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Abstract: Geological information such as geological interfaces is important for the design of 10 

underground excavation and supporting measures. This in turn requires a method to predict 11 

accurately the locations of geological interfaces for the gap areas between boreholes. This study 12 

presents a generalized additive model (GAM) to predict the location of the geological interfaces. 13 

The performance of the GAM method is evaluated using both simulated data and borehole data 14 

for the determination of rockhead in two different geological formations in Singapore. The 15 

results show that the GAM method can provide a reasonable confidence interval (CI) of the 16 

mean trend and the prediction interval (PI) in the sense that the 95% CI covers about 95% of 17 

the actual mean curve while the 95% PI covers around 95% of testing data. Furthermore, the 18 

geological complexity can be well reflected as the prediction uncertainty in the geologically 19 

complex area is larger than that in the geologically regular area. More importantly, the users 20 

can impose prior information or personal judgment regarding the shape of the geological profile 21 

on the model. This is an important feature to enable further improvement in the accuracy of the 22 

prediction.  23 

Keywords: spatial prediction, geological interface, generalized additive model, cubic spline 24 

  25 

mailto:xiaohui.qi@northumbria.ac.uk
mailto:yangzhy85@mail.sysu.edu.cn
mailto:cjchu@ntu.edu.sg


2 
 

1. Introduction 26 

Geological model including the interfaces of different geological formations is indispensable 27 

information for underground constructions as it may affect the construction method and 28 

supporting measures. It is necessary to predict the location of geological interfaces in the gap 29 

areas between boreholes. This task is difficult as the site exploration data are always sparse and 30 

limited. What makes this task more challenging is the large variability in the geological 31 

interface, especially the rockhead in rock formations. The reason is that the weathering of the 32 

rock is affected by many factors, including climate, topography, hydrological conditions, 33 

biological systems, rock mass discontinuities, rock composition and permeability (Zhao et al. 34 

1994). It is vital to find an effective method to accurately predict the location of geological 35 

interfaces. The prediction should be able to provide a predicted value of the location of the 36 

geological interface as well as its uncertainty. 37 

A variety of methods have been used for interpolation problems in geotechnical or 38 

geological engineering. These methods can be divided into two categories, deterministic 39 

methods and statistical methods. Deterministic methods such as the inverse distance weighting 40 

method, spline interpolation or the triangle-based tessellation method (e.g., Aswar and 41 

Ullagaddi 2017; Burke et al. 2017) cannot automatically quantify the uncertainty of the 42 

prediction or provide any confidence interval of the predicted property. This problem can be to 43 

some extent addressed using cross-validations, as shown in Lark et al. (2013), but the results 44 

highly depend on the employed testing data and the quantified uncertainty may not be reliable 45 

when the testing data are limited. The statistical interpolation methods include the coupled 46 

Markov chain method (Qi et al. 2016; Li et al. 2019; Liu et al. 2020), Markov random field 47 
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method (Wang et al. 2017, 2018), Bayesian compressive sampling method (Wang and Zhao 48 

2016, 2017; Zhao, Hu, and Wang 2018), random field method (Gong et al. 2020; Zhao et al. 49 

2021), geostatistical methods such as kriging and conditional random field method (Qi et al. 50 

2019, 2021a). The coupled Markov chain method can characterize the geological uncertainty 51 

using limited borehole data, but it can only be used when the transition of geological types has 52 

a Markovian property. The Markov random field method can model complex geological 53 

structures, but some of its parameters lack clear physical meaning (Mariethoz and Caers 2014). 54 

The recently developed Bayesian compressive sampling method can quantify the interpolation 55 

uncertainty using limited data and has a high interpolation accuracy (Wang, Akeju, and Zhao 56 

2017). Moreover, it is quite versatile in that it can model both stationary and non-stationary 57 

random fields (Wang, Zhao, and Phoon 2018; Wang et al. 2019). One potential problem of the 58 

method is that its robustness degrades when the number of measurements is smaller than the 59 

length of the discrete signal or when the measurement noise is relatively large (Huang et al. 60 

2014). Geostatistical methods such as kriging or conditional random field have gained wide 61 

popularity (e.g., Qi et al. 2019, 2021a). One problem with geostatistical methods is that they 62 

are purely mathematic based and may not lead to realistic soil or geological profiles. For 63 

example, the conditional random field or the kriging method normally produces a soil or 64 

geological profile with extreme values only at known data points. Furthermore, some artificial 65 

intelligence methods such as neural networks (Zhou and Wu 1994) and the support vector 66 

machine (Smirnoff, Boisvert, and Paradis 2008) were also applied to spatial prediction 67 

problems of geological conditions. The drawback of these methods is that they lack 68 

interpretability in the sense that they behave like black boxes and the effect of individual 69 
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explanatory variables is difficult to examine. 70 

Recently, Qi et al. (2020, 2021b) applied a spline regression method to spatial predictions 71 

of the location of geological interfaces. It has been shown that the method can provide a clear 72 

spatial trend of the geological interface, which well reflects the geological complexity. One 73 

problem of these studies is that the uncertainty in the mean trend is not well quantified or 74 

distinguished from the uncertainty in the random error. Herein the uncertainty in the mean trend 75 

represents the bias of the fitted curve in a regression. To be specific, if two different sets of data 76 

for the same explanatory and response variables are employed to perform regression, the two 77 

fittings generally produce different mean trends. The variability in the fitted curves is called 78 

uncertainty in the mean trend. The uncertainty in the random error denotes the deviation of the 79 

data points from the fitted curve. To address this issue, this study uses a generalized linear 80 

model (GAM) to perform the spatial prediction of the geological interface. For the GAM, the 81 

response variable is expressed as the weighted average of some basis functions (Wood 2017). 82 

