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Abstract

Nonlinear integrable systems emerge in a broad class of di� erent problems in Mathemat-

ics and Physics.

One of the most relevant characterisation of integrable systems is the existence of an

in�nite number of conservation laws, associated to integrable hierarchies of equations.

When nonlinearity is involved, critical phenomena may occur. A solution to a nonlin-

ear partial di � erential equation may develop a gradient catastrophe and the consequent

formation of a shock at the critical point. The approach of di � erential identities provides

a convenient description of systems a� ected by phase transitions, identifying a suitable

nonlinear equation for the order parameter of the system.

This thesis is aimed to give a contribution to the perspective o � ered by the approach

of di � erential identities. We discuss how this method is particularly useful in treating

mean-�eld theories, with some explicit application. The core of the work concerns the

Hermitian matrix ensemble and the symmetric matrix ensemble, analysed in the context

of integrable systems. They both underlie a discrete integrable structure in form of a

lattice, satisfying a discrete integrable hierarchy. We have studied a particular reduction

of both system and determined the continuum limit of the dynamics of the �eld variables

at the leading order.

Particular emphasis has been given to the study of the symmetric matrix ensemble.

We have unveiled an unobserved double-chain structure shared by the �eld variables

populating the lattice structure associated to the ensemble. In the continuum limit of a

particular reduction of the lattice, we have found a new hydrodynamic chain, a hydrody-

namic system with in�nitely many components. We have shown that the hydrodynamic

chain is integrable and we have conjectured the form of the associated hierarchy. The

new integrable hydrodynamic chain constitutes per se an interesting object of study. In-

deed, it presents some properties that are di� erent from those shared by the standard

integrable hydrodynamic chains studied in literature.
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Introduction

Nonlinear integrable systems emerge in a plethora of phenomena pertaining to the realms

of Physics and Mathematics. Concerning integrability, a general conventional de�nition

is not given [32, 67]. Instead, depending on the context, one or more features commonly

shared by integrable systems are considered as a suitable characterisation of it. Over

time, several methods to approach integrability have been introduced, each of them fo-

cusing on one particular facet of the issue [63, 88, 3, 90, 92, 86]. A crucial step in the

study of integrability is the discovery of in�nitely many conservation laws [94], associ-

ated with hierarchies of nonlinear integrable equations. In this thesis we will encounter

several integrable hierarchies, either associated with discrete systems (the Toda lattice

and the Pfa� lattice) or with continuous ones (systems of hydrodynamic type).

Random matrix ensembles are typically introduced within the framework o� ered by

random matrix theory [91], but they constitute an interesting object of study in the con-

text of integrable systems as well. In this thesis we will deal with the Hermitian matrix

ensemble [5] and the symmetric matrix ensemble [11], following the approach estab-

lished by Adler and van Moerbeke in their proli�c production on the topic (e.g. [12, 116,

6, 10]). The ensembles show two di� erent underlying integrable structure, the Toda lat-

tice for the Hermitian ensemble and the Pfa� lattice for the symmetric ensemble. These

structures are introduced in terms of hierarchies in the Lax formulation and can be in-

terpreted as emerging from an algebra splitting, in virtue of the Adler–Kostant–Symes

theorem [9]. The connection with the matrix ensembles is realised via the introduction

of suitably de�ned � -functions, that in turns satisfy speci�c integrable hierarchies. In

both the Hermitian and the symmetric case, the speci�c � -function is proportional to

the partition function given in terms of an integral on the real eigenvalues of the matri-
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ces. The �eld variables composing the elements of the Lax operator for the two lattices

are written in terms of functions of the sequence of � -functions. We study suitable re-

ductions of these structures, leading to the emergence of hierarchies for the continuum

limit of the �eld variables, that will assume the form of two very di � erent systems of

hydrodynamic type.

In [49, 113], Dubrovin, Novikov and Tsarev give a geometric interpretation of hy-

drodynamic systems in �nitely many components, describing the manifold spanned by

their solutions. In the context of Hamiltonian formalism and Riemannian geometry, they

relate integrability of hydrodynamic systems to geometric properties of the manifold, in

terms of metrics, connections, and torsions. A geometric point of view is applied also

in the case of hydrodynamic chains, a particular class of hydrodynamic systems with in-

�nitely many components. In [59], Ferapontov and Marshall treat integrability of hydro-

dynamic chains within the geometric framework with the introduction of the Nijenhuis

and Haantjes torsions.

One of the most relevant aspects of hydrodynamic type systems is the occurrence of

critical phenomena, when solutions develop a gradient catastrophe as an e� ect of non-

linearity [119]. Since a discontinuity is generated, the solution exists in a weak sense

only. This solution takes the name of a shock solution. The discontinuity can then be

resolved by an appropriate mechanisms of regularisation, giving rise to either viscous

shocks or dispersive shocks [54]. The �rst is modelled as a travelling wave solution to an

ordinary di � erential equation, whereas the second give rise to a more complex structure,

represented by a modulated periodic train wave.

The fact that the theory of nonlinear integrable systems o � ers a suitable tool to de-

scribe critical phenomena is the main underlying idea for the development of the method

of di � erential identities [95]. The latter has its foundations in a new perspective to de-

scribe systems in the realm of Statistical Mechanics, typically a � ected by phase tran-

sitions. It is indeed possible to outline a proper correspondence between the typical

features of Thermodynamics and those of nonlinear hydrodynamic systems. With some

general assumptions on the properties of the thermodynamic system, the method of dif-

ferential identities provides the equation of state as the solution to a nonlinear partial

di � erential equation. The nonlinear character of the system induces a gradient catastro-



phe and gives rise to a shock solution [40, 21]. The approach has been successfully ap-

plied to several mean-�eld theories in a series of recent publications [66, 14, 89, 27]. In

these cases, the suitable di� erential identities are de�ned at the partition function level

and then the corresponding nonlinear equation for the order parameter is provided. The

shock solution for the order parameter emerging in the context of mean-�eld theories is

regularised by a viscous term.

A completely di � erent phenomenon emerges in the study of the Hermitian matrix

ensemble [22]. Here, a particular reduction of the Toda lattice is considered, obtained

by the selection of the even coupling constants in the partition function de�ned for the

ensemble. The resulting structure depends on one type of �eld variables only and at

the leading order in the thermodynamic limit a quasilinear hierarchy is obtained. The

behaviour of the solution for di � erent scenarios in the space of parameters is then anal-

ysed. It develops oscillating patterns, observed in [77] and there interpreted as a chaotic

behaviour. In [22] these patterns are instead qualitatively described as a manifestation

of a dispersive regularisation mechanism, giving rise to a dispersive shock solution.

The aim of this work is to provide a contribution to the development of the new

paradigma based on the approach of di� erential identities. In particular, we will focus on

the study of the symmetric matrix ensemble and a suitable reduction of it. The original

results collected in this thesis are part of a recent publication [23].

The thesis is organised as follows.

Part I - Background The �rst part is devoted to the introduction of the general theories

constituting the grounds of the objects of study of this work, i.e. integrable systems and

random matrix ensembles.

In chapter 1 we provide an overview of the di � erent perspectives that have been

developed to approach integrability in nonlinear systems over time. We focus on the

existence of in�nitely many conservation laws associated with integrable systems and

describe the related integrable hierarchies.

In chapter 2 we present the random matrix ensembles and the main tools that will be

used in the core part of the thesis. We display the procedure leading to de�ne the parti-

tion function for the Hermitian and symmetric matrix ensembles. These ensembles are



intrinsically related to the integrable structures of Toda lattice and Pfa � lattice respec-

tively. We study how these structures emerge from an algebra splitting and investigate

the realisation of the connection between the matrix ensembles and the lattices via the

� -function.

In chapter 3 we study the theory of integrable hydrodynamic systems. We introduce

the Hamiltonian formalism and the generalised hodograph method to treat integrabil-

ity in hydrodynamic systems with �nitely many components. Then we de�ne the hy-

drodynamic chains as a particular class of hydrodynamic systems with in�nitely many

components and discuss their integrability.

In chapter 4 we deal with critical phenomena, emerging from the occurrence of a

gradient catastrophe dynamically induced by nonlinearity. We describe the breaking of

the solutions to a quasilinear conservation law and analyse the consequent formation of

a shock. Then we introduce the viscous and the dispersive regularisation of the shock

solution and delineate the main features of their associated structures.

Part II - Case studies This part is dedicated to the description of shock solutions emerg-

ing at the leading order in the thermodynamic limit in the context of mean-�eld theories

and the Hermitian matrix ensemble. In the �rst case the shock solution is regularised by

viscous corrections, in the second case by dispersive corrections.

In chapter 5 we introduce the method of di � erential identities as a suitable tool to

describe phase transitions in thermodynamic systems. Equations of state are de�ned as

solutions to nonlinear hydrodynamic type equations, after a rede�nition of variables and

a precise correspondence between Thermodynamics and nonlinear systems is outlined.

