://www.cdc.gov/coronavirus/2019-ncov/covid-data. 

Chi, H., Li, J., Shao, X., & Gao, M. (2017). Timeliness evaluation of emergency resource scheduling. European journal of 
operational research, 258(3), 1022-1032. 

Dasaklis, T. K., Pappis, C. P., & Rachaniotis, N. P. (2012). Epidemics control and logistics operations: A 
review. International Journal of Production Economics, 139(2), 393-410. 

Drevs, F. (2013). How patients choose hospitals: using the stereotypic content model to model trustworthiness, warmth 
and competence. Health services management research, 26(2-3), 95-101.  

Dupačová, J. (1995). Multistage stochastic programs: The state-of-the-art and selected bibliography. Kybernetika, 31(2), 
151-174. 

Dupačová, J., Gröwe-Kuska, N., & Römisch, W. (2003). Scenario reduction in stochastic programming. Mathematical 
programming, 95(3), 493-511. 

Ekici, A., Keskinocak, P., & Swann, J. L. (2014). Modeling influenza pandemic and planning food 
distribution. Manufacturing & Service Operations Management, 16(1), 11-27. 

Elmaghraby, S. E. (1993). Resource allocation via dynamic programming in activity networks. European Journal of 
Operational Research, 64(2), 199-215. 

Erdogan, S. A., & Denton, B. (2013). Dynamic appointment scheduling of a stochastic server with uncertain 
demand. INFORMS Journal on Computing, 25(1), 116-132. 

Farley, H. L., Baumlin, K. M., Hamedani, A. G., Cheung, D. S., Edwards, M. R., Fuller, D. C., ... & Pines, J. M. (2013). Quality 
and safety implications of emergency department information systems. Annals of emergency medicine, 62(4), 399-407.  

Fattahi, M., & Govindan, K. (2020). Data‐driven rolling horizon approach for dynamic design of supply chain distribution 
networks under disruption and demand uncertainty. Decision Sciences. In press. 

                  



26 
 

Fattahi, M., & Govindan, K. (2018). A multi-stage stochastic program for the sustainable design of biofuel supply chain 
networks under biomass supply uncertainty and disruption risk: A real-life case study. Transportation Research Part E: 
Logistics and Transportation Review, 118, 534-567. 

Fattahi, M., Govindan, K., & Keyvanshokooh, E. (2018). A multi-stage stochastic program for supply chain network 
redesign problem with price-dependent uncertain demands. Computers & Operations Research, 100, 314-332. 

Ferreira, F. A., Kannan, D., Meidutė-Kavaliauskienė, I. and  Vale, I.M.T. (2022). A sociotechnical approach to vaccine 
manufacturer selection as part of a global immunization strategy against epidemics and pandemics. Annals of 
Operations Research (in press) 

Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allocation for emergency response after earthquake 
disasters. Safety science, 35(1-3), 41-57. 

Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A 
comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108-141. 

Govindan, K., Mina, H., & Alavi, B. (2020). A decision support system for demand management in healthcare supply 
chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transportation 
Research Part E: Logistics and Transportation Review, 138, 101967. 

Gupta, S., Starr, M. K., Farahani, R. Z., & Matinrad, N. (2016). Disaster management from a POM perspective: Mapping a 
new domain. Production and Operations Management, 25(10), 1611-1637. 

Haridy, R. (2020) CDC director warns 25 percent of COVID-19 cases may present no symptoms. 582 New Atlas. 

Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms. Journal of construction 
engineering and management, 125(3), 167-175. 

Heitsch, H., Romisch, W., 2005. Generation of multivariate scenario trees to model stochasticity in power management. 
In: 2005 IEEE Power Tech Russia Conference Proceedings. IEEE, pp. 1–7. 

Hick, J. L., Hanfling, D., Burstein, J. L., DeAtley, C., Barbisch, D., Bogdan, G. M., & Cantrill, S. (2004). Health care facility 
and community strategies for patient care surge capacity. Annals of emergency medicine, 44(3), 253-261. 

Homem-de-Mello, T., & Pagnoncelli, B. K. (2016). Risk aversion in multistage stochastic programming: A modeling and 
algorithmic perspective. European Journal of Operational Research, 249(1), 188-199. 

Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., ... & Shen, H. (2020). Clinical characteristics of 24 asymptomatic infections 
with COVID-19 screened among close contacts in Nanjing, China. Science China Life Sciences, 63(5), 706-711. 

Kaji, A., Koenig, K. L., & Bey, T. (2006). Surge capacity for healthcare systems: a conceptual framework. Academic 
Emergency Medicine, 13(11), 1157-1159. 

Kall, P., & Wallace, S. W. (1994). Stochastic programming (p. 307). Chichester: Wiley. 

Levin, A. T., Hanage, W. P., Owusu-Boaitey, N., Cochran, K. B., Walsh, S. P., & Meyerowitz-Katz, G. (2020). Assessing the 
age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy 
implications. European journal of epidemiology, 1-16. 

Luscombe, R., & Kozan, E. (2016). Dynamic resource allocation to improve emergency department efficiency in real 
time. European Journal of Operational Research, 255(2), 593-603. 

Lewnard, J. A., Liu, V. X., Jackson, M. L., Schmidt, M. A., Jewell, B. L., Flores, J. P., ... & Bellows, J. (2020). Incidence, 
clinical outcomes, and transmission dynamics of severe coronavirus disease 2019 in California and Washington: 
prospective cohort study. bmj, 369. 

