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31 Abstract

32 Major Arctic rivers are undergoing changes due to cli with higher discharge and
33 increased amounts of solutes and organic carbon (OC) Ring into rivers and coastal seas.
34 Permafrost thaw mobilizes previously froz@a OC to the fluWal network where it can be
35 degraded into greenhouse gases and emitted he atmosphere. Degradation of OC during
gs downstream transport, especially of the particgfaic S@POC), is however poorly characterized.
38 Here, we quantified POC degradation in the{@olyma FgWr, the largest river system underlain
39 with continuous permafrost, during 9-15 day \gagle-ylter incubations (containing POC and
20 dissolved OC - DOC) during two seasq png et (early June) and late summer (end of
a1 July). Furthermore, we examined inte g\een dissolved and particulate phases using
42 parallel incubations of filtered water (o e measured OC concentrations and carbon
43 isotopes+&C, B“C) to define cal 0 characterize OC composition, respectively.
44 We found that both POC compdSi nd biodegradability differs greatly between seasons.
45 During summer, POC was prg an tochthonous (47-95 %) and degraded rapidly (~33

46 %) whereas freshet POC w of allochthonous origin (77-96 %) and less degradable.
47 Gains in POC concentra A (Up toB1 %) were observed in freshet waters that could be
48 attributed to flocculatiog_and ption of DOC to particles. The demonstrated DOC
pdicates that the fate and dynamics of the substantially-
ded¥adation to settling, depending on season and POC
ially acting to attenuate greenhouse gas emissions from fluvial
DOC incubations without POC present may yield degradation
ect degradation inithsitu river conditions, and that interaction
andjg@articulate phases may be important to consider when determining
and feedbacks under a changing climate.

50 sized DOC pool m

54 between disso
55 fluvial ca y

57 Keywor ermajgpst, Arctic, degradation rate, carbon isotopes, adsorption, flocculation

1 © xxxx |OP Publishing Ltd
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_ The Kolyma watershed is underlain by conti
1. Introduction permafrost and spans over 640,00¢ k22]. It is cg

. . . tundra and boreal forests, and characterized
Ground temperatures in permafrost (i.e., perennially frozgn . . : h
dplains and mountainous regions [8i§§The 'S

round) have increased globally over the last decades [1-2] " © : - )
J ) g y [ continental with distinct seasonality [ . M0 est

This causes thaw of all types of terrestrial permafrost whic'?], . . )

: : . . permafrost (Yedoma) in the area is OC-r

in turn, releases previously frozen organic carbon (OC) N6 )

fluvial networks [3]. Old permafrost-OC can be released i & ground ice content (up to 75 % of
' nback to the Last Glacial period [29-30]

the modern carbon cycle through gradual or abrupt th%w

processes. Gradual thaw occurs from top-down as active la '(Sa(r:IT aigze 00(; (';f(])e ﬁl:ollyn:ja 'S 13t2hR . h dl\l/lschirge
horizons thaw over summer leaching largely dissolved 1a (nd I, W rvsl) uﬂggoooi . ?nrrg ra)f]_ lune
(DOC) to inland waters [4-5]. By contrast, abrupt permafr ug]g)tisi) ower values (~5, o er (July-

thaw such as river bank erosion and thaw slumping, mobillzeS face water sample th of 20 cm) were
mainly particulate OC (POC) [6-7]. During fluvial transport u w P W ) w

; . .¢ollected to sterile polyet b (10-20 L) from the
permafrost-DOC can be rapidly degraded acting as a p03|r|nvieOII f the river ch duri field campaians: lat
feedback to climate change [8-10]. However, the fate anad € ot he river cha - 0 field campaigns. "ate

summer at the end of Jul 3, and the high-runoff spring

biological availability of POC in fluvial systems is still largely] o
. . . . freshet period in
unknown, despite the increasing potential for future abry
. o table 1). One de
thaw processes to deliver large quantities of permafrost- er at a

derived OC to aquatic ecosystems with a cascade 2§f£ ing | wzr;('arneztierrr:hEr;It\:Jer(rabedéI:cttrieczia(l:lh
downstream effects [7,11-12]. piing P '

Major Arctic rivers are extensive conduits of freshwaté:ro_nducwlty_( [d dissolved oxygen (DO) were measured
carrying and modifying terrestrial materials from Iand—tou—Slng y
ocean. Ongoing climate change is causing freshwater rur%Bf?m

and river constituent loads such as Ca, Mg angt&Mcrease Sihd
[13-15]. Warmer permafrost temperatures are likely
intensify thaw processes, releasing greater quantities of
into the fluvial network in the future [16-17]. So thd”
majority of OC degradation studies have focused o