The method of di � erential identities is explicitly applied to the Curie-Weiss model and

we study the shock solution regularised by a viscous term, this being a typical feature

observed in several mean-�eld theories.

In chapter 6 we study the Hermitian matrix ensemble and we present the construction

of the associated integrable hierarchy, i.e. the Toda lattice hierarchy. This is shown in the

Lax formulation of in�nitely many commuting �ows. We focus on a suitable reduction

of the system, i.e. the Volterra lattice. The associated hierarchy will be composed of even

�ows only. We investigate the continuum limit of the lattice and at the leading order



we �nd a scalar nonlinear integrable hierarchy. We restrict our study to the case of the

�rst three times and analyse the solution in the parameters' space, where we detect the

occurrence of a dispersive shock.

Part III - Results This part is aimed to present the original results of this work [23].

We consider the symmetric matrix ensemble and its related integrable structure via

a suitable algebra splitting, i.e. the Pfa � lattice. We analyse the structure of the lattice

in terms of the �eld variables, whose evolution is inspected for di � erent �ows of the

associated hierarchy. We introduce a speci�c notation for the �elds aimed at emphasising

the underpinning observed double-chain structure.

We focus on a suitable reduction of the Pfa � lattice, for which the thermodynamic

limit of the �rst �ow is studied. At the leading order, this is represented by a new

hydrodynamic chain. We investigate the diagonalisability and the integrability of the

hydrodynamic chain and de�ne the corresponding Gibbons–Tsarev system. The new hy-

drodynamic chain is interesting in itself since it presents more than just one seed, as in

the case of standard integrable chains.

We verify that for the two next �ows the form of the leading order in the thermody-

namic limit is a chain as well. We conjecture that this is indeed the case for every �ow

of the suitable reduction of Pfa � , de�ning a new hydrodynamic chain hierarchy. Finally,

we present a comparison with the Hermitian random ensemble.

Part IV - Explorative studies This part collects some applications of the method of

di � erential identities on systems describable in graph theory.

We introduce the basics aspects of simple graphs, their main features and the corre-

sponding adjacency matrices. We study the speci�c example of the two-star model with

a classical mean-�eld approach and with the method of di � erential identities.

We look for di � erential identities in the one-dimensional Ising model, for which we

de�ne a partition function in terms of the trace of the associated adjacency matrix. We

analyse the form of the symmetric factors appearing in the partition function, encoding

information about automorphisms of graphs. Lastly, we consider the case of the expo-

nential random graph theory.





Part I

Background
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Chapter 1

Nonlinear PDEs and integrability

This chapter is devoted to the introduction of the theory of integrable nonlinear systems.

Firstly, we will approach the issue of integrability giving an insight into the di � erent ways

in which it has been studied. In section 1.1 we will brie�y refer to the crucial steps in the

development of the theory of nonlinear systems by introducing two of the equations that

we will encounter in di � erent context throughout this work, i.e. the Korteweg-de Vries

equation and the Burgers' equation.

We will mention the various aspects of integrability, from the Inverse Scattering

Transform methods, to the bi-Hamiltonian structure and the existence of in�nitely many

conservation laws (in section 1.2).

Finally, in section 1.3 we will introduce the concept of integrable hierarchies, with

emphasis on those that we will encounter in the following chapters.

1.1 Nonlinear integrable systems

Partial di � erential equations (PDEs) are fundamental for the study of problems in the

realm of mathematics and for the description of a plethora of phenomena in physics.

There is no general theory concerning the solvability of all PDEs, instead the research

focuses on several particular cases that are relevant for applications in a broad variety of

�elds. The possible solvability of PDEs is related to their integrability and here too there

is no a general conventional de�nition of what integrability is. Dating back to Poincaré,

to integrate a di � erential equation means to �nd a general solution expressible in a �nite

11



Chapter 1. Nonlinear PDEs and integrability

number of “elementary” functions [106]. The emphasis given to the word �nite relates

integrability to a general knowledge rather than a local knowledge of the solutions [67].

This is in some sense connected with the idea of the universality of nonlinear integrable

systems.

Calogero describes this concept in [32], focusing on the fact that some integrable

nonlinear PDEs share the aspects of universality and wide applicability. Indeed, a large

class of nonlinear evolution equations can be mapped into certain universal nonlinear

evolution PDEs via rescaling and asymptotic expansion. In particular, the focus is on

PDEs of the form

D u(x; t) = F [u; ux; ut ; uxx; utt ; : : :] ; (1.1)

in terms of the �eld variable u(x; t) with x 2 R; t 2 R and its spatial and time deriva-

tives. The left hand side (i.e. D u) corresponds to the linear part that is constructed to

be dispersive and otherwise arbitrary. The right hand side (i.e. F [ : : :]) is the nonlinear

part, for which the only constraint is that it is an analytic function of the �eld variable

and its derivatives. The universal equations obtained by the limiting procedure appear

in several contexts and they are widely applicable. Moreover, this procedure generally

preserves integrability, and the universal equations are likely to be integrable. An exam-

ple of universal equation is the celebrated Korteweg-de Vries (KdV) equation [83] in its

nondimensional form 1

ut + 6 u ux + uxxx = 0 ; (1.2)

introduced to describe the propagation of one-dimensional, long surface gravity waves

with small amplitude in a shallow water channel. The KdV equation arises in many dis-

parate contexts, such as strati�ed internal waves, ion-acoustic waves, plasma physics,

lattice dynamics, gravity. The universal character of the equation is signaled by the fact

that it emerges whenever the governing equation is a� ected by weak quadratic nonlin-

earity and weak dispersion [1].

One of the basic features of integrable systems is their solvability and in [32, 67] a

heuristic distinction between two procedures applied to solve those systems is given.

In the �rst approach, nonlinear systems can be reduced to a linear form (integrable)

1With the notation of the expression (1.1) for KdV D u(x; t) = ut + uxxx and F[u; : : :] = � 6u ux .

12



Nonlinear integrable systems

via a speci�c change of variables. The archetype of this procedure is given by the inte-

grability of Burgers' equation [31]

ut + u ux = � u xx ; 0 < � � 1; (1.3)

that is linearised through the Cole-Hopf transformation

u(x; t) = � 2� @x ln � (x; t) ; (1.4)

giving the heat equation in the new �eld variable � (x; t)

� t = � � xx : (1.5)

In the second approach, the system is linearised in terms of integro-di � erential equa-

tions through the method of the Inverse Scattering Transform (IST), discovered by Gardner–

Green–Kruskal–Miura in [63] for KdV and generalised by Lax in [88]. In [3], the scheme

describing the method is built mimicking the Fourier transform and the name IST is

coined. The main idea of the procedure relies on the connection established between the

KdV equation (1.2) and the linear time-independent Schrödinger problem

 xx + u(x; t)  = �  ; (1.6)

where u(x; t) is solution to the KdV equation and here it plays the role of a potential,

the time t is treated as a parameter and (x) is the eigenfunction of the scattering prob-

lem. The procedure of the inverse scattering is borrowed from the realm of Quantum

Mechanics. This method leads to the reconstruction of the potential from the scattering

data. The evolution of the function  is described by a second equation, i.e.

 t = (
 + ux)  + (4� + 2 u) x ; (1.7)

with 
 being an arbitrary constant. We assume � being a function of time � = � (t ). We

derive (1.6) with respect to t and (1.7) twice with respect to x.

13
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Imposing the compatibility condition

 txx =  xxt ; (1.8)

the constraints on � and u(x; t) are @t � = 0 and u(x; t) satis�es (1.2). Hence, the equa-

tions (1.6) and (1.7) are compatible if the eigenvalues are constant in time and the poten-

tial is a solution to the KdV equation.

The asymptotic behaviour (for jxj ! 1 ) of eigenfunctions  and the set of their as-

sociated eigenvalues� determine the the scattering data S(�; 0), which in turn depends

on the potential u(x;0). The direct scattering problem consists in the mapping from the

potential to the scattering data. The time evolution equation takes the initial scatter-

ing data S(�; 0) to S(�; t ), whereas the inverse scattering problem is to reconstruct the

potential from the scattering data [1].

u(x;0) S(k;0)

S(k; t)u(x; t)

Direct scattering

Linear time evolution
of scattering data

Inverse scattering

Integrable
nonlinear PDE

In the generalisation of the method provided by Lax, equations (1.6) and (1.7) are

rewritten in terms of the linear operators L; M as

L = �  

 t = M  :
(1.9)

The compatibility condition is expressed via the Lax equation

Lt = [M; L] ; (1.10)

this becoming the key point for the treatment of integrable nonlinear PDEs. The opera-

tor L in equation (1.10) satis�es the isospectral property: its spectrum is preserved with

the evolution in time.
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Nonlinear integrable systems

Over time, several approaches to tackle integrability have �ourished, each focusing

on the latest features discovered in the context of integrable systems.

In [94], Miura discovered the existence of in�nitely many conservation laws associ-

ated with the KdV equation, introducing nonlinear transformations, that are now known

as Miura transformations and will be described in section 1.2. This feature has also been

of crucial importance in the developing of the IST method described above.