It can be viewed to be a non-parametric or semi-parametric method in the sense that the 83 

structure of the model is not fixed. The uncertainty in the mean trend and random error can be 84 

explicitly considered by the GAM. An additional advantage of the GAM is its interpretability, 85 

which means the contribution of each independent parameter to the prediction is explicitly 86 

modeled and can be readily examined. 87 

In this study, the GAM is firstly briefly introduced. Secondly, the performance of the 88 

GAM model is investigated based on cross-validations using simulated data. Finally, some 89 

borehole data from Singapore, which reveal the rockhead elevation of two rock formations, i.e., 90 

Bukit Timah Formation and Jurong Formation, are used to predict the rockhead. Herein the 91 
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rockhead is the interface of soil and rock layers in a rock formation, which is mainly determined 92 

according to the weathering degree of the geological layers (Qi et al. 2020, 2021b). Prediction 93 

errors and the capability of GAM in characterizing the two types of uncertainty are evaluated 94 

using a cross-validation procedure. The reasonableness of the prediction uncertainty, which 95 

was generally ignored in existing studies, is investigated in this paper. The two types of 96 

uncertainties, i.e., uncertainty in the mean trend and random error are well differentiated and 97 

quantified in the investigation. The role of engineering judgment in spatial predictions is also 98 

discussed in the example.  99 

2. Generalized additive model  100 

The section introduces briefly the generalized additive model to be used for the prediction of 101 

the rockhead elevation. The GAM is originally developed by Hastie and Tibshirani (1986, 102 

1990). It can be viewed to be a generalization of the linear regression model. The main 103 

advantage of the GAM is that it can flexibly identify the nonlinear relation between explanatory 104 

variables (also called predictors or covariates) and a response variable (Hastie and Tibshirani 105 

1986; Wood 2017). To be specific, the users do not need to specify a particular parametric 106 

function to represent the nonlinear pattern. Instead, non-parametric or semi-parametric smooth 107 

functions are used to relate the predictors and responses. Another advantage of the GAM model 108 

is the interpretability, which means that the effect of predictors can be examined separately and 109 

explicitly (Hastie and Tibshirani 1986). The GAM has been widely applied to various 110 

disciplines since its advent, such as environmental engineering (e.g., Gong et al. 2017; Ma et 111 

al. 2020), soil science (e.g., de Brogniez 2015), ecology (e.g., Yee and Mitchell 1991; Simpson 112 

2018), transportation engineering (e.g., Khoda Bakhshi and Ahmed 2021). In geotechnical 113 
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engineering, the model is applied for the determination of landslide susceptibility, as shown in 114 

Goetz et al. (2015) and Bordoni et al. (2020). The spline regression methods investigated in Qi 115 

et al. (2020, 2021b) are also GAM. This study extends the work in Qi et al. (2020, 2021b) by 116 

taking the uncertainty in the fitted mean trend of the response variable into consideration. The 117 

basic idea and the fitting of the GAM are introduced as follows.  118 

2.1 Representation of smooth functions 119 

This study intends to investigate a one-dimensional problem, namely the prediction of the 120 

rockhead elevation along a line. The response variable is the rockhead elevation while the 121 

explanatory variable is the distance to the leftmost point on the line. Besides, since the rockhead 122 

elevation does not have any capped value, the Gaussian distribution is taken to be the 123 

probability distribution of the response. In this case, the GAM can be simplified into 124 

y= f(x) + ε (1) 125 

where 𝜀𝜀  is a normally distributed random variable with a mean of 0 and variance of σε
2. The 126 

smooth function is usually represented by the weighted sum of several basis functions, i.e.,  127 

f(x) =∑ bi(x)βi
q
i=1   (2) 128 

where bi(x) is a basis function of which the expression is already known; βi is an unknown 129 

coefficient and q is the total number of basis functions, also called the dimension of basis. This 130 

study adopts the commonly used cubic spline basis functions because the cubic spline 131 

interpolant always provides a solution that is smooth and closely approximates to the true 132 

function whatever the true function is (Wood 2017). Polynomial bases are not chosen because 133 

a high-order polynomial function usually causes an oscillation problem, as shown in De Boor 134 

(2001). One example of curve fitting using cubic spline basis functions is plotted in Fig. 1. In 135 
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Fig. 1, the 19 circles denote blow count value data from standard penetration tests taken from 136 

Baecher and Christian (2008). The vertical coordinate denotes the elevation while the 137 

horizontal coordinate denotes the blow count value. The 19 data points are fitted with three, 138 

six and twelve cubic spline basis functions using a least squared method in Figs. 1a, 1b and 1c, 139 

respectively. The basis functions are denoted as the blue dashed lines. Since the values of the 140 

basis function are too small (< 1), the basis functions are magnified by 10 times to make them 141 

discernible in the figure. Also, the locations of the knots are denoted as the red dotted lines. 142 