21]. Therefore, constraining POC degradation

9 (figure 1, supplementary
ple (KOL2-D) was collected in

ional Plus in 2019). We also collected
stable water isotope®D, C>- which
stored cool (+5 °C) without headspace. See

the "whole-water and filtered incubations (for schematic
In this study, we focus on the Kolyma River, Slof the sibepiction see supplementary figure S1). Prior to filtering, all
major Arctic rivers delivering freshwater and

Arctic Ocean [22], with an annual average P W 23mixing of the sample. Part of the sample was immediately
19 Gg [23]. The POC pool transports a great ionfittered through pre-weighed and combusted glass-fiber filters
permafrost and peat-derived OC relatiy DOC pool [26kF/F, Whatman, 0.7 um) to act as the initial, non-incubated

The hydrograph of the Kolyma Rivergk rp seasotiale point (T0). Filters were subsequently frozen at -20 °C,
differences with the highest an i N
during spring freshet, while su S acterized witlel (37 %) and stored cool (+5 °C). To collect DIC samples,
deeper thaw depths of permafrost re, we constrair2018, 4 ml of water was filtered into a pre-evacuated 12 ml
degradation rates and track iti changes in fluxgaktainer (Labco, UK) containing 100 pl offD,. In 2019,
POC and DOC in the Kol er two of its distindIC samples were filtered into 12 ml exetainers containing
hydrologic seasons (spring late summer) using-200 pL of saturated Kl solution and filled to the rim.
15 day incubations. concentrations, we The remaining whole-water sample (including both DOC
BHT-OC, @C of and POC) was mixed thoroughly and distributed to pre-
dissolved inorganic d #C-POC) to constrain furnaced 100 ml glass bottles (Wheaton) and filled to the rim
POC sources an patiog . with no headspace (three replicate bottles per timepoint in
2018 and four in 2019). Samples were then incubated on a
custom-made rotating device (supplementary figure S2) for a
period of 9 to 15 days in dark and oxic (DO > 7 m§) L
2.1 Stu Id sampling conditions. The rotating device, similar to those used in
previous studies [32-33], keeps bottles in a constant rotation
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Figure 1. Map of the study area showing sampling sites Ki KOL3 and KOL4. Sites KOL1, KOL2, KOL3 were
during summer and KOL4 only during freshet. All the samples
were of surface water (sampled ~20 cm below surface) exc ich was sampled at the depth of ~10 m (near the riverbed) at th

preventing particles from settling and mimick
hydrodynamic conditions. As a temperatureNTrOR@L rodntubations by measuring the change in the OC pool (in %)
hiewer time with the following equation:
d 2

was not available at the field station, we inc
air temperatures which were 15 + 4 °C in 201% 2°C OCchange= [(OGinit - OG)/OCii] x 100 (Eq. 1)

i y, weCorregtbere OGhangeis the percent OC (DOC or POC) loss or gain
ds to refthating the defined incubation period t, O€the residual OC
OC degradation in thim situ river temp e 2.3 andoncentration at time t and Qg is the initial OC
43 supplementary methods). concentration (see supplementary methods).
a4 Three sampling time points > ang T3) were taken The degradation rates (k, dgyfor POC and DOC were
45 every three to six days. At e ) " replicate bottlesdculated using a first-degree exponential degradation model
are removed from tfi@2, 35]. Temperature corrections of the constantirfasitu
47 rotator, and waters filtered descritid above and separdtent temperatures were calculated using the Arrhenius
48 for POC, DOC and DIC iy figure S1). Paralleléguation assuming Q10=2 [36-37]. All results are reported as
49 the whole-water inc yate filtered incubat@verages + standard deviation. Further details are provided in
50 (three replicates per ied out to assess DI supplementary methods.

the calculated degradation constants

51 dynamics without thé of particles (for the protocol _ o _
52 see [34] and su en ethods). All details on analytide# Source apportionment and statistical analysis
gi analyzes are dgailable i supplementary methods. For the source apportionment of POC, we used a Monte
: . Carlo Markov Chain (MCMC) model. The two&C

2.3 Degr, [ rat nd half-lif
gg 3 Deg ° , rates and half-life endmembers used were: -32.0 * 3.4 %o for autochthonous (i.e.,
57 within-river production) POC and -27.1 = 1.1 % for
58 allochthonous (i.e., from terrestrial sources) POC [24, 38-39].
59
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Figure 2. (a) Particulate and dissolved organic carbon (POC and DOC) concentrations and Koly
(Roshydromet, Federal Service for Hydrometeorology and Environmental Monitoring, Mi
Russian Federation). Concentrations of DOC are marked with open symbols (note the differe
and electrical conductivity (EC). (c) Total suspended solids (TSSEERPOC. All panels s
circles) and summer (red circles). On panels a and ¢, standard deviations are derived
symbol).