Another milestone in the theory of integrable systems is the discovery of solitons, a

kind of solution that emerges in many exactly solvable models. The presence of soli-

ton solutions, intended as structures that interact elastically preserving the spectral por-

trait, was considered to unveil the integrability of the system 2. They were introduced

by Zabusky and Kruskal in [123] to address the solitary waves observed in the study of

the continuum limit of the Fermi–Pasta–Ulam–Tsingou lattice [62]. The discrete model

is a lattice of coupled anharmonic oscillators with �xed ends and its continuous limit

is described by the KdV equation. The solitons preserve their shape and velocity upon

nonlinear interactions with other solitons and they are solutions to the KdV equation.

Then Hirota, in [70], proved the existence of solutions with an arbitrary number of soli-

tons for KdV, developing the powerful formalism of the bilinear relations named after

him. The Hirota bilinear formalism has a pivotal role in the representation of integrable

hierarchies, as we will see in section 2.4.

In [111], Toda constructs the �rst example of nonlinear discrete integrable system,

in contrast with the Fermi–Pasta–Ulam–Tsingou lattice, integrable in the continuum

limit. He describes a one-dimensional chain of particles with an exponentially shaped

�rst neighbours interaction, that is now known as Toda lattice. In [115] the integrable

Toda lattice hierarchy is de�ned via the Hirota formalism [70] in terms of a suitable � -

function [74], that we will introduce in section 2.4.

In [92, 93], a symmetry approach is established, where nonlinear perturbations to

linear equations are introduced. In particular, the conditions leading to the emerging

of nontrivial groups of local symmetry transformations are studied for a class of PDEs.

Also, the existence of a few symmetries implies that they are actually in�nitely many.

2We emphasise that soliton solutions have been later found in non-integrable systems as well, but in that
case their interaction is not elastic anymore.
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Chapter 1. Nonlinear PDEs and integrability

In another approach [90], the bi-Hamiltonian property is considered as the identi�er

for integrability. In particular, it concerns systems that can be formulated as a Hamilto-

nian dynamical system with respect to a Hamiltonian structure via a certain Poisson

bracket. The bi-Hamiltonian property consists in the possibility of the system to be

written in two di � erent Hamiltonian structures. If these two structures are compati-

ble, meaning that the sum of the Poisson brackets of the two structures is still a Poisson

bracket, the system is integrable. Here, integrability is intended in the sense of the exis-

tence of in�nitely many conserved quantities in involution with respect to both Poisson

brackets.

Finally, we mention the approach of integrability involving to the study of mon-

odromy, where the integrability of a system of PDEs is related to the study of the sin-

gularity structure of the solutions. The �rst observation in this context dates back to the

end of 19th century, when Kovalevskaya [86] discussed the problem of the integrability

of a top in a gravitational �eld. Motivated by this observation, she discovered that many

integrable systems can be integrated in terms of elliptic functions, hence meromorphic

functions that do not show movable critical points. These results were recovered several

decades later and the coeval works by Dubrovin [45] and Matveev and Its [73] posed the

basis for what now is called �nite-gap theory.

In the following, we will encounter several integrable systems of di � erent nature. We

will consider the integrability of systems of hydrodynamic type [49]

u i
t = v i

j (u)u i
x ; (1.11)

where the �eld variables u i (x; t) depend on the space coordinate x and time t both in

the case of a �nite number of components i 2 f1; : : : ;mg and of an in�nite number of

components i 2 N . In the �rst case integrability is related to the semi-Hamiltonian prop-

erty [112] satis�ed by the characteristic speeds in the context of the treatment involving

the Riemann invariants, as we will see in section 3.1. In the second case, the system takes

the name of a hydrodynamic chain [59] and integrability is discussed introducing the

concepts of the Nijenhuis and Haantjes tensors [85], as we will see in 3.2.

Moreover, we will study the discrete integrable systems of the Toda lattice in chap-
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Conservation laws and Lax equation

ter 6 and Pfa� lattice in chapter 7, the underlying structures of the Hermitian matrix

ensemble [5] and symmetric matrix ensemble [11], respectively. We will see how these

structures are intimately related to the hierarchies written in terms of � -functions in the

formalism of the Hirota bilinear relations. In particular, we will see how the Toda lattice

is related to the KP hierarchy in section 6.1.2 and the Pfa � lattice to the so called Pfa� -KP

hierarchy in section 7.1.2.

1.2 Conservation laws and Lax equation

One of the main properties of integrable systems is the existence of in�nitely many con-

servation laws. This aspect was �rstly discovered by Miura in [94], where some nonlinear

transformations are applied to KdV allowing one to recursively construct the associated

conservation laws.

In general, it is possible that with a PDE

G[x; t;u;ux;ut ;uxx;utt ; : : :] = 0 ; (1.12)

is associated a conservation law [1, 96] of the form

@t � i + @x qi = 0 ; (1.13)

satis�ed by all the solutions to (1.12). In (1.13), � i (x; t;u) is called the conserved density

and qi (x; t;u) the relative conserved �ux. If the solution u ! 0 as jxj ! 1 su� ciently

rapidly and qi (x; t;u) belongs to the Schwartz class, the integration of (1.13) yields

@t

Z 1

�1
� i (x; t;u)dx = 0 =)

Z 1

�1
� i (x; t;u)dx = ci ; (1.14)

with ci the conserved quantity. For KdV (1.2) the �rst conservation laws are

(u)t +
�
3u2 + uxx

�

x
= 0

�
u2

�

t
+

�
4u3 + 2u uxx � u2

x

�

x
= 0

�
u3 �

1
2

u2
x

�

t
+

� 9
2

u4 + 3u2 uxx � 6u u2
x � ux uxxx +

1
2

u2
xx

�

x
= 0 ;

(1.15)
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Chapter 1. Nonlinear PDEs and integrability

related to the conservation of the mass, the energy, and the Hamiltonian of the system

respectively. As anticipated above, Miura conjectured that these conservation laws are

actually in�nitely many. In [94], he studied the so called modi�ed KdV (mKdV) equation

mt � 6m2 mx + mxxx = 0 ; (1.16)

observing that if m is a solution to (1.16), the following expression for u

u = � m2 � mx ; (1.17)

satis�es the KdV. The equation (1.17) takes the name of Miura transformation. It is worth

noticing that every solution to the mKdV equation leads to reconstruct a solution to the

KdV equation, but the converse is not true. We consider now a generalisation of (1.17),

given by

u = w � "w x � " 2 w2 : (1.18)

The �eld u de�ned in this way is solution to the KdV equation if w satis�es

wt +
�
3w2 � 2" 2 w3 + wxx

�

x
= 0 : (1.19)

The solution u does not depend on " , whereas the solution w depends on it. Given the

arbitrariety of the choice of the parameter " , we can consider the following formal series

w(x; t;" ) =
1X

n=0

wn(x; t) " n : (1.20)

Since (1.19) is posed in a conservation form, we can write the equivalent of (1.14)

Z 1

�1
w(x; t;" )dx = c =)

Z 1

�1
wn(x; t)dx = cn : (1.21)

With the substitution of (1.20) in the KdV equation for u obtained assuming (1.18) and
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Conservation laws and Lax equation

equating the coe� cients of the powers of " , we get

w0 = u

w1 = (w0)x = ux

w2 = (w1)x + w2
0 = uxx + u2

w3 = (w2)x + w0 w1 = uxxx + 4u ux :

(1.22)

Going further in powers of " gives the in�nitely many conservation laws.

We will now see how to construct the corresponding Lax equation (1.10) for KdV. The

�rst consideration is that (1.17) can be seen as a Riccati equation for m in terms of u. It

is known that the Riccati equation can be linearised via a change of variable, that will

imply a new expression for u as well

m =
 x

 
=) u = �

 xx

 
; (1.23)

and rewriting the second relation we obtain

 xx + u  = 0 : (1.24)

The KdV equation is invariant under a Galilean transformation

(x; t;u(x; t)) ! (x � 6�t; t;u (x; t) + � ) ; (1.25)

for a constant � . We then obtain the equation seen in the previous section (1.6) and (1.7)

 xx + u(x; t)  = �  

 t = (
 + ux)  + (4� + 2 u) x ;

whose compatibility condition  txx =  xxt , with the assumption that the eigenvalues are

constant in time � t = 0, will lead to the KdV for the potential u and the introduction of

suitable operators that will be the elements of the Lax equation (1.10). In particular, the
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Chapter 1. Nonlinear PDEs and integrability

linear operators L and M for KdV are

L = @2
x + u

M = 
 � 3ux � 6u @x � 4@3
x :

(1.26)

As we have already mentioned, the equation (1.10) is obtained by the compatibility con-

dition and imposing the isospectral property on L. The potential u, then, satis�es the

KdV equation(1.2).

In the following section we will see how the expression (1.10) is of fundamental im-

portance in one of the possible representations of hierarchies.