These knots are the connection points of two neighbouring pieces or sections of the fitted curve, 143 

each of which can be expressed by a cubic spline function. For illustration purposes, the knots 144 

are set to be evenly spaced in the elevation direction. As shown in Fig. 1, the resulting smooth 145 

function is a piecewise cubic polynomial function. The fitted curve becomes wigglier when 146 

more basis functions are used.  147 

2.2 Degree of smoothing  148 

After the structure of the smooth function is known, one natural question is how to determine 149 

the number and location of the knot given some data. The number and location of knots control 150 

the degree of smoothing of the resulting function. Too many knots result in a wiggly curve 151 

running across all the data points. This curve normally suffers from overfitting and performs 152 

poorly when it is used for prediction. In practice, the number and location of the knots can be 153 

determined by model selection methods or cross-validation, as shown in Qi et al. (2020, 2021b). 154 

An alternative method to control the smoothness is fixing the basis dimension at a relatively 155 

large size and adding a wiggliness penalty term in the least-squares objective (Wood 2017), i.e.,  156 

||√W(y-Xβ)||
2
+λ∫ [f''(x)]2 dx (3) 157 
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where ||∙||2is the squared Euclidian length of a vector; Xβ  denotes the fitted values of the 158 

smooth function in which X is the model matrix denoting the values of the basis functions at 159 

locations of observation data while β is the coefficient vector; W is a diagonal matrix denoting 160 

the weights of data points. Assigning a weight value of wi for a data point is equivalent to put 161 

wi identical data points at the same location. Normally the weights for all the data points are 162 

set to be 1. A value larger than 1 can be used when a data point reveals an important geological 163 

feature (such as an abruptly low rockhead caused by faults) and controls the shape of the 164 

geological profile. f''(x)  is the second derivative of the smooth function f(x) ; λ  is the 165 

smoothing parameter that controls the tradeoff between the model fit and the model smoothness. 166 

λ = 0 results in an un-penalized spline regression and would produce a very wiggly curve. An 167 

infinitely large of λ would lead to a linear estimate of the true function (Wood 2017). The first 168 

term in Eq. 3 represents the fitting errors while the second term denotes the penalty against 169 

wiggliness of the fitted function. An optimal solution can be sought out by minimizing the 170 

objective expression in Eq. 3. For this alternative method, the number and location of knots do 171 

not significantly affect the fitted curve once the number of knots or basis function is large 172 

enough (Wood 2017).  173 

It is worth noting that the users of the GAM can impose their prior information, personal 174 

knowledge or judgment regarding the geological profile on the model. This can be 175 

accomplished by assigning suitable weights to specific data points which reveal a geological 176 

feature and dominate the shape of the geological profile. The prior information can also be fed 177 

into the model by setting a proper value of the smoothing parameter. For example, if an area is 178 

subject to intensive tectonic activities in history, the geological profile is expected to be wavy. 179 
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In this case, the smoothing parameter can be set to be relatively small.  180 

2.3 Selection of smoothing parameter  181 

In addition to manually setting a value for the smoothness parameter, its value can also be 182 

determined using other ways. A variety of methods have been proposed to determine the value 183 

of the smoothing parameter. One simple way is to minimize certain index which denotes the 184 

prediction errors, such as the Akaike information criterion (AIC), ordinary cross-validation 185 

score, generalized cross-validation (GCV) score (e.g., Wood 2017; Simpson 2018). The second 186 

way is to treat the smoothing parameter as a random variable and estimate its value using the 187 

maximum likelihood or the restricted likelihood method. In this study, the GCV score is used 188 

to determine the value of λ.  189 

For a known value of λ, the coefficient parameters β can be estimated using the penalized 190 

least square estimation method. The variance of the random error can be estimated as the 191 

residual sum of squares divided by the residual degree of freedom. Details of the estimation of 192 

these parameters can be found in Wood (2017).  193 

2.4 Mean trend uncertainty, confidence interval and prediction interval  194 

The fitted smooth function can hardly be the actual function of the response variable because 195 

of various uncertainties. A reasonable practice is to provide a mean trend as well as a band that 196 

denotes the uncertainty. It is worth noting that there are two different kinds of uncertainty, 197 

namely the uncertainty in the mean trend and the uncertainty in a prediction (Ruppert, Wand, 198 

and Carroll 2003). The former means that if two different sets of data for given explanatory 199 

and response variables are used to perform the regression, the fitted curves are expected to be 200 

different. This variability in the fitted curve is called the uncertainty in the mean trend. The 201 
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latter means that if the fitted smooth function is used for predicting a response, the predicted 202 

value will be different from the actual value. This uncertainty is caused by both the error in the 203 

mean trend and the random error which denotes the deviation of data points from the mean 204 

trend (see Fig. 1). The random error can be attributed to measurement errors in the data or other 205 

sources of errors. For example, for the rockhead elevation, the random error can be caused by 206 

the subjective judgments of engineers in determining the weathering degree of the geological 207 

layer. The standard deviation of the mean trend, SDμ indicates the epistemic uncertainty in 208 

the spatial prediction, which can be reduced if more observations are available. SDμ reflects 209 

the geological complexity as well as the data quantity of the investigated area. The value of 210 