harge measured at Kolymskoy
Resources and Environment,
Surface water temperature (Tem
r samples from freshet (yellow
samples (not shown if smaller than tl

Table 1. Concentrations of total suspended solids (TSS), particulate and dissol
and dissolved inorganic carbon (DIC), aBC-POC in the Kolyma River during fr and summer, along with total particulate nitrogen
(TPN), molar ratio between POC and TPN (POC/TPN) and water isotdf@s (&

dC-DIC (during freshet) and3“C-POCthe standard deviation includes 4 g tainty of repeated measuremer@3CiIC
5 ty is shown (no sample replicates).

Sampling  TSS M3~ 1
Freshet date (mg POC C-POC N

(@dimmiyyyy) L BV (%) (%)

¥3C-DOC  *3C-DIC 50 *3
(%) (%) (%) (%)

KOL1 07/06/2019 51+2 103+5 -26.77+0.2 -353+32 9gA
KOL2 07/06/2019 63+3 126+5 -27.04+0.2 -340+32 11+0.%
KOL3 11/06/2019 68+5 130+4 -27.15+0.2 -69+20 11+0.
KOL4 11/06/2019 25+2 87+5 -28.10+0.2
Summer

KOL1 23/07/2018 10 43+3 -33.01+04 -
KOL2 25/07/2018 12+1 49+2 -32.32+0.6
KOL2-D  25/07/2018 21+2 68+7 -30.93+0.2
KOL3 28/07/2018 21+4 57+11 -29.57+Q

-26.36+0.2 -12.19+0.3 -22.89+0.09 -178.4+0.6
-26.42+0.2 -13.77+0.3 -22.88+0.22 -176.4+1.4
0.3 694+11 -27.11+0.2 -13.81+0.3 -22.65+0.05 -174.5+0.2
776x11 -26.89+0.1 -13.62+0.2 -22.99+0.05 -177.1+0.4

7.4+0.2 26245 -29.37+0.2 -9.36+0.02 -22.14+0.03 -171.7+0.5
6.7£0.1 272+15 -29.31+0.3 -9.46+0.04 -22.10+0.04 -171.5+0.3
8+0.3 264+7 -28.68+0.4 -9.18+0.02 -22.17+0.01 -171.7+0.8
8.7+0.5 27845 -29.46+0.6 -9.08+0.02 -21.36+0.03 -165.5+0.1

The model was run in R [40] with a
We report results as a mea st
supplementary methods for det

We tested whether the diffg
over time were significa
concentrations with (one-
in R [40]. See supplementar

r [41]. Water isotopes+%D, C>- showed a more depleted signal
viation. 8edng freshet (-22.85 + 0.14 %o and -176.6 = 1.64 %,
respectively) than summer (-21.87 £ 0.44 %o and -169.6 + 3.50
aee O and DOC los&srespectively; table 1).
gnt from the initial Both DOC and POC concentrations (surface water) were
pf variance (ANOVAJgher during freshet (from 694 to 776 uM for DOC and from
¥ for details. 87 to 130 uM for POC) than those during summer (between
262 and 278 uM for DOC and between 43 and 57 uM for
POC,; figure 2, table 1). The highest POC concentration during
summer was at KOL2-D (68 pM) near the riverbed. The molar
3.1 Initial river ing freshet and summer ratio of POC/TPN of suspended particulate matter was higher
d between the freshet and sumrrqgr[ing freshet (9.2-10) than summer (6.7-8.7, table 1). Total

3. Results

Water che ) )
sampling perio freshet, surface water temperatu?@?__elndiql S(t)rl]'ds (Tstf\) during freshgtdrakljngged frognSZS t(;) 2618
85+ 1. b #0.2) and EC (81 + 14 pSipwere mg L1, while those in the summer varied between 9.8 an