1.3 Integrable hierarchies

The nonlinear PDE representing an integrable system conceals an underlying associated

integrable hierarchy. The latter is represented as a collection of equations commuting

with each other, also known as commuting �ows. This nomenclature refers to the fact

that the hierarchies are displayed as in�nitely many equations in terms of in�nitely many

“times”. In particular, the in�nitely many conservation laws associated with an inte-

grable system can be thought as Hamiltonians generating time evolution in a multidi-

mensional time space.

One way to represent the KdV hierarchy relies on the introduction of a so called

pseudo-di� erential operator [42]

X = @+
X

n� 1

fn @� n ; (1.27)

where @B @x and the negative powers of @refers to a sort of formal integration. The

pseudo-di� erential operator X, then represents a point on the in�nite dimensional man-

ifold M L with coordinates given by the set of functions ff1; f2; : : :g. Taking the opera-

tor L introduced in the previous section in (1.26), we consider its “square root” such

that X = L1=2. Evaluating X2 yields

X2 = @2 + 2
X

n� 1

fn @1� n +
X

n� 1

(@fn)@� n +
X

m;n� 1;l � 0

 
� n
l

!

fn

�
@l fm

�
@� m� n� l : (1.28)
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Integrable hierarchies

Comparing this expression with L we obtain

f1 =
1
2

u

f2 = �
1
4

ux

f3 = �
1
8

�
u2 � uxx

�

f4 = �
1
16

uxxx +
3
8

u ux

:::

(1.29)

The KdV hierarchy can be formulated by introducing the in�nitely many parameters t i

in the Lax form
@L
@ti

=
h�

L
2i � 1

2

�

+
; L

i
; i = 1; 2; : : : ; (1.30)

Given the explicit expressions for the �rst three �ows

@t1
u = ux

@t2
u =

1
4

uxxx +
3
2

u ux

@t3
u =

1
16

u(5) +
5
4

�
ux uxx +

1
2

u uxxx

�
+

15
8

u2 ux ;

(1.31)

we can see that the �rst equation corresponds to the identi�cation of t1 with x, the second

is the KdV equation 3 and other �ows are the higher KdV �ows.

The discovery of the KdV hierarchy is accompanied by that of many others [44]. The

Kadomtsev-Petviashvili (KP) [35, 107] hierarchy has been found unifying all the gen-

eralised KdV hierarchies. These were then generalised involving matrix equations and

generating the so called multi-component KdVs and KP. The latter are so called scalar

hierarchies, generated by di� erential or pseudo-di � erential operators of arbitrary or-

ders. Equations of another kind are generated by matrix �rst order di � erential operators

with a linear dependence on a spectral parameter. The 2 � 2 matrix version is named

after Ablowitz–Kaup–Newell–Segur (AKNS) [2] and their n � n generalisation is due to

Dubrovin [46]. A further in generalisation is realised by Zakharov–Shabat (ZS) [125] for

hierarchies generated by linear operators with a rational dependence on a parameter [43].

3The di� erent coe� cients compared to the form of the KdV previously mentioned can be obtained by a
suitable rescaling of the variables.
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Chapter 1. Nonlinear PDEs and integrability

In the following, we will run into several hierarchies represented in di � erent ways.

We will present the hierarchies associated to the Toda lattice in chapter 6 and the Pfa �

lattice in chapter 7, respectively. The hierarchies will be written in form of Lax equations

for commuting vector �elds

@L
@tk

=
� �

Lk
�

p
; L

�
; k = 1;2; : : : ;

where p is a particular projection. These hierarchies can be described by an algebraic

approach invoking the Adler–Kostant–Symes theorem [9], as we will see in section 2.3.

We will encounter equations belonging to the KP and Pfa � -KP hierarchies expressed

in terms of the � -functions for KP and Pfa � an � -functions and related to Toda and Pfa �

respectively. These will be introduced in section 2.4 in their formulation with the Hirota

symbol

�
sk+4(@̃) �

1
2

@t1
@tk+3

�
� n(t ) � � n(t ) = 0 ; k = 0;1;2; : : : ;

�
sk+4(@̃) �

1
2

@t1
@tk+3

�
� 2n(t ) � � 2n(t ) = sk(@̃) � 2n� 2(t ) � � 2n+2(t ) ; k = 0;1;2; : : : :

In addition, we will deal with hierarchies in the context of hydrodynamic systems

associated with the leading order in the thermodynamic limit for random matrix ensem-

bles. We will see how the Hopf hierarchy

ut2k
= ck uk ux ; k 2 N ;

will emerge in the context of Hermitian matrix ensemble in section 6.3.

Finally, we will de�ne the hierarchy

uk
t2q

=
qX

p=� (q� 1)

ak
p u

p
x +

qX

p=1

�
ak

k� p u
k� p
x + ak

k+p u
k+p
x

�
; k 2 Z ; q 2 N ;

for the discovered hydrodynamic chain structure arising in the study of the symmetric

matrix ensemble in section 7.5.
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Chapter 2

Random Matrix Ensembles

This chapter is devoted to introduce random matrix ensembles, typically studied within

the framework of random matrix theory [91]. Firstly, in section 2.1, we will de�ne a gen-

eral classi�cation of matrix ensembles considering their general features. Then we will

present the main tools that will be used in chapter 6 and in chapter 7, where we will

follow the scheme proposed by Adler and van Moerbeke [5, 11] to describe the Hermi-

tian matrix ensemble and the symmetric matrix ensemble in terms of their underlying

integrable structure. The starting point of their approach is to determine the partition

function for the ensemble, which is proportional to a suitable de�ned � -function. The

latter is de�ned in terms of a moments matrix constructed on a convenient inner prod-

uct. The decomposition of the moments matrix leads to build the Lax operator L and

the latter represents the underlying integrable lattice. The associated lattice hierarchy is

given in terms of an in�nite set of commuting vector �elds

@L
@tk

=
� �

Lk
�

p
; L

�
; (2.1)

where p is a particular projection. The �elds composing the matrix L are expressed in

terms of the above mentioned � -functions, which in turn satisfy an integrable hierarchy.

In section 2.2, we will consider the random matrix ensembles described as tangent

spaces to symmetric spaces [116] and we will give the expression for the associated par-

tition function. We will then present the AKS theorem [9], that leads to the emergence of

lattice hierarchies of the form (2.1) from an algebra splitting, in section 2.3.
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Chapter 2. Random Matrix Ensembles

In section 2.4, the � -function will be introduced as the realisation of the connection

between the lattices and the matrix ensembles. As mentioned above, the � -function will

be de�ned for the matrix ensembles in terms of a suitable moments matrix. The mo-

ments are de�ned considering the orthogonal (for the Hermitian ensemble) and skew-

orthogonal (for the symmetric ensemble) polynomials, that we will present in section 2.5.

2.1 Wigner ensembles and rotational invariance

Random matrix ensembles consist of n � n matrices M with entries in the �elds of real

numbers (R), complex numbers (C) or quaternions (Q), with real eigenvalues. By def-

inition the Wigner ensemble consists of matrices whose elements M ij are independent

random variables. The joint probability density function takes the form

P(M ) /
nY

i =1

f i (M ii )
Y

1 � i < j � n

f ij

�
M ij

�
: (2.2)

Assuming the ensembles exhibit a rotational invariance, for which any two matri-

cesM and M 0are related by the nonsingular similarity transformation M ! M 0= K M K � 1

share the same probability

P(M )dM = P(M 0)dM 0; (2.3)

condition (2.3) produces a constraint on the form of the joint probability density func-

tion P(M ) [91, 117]. The invariants of a n � n matrix under a similarity transforma-

tion M ! M 0= K M K � 1 can be written in terms of the traces of the �rst n powers of M .

Hence, the joint probability density function for a rotational invariant ensemble has the

form

P(M ) = f (tr M; tr M 2; : : : ;tr M n ) : (2.4)

The Haar measure dM is invariant under the transformation M ! M 0 by conjugation

on K.

For K 2 U (n), we de�ne the Hermitian matrix ensemble H n (or Unitary ensemble),

for K 2 O(n) the symmetric matrix ensemble Sn (or Orthogonal ensemble) and for K 2

Sp(n) the symplectic matrix ensemble T2n (or Symplectic ensemble).
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Random matrix ensembles as tangent spaces to symmetric spaces

In these cases, in particular, we have

P(M 2 dM ) = cn e� tr V (M ) dM ; (2.5)

where dM is the Haar measure respectively on H n; Sn and T2n and V (M ) is the potential

describing the speci�c ensemble, with derivative given by a rational function [116].

If the probability density P(M ) satis�es both the above conditions, then

P(M ) = e� atr M 2+btr M +c ; with a; b; c2 R ; (2.6)

obtaining the Gaussian ensembles [91]: the Gaussian Unitary ensemble (GUE) for K 2

U (n), the Gaussian Orthogonal ensemble (GOE) forK 2 O(n) and the Gaussian Symplec-

tic ensemble (GSE) forK 2 Sp(n).