SDμ would be quite small if many data exist or the geological profile is very simple such as a 211 

flat curve. The standard deviation of the random errors, SDε, suggests the magnitude of the 212 

aleatoric uncertainty in the spatial prediction, which cannot be decreased even if sufficient data 213 

are available. SDε represents the minimum error or maximum accuracy that can be achieved 214 

in spatial predictions. 215 

The first uncertainty is usually expressed by confidence interval (CI) while the latter by 216 

the prediction interval (PI). For example, the 95% CI of the mean trend is bounded by the mean 217 

trend minus and plus twice the estimated standard deviation of the mean trend, 2SDμ. SDμ is 218 

derived from the standard deviation of the coefficient parameter, which can be estimated using 219 

either the frequentist or Bayesian approach. For the Bayesian method, the posterior distribution 220 

of the standard deviations of the coefficient parameters has an analytical solution when the 221 

prior distribution, fβ(β), is given by (Wood 2017) 222 

fβ(β)∝e-1
2β

T∑ Si/τiβ  (4) 223 
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where the 𝜏𝜏𝑖𝑖  are parameters controlling the dispersion of the prior distribution; 𝑆𝑆𝑖𝑖  is an 224 

element from the penalty matrix, which is a matrix of known coefficients and is derived from 225 

f''(x). The prior distribution in Eq. 4 gives equal probability density to all models of equal 226 

smoothness, but larger probability densities to smooth models than wiggly models as normally 227 

it is believed that smooth models are more likely than wiggly models. More details regarding 228 

the estimation of the uncertainty in the coefficient parameter can be found in Wood (2017). The 229 

95% PI of a prediction is bounded by the mean trend minus and plus twice the standard 230 

deviation of a prediction, given by 2SDp = 2�SDμ
2+SDε

2, where SDε denotes the standard 231 

deviation of the random error. In this study, the fitting of a GAM model is performed using a 232 

well-known R package, mgcv.  233 

3. Spatial prediction using simulated data 234 

This section evaluates the performance of the GAM model using cross-validation based on 235 

simulated data. Firstly, dense data are simulated based on a smooth trend function and a random 236 

error. Secondly, the simulated data are divided into two groups, the training group and the 237 

testing group. Thirdly, the training data are used to estimate the unknown parameters of the 238 

GAM model and generate the 95% CI and 95% PI. Finally, the coverage percentage of the 95% 239 

CI is evaluated by counting the percentage of the input trend function covered by the 95% CI 240 

(e.g., take 100 evenly spaced data points from the input trend and check how many of them are 241 

covered by the 95% CI) while that of the 95% PI is assessed by computing the percentage of 242 

the testing data covered by the 95% PI. These steps are repeated by 500 times and the average 243 

values of the coverage percentages are computed.  244 

An example taken from Wood (2017) is used to analyze the performance of the GAM, 245 
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including the CI and PI, the latter of which is not investigated in Wood (2017). The input trend 246 

function is given by  247 

f(x)=x11(10[1-x])6+10(10x)3(1-x)10 (5) 248 

The range of the explanatory variable, x is set to be [0, 1] while the range of the input function 249 

is scaled to the interval of [0, 1] by dividing f(x) by the maximum value of f(x). The curve of 250 

the input smooth function is plotted as the dotted line in Fig. 2(a). 500 samples of x are 251 

randomly drawn from the uniform distribution with a range of [0, 1]. Simulated data of y were 252 

generated by adding a random error to the input mean trend for the 500 samples of x. The 253 

random errors are normally distributed with a mean of 0 and standard deviation of 0.2 and are 254 

mutually independent at various locations. 50 data points are randomly drawn from the 500 255 

data points and set as training data while the remainder as testing data. The training data are 256 

used to fit the GAM model and create the 95% CI and 95% PI. The dimension of basis was set 257 

to be 20 as a larger basis dimension produces quite similar results. Besides, 500 experiments 258 

were carried out as such quantities of experiments are sufficient to yield a converged estimation 259 

of the coverage percentages.  260 

A typical experiment of the cross-validation is plotted in Fig. 2(a-c). Fig. 2(a) plots the 261 

training and testing data, respectively. Fig. 2(b) plots the 95% PI and the 95% CI, which are 262 

denoted by the region between the dashed lines and shaded region, respectively. Fig. 2(c) plots 263 

the 95% CI of the mean trend as well as 20 samples of the mean trend. The mean trend samples 264 

are simulated by first generating samples of the coefficient parameters based on their posterior 265 

distribution and then multiplying the model matrix for the testing data by the coefficient vector 266 

(i.e., Xβ in Eq. 3). As shown, the 95% CI can cover most sections of the actual mean trend 267 
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while the 95% PI can cover most of the testing points, indicating the reasonableness of these 268 

intervals. Also, the simulated mean curves generally capture the trend of the response variable. 269 

The good performance of the 95% CI and 95% PI can also be seen from Table 1, which 270 

summarizes the mean values of the 500 coverage percentages for 500 experiments. For 271 

comparison, the performance for the prediction interval ignoring the uncertainty in the mean 272 

trend is also studied. This prediction interval refers to the interval derived purely from the 273 

random error, namely the interval bounded by the mean trend minus and plus twice the standard 274 

deviation of the random errors. As shown in Table 1, both the 95% CI and 95% PI have a 275 

reasonable coverage percentage, which is close to the confidence level. The 95% PI ignoring 276 

the uncertainty in the mean has a coverage percentage slightly smaller than the confidence level. 277 

Furthermore, the coverage percentages of the 95% CI and 95% PI for 30 training points were 278 

also evaluated, which is summarized in the last row of Table 1. As shown, the coverage 279 

percentage of the 95% CI and 95% PI are still close to the confidence level, 95%. However, 280 

the 95% PI ignoring the uncertainty in the mean trend just has an average coverage percentage 281 

of 86%, which is a little far from the theoretical value, 95%. The reason is that when the data 282 

are limited, the uncertainty in the mean trend is relatively large. Fig. 2(d) plots one typical 283 

experiment of cross-validation using 30 training data. As shown, the 95% CI in Fig. 2(d) is 284 

considerably wider than that in Fig. 2(b). The reason is that when a relatively small number of 285 

data points are used, the coefficient parameters 𝛽𝛽𝑖𝑖  have large uncertainty. In other words, 286 

relatively large values of the standard deviations of 𝛽𝛽𝑖𝑖 are estimated in this case. The large 287 

uncertainty in 𝛽𝛽𝑖𝑖 is propagated to the mean trend, inducing a wider 95% CI of the mean trend. 288 