. o Lt (table 1).
lower th{ffi during@ummer (13.7 + 1.4 °C, 7.5 + 0.1 and 2489 :
23 1S ¢ espegPvely: figure 2, supplementary table SZ& “The @C signatures of DOC and POC were less depleted

uring freshet than summer, while ti8C-DIC showed the
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opposite between the seasons. T#€-DOC ranged from - supplementary tables S4 and S5). In contrast, concen
27.11 %o to -26.36 %o during freshet and from -29.46 %o toof residual POC consistently declined during i
29.31 %o during summer (surface water), af8C-POC summer waters (-0.8 % to -34 %; figure 3, suppé
between -28.10 %o to 26.77 %0 during freshet and betwee84 and S5). On the contrary, residual C cd
33.01 %o and -29.57 %o during summer (table 1). At KOL2-thhe whole-water incubations) showed co ent

entary
ptratiog

%o. The @C-DIC varied between -13.81 %o and -12.19 %o -10.9 %; figure 3, supplementary t
during freshet and from -9.36 %o to -9.08 %o during summBOC/TPN ratios increased both durj

and -340 + 32 %o) than during summer (-217 + 37 %o and -2@2ing freshet, and between -4.
+ 33%o; table 1, supplementary table S3). Downstream,sammer (figure 4, table 2), the
KOL3, the B“C signal was more enriched during freshet, (-6€2.7 % during summer.
+ 20 %o) than summer (-306 + 20 %o). During freshet, at theDegradation constants
Kolyma River mouth (KOL4) theB4C-POC was -302 + 29 incubations, showed
%o while the deep sample (KOL2-D) showed34C-POC of - incubations at a rate of
286 + 27 %o during summer. decreased at a ra
table S6). Durj
3.2 Changes in organic carbon concentrations and constants wer,

-14.2 % during
showed a gain of

deriged from whole-water
PO creased during freshet
+ 0.006 -Hawhile DOC

.001 dapr POC and -0.006 +

isotopic values during incubation 0.002 day . filtered incubations showed a
. . . . _degradation c nt of -0.008 + 0.003-H&yr DOC during
Residual POC concentrations increased during mcubatl?'%%het 0.01 dayor DOC during summer
of freshet waters at all sites (+23.5 % to +31.3 %, figure (éuppl en ' 865
o KOL4
2 o
50, § ! 25
- R
T
s 0 :
= [
2§ 50 |
¢ B r
L %]
S 100 . |
¥ 2 I =
i & | =
|

[
B-E*I
5%

POC
DOC

|* ) ] ‘
Q ) 4 9 15 4 9 14 3 '
Days Days Days Days
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during (a) freshet and (b) summer (note that the scale of y-axes differ). The bars show averages * standard error bety
(n=4 during freshet and n=3 during summer) and are all relative to the initial OC concentrations. Relative chang
under/over the bars on both panels. The ambient incubation temperature during freshet@agarier than durj

marked with an asterisk are significantly different from the initial OC concentration (p<0.05, see supplementary t

Table 2. Changes (average + standard deviation) in particulate and dissolved organic carbon (POC and DO
(TPN), in ratio between POC and TPN (POC/TPEYC-POC, €*C-POC, ¢3C-DOC and ¢C of dissolved inorga
9 to 15 day whole-water (i.e., POC+DOC) incubations of Kolyma River water during freshet (i.e., spring ice brea
in DOC and @C-DOC during filtered incubations (without particles) are also shown. The %-loss of POC
calculated during freshet due to both gains (POC) and losses (DOC) to the OC pool.

POC Whole-water DOC Total OC
POC

iltered incubation DOC

e&c
Freshet | Days um % CC (%o) D“C (%) TPN (uM) POC/TPN UM % @C (%o) um UM % (%o)

KOL1 12 +25.4+14 +24.7 +0.37+0.2 +1.2+1.9  +1.1+14 -129+14  -17.6 -0.25+0.3 | -103 3 p.4 | -47.6£30 -6.52 -0.37%0.2
KOL2 12 +29.6+17 +23.5 +0.30+0.5 +40+22  -2.1#6.2 +1.5#2.4 | .65.3+95 -8.54 -1.60+1.8 | -35.7 0.3 | -59.7#32 -7.81 +0.35+0.7
KOL3 9 +37.0¢7.1 +28.4 +0.06+0.4 +1.7#2.4  +0.2+1.8 | -62.8494 -9.05 -1.41+2.3 | -25.8 0.3 | -32.9+26 -4.74 +0.50+0.3
KOL4 9 +27.2+¢12 +31.1 -1.33+0.2 +1.5+1.2 +1£1.7 -130+79 -16.8 -0.48+1.6 | -103 2 792+0.3 | -66.3+12 -8.55 +0.18+0.2
Summer