2.2 Random matrix ensembles as tangent spaces to symmetric

spaces

Hermitian, symmetric, and symplectic ensembles emerge as tangent spaces to symmetric

spaces [116]. For the purpose of the present work we will focus on the Hermitian and

symmetric ensembles.

Following [75], a symmetric space M can be de�ned as the quotient group G=Kof the

semi-simple Lie group G by the Lie subgroup K invariant under an involution � : G ! G,

i.e. � 2 = 1

K = f g 2 G; � (g) = gg; (2.7)

so that for G=Kwe have

G=K� f g � (g)� 1 ; with g 2 Gg: (2.8)

The involution � induces a map � � on the Lie algebra g of the in�nitesimal isometries on

the symmetric space M

� � : g ! g; with ( � � )
2 = 1 : (2.9)

25



Chapter 2. Random Matrix Ensembles

The Lie algebra g can be expressed as the direct sum1

g = t � p; (2.10)

where t and p can be interpreted as the eigenspaces corresponding to the eigenvalues

of � �

t = f a 2 g j � � (a) = ag

p= f a 2 g j � � (a) = � ag;
(2.11)

and since (2.9) these are� 1. The Lie bracket for t and p are

[t ; t ] � t ; [t ; p] � p; [p; p] � t : (2.12)

Hence, t is a Lie subalgebra of g, since it is a subset closed with respect to the Lie bracket

and p, as a vector space, is isomorphic to TeM , the tangent space to the symmetric

spaceM at the identity. The group K acts on p by conjugation kpk� 1 � p and induces

a root decomposition

p= a �
X

� 2�

p� (2.13)

where a is a maximal abelian subalgebra of p and � is the set of roots of p with respect

to a

p� = f x 2 p j [a;x] = � (a)x for all a 2 ag: (2.14)

In section 6.1 and 7.1, we will show how this approach is developed for H n and Sn re-

spectively. Taking into account the probability (2.5), this approach will lead to determine

the partition functions for both ensembles

Z
(� )
n (t ) = cn

Z

Rn

Y

1 � i < j � n

�
zi � zj

� �
nY

k=1

� t (zk) dzk ; (2.15)

in terms of the eigenvalues zk, the weight � t (z) and with � = 1; 2 for Sn and H n respec-

tively. We will se that the coupling constants t = ft1; t2; : : :gon which the partition func-

1Also called Cartan decomposition
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Integrable systems emerging from algebra splitting

tion depends via the weight � t (z) are called “times”.

2.3 Integrable systems emerging from algebra splitting

The ensemblesH n and Sn are deeply related to the integrable systems called respectively

Toda lattice and Pfa� lattice, as we will see in detail in chapters 6 and 7. Here, we will

brie�y review how these integrable structures emerge from an algebraic point of view

and the next paragraph will be devoted to describe their connection to matrix ensembles

via the � � functions.

The Adler–Kostant–Symes (AKS) theorem states that vector space decompositions of

Lie algebras into subalgebras lead to integrable systems [13, 19]. We will brie�y review

this theorem in the version presented in [9], where the starting point is a Lie algebra g

for which g � g� , via an Ad-invariant non-degenerate bilinear form, that is h �; � i g� g ! C

such that

h[X; Y] ;Zi = hX; [Y ; Z]i ; X; Y ; Z 2 g: (2.16)

We introduce r F(L) 2 g the gradient of F at L for functions F on g� � g

dF(L) = hr F(L) ; dLi ; (2.17)

and the Kostant–Kirillov Poisson structure 2 on g� � g with respect to h�; � i

fF;Hg(L) = hL; [r F(L) ; r H (L)]i : (2.18)

The Hamiltonian vector �elds � H on g� � g take the Lax form

� H (L) = fH;Lg= [r H (L) ; L] : (2.19)

Let us consider a vector space decomposition of the Lie algebra

g = g+ � g� (2.20)

2The Kostant–Kirillov Poisson structure on g� is such that it mimics the Lie structure on g. Given a
basis f" ag the Lie structure on g is

h
" a; "b

i
=

P
c f ab

c " c, with f ab
c structure constants. The corresponding

Kostant–Kirillov Poisson structure on g� is f" a; "bg=
P

c f ab
c " c (see e.g. [16]).
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Chapter 2. Random Matrix Ensembles

and, due to the non-degeneracy of h �; � i , we have

g� � g � g?
+ � g?

� ; g?
� � g�

� ; (2.21)

with g?
� the orthogonal complement with respect to h�; � i of g� . The restriction of the

Hamiltonian vector �elds on g?
� is then given by

� H (L)jg?
�

= P̂� [r � H (L); L] ; L 2 g?
� ; (2.22)

with P̂� projections onto g?
� along g?

� . Analogously, we have for the Lie group G associated

with the Lie algebra g the decomposition in groups G� . In addition, with the decomposi-

tion g = g+ � g� , we introduce the projections P� g ! g� . We de�ne R = P+ � P� and the Lie

algebra

[L1 ; L2]R =
1
2

([RL1 ; L2] + [L1 ; RL2]) : (2.23)

We can then state the AKS theorem on g.

Theorem 2.3.1 Suppose thatg = g+ � g� is a Lie algebra splitting and thath �; � i is an Ad-

invariant non-degenerate bilinear form ong, leading to a vector space splitting

g = g?
+ � g?

� ' g�
� � g�

+ : (2.24)

The Hamiltonian vector �elds� H B f � ; HgR are given by

� H (L) = �
1
2

[L; R(r H (L))] = � [L ; P� (r H (L))] : (2.25)

For the purpose of this work, we are interested in the discrete integrable systems of

Toda and Pfa� lattice. Each system arises from a particular decomposition of the general

linear algebra gl(1 ) = g+ � g� , with h�; � i the Frobenius inner product

hA; Bi = tr (AB) : (2.26)

Applying the AKS theorem to the speci�c algebra splitting, the Hamiltonian vector �elds
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are
@L
@tk

B � H (k) = � [P� r Hk ; L] ; (2.27)

with Hk /
tr Lk+1

k + 1
, conserved quantities in involution [4, 84]. We obtain

@L
@tk

= �
h
P�

�
Lk

�
; L

i
: (2.28)

The matrix L is given by L = K � K � 1, with K 2 G+ and � = f� i;j � 1g1 � i;j < 1 the shift

operator.

We will see how the Toda lattice emerges from the splitting gl(1 ) = s � b, with s

skew-symmetric and b lower triangular projections, in section 6.1.2. Section 7.1.2 will be

devoted to the study of Pfa � lattice from go(1 ) = t � p, with t the projection on lower

triangular matrices with 2 � 2 blocks along the diagonal proportional to the identity

and p= sp(1 ).

2.4 The connection between lattices and matrix ensembles via

� -functions

The matrix L = K � K � 1 introduced above, in the case of the Toda lattice, satis�es

L (t;z) = z  (t;z) ; (2.29)

with times t = ft1; t2; : : :g, eigenvalues z, and where  (t;z) is a wave vector constructed

from the operator K

 (t;z) = K e
1
2

P 1
i =1 t i zi

� (z) ; � (z) = (� (z))n2Z = (zn)n2Z : (2.30)

The wave vector admits a representation in terms of a vector of � � functions � = (� n)n2Z

 (t;z) = e
1
2

P 1
i =1 t i zi

0
BBBB@zn � n(t � [z� 1])

p
� n(t )� n+1(t )

1
CCCCA

n2Z

; (2.31)
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as discussed by Adler and van Moerbeke in [5], having the form of a Baker–Akhiezer

function expressed in terms of the � -functions via the so called Sato formula [19, 41],

with

t �
h
z� 1

i
=

�
tk �

1
k

z� k
�

: (2.32)

In the case of the Pfa� lattice [8], it is necessary to introduce two wave vectors  1(t;z),

 2(t;z), that admit a representation in terms of � -functions as well.

What is a � -function? As pointed out in [97], there are di � erent de�nitions of � -

functions, but all of them are related to a speci�c realization of the following idea: a

� -function is a generating functional of all the matrix elements of some group in a par-

ticular representation. One of the main aspects shared by � -functions relevant in this

context is that they satisfy a set of bilinear equation, the Hirota bilinear relations.

The � -function has been introduced by Jimbo–Miwa–Ueno in [74], following the lead

dating back to Riemann regarding the concept of deformations preserving monodromy

properties in the context of linear ODEs. In particular, the � -function is presented as an

analogue of the Riemann � -function associated to nonlinear deformations of ODEs. In

their paper, the authors also discuss the emergence of a connection with the AKNS hierar-

chy. Two years later, Sato [107] proposed a geometrical interpretation of the � -functions,

establishing a connection with the in�nite dimensional Grassmannian 3. The � -function

in this context coincides with the so called Plücker coordinates of the Grassmannian. The

latter are not independent and they satisfy the Plücker relation. This can be written in

terms of the Hirota bilinear formalism and gives rise to the KP hierarchy.