These phenomena highlight the importance of considering the uncertainty in the mean trend 289 
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when the data are limited.  290 

One issue that may arouse argument is that herein the residual of the simulated data is 291 

assumed to be independently distributed rather than autocorrelated. Spatial autocorrelation is 292 

well known to be a property of geotechnical or geological properties. To reflect this nature, it 293 

may be more reasonable to model the residual of the response variable as autocorrelated 294 

random variables. However, we argue that spatial autocorrelation can to some extent be viewed 295 

as an artifact generated by the modelers. This is similar to what was stated by Baecher and 296 

Christian (2005), i.e., the division of the spatial variation into a mean trend and a residual 297 

around the mean is an artifact. As shown by Baecher and Christian (2005), the variance of the 298 

residual and the associated autocorrelation function highly depend on the form of the trend 299 

function. Hence, it is possible to obtain independent residuals when a suitable trend function is 300 

selected. This statement is supported by Qi et al. (2020), which showed that the residual of the 301 

rockhead around a mean trend described by a spline function is independent of each other.  302 

4. Spatial prediction using actual borehole data 303 

This section studied the performance of the GAM in dealing with real borehole data. Some 304 

borehole data revealing the rockhead of two formations, Bukit Timah Formation and Jurong 305 

Formation in Singapore are analyzed. The Bukit Timah Formation data were extracted from 306 

100 boreholes while the Jurong Formation data were from 60 boreholes. The borehole data are 307 

extracted from site investigation reports for the construction of two metro lines in Singapore. 308 

The former data are located at the Bukit Timah Road while the latter nearby the Buona Vista 309 

metro station. For both sets of data, the data are projected to a line that is approximately parallel 310 

to the metro line. These borehole data have been elaborated in Qi et al. (2020) and are not 311 
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repeated herein. Similar to the last section, cross-validation is used to evaluate the accuracy of 312 

the prediction and the reasonableness of the CI and PI. Firstly, spatial prediction is performed 313 

using all the data. Secondly, the data are divided into two groups and cross-validation is 314 

performed.  315 

Note that there are two major differences between this study and the analyses performed 316 

by Qi et al. (2020). Firstly, the two studies use different methods to determine the smoothness 317 

of the fitted curve, i.e., Qi et al. (2020) using the knot number and location selection while this 318 

study using the wiggliness penalty. Secondly, the uncertainty in the mean trend of the rockhead 319 

elevation is ignored by Qi et al. (2020) but considered herein.  320 

4.1 Bukit Timah Formation 321 

4.1.1 Analysis using all the data 322 

The rockhead elevation of the Bukit Timah Formation is first predicted using all the borehole 323 

data, i.e., rockhead elevation from 100 boreholes. When performing the model fitting, one input 324 

parameter is the dimension of the basis used to represent the smooth term, i.e., q in Eq. 2. The 325 

dimension of the basis should be large enough to approximate the true, but unknown function 326 

of the response parameter (Wood 2017). As a rule of thumb, the dimension of the basis is 327 

considered to be sufficient when the smoothness selection criterion converges as the basis 328 

dimension increases. Table 2(a) summarizes the GCV scores and estimated standard deviations 329 

of the random error for various basis dimensions. As shown, when the basis dimension reaches 330 

60 ~ 80, both the GCV score and the standard deviation of the random error converge.  Hence, 331 

the basis dimension is set to 80 and the associated fitted GAM model is plotted in Fig. 3(a). In 332 

Fig. 3(a), the 95% CI of the mean trend is represented by the shaded area while the 95% PI of 333 
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the prediction is bounded by the two dashed lines. As shown, the fitted mean trend is generally 334 

consistent with that reported in Qi et al. (2020), indicating the effectiveness of the used method. 335 

Besides, the 95% CI of the mean trend has different widths at various locations. For instance, 336 

the area within the distance range of [700 m, 2000 m] has a narrower confidence interval than 337 

its left-hand and right-hand sides. The reason is that the geological conditions on the left-hand 338 

and the right-hand sections are more complex than the middle section. This phenomenon shows 339 

that the GAM model can provide an uncertainty that well reflects the geological complexity. 340 

Based on the SDμ for various points, it is evaluated that the average value of SDμ is 3.9 m. 341 

Hence, the average standard deviation of predictions is SDp = �SDμ
2+SDε

2 = �6.02+3.92 = 342 

7.2 m. 343 

Fig. 3(b) plots the variation of the SD𝜇𝜇/SDp  with distance. Since SD𝜇𝜇  reflects the 344 

magnitude of the geological uncertainty and the data quantity, Fig. 3(b) provides quantitative 345 

information on the area with large uncertainty in the trend, which indicates relatively large 346 

construction risk and requires additional site investigation. Also, it is worth noting that SD𝜇𝜇 347 

denotes the epistemic uncertainty in the spatial prediction that can be reduced to 0 when 348 

sufficient data are available while SDp  denotes the sum of the aleatoric and epistemic 349 

uncertainties in the spatial prediction. The ratio of the two indexes indicates the potential for 350 

improvement in the spatial prediction accuracy if additional data are available. For example, a 351 

relatively large value of SD𝜇𝜇/SDp  suggests that the prediction accuracy can be further 352 

improved by using additional data. By contrast, if the value of the ratio approaches 0, there is 353 

no need to carry out additional site investigations. As shown in Fig. 3(b), the area within the 354 

distance range of [700 m, 2000 m] has a relatively small value of SD𝜇𝜇/SDp, indicating that 355 
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this area has less complex geological conditions than the remaining areas. Also, some areas 356 

have a SD𝜇𝜇/SDp value larger than 0.6, suggesting that there is a high potential to improve the 357 

prediction accuracy. 358 

Furthermore, Fig. 3(c) plots the autocorrelation functions of the residuals of the rockhead 359 

elevation, namely the measured rockhead elevation minus the mean trend. The horizontal 360 

coordinate, lag, in Fig. 3(c) denotes the difference in serial numbers for a pair of data points. 361 