KOoL1 15 | -11.6#3.7 -32.4 +3.7240.8 -2.8+0.4  +3.310.8 | -20.1+14 -7.66 +0.27+0.3 | - -1.19%0.2 | -37.1#31 -142 +0.35%0.5
KOL2 14 | -141#37 -33.7 +3.46:07 -92+19  -3.6x0.3 +4+0.8 | .29.61+53 -10.9 +0.68+0.4 | -43.8 -1.09+0.2 | +7.27424 2.67 +0.39:1.6
KOL2-D 14 | -21.247.1 -340 +2.224#0.5 -45+04  +4.9%1.1 | -12.7+11 -4.80 -1.45%0.1 | -18.8#32 -7.10 -0.5840.8

KOL3 10 -0.549.2 -0.84 +1.62+0.6 -2.0£0.7 +4.6+1.2 -9.1+21 -3.28 -1.60£0.1 | -34.3+40 -12.3 +0.28+15
The €C signature of POC became more enriched over theThe stro in northeastern Siberia drives the
course of the incubation both during freshet (+0.5 + 0.6 %uater cheg e Kolyma River. Concentrations of TSS

eflecting the high discharge conditions
(average for freshet 17,800 + 166’ hand

00 + 210%s? during sampling [42]). Lower

0 um cm) and pH values (by 0.6) during freshet
summer are likely caused by dilution or due to
utes draining to the river from the soil, as permafrost
both showed depletion of3C (-0.37 + 0.2 %o and -0.58 * aw has not yet reached deeper soil layers [23]. Additionally,
%o, respectively). TheZ*C-DIC showed depletign during bot

DOC showed depletion at the end of the whole-wateronth
incubations by -0.9 + 0.7 %o during freshet, but enrichm ing thi
during summer by +0.4 + 0.3 %o (table 2). The filter
incubation showed enrichment of*C-DOC during both E
freshet (+0.34 + 0.2 %0) and summer (+0.34 £ 0.1 %o@iable ).

site KOL2 (the only site measured fdB
incubation) showed an enrichment by +40
freshet and depletion by -92 + 19 %o durigg

3.3 Source apportionment of partid

carbon before and after inculgaien
_ The POC and DOC concentrations in the Kolyma River
The source apportionment of owgd that most of %Bﬁ"ow seasonal discharge patterns [22] with higher

' ‘ ous POC (77'(,9<§rmentrations during freshet than summer (figure 2, table 1).
of the POC was froH)‘uring freshet, the high runoff mobilizes OC mainly from
plementqry tablv_a Ss@rface scouring, litter and surface soil horizons [46-47], while
ols contained h'%hﬁﬂring summer higher air temperatures contribute to active
0 urm% freshet (93%,1Q,er geepening and initiation of thermokarst, releasing OC
58 %70 80 %). from deeper permafrost sources [23, 48].

The role of primary production in fluvial OC dynamics of
major Arctic rivers has not received a lot of attention, partly
because, the autochthonous OC in these systems likely
consists mainly of recycled allochthonous OC [24]. In our
study, between 71 % to 96 % of POC during freshet originated
4.1.1 Rir condi®ns of freshet and summer from allochthonous sources, while during summer, only 4 %

to 52 % of POC was allochthonous, suggesting a high riverine

an allochthonous source
After incubations, resi
proportions of allocht
98 %) and summer i

4. Discussion

4.1 Seasona iabilifl in river OC composition and
source



Page 7 of 16 AUTHOR SUBMITTED MANUSCRIPT - ERL-112576.R2

O©CoO~NOOTA~WNPE

a. Freshet b. Summer

25 KOL1 KOL2 _KoL3 KOL1 KOL2 KOL3 S

1
N
(&)
-0.7%
1.9%

-4.3%

-5%

-2.3%
-47%
12%
*-7.7%
-10%
7.7%

a8

e=dl

Ty
v

-5.5%
-14.9%

-2.7%1|

-14.2%

-7.8%
¥-7%

DOC loss (M)
o

o O,

-5.7%

-14.2%|

-9.1%)

S
3
o

-150 S

3612 3612 369
Days

(%) from the initial concentrations. The ambient incubation temper
indicate a significant difference (p<0.05) from the initial DOC conce

cshet ¥awalBner than during summer. The asterisks
supplementary table S3 and S4 for details.

summer suggest a higher contribution of autSeggonous OC,
more degraded OC and/or terrestrial OC @MYegag from ) . )
§O¥.'1 Autochthonous POC is preferentially degraded during
Cnovicdl | summer

deeper thaw depths that dominate during su
During summer, the relative losses of POC were

Similar to POC, freshet DOC is mainly allocf
DOC -26.69 + 0.37 %), while during )