As previously mentioned, in the discrete cases of the Toda and Pfa� lattice, the wave

function admits a representation in terms of a sequence of suitably de�ned � -functions

� n(t ) (see [115, 5] for Toda and [8] for Pfa� ). The corresponding hierarchies written in

terms of � -functions are produced requiring that

Resz=1 ( (z; t)  � (z; t0)) = 0 8t; t 0; (2.33)

from which the set of in�nite di � erential equations is written in the compact formalism

3In [120] the Sato theory is presented in pedagogical terms, starting from the simplest non-trivial case of
the Gr(2;4) and showing the generalisation for the construction of the Sato theory for in�nite dimension.
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of the Hirota bilinear identity [19, 48, 120].

The sequence of� n(t ) de�ned for Toda satisfy the KP hierarchy

�
sk+4(@̃) �

1
2

@t1
@tk+3

�
� n(t ) � � n(t ) = 0 ; k = 0;1;2; : : : ; (2.34)

as it will be shown in section 6.1.2. Analogously, the sequence of � n(t ) de�ned for the

Pfa� lattice satisfy the Pfa � -KP hierarchy (following the nomenclature by Adler and van

Moerbeke)

�
sk+4(@̃) �

1
2

@t1
@tk+3

�
� 2n(t ) � � 2n(t ) = sk(@̃) � 2n� 2(t ) � � 2n+2(t ) ; k = 0;1;2; : : : ; (2.35)

that we will study in section 7.1.2. It is worth mentioning that in the literature the Pfa � -

KP is also called BKP hierarchy (introduced in [38] and see also [36, 71, 114, 20, 79]).

The expressions (2.34) and (2.35) involve the Hirota operator

@m1
x1

: : :@mn
xn

f (x) � g(x) =
�
@m1

"1
: : :@mn

"n

�
f (x1 + "1; : : : ;xn + "n) g(x1 � "1; : : : ;xn � "n)

����
" i =0 8i

;

(2.36)

the operator @̃=
�
@t1

; 1
2@t2

; 1
3@t3

; : : :
�

and the Schur polynomials, de�ned as

e
P 1

n=1 tnzn
=

1X

j =0

sj (t )z
j : (2.37)

The hierarchy (2.34) is written in terms of the so called KP � -functions, while the one

of (2.35) in terms of Pfa � an � -functions. This allows to establish the connection with

the matrix ensembles H n and Sn. In particular, the KP � -function is proportional to the

partition function de�ned for H n

� KP
n / Z (2)

n ; (2.38)

introduced in (2.15) with � = 2, as it will be described in section 6.1.1. On the other side,

the Pfa� an � -function proportional to the partition function de�ned for Sn

� pf-KP
n / Z (1)

n ; (2.39)

i.e. (2.15) with � = 1, as we will see in section 7.1.1.
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In the context of the matrix theory, for H n the � -function is introduced as the deter-

minant of a Hänkel moments matrix with respect to a symmetric measure, for Sn is given

by the Pfa� an of a skew-symmetric moments matrix with respect to a skew-symmetric

measure, as we will study in sections 6.1.2 and 7.1.2, respectively. The moments matrix

is of signi�cant importance in the approach that we will present in the following, leading

to de�ne the elements in the matrix L representing the systems of Toda and Pfa� lattice

in terms of sequences of the respective� -functions. Finally, it is worth mentioning that

both Toda and Pfa� lattices can be seen as reductions of the 2� Toda lattice, where the ini-

tial condition is given by a moments matrix that is a Hänkel matrix for the Toda lattice

and a skew-symmetric matrix for the Pfa � lattice [11, 12].

The � -function approach has also lead Witten to elaborate his conjecture in [121]

(generalised in [122]) and then proved in [82] for which the generating functional of

correlators in the model of 2-dimensional gravity coincide with the � -function of a matrix

model and obey to the KdV hierarchy.

2.5 Orthogonal and skew-orthogonal polynomials

Orthogonal and skew-orthogonal polynomials are an established tool in the theory of

random matrix models. The theory of orthogonal polynomials [110] is well known and

has applications in many areas, while it is not the same for the theory of skew-orthogonal

polynomials, emerging in the context of symmetric and symplectic matrix ensembles and

deeply connected with the underlying Pfa � an structure. We will brie�y mention the

main aspects of orthogonal polynomials and then provide the standard introduction of

orthogonal and skew-orthogonal polynomials in the context of the random matrix theory.

A sequence of polynomials fpn(x)g1
n=0 is orthogonal in the interval ] a;b[ with respect

to the positive weight function � (x) if

Z b

a
pn(x)pm(x) � (x)dx =

8
>>>>><
>>>>>:

0 n , m

hn , 0 n = m:
(2.40)

The interval ] a;b[ is de�ned interval of orthogonality and it can be either �nite or in�nite,
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provided that the convergence of the integral is ensured. The weight function � (x) is

continuous and positive on the interval, so that the moments � n exist, with � n given by

� n =
Z b

a
� (x)xn dx : (2.41)

It is worth emphasising that the sequence of polynomials is uniquely de�ned up to nor-

malization and they can be determined starting from initial conditions with the Gram-

Schmidt orthogonalisation procedure. A fundamental property of the orthogonal poly-

nomials is the fact that they satisfy a three-term recurrence relation of the form

pn+1(x) = (an x + bn)pn(x) � cn pn� 1(x) n = 0; 1; : : : : (2.42)

Notable examples of orthogonal polynomials are the Hermite polynomials and La-

guerre polynomials.

. The Hermite polynomials Hn are de�ned by the generating function

e2xt � t2
=

1X

n=0

Hn(x) tn

n!
; (2.43)

and have the explicit form

Hn(x) =
n=2X

k=0

(� 1)k n!
k! (n � 2k)!

(2x)n� 2k : (2.44)

The orthogonality property of Hn(x) is

Z 1

�1
Hn(x)Hm(x)e� x2

dx = 2n n!
p

n� nm ; (2.45)

and they satisfy the recurrence relation

Hn+1(x) = 2xHn(x) � 2nHn� 1(x) ; n � 1: (2.46)
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. The Laguerre polynomials Ln are de�ned by the generating function

(1 � t )� � � 1e
� xt
1� t =

1X

n=0

L�
n (x) tn ; (2.47)

and have the explicit form

Ln(x) =
(� + 1)n

n!

nX

k=0

(� n)k xk

(� + 1)k k!
(2x)n� 2k ; (2.48)

with ( a)b = a(a+ 1) : : : (a+ b � 1). The orthogonality property of Ln(x) is

Z 1

�1
L�

n (x)L�
m(x)x� e� x dx =

� (� + n + 1)
n!

� nm ; (2.49)

and they satisfy the recurrence relation

(n + 1)L�
n+1(x) = (1 + 2n + � � x)L�

n (x) � (n + � )L�
n� 1(x) ; n � 1: (2.50)

In the context of random matrix theory, orthogonal and skew-orthogonal polynomi-

als were introduced by Mehta [91] in relation to the partition functions for Gaussian

ensembles de�ned at the end of section 2.1: the GUE with orthogonal polynomials,

the GOE and GSE with the skew-orthogonal polynomials. The connection has been ex-

tended (especially for the orthogonal polynomials [26, 121]) and has led to a consistent

description of the Hermitian, symmetric, and symplectic ensembles combining random

matrix theory, � -functions and the theory of orthogonal and skew-orthogonal polyno-

mials [5, 11, 56, 25, 28] associated with the aforementioned integrable structures. In

particular, as recalled in [9], the Toda lattice is the natural integrable system underpin-

ning the deformation of GUE of random matrix theory as well as constituting the natural

deformation class of orthogonal polynomials. Analogously, the Pfa � lattice is associated

with the natural deformations for GOE (and GSE) and provides the natural deformation

for skew-orthogonal polynomials.

In this context, we introduce the t-deformed weight � t (z)

� t (z) = � (z)e
P

k tk zk
: (2.51)
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We consider the symmetric inner product de�ned on � t (z)

(f (z) ; g(z))t B
Z

R
f (z)g(z) � t (z)dz (2.52)

and the sequence of polynomials fpn(z; t)g1
n+0 orthogonal with respect to � t (z)

�
pj (z; t) ; pk(z; t)

�

t
=

Z

R
pj (z; t)pk(z; t) � t (z)dz = � jk hk ; (2.53)

where

pn(z; t) = 
 n(t )zn + 
 n� 1(t )zn� 1 + : : : ; (2.54)

that is called monic if 
 n(t ) = 1. For a monic sequence of orthogonal polynomials with

respect to a positive measure� t (z)dz, there exists the recurrence relation

pn+1(z; t) = (z � an(t )) pn(z; t) � bn(t )pn� 1(z; t) ; n = 0; 1; : : : ; (2.55)

with initial conditions p� 1(z; t) = 0, p0(z; t) = 1. The recurrence coe� cients are given by

an(t ) =
(zpn(z; t) ; pn(z; t) )t
(pn(z; t) ; pn(z; t) )t

; bn(t ) =
(zpn(z; t) ; pn� 1(z; t) )t
(pn� 1(z; t) ; pn� 1(z; t) )t

: (2.56)

Recurrence coe� cients can be collected in a tridiagonal matrix Jn, known as Jacobi ma-

trix [26]

Jn =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

a1
p

b1 0 0 0 � � �

p
b1 a2

p
b2 0 0

0
p

b2 a3
p

b3 0

0 0
p

b3 a4
p

b4

:::
::: ::: :::

::: :::
p

bn� 1

p
bn� 1 an

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (2.57)

We note that this matrix coincides with the Lax operator L(t ) of the Toda lattice, which
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we will build in section 6.1.2. The recursion relation can be formulated as

L(t )p(z; t) = zp(z; t) ; p(z; t) = (pn(z; t))n2N : (2.58)

The orthogonal polynomials can be therefore interpreted as eigenvectors of the Toda

lattice. They admit an integral representation [110] and for what is stated in the pre-

vious section, they can be expressed in terms of KP � -functions [5, 116]. It is worth

noticing that in presence of an even weight function, the term an(t ) in the recurrence

relation (2.55) vanishes.