                  



27 
 

Litvak, N., Van Rijsbergen, M., Boucherie, R. J., & van Houdenhoven, M. (2008). Managing the overflow of intensive care 
patients. European journal of operational research, 185(3), 998-1010. 

Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to 
SARS coronavirus. Journal of travel medicine. 

Ludwig, M., Jacob, J., Basedow, F., Andersohn, F., & Walker, J. (2021). Clinical outcomes and characteristics of patients 
hospitalized for Influenza or COVID-19 in Germany. International Journal of Infectious Diseases, 103, 316-322. 

Mervosh, S., Lu, D., & Swales, V. (2020). See which states and cities have told residents to stay at home. The New York 
Times, 3. 

Mills, A. F., Helm, J. E., & Wang, Y. (2020). Surge capacity deployment in hospitals: effectiveness of response and 
mitigation strategies. Manufacturing & Service Operations Management. 

Mizumoto, K., Kagaya, K., Zarebski, A., & Chowell, G. (2020). Estimating the asymptomatic proportion of coronavirus 
disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 
2020. Eurosurveillance, 25(10), 2000180. 

Nabi, K. N. (2020). Forecasting COVID-19 pandemic: A data-driven analysis. Chaos, Solitons & Fractals, 139, 110046. 

Otegbeye, M., Scriber, R., Ducoin, D., & Glasofer, A. (2015). Designing a data-driven decision support tool for nurse 
scheduling in the emergency department: a case study of a southern New Jersey emergency department. Journal of 
emergency nursing, 41(1), 30-35. 

Parker, F., Sawczuk, H., Ganjkhanloo, F., Ahmadi, F., & Ghobadi, K. (2020). Optimal Resource and Demand Redistribution 
for Healthcare Systems Under Stress from COVID-19. arXiv preprint arXiv:2011.03528. 

Perc, M., Gorišek Miksić, N., Slavinec, M., & Stožer, A. (2020). Forecasting covid-19. Frontiers in Physics, 8, 127. 

Reddy, K. P., Shebl, F. M., Foote, J. H., Harling, G., Scott, J. A., Panella, C., ... & Siedner, M. J. (2020). Cost-effectiveness of 
public health strategies for COVID-19 epidemic control in South Africa: a microsimulation modelling study. The Lancet 
Global Health. 

Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of banking & 
finance, 26(7), 1443-1471. 

Rodríguez-Espíndola, O., Albores, P., & Brewster, C. (2018). Disaster preparedness in humanitarian logistics: A 
collaborative approach for resource management in floods. European Journal of Operational Research, 264(3), 978-993. 

Rothman, R. E., Hsu, E. B., Kahn, C. A., & Kelen, G. D. (2006). Research priorities for surge capacity. Academic Emergency 
Medicine, 13(11), 1160-1168. 

Ruszczyński, A. (2010). Risk-averse dynamic programming for Markov decision processes. Mathematical 

programming, 125(2), 235-261. 

Shapiro, A. (2009). On a time consistency concept in risk averse multistage stochastic programming. Operations Research 

Letters, 37(3), 143-147. 

Silva, P. C., Batista, P. V., Lima, H. S., Alves, M. A., Guimarães, F. G., & Silva, R. C. (2020). COVID-ABS: An agent-based 
model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions. Chaos, Solitons 
& Fractals, 139, 110088. 

Sung, I., & Lee, T. (2016). Optimal allocation of emergency medical resources in a mass casualty incident: Patient 
prioritization by column generation. European Journal of Operational Research, 252(2), 623-634. 

                  



28 
 

Toner, E., & Waldhorn, R. (2006). What hospitals should do to prepare for an influenza pandemic. Biosecurity and 
Bioterrorism: Biodefense Strategy, Practice, and Science, 4(4), 397-402. 

Tonna, J. E., Hanson, H. A., Cohan, J. N., McCrum, M. L., Horns, J. J., Brooke, B. S., ... & Hotaling, J. (2020). Balancing 
revenue generation with capacity generation: case distribution, financial impact and hospital capacity changes from 
cancelling or resuming elective surgeries in the US during COVID-19. BMC health services research, 20(1), 1-7. 

Varkevisser, M., van der Geest, S. A., & Schut, F. T. (2012). Do patients choose hospitals with high quality ratings? 
Empirical evidence from the market for angioplasty in the Netherlands. Journal of health economics, 31(2), 371-378. 

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020). Detection of SARS-CoV-2 in different types of clinical 
specimens. Jama, 323(18), 1843-1844. 

Wex, F., Schryen, G., Feuerriegel, S., & Neumann, D. (2014). Emergency response in natural disaster management: 
Allocation and scheduling of rescue units. European Journal of Operational Research, 235(3), 697-708. 

Willis, G., Cave, S., & Kunc, M. (2018). Strategic workforce planning in healthcare: A multi-methodology 
approach. European Journal of Operational Research, 267(1), 250-263. 

World Health Organization. (2018). Managing epidemics: key facts about major deadly diseases. World Health 
Organization. 

Yang, Y., Yang, M., Shen, C., Wang, F., Yuan, J., Li, J., ... & Liu, Y. (2020). Laboratory diagnosis and monitoring the viral 
shedding of 2019-nCoV infections. MedRxiv. 

Yin, X., & Büyüktahtakin, İ. E. (2021). Risk-Averse Multi-Stage Stochastic Programming to Optimizing Vaccine Allocation 

and Treatment Logistics for Effective Epidemic Response. IISE Transactions on Healthcare Systems Engineering, (just-

accepted), 1-52. 

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., ... & Cao, B. (2020). Clinical course and risk factors for mortality of adult 
inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet, 395(10229), 1054-1062. 

 

                  