. ierive fro'ﬁpl-s with a loss of -1 % over 10 days. The relatively small
ability of this @éses at KOL3 are likely due to its more allochtonous POC
gpmposition compared to the other sites, which may cause
stronger flocculation and adsorption of DOC into the POC
ithin a season, pr[ooI, thus slowing down POC degradation (see 4.2.2). Losses
g freshet than Summé?oc were on average lower (ranging between -4 % and -
DIC during summer 10 %), suggesting that POC is susceptible for degradation,
2-53] supporting t|i|léely partly via leaching to the DOC pool followed by
oc. microbial degradation (figure 3(b)). The concentrations of
z.nd between seasons with %DC were lower than those of DOC in summer (table 1), thus
These seasonal differencB4dn relatively greater quantities of DOC were lost (table 2, figure
ctuations of the river as seen ?1)1 Of the total OC losses (DOC and POC combined;
t likely depend on variation in £ppplem§ntary figure S3), 6-18 % was DOC, \{vhile only at the
es, pregipitation and thus different permafrost th%\?per site KOL2-D the POC pool shovyed higher losses (21
% of total OC, table 2) than DOC. This contrast could be
explained by a different composition of the near river bed POC

autochthonous production in
allochthonous sources, the even

may change (see 4.2) upg on into fluvi

(table 2, figure 5(b)).
may suggest higher
findings from €C-D

apparent tren
may be due
previous
temper
patterns\@4].
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and/or DOC combined with differing microbial communitiesalculated to include only rivers). In another POC degra
on the river surface [55]. While our study focused on surfasteidy, based on flume experiments [57], PO
water samples (not depth-integrated sampling), the reactividjatively low, and divided between petrogeni
of POC near the riverbed (KOL2-D) was comparable to thel %, Posidonia shale and lignite) andgpiosp
surface sample at the same site (KOL2), even though the.1 %, Lookout Creek, Oregon, US

absolute losses were greater near the riverbed as initial PR@entina), while DOC showed both loss
concentrations were higher (table 1). The overall degradataaiculated degradation constant (k) f
patterns are supported by the changes in@#&DIC during * 0.001 day) was comparable to those i Swedish rivers

tant was lower, -
+ 0.002 day

e Swedish rivers
ted only for seven days,

(figure 5(b); [56]). Furthermore, botlf€*C-POC and @C- in the same study [35], the degr
DOC enrich during the incubation (table 2). 0.001 + 0.0004 day than in our st
Our source apportionment results show that most of tlhés notable thain situ tem
POC degraded during summer is of autochthtonous origiere 15+ 0.2 °C and the in
(figure 6), indicating preferential degradation ofmaking the comparison n
autochthonous POC. Similarly, the increase in POC/TR&mperatures were clo ihesi er temperatures, but
ratios (table 2) indicates a shift to more allochthonous P@@en corrected for the
over time, suggesting degradation of the autochthonous Pi@€libation andn St Qs
pool [35]. Furthermore, th&4C-POC shows a more deplete@onstants beca
signature (-92 + 19 %o) at the end of the incubation than duritey!) and DO .002 d3ythan uncorrected. A
[) in a sub-arctic estuary in the
during summer (table 2). It has been demonstrated in previBashnian Bay @ reports higher degradation constants both
studies that old permafrost OC can be preferentially degraf@dPOC
from the DOC fraction, but that most microbial respiration icould ‘
the Kolyma River (~99 %) is subsidized by moder iNge AT study systems (estuary vs. river). Overall,
allochthonous and autochthonous carbon [21]. In addition,
results indicate that a more depleted initi@C-POC
signature (i.e., a more autochthonous POC pool), caused
larger shift in @C during incubations and higher P
over time (supplementary figure S4), supporting t
biolability of the autochthonous POC pool, either directl

er, our whole-water incubations suggest that
two OC pools are togethersitu, POC likely
own to DOC, and thus ‘slows’ DOC degradation rates
C pool is constantly replenished (figure 7).

as a shift to the DOC pool. 4. 29 Allochthonous POC dominates during freshet, showing
The high relative losses of summer POC e 3) agmee degradation

with the results from a previous incubation sj based

on fresh water samples (late summer) fro distDuring freshet incubations, constant gains of POC (+15 %
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1
2
3
4
5
6
° .
8
9
10
11
12
13