For example, the lag for any pair of neighboring data points is 1 while the lag of the data pairs, 362 

(1st data point, 3rd data point), (2nd data point, 4th data point), ∙∙∙, is 2. In other words, the data 363 

pairs with the same difference value of the serial number are used to evaluate an autocorrelation 364 

coefficient. This is a rough but simple way to check the autocorrelation of the residual. As 365 

shown, the autocorrelation coefficient for a lag of 1 is already negative, indicating the residual 366 

of the rockhead elevation is independent. This means that there is no need to use a more 367 

complex model, such as a mixed model with correlated residuals, to analyze the rockhead data.  368 

Fig 3(c) plots 20 simulated samples of the mean trend of rockhead. Each sample is 369 

generated by first simulating samples of the coefficient parameters based on their posterior 370 

distribution and then multiplying the model matrix by the simulated coefficient vector, namely 371 

Xβ in Eq. 3. As shown, the generated mean trend samples generally reveal the spatial trend of 372 

the rockhead elevation. Besides, a larger variability in the mean trend can be observed in the 373 

left-hand and right-hand sides than that in the middle section. These simulated trend curves can 374 

be readily used in numerical analyses of geological structures, such as stability analysis of 375 

slopes or tunneling. This is one major benefit of using the GAM model. Note that the method 376 

in Qi et al. (2020) can also produce samples of the mean trend, but these samples are generated 377 
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mainly by the bootstrap method, namely performing regression using randomly drawn subsets 378 

of borehole data. These mean trend samples are not as accurate as those created by the GAM 379 

method as the former uses fewer data. 380 

4.1.2 Cross-validation 381 

This section evaluates the performance of the GAM model using cross-validation. Similar to 382 

Qi et al. (2020), 50 data points with even serial numbers are set as training data while the 383 

remaining 50 points with odd serial numbers as testing data. As mentioned in section 2, one 384 

feature of the GAM is that the users can impose a wiggliness constraint on the fitted curve or 385 

assign different weights to the data points. Hence, three prediction schemes are considered 386 

herein. Scheme 1 imposes no prior information on the smoothing parameter and weight. 387 

Scheme 2 sets the smoothing parameter to be 1.5, which corresponds to a relatively wiggly 388 

rockhead profile. Scheme 3 assigns larger weights to several data points at the geologically 389 

complex area, namely weights for the 6th to 9th, 43rd, 45th, 47th training points = 2, and weights 390 

for the remaining training points = 1. Assigning a weight value of m to a certain data point is 391 

equivalent to placing m identical observations at the same location (Wood 2020). In all three 392 

schemes, the dimension of the basis is set to be 40, which is obtained using the same procedure 393 

as that in section 4.1.1. 394 

The prediction results for various prediction schemes are plotted in Fig. 4. As shown in 395 

Fig. 4(a), the predicted mean trend of the rockhead elevation cannot capture the wavy rockhead 396 

profile at the two ends of the section when no prior information is imposed on the model. The 397 

reason is that the data at the geologically complex area are so limited and the abnormalities in 398 

these data are treated as a random error rather than counted into the mean trend. However, the 399 
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wavy trends can be well captured by schemes 2 and 3. The reason is that the constraint of the 400 

smoothing parameter = 1.5 in scheme 2 makes the mean trend wigglier. Moreover, the larger 401 

weights of the data points at the geologically complex area amount to manually adding some 402 

data to the critical locations which control the shape of the rockhead profile. This phenomenon 403 

shows the capability of the GAM to incorporate prior information of the engineers, such as 404 

personal judgment or knowledge of the geological information in the investigated area. On the 405 

other hand, even if the users do not have any prior information, they can perform some 406 

sensitivity analyses and acquire multiple solutions by altering the values of smoothing 407 

parameters or weights. These solutions can be subsequently submitted to experienced engineers 408 

and an optimal solution can be decided based on their judgment. This feature is quite useful as 409 

the solution is a joint product of the GAM method and engineer judgment. Also, by providing 410 

the clients multiple scenarios of the possible rockhead profile, the risks in the construction can 411 

be better appreciated and managed. 412 

The prediction accuracies for the three considered schemes as well as the results in Qi et 413 

al. (2020) are summarized in Table 2(b), including the mean and standard deviation (SD) of the 414 

prediction errors, the estimated SD of the random error, SDε, the mean width of the 95% CI 415 

and 95% PI. The mean and SD of the prediction error are evaluated from the 50 errors for the 416 

50 testing points. The width of the 95% CI is four times the SD of the mean trend, 4SDμ while 417 

the width of 95% PI is four times the SD of a prediction, i.e., 4SDp = 4�SDμ
2+SDε