Similarly, the connection between the Pfa � lattice and the skew-orthogonal polyno-

mials is established in [11]. The skew-orthogonal polynomials are de�ned with respect to

a skew-symmetric weight �̃ t (y;z) = � �̃ t (z;y), for which the corresponding inner product

is

hf (y) ; g(z) i t B
Z Z

R2
f (y)g(z) �̃ t (y;z)dzdy : (2.59)

A family of monic polynomials fqn(z; t)g1
n=0 is skew-orthogonal with respect to �̃ t (z) if [10]

hq2m(y; t) ; q2n+1(z; t) i t = �h q2n+1(z; t) ; q2m(y; t) i t = � nm rm

hq2m(y; t) ; q2n(z; t) i t = hq2m+1(y; t) ; q2n+1(z; t) i t = 0 :
(2.60)

It is worth noticing that the relations (2.60) are invariant under the transformation

q2m+1(z; t) 7! q2m+1(z; t) + � 2m q2m(z; t) ; (2.61)

for an arbitrary � 2m, hence the skew-orthogonal transformations are not unique up to

this mapping.

As in the case of the Toda lattice, for the skew-orthogonal polynomials a recurrence

relation is established [105], that can be written as

L(t )q(z; t) = zq(z; t) ; (qn(z; t))n2N ; (2.62)

with L(t ) a lower triangular matrix with non-zero elements on the above diagonal. This

matrix coincides with the Pfa � lattice and the skew-orthogonal polynomials are eigen-
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vectors of Pfa� [116, 11], as we will see in section 7.1.2. Finally, also in this case, they

admit a representation in terms of the Pfa � an � -functions.

It is worth noting that, at this stage, the main di � erence between the Toda lattice and

the Pfa� lattice relies on the number of recurrence coe� cients necessary for their repre-

sentation. The Toda lattice is represented by a symmetric tridiagonal matrix, completely

describable by de�ning two recurrence coe � cients uniquely determined. Instead, in the

Pfa� lattice case, the form of the matrix leads to consider in�nitely many recurrence

coe� cients, that are not uniquely determined because of (2.61).

In chapter 6 and chapter 7, the recurrence coe� cients here mentioned will be simply

called �eld variables for both lattices. We will study the discrete equations they sat-

isfy considering several �ows in the Toda and Pfa � hierarchy of the form (2.1). In the

continuum limit at the leading order we will �nd hierarchies expressed in terms of the

continuum version of the �eld variables. For a suitable reduction of Toda, we will �nd

a scalar hierarchy, expressed in terms of one type of �eld only. Whereas, for a speci�c

reduction of Pfa � , we will observe a hydrodynamic chain hierarchy, given in terms of

in�nitely many �eld variables. In both cases, we will deal with systems of hydrodynamic

type, that we will present in the next chapter.
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Chapter 3

Hydrodynamic type systems

In this chapter, following [49], we will introduce the Hamiltonian formalism for the de-

scription of hydrodynamic systems. We will start considering systems with �nitely many

components, in section 3.1. We will de�ne the Poisson brackets and describe the mani-

fold spanned by the solutions to the system via the Riemann invariants and the associated

characteristic speeds. We will introduce the generalised hodograph method [112] and the

related semi-Hamiltonian property, encoding the integrability of this type of systems.

Section 3.2 is dedicated to the study hydrodynamic chains, i.e. a class of hydrody-

namic systems composed of in�nitely many components. We will follow the approach

established in [59] concerning the integrability of hydrodynamic chains via the prop-

erties of the Nijenhuis and Haantjes tensors. The latter are involved in the de�nition of

diagonalisability and integrability in the sense of an in�nite number of hydrodynamic re-

ductions of the system. Finally, we will introduce the Gibbons–Tsarev system, encoding

the information about the integrable chain in a system of equations in terms of charac-

teristic speeds, Riemann invariants, and the seed of the chain.

39



Chapter 3. Hydrodynamic type systems

3.1 Hydrodynamic systems with �nitely many components

In this section, we will brie�y review the Hamiltonian theory for systems of hydrody-

namic type with a �nite number of components

u i
t = v i

j (u)u
j
x ; i = 1; : : : ; N ; (3.1)

as described in [49]. In particular, in section 3.1.1 we will give the structure of the Poisson

bracket of hydrodynamic type on the manifold M with local coordinates u1; : : : ; uN , and

in section 3.1.2 we will describe the generalised hodograph method, in the context of

integrability of systems of kind (3.1).

We start by recalling the main features of the �nite-dimensional Poisson bracket.

Let M be a N -dimensional manifold, called the phase space. A Poisson bracket f � ; �gis

de�ned as an operation on the space of smooth functions on M manifesting the proper-

ties

(a) bilinearity

f � f + �g ; h g= � f f ; h g+ � f g ; hg

f f ; �g + �h g= � f f ; g g+ � f f ; h g;
�; � = const (3.2)

(b) skew-symmetry

f f ; g g= �f g ; f g; (3.3)

(c) Jacobi identity

f f f ; g g; hg+ f f h ; f g; gg+ f f g ; hg; f g= 0 ; (3.4)

(d) Leibniz identity

f f g ; hg= f f g ; hg+ gf f ; h g: (3.5)

Considering local coordinates y1; : : : ; yN on the manifold M , a Poisson bracket is de�ned

by a skew-symmetric (2;0) tensor

hij (y) = f yi ; yj g; i; j = 1; : : : ; N : (3.6)
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For the Leibniz property ( c), the Poisson bracket can also be de�ned as

f f ; g g= hij (y)
@f(y)
@yi

@g(y)

@yj
; (3.7)

and the Jacobi identity ( d) implies for the tensor hij to satisfy the relation

@hij

@yl
hlk +

@hki

@yl
hlj +

@hjk

@yl
hli = 0 : (3.8)

If det
�
hij

�
, 0, the constraint (3.8) is equivalent to endowing M with a symplectic struc-

ture, since the inverse matrix hij =
�
hij

� � 1
contributes to de�ne the 2-form 
 = hij dyi ^

dyj , non-degenerate and closedd
 = 0. The manifold M with a non-degenerate Poisson

bracket is then called symplectic.

The existence of a Poisson bracket leads to write the Hamiltonian equations as

@yi

@t
= f yi ; H(y)g; (3.9)

where H (y) is the Hamiltonian of the system (3.1). Any integral F of the system satis�es

the property

f F(y) ; H(y)g= 0 : (3.10)

In terms of the �eld variables u i (x; t) appearing in (3.1), we now introduce the so called

local Poisson bracket, that is de�ned for a class of functionals on u i (x; t) with x =
�
x1; : : : ; xd

�
.

In particular, they are de�ned for functionals of local �elds and of their derivatives (when

they exist) at a point. The Poisson bracket takes the form

f u i (x) ; uj (y)g= hij (x;y) ; i; j = 1; : : : ; N ; (3.11)

where the tensor hij (x;y) is now characterised not only by the integer indices i; j , but also

by two continuous indices x;y. For functionals I [u], J[u], we have

f I ; Jg=
Z

�I
�u i (x)

�J

�u j (y)
hij (x;y) ddx ddy ; (3.12)
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with variational derivatives given by

I [u + �u ] � I [u] =
Z

�I
�u i (x)

�u i (x) ddx + o(�u ) : (3.13)

We consider local �eld functionals

I [u] =
Z

P
�
x; u(x); u(1)(x) ; : : : ; u(k)(x)

�
ddx ; (3.14)

where P is a polynomial (or more in general an analytic function) in terms of the vari-

ables
�
u; u(1) ; : : : ; u(k)

�
, called the density of the functional. A natural class of local �eld

theoretic brackets is introduced as

f u i (x) ; uj (y)g=
X

jk j� K

B
ij
k

�
x; u(x); u(1)(x); : : : ; u(nk)(x)

�
@k

x � (x � y) ; i; j = 1; : : : ; N ;

(3.15)

where k = (k1; : : : ; kd), jk j = k1 + � � � + kd , @k
x =

�
@

@x1

� k1 : : :
�

@
@xd

� kd and K the order of the

bracket. The derivatives of the Dirac delta function � (x � y) are formal symbols de�ned

as
Z

f (y) � (k)(x � y)ddy = @k
xf (x) : (3.16)