15
16
17
18
19
20
21
22
23
24
25

26
27
28 Figure 5. Changes in@C of (a) particulate organic carbon (P d (b) ed inorganic carbon (DIC) during the whole-water
29 incubations (between 9 to 15 days) during freshet and summer f OLTS L2 and KOL3, and KOL2-D (only summer) and KOL4
30 (only freshet). The@3C-POC changes are significantly different from tNgini nditions at all sites and time points during summer (except
31 at KOL3), and during freshet at KOL4 (except at time poi -d shOw relative cha@¥e®friPOC, dissolved organic carbon
32 (DOC) and DIC at location KOL1 during (c) freshet and rror bars indicate standard deviation between replicate sample
33 and include the analytical uncertainty for DIC. The TO time p nly show analytical uncertainties during summer (no replicates
34 available). Only the error bars larger than the symbol are shown.
35 DOC). Processes that can explain gains in {eROC fractioore likely explanation. Third, both adsorption and
36 during the incubation are i) primary producyg d byocculation of dissolved organic matter transfer OC from the
g p yp g
37 agueous inorganic carbon species, ii) inc atigbolved to the particulate OC pool, e.g., [64-67]. The largel
q g p p p g gely
38 detritus or biomass following bacterial cd @lllochthonous POC during freshet likely comprises of mineral
g g y p

39 organic carbon species, and/or iii andjoarticles that offer adsorption surfaces for DOC [68-69].
22 flocculation of DOC. As photosynth ight as &wurthermore, the river conditions during freshet with higher
42 energy source [59], dark incubation cA JMould inhilMOC concentrations and on average lower EC and pH values
43 photosynthetic growth. Other y On pathwapspmote adsorption to particles, while river turbulence and
44 such as chemosynthesis, can p organic compoundsgher particulate concentrations enhance flocculation of

the dark [60], however, these mainly restrid€aC [64, 70]. We therefore consider adsorption and/or
45 Y P
46 to deep-sea ecosystems an | waterbodies [61-62floaculation of DOC the most likely cause for POC gains, yet
47 study on the Canadian [33], suggested twattribution of bacterial biomass/detritus might also play a
48 chemolithoautotrophs ontribute to OGole.
49 mineralization in slu et these environmentdhe 13C signature of POC barely changes during freshet
50 have extremely hig pntrai®ns thus differ greathcubations, suggesting only a minimal increase in the
51 Em the first process (primgmpportion of allochthonous POC at the end of the incubation
52 ¥ POC gains in river surfag¢igure 6). This mild shift may suggest that regardless of the
53 w POC concentrations. Secondpparent gains of POC, some degradation of autochthonous
54 mass as a POC source has B®@E occurs, yet these losses would be masked by the addition
55 sed on lake data [63], however, maisDOC to the POC pool via adsorption and flocculation.
56 s lake DOC is used for bacterial biomaSigernatively, the increase in allochthonous POC is solely due
57 for respiration [51], making option (ii) & addition of allochthonous DOC. Nevertheless, the
58
59
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Figure 6. Source apportionment of particulate organic carbon ( ard deviation) during (a) freshet (n=4 per site) and (b
summer (n=3 per site) based @IC-POC for sites KOL1, KOL2, ¥ freshet) and KOL2-D (only summer). The source
apportionment was conducted before and after 9 to 15 days of incuUNgi dmember used for autochthonous POC was -32.0 £ 3.4 %o [2
ods and supplementary table S7 for details).

¥ 0.003 da)) than uncorrected, and similar to the
erature corrected decay constant for summer DOC (-

preserved. Similar to summer, the POC/TP
however, during freshet the increase is cal oa@nmunities that might affect degradation rates [72].

TPN The transfer of DOC into the POC pool, may implicate that
decreases), in contrast to the TPN decy® at ataster rée fate of this DOC pool differs from the DOC that remains
than POC during summer (table 2).
important nutrient, e.g., [71], agd gFcs o> OC duriafochthonous DOC is more likely to flocculate and settle than

summer are high, this may su gen is usedoby degraded [67]. Similar results regarding preferential

microbes also during freshet. settling of mineral POC have been shown in the East Siberian
20.014 + 0.01 daga [73]. If the DOC-derived POC behaves similarly in the

reshet are not sof@lyial system, i.e., protects its OC from degradation, it may

informative of degradatiC at flocculation andave an attenuating effect on the climate impact of the fluvial

adsorption likely diminj ool too. In contrast tDOC. While many studies have shown the opposite —