2 , as 418 

illustrated in section 2.4. Since Qi et al. (2020) did not consider the uncertainty in the mean 419 

trend, the width of the 95% PI is set to be 4SDε in the last row. As shown in Table 2(b), all the 420 

three considered schemes have slightly smaller prediction errors than that in Qi et al. (2020). 421 
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The two schemes implementing prior information have higher accuracy than the one without 422 

prior information. This result shows the usefulness of imposing human judgment on the GAM 423 

model. Such incorporation of human judgment is lacking in the method in Qi et al. (2020). It 424 

also well demonstrates the idea that the data-driven method should incorporate engineering 425 

judgment rather than replace engineering judgment, as discussed by Phoon, Ching, and Shuku 426 

(2021). Besides, the 95% PIs produced by the GAM model are wider than that reported in Qi 427 

et al. (2020) because the uncertainty in the mean trend is considered by the GAM. The former 428 

is more rational than the latter, which can be shown by the coverage percentage of the 95% PI. 429 

In Qi et al. (2020), only 42 out of 50 (i.e., 84%) testing data were covered by the 95% PI. But 430 

for the GAM, 46, 46 and 45 out of the 50 (i.e., 92%, 92%, 90%) data points are covered by the 431 

95% PIs for the three schemes, respectively. This observation justifies the consideration of the 432 

uncertainty in the mean trend. The result indicates that the method of Qi et al. (2020) 433 

underestimates the prediction uncertainty and induces unsafe designs of geotechnical structures 434 

or an underestimation of the underground construction risk. By contrast, the GAM method in 435 

this study can reasonably quantify the prediction uncertainty, which leads to a reasonable 436 

design of geotechnical structures or underground construction scheme. 437 

4.2 Jurong Formation 438 

To further illustrate the performance of the GAM, this section performs the spatial prediction 439 

using the rockhead data of the Jurong Formation. For this case, only 60 data points are 440 

distributed along a line with a length of around 3400 m. Such limited data make spatial 441 

prediction more challenging. Fig. 5(a) plots the fitted mean trend for the scheme imposing no 442 

prior information (referred to as scheme 1) while Fig. 5(b) plots the result for the scheme with 443 



21 
 

the smoothing parameter set to be 5 (referred to as scheme 2). Both schemes use all the data 444 

points and a basis dimension of 50, which is selected based on the same method as that in 445 

section 4.1.1. Details for the selection of the basis dimension are summarized in Table 3(a). As 446 

shown in Fig. 5(a, b), scheme 2 captures more local fluctuation in the mean trend of the 447 

rockhead than scheme 1.  448 

Cross-validations of the spatial prediction of Jurong Formation rockhead are performed 449 

using 40 training points and 20 testing points. The cross-validation also adopts two schemes, 450 

scheme 1 imposing no prior information and scheme 2 setting the smoothing parameter to be 451 

5. The two schemes use the same training data, testing data and basis dimension, i.e., 30. The 452 

predicted rockhead profile and associated 95% CI, 95% PI are plotted in Fig. 5(c, d). For 453 

comparison, the mean trend obtained from all the data points and scheme 2 is plotted in both 454 

Fig. 5(c) and (d). The associated prediction errors are summarized in Table 3(b). Similar 455 

phenomena as those in section 4.1 can be observed in Fig. 5 and Table 3(b). These include (i) 456 

imposing some prior information involving the wiggliness of the rockhead profile produces a 457 

more accurate estimation of the mean trend when the data quantity is limited, (ii) the GAM 458 

model can quantify the uncertainty in the mean trend of rockhead, making the 95% PI wider 459 

than that reported in Qi et al. (2020). 460 

5. Conclusions 461 

This study uses the generalized additive model (GAM) for the spatial prediction of the 462 

interfaces of geological formations. The performance of the GAM is evaluated using both 463 

simulated data and actual borehole data for two geological formations in Singapore. The 464 

prediction accuracy, the rationality of the 95% confidence intervals for the mean trend and the 465 
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95% prediction interval of the prediction are assessed. The benefits of the GAM are 466 

summarized as follows. 467 

(1) The GAM can produce a reasonable 95% confidence interval and 95% prediction interval 468 

as the analyses using the simulated data show that on average the 95% confidence interval 469 

covers 94% or 91% of the actual mean trend while the 95% prediction interval covers 94% or 470 

92% of testing data. Ignoring the uncertainty in the mean produces a 95% prediction interval 471 

with an unreasonably low coverage percentage. Furthermore, samples of the rockhead profile 472 

such as the grey curves in Fig. 3(d), can be generated by the GAM. These samples can be 473 

viewed to be possible rockhead profiles and be used in future numerical analyses of 474 

geotechnical structures.  475 

(2) Both the epistemic uncertainty and aleatoric uncertainty in the spatial predictions can be 476 

quantified by the GAM method. The former refers to the uncertainty in the mean trend and can 477 

be reduced if additional data are available. This uncertainty is affected by the geological 478 

complexity and the data quantity. The latter refers to random errors caused by various factors 479 

such as engineers’ subjective judgments of weathering degrees of the geological layers. The 480 

aleatoric uncertainty cannot be reduced and represents the minimum error that can be achieved 481 

in spatial predictions. The relative magnitudes of the two uncertainties can be quantified by the 482 

ratio of the standard deviation of the mean trend and the standard deviation of predictions. 483 