BOC of the residual DOC [60]. and/or sorption to particles has not yet been assessed.
erence between freshet incubation

degrad o con ts (k) for DOC (supplementary table 4.371 DOC from filtered incubations differs from whole-water

ble S2) and temperature corrected, the
The cor d degy constant for freshet DOC was lower (-
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Figure 7. Conceptual figure of the dominatigg articulate and dissolved organic carbon (POC and DOC) loss and interactions
. Note that the term ‘degradation rate’ is used for the combined losses from microbie
and mechanical breakdown and is tempe éal $ttu river temperatures (see supplementary table S2). During summer, both
POC (green circle) and DOC (turquusPcir gc offstly autochthonous, and degrade over time. Breaking down of POC likely replenishe
the DOC pool, thus slowing down egradanon, in addition to ongoing leaching. During freshet, both POC (brown circle) and DOC
(purple circle) are mostly of allochthgnou ind he POC pool is replenished via DOC adsorption and/or flocculation (this may also happer
he DOC pool degrades. Breakdown of POC may happen, but would be likely masked by
rations (mean + standard deviation) in the circles are at time point TO before the incubation. Th

dashed lines show processe
for in other rates that are r: gafyure. Size of the circles is indicative of the size of the organic carbon pool, but not to scale.

articles). In our study, weduring summer (-0.012 + 0.002 dayemperature corrected -
ter (unfiltered, see 4.2) and filter8d11 + 0.001da}), suggesting faster DOC loss during
t to disentangle DOC and P@Gmmer months. These results differ from the DOC in the
n that DOC interactions with P@@ole-water incubation, which showed higher losses during

timates of DOC degradation rate and féiteered incubations (figure 4). During freshet, the whole-water
degradation rates for filtered incubatioBOC degradation constant is higher than the filtered, likely
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due to losses of DOC to flocculation/adsorption, while duringstly, we recommend further investigation on the f

Alternatively, filtration may change (i) the composition of thBOC breakdown. @

microbial pool through exclusion of predators of bacteria _

and/or (i) the composition of the DOC pool (e.g., through Conclusions

:zss& t:u: (ranlhz\r;u?gWdhegljrri\\(ldvailorninof E 3(:” mYTe f||terqd0ur results indicate total OC losses b
cubations relative to whole-water incubations [74]. 12 %) and summer (-3 % to -14 %), he

N L f DOC and POC and their int
4.3.2 Seasonal variability of the OC dynamics in the Kolyrr?a an and iheirinteragons are
River between seasons.

isthctly different

* In summer, loss of POC ( ly nous) is faster (-

Our study shows that loss of POC in the Kolyma River %Orizngg ??ei)hé?ago@?ﬁgw (r?o?fs)? ddoags\,\:gtleshow

strongly seasonally dependent, and tightly linked to D ses, but instead gaj +32 %) that are likely
dynamics, especially during the freshet period when both P %stly, driven by flocc

and DOC are largely comprised of allochthonous materi

e e o Rasorpionoc Mgt 1] 3100 0 P0C may change
. P €., gener 9 9 ge ultimate fat it settles rather than degrades,
during freshet may be minimal. The DOC on the other hand,is .
. . . ) ) ese process e an attenuating effect on breakdown
labile, yet interaction with particle surfaces may attenuate t ; .
of fluvial D that mostly seems to occur during

climate impact of DOC as part of the DOC transitions into the het
POC pool through adsoprtion and/or flocculation (figure ;es e .
) ) 'We eg )l thal®®ach year during summer months (July-

and may be more prone to settling. During summ
autochthonous POC is preferably lost, faster than DOL.
However, (mechanical) degradation of POC (e.g., leach
likely produces DOC, which replenishes the DOC poq
artificially ‘slowing down’ the degradation of DOC.
When we combine our summer POC incubati
(loss of ~33 %) with summer POC flux estimates (O
[23]), we estimated that each year during July-Oct
potentially 0.016 Tg of POC degrades.

to consider POC, because these carbon pools are
d regarding degradation and their fate in the fluvial

to addition of POC to the D D
degradation. Additionally, it is le that while POaboratory facilities. We thank Suzanne Tank and Sarah Shakil

concentrations during summe

that the role of rivénethods. We want to thank Suzanne Verdegaal-Warmerdam
and Richard Logtestijn (Department of Earth Sciences and
iltered incubations fdepartment of Ecological Sciences, Vrije Universiteit

roughly half of that of DO@
POC is quite important.

estimate DOC deg

estimates are likely r- or underestimating DQaeparations. This study was funded with a starting grant from

Season. Laboratory incubatiii®s European Research Council to Jorien Vonk
C and POC fractions wihilsitu (THAWSOME #676982).

separate pools. Incubation studies

r including particles when estimatifigferences

operationally
they cannot b
should th

interacti Of PO and DOC in ﬂUVial and eStUarine Syste@§e|etskiy D A, Schoeneich P: Romanovsk, V E’ Lewkowicz A

12
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