From the ratio values, it is easy to determine the areas with complex geological conditions, 484 

which need additional site investigations. It is also easy to check the potential for improvement 485 

in the prediction accuracy when additional data are available because in theory the minimum 486 

value of the ratio is 0.  487 
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(3) The users can apply expert judgment or knowledge on the geological profile to the model 488 

by setting suitable values of the smoothing parameter or assigning suitable weights to the data 489 

points at critical locations. The analyses using the actual data in the two cases show that the 490 

use of expert knowledge improves the prediction accuracy and makes the resulting geological 491 

profile more consistent with that obtained from more data.  492 

(4) Due to the large variability of the rockhead locations, the prediction error of the rockhead 493 

elevation is still relatively large. In the future, it is of interest to use additional data such as 494 

geophysical data to further increase the prediction accuracy and reduce the prediction 495 

uncertainties. 496 
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Table 1 Mean values of the coverage percentages for the simulated data 

Number of 
training 

point 

Mean of coverage 
percentage for the 

95% CI 

Mean of coverage 
percentage for the 

95% PI 

Mean of coverage percentage for 
the 95% PI ignoring the uncertain 

in the mean trend 
50 0.94 0.94 0.91 
30 0.91 0.92 0.86 

 

Table 2 Spatial prediction of the rockhead elevation for the Bukit Timah Formation 

(a) Selection of the dimension of basis for all the data 
Basis dimension 20 40 60 80 
GCV 74.9 60.9 58.8 58.5 
Estimated standard 
deviation of the 
random error (m) 

  8.0  6.5  6.1  6.0 

(b) Prediction results of the cross-validation 
Fitting scheme Mean of 

prediction 
error (m) 

aSD of 
prediction 
error (m) 

Estimated 
aSD of 

random error 
(m) 

Mean width 
of 95% CI 

(m) 

Mean width 
of 95% PI 

(m) 

bScheme 1 1.8 8.5 8.2 14.7 36.0 
cScheme 2 1.6 7.5 6.8 21.8 35.0 
dScheme 3 1.5 7.6 7.5 19.6 35.9 

Qi et al. (2020) 2.0 9.0 6.1 − 24.4 
Note: a: SD = standard deviation;  
b: scheme 1 imposes no prior information on the smoothness parameter or weights;  
d: scheme 2 sets the smoothness parameter to be 1.5;  
d: scheme3 gives more weights to the data points at the geologically complex area, namely 
weight for the 6th to 9th, 43rd, 45th, 47th training points = 2, and weight for the remaining training 
data = 1.  
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Table 3 Spatial prediction of the rockhead elevation for the Jurong Formation 
(a) Selection of the dimension of basis using all the data 

Basis dimension 20 30 40 50 
GCV 83.4 86.4 83.4 83.2 
Estimated standard 
deviation of the 
random error (m) 

 8.2  7.0  8.2  8.2 

(b) Prediction results of the cross-validation 
Fitting scheme Mean of 

prediction 
error (m) 

aSD of 
prediction 
error (m) 

Estimated 
SD of 

random error 
(m) 

Mean width 
of 95% CI 

(m) 

Mean width 
of 95% PI 

(m) 

bScheme 1 -2.0 10.6 11.4 22.1 50.9 
cScheme 2 -2.3 10.5 10.5 30.6 52.2 

Qi et al. (2020) -3.1 12.7 8.1 − 32.4 
Note: a: SD = standard deviation; 
b: scheme 1 imposes no prior information on the smoothness parameter or weights;  
c: scheme 2 sets the smoothness parameter to be 5. 
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Figure captions 

Fig. 1 Example of cubic spline basis and the fitted smooth curve 

Fig. 2 Prediction using simulated data 

Fig. 3 Spatial prediction of rockhead elevation for the Bukit Timah Formation using all the 100 

borehole data 

Fig. 4 Cross-validation for the spatial prediction of the rockhead elevation for the Bukit Timah 

Formation 

Fig. 5 Spatial prediction of the rockhead elevation for the Jurong Formation 
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(a) Three cubic basis functions                   (b) Six cubic basis functions  

 
(c) Twelve basis functions 

Fig. 1 Example of cubic spline basis and the fitted smooth curve 
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(a) Simulated data (50 training points and 450 testing points) 

 
(b) 95% confidence interval and 95% prediction interval using 50 training points 

 
(c) Samples of the mean trend based on 50 training points 

 
(d) 95% confidence interval and 95% prediction interval using 30 training points 

Fig. 2 Prediction using simulated data  
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(a) Predicted mean trend, 95% confidence interval, and 95% prediction interval  

 

(b) Ratio of SD𝜇𝜇 to SDp 

 
(c) Autocorrelation of the residual of rockhead elevation 
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(d) Sample of the mean trend  

Fig. 3 Spatial prediction of rockhead elevation for the Bukit Timah Formation using all the 100 

borehole data  
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(a) Scheme 1 (no prior information in the smoothness parameter or weights) 

 
(b) Scheme 2 (the smoothness parameter fixed at 1.5) 

 

(c) Scheme 3 (Weight of 6th ~ 9th, 43rd, 45th, 47th training points = 2, and weight of remaining training points = 1) 
Fig. 4 Cross-validation for the spatial prediction of the rockhead elevation for the Bukit Timah 
Formation 
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(a) Prediction using all the data (scheme 1: no prior information in the smoothness parameter) 

 
(b) Prediction using all the data (scheme 2: smoothing parameter = 5) 

 
(c) Cross-validation (scheme 1: no prior information in the smoothness parameter) 

 
(d) Cross-validation (scheme 2: smoothing parameter = 5) 

Fig. 5 Spatial prediction of the rockhead elevation for the Jurong Formation 
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