Introducing the operator

Aij =
X

jk j� K

B
ij
k (x; : : :)@k

x ; (3.17)

we have for (3.12)

f I ; Jg=
Z

�I
�u i (x)

Aij �J

�u j (x)
ddxddy ; (3.18)

and the Hamiltonian equations take the form

u i
t (x) = f u i (x) ; H g= Aij �H

�u j (x)
; i = 1; : : : ; N ; (3.19)

where H = H [u] is a local functional of the kind (3.14).
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3.1.1 Hamiltonian formalism and Riemannian geometry

A system of hydrodynamic type is represented by an equation of the form [49]

u i
t = v i �

j (u)u
j
� ; i = 1; : : : ; N ; � = 1; : : : ; d ; (3.20)

with u
j
� = @uj =@x� for a d + 1 system with N �elds u i . Considering an invertible smooth

change of �eld variables

u i = u i
�
R1; : : : ; RN

�
; i = 1; : : : ; N ; (3.21)

the coe� cients v i �
j for each � transform as a (1;1)-tensor

v
j �
j (u) 7! v

p �
q (u) =

@rp

@ui
v i �

j (u(R))
@uj

@rq
: (3.22)

Let us introduce the manifold M N where the �elds u1(x; t) ; : : : ; uN (x; t) take values for

eachx; t. With this in mind, (3.21) can be interpreted as a change of coordinates in M N .

For simplicity, let us restrict to the 1+1 dimensional case. Moreover, let us assume the

system described in (3.20) is strictly hyperbolic, i.e. all the eigenvalues v1 = � 1; : : : ; vN =

� N of the matrix
�
v i

j

�
are real and distinct. If it is possible to reduce the system (3.20),

via the change of coordinates (3.21), to the diagonal form

Ri
t = v i (R)Ri

x ; i = 1; : : : ; N ; R=
�
R1; : : : ; RN

�
; (3.23)

the variables R1; : : : ; RN are called the Riemann invariants for (3.20), while the coe � -

cients v1(r ) ; : : : ; vN (r ) are the corresponding characteristic speeds. ForN = 2 it is always

possible to obtain the diagonal form in terms of Riemann invariants, while for N � 3

this is not true in general. The same considerations can be done in the case of complex

eigenvalues, involving complex changes of coordinates (3.21).

The study of Hamiltonian systems involves a rich geometry, as it was �rst pointed out

by Dubrovin and Novikov in [51].
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For a system of hydrodynamic type

(a) the Poisson bracket is de�ned as

n
u i (x) ; uj (y)

o
= gij� (u) � 0

� (x � y) + b
ij�
k (u)) uk

� � (x � y) ; (3.24)

where gij� (u), b
ij�
k (u) are certain functions, i; j;k = 1; : : : ;N, � = 1; : : : ;dand � 0(x) is

given by (3.16) with k = 1;

(b) functionals are de�ned as

H [u] =
Z

h(u)ddx ; ; (3.25)

where the density h(u) is independent of derivatives u� ; u� � ; : : :;

(c) if Hamiltonian, it takes the form

u i
t (x) =

n
u i (x) ; H

o
=

 

gij� (u)
@2h(u)

@uj @uk
+ b

ij�
k (u)

@h(u)

@uj

!

uk
� ; i = 1; : : : ;N ; (3.26)

with f � ; �ga Poisson bracket of hydrodynamic type (3.24).

In the case of a system of 1+1 dimensions, omitting the index � , it can be shown [49]

the following

(a) the class (3.24) of Poisson brackets of hydrodynamic type is invariant under changes

of �eld variables of the form (3.21) u i 7! v i (u);

(b) under these changes of variables, the coe� cients gij (u) transform as tensors of

type (2;0)

gpq(u) =
@vp

@ui
@vq

@uj
gij (u) ; p;q= 1; : : : ; N; (3.27)

(c) assuming that the metric
�
gij (u)

�
is non-degenerate and de�ning � k

ij from

b
ij
k (u) = � gil (u) �

j
lk (u) ; i; j;k = 1; : : : ;N ; (3.28)

then under the change of variables (3.21) it transforms as a di � erential-geometric

connection

�
p
qr(u) =

@vp

@ui
@uj

@vq
@uk

@vr
� i
jk (u) +

@vp

@ui
@2u i

@vq @vr
: (3.29)
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If the metric is non-degenerate then det
�
gij

�
, 0 and the corresponding Poisson

brackets are called non-degenerate. The latter property is invariant under transforma-

tions (3.21).

Theorem 3.1.1 In the non-degenerate casedet
�
gij

�
, 0, the expression(3.24) de�nes a Pois-

son bracket if and only if the tensorgij is symmetric, i.e. it de�nes a pseudo-Riemannian

metric on the manifoldM N . The connection� i
jk of the form (3.28) is compatible with the

metric gij and has zero curvature and torsion. Therefore, there exist local coordinatesv i =

v i
�
u1; : : : ; uN

�
, i = 1; : : : ; N such thatgij = const and b

ij
k = 0. In these coordinates the Pois-

son bracket(3.24) is constant

n
v i (x) ; vj (y)

o
= g

ij
0 � 0(x � y) ; g

ij
0 = g

j i
0 = const : (3.30)

To consider the conditions for which a hydrodynamic system is Hamiltonian in a more ex-

plicit form, we start from the observation that the system u i
t (x) =

n
u i (x) ; H

o
, with Hamil-

tonian (3.25) (d = 1) and Poisson brackets (3.24), can be formulated as

u i
t (x) = v i

j (u) u
j
x ; vi

j (u) = r i r j h(u); (3.31)

where r j is the covariant di � erentiation operator

r j u i = @j u
i + � i

jk uk ; (3.32)

with @j = @=@uj . In addition, the controvariant operator is obtained raising indices r i =

gik r k and the operators r i , r j commute because of Theorem 3.1.1.

Proposition 3.1.1 The systemu i
t = v i

j (u)u
j
x is Hamiltonian if and only if there exists a non-

degenerate metricgij (u) of zero curvature, such that

gij vk
j = gjk vk

i (3.33)

r i v
k
j = r j v

k
i ; (3.34)

wherer i is the covariant di� erentiation generated by the metricgij .
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In 1983, Novikov conjectured that for a �nite-component system of hydrodynamic

type to be integrable needs to be Hamiltonian, i.e. it admits a metric as described in the

proposition 3.1.1. This was later demonstrated by Tsarev, who established a less strict

condition for hydrodynamic systems to be integrable – the semi-Hamiltonian property –

and outlined a prescription to integrate these systems called the generalised hodograph

method, that we will analyse in the next section.

3.1.2 The generalised hodograph method

In this section we will brie�y review the hodograph method [96], with focus on the ap-

proach elaborated by Tsarev [112], leading to a generalization of the procedure for multi-

component systems.

For a 1 + 1 dimensional system of hydrodynamic type ut = v(u)ux, with two compo-

nents u =
�
u1 ; u2

�
, it is possible to de�ne a linearization of it through the hodograph

transformation

x = x
�
u1 ; u2

�
; t = t

�
u1 ; u2

�
: (3.35)

In particular, the original system of hydrodynamic type

8
>>>>>><
>>>>>>:

u1
t = v1

1(u)u1
x + v1

2(u)u2
x

u2
t = v2

1(u)u1
x + v2

2(u)u2
x

; (3.36)

is transformed into the linear version

8
>>>>>><
>>>>>>:

xu2
= � v1

1(u) tu2 + v2
1(u) tu1

xu1
= v2

1(u) tu2 � v2
2(u) tu1

: (3.37)

The method proposed by Tsarev for the integration of two-component systems is suitable

for generalizations to multi-component systems. We start by analysing a two-component

system (3.36) that is strictly hyperbolic in some region of the space of coordinates
�
u1 ; u2

�
,

i.e. the matrix v i
j (u) has two distinct real eigenvalues v1(u) and v2(u). Hence, it is possible

to write the system (3.36) in a diagonal form, under a smooth change of coordinates. For
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simplicity, let us consider the case in which the system is already diagonal

8
>>>>>><
>>>>>>:

u1
t = v1(u)u1

x

u2
t = v2(u)u2

x

: (3.38)

We introduce w1(u), w2(u), solution to the system

@2w1

w2 � w1
=

@2v1

v2 � v1
;

@1w2

w2 � w1
=

@1v2

v2 � v1
: (3.39)

Then we have that

(a) the functions u1 = u1 (x ; t), u2 = u2 (x ; t) de�ned by

8
>>>>>><
>>>>>>:

w1

�
u1 ; u2

�
= v1

�
u1 ; u2

�
t + x

w2

�
u1 ; u2

�
= v2

�
u1 ; u2

�
t + x

; (3.40)

are solutions to the system (3.38), and every smooth solution to (3.38) can be deter-

mined in this way;

(b) the system of hydrodynamic type

8
>>>>>><
>>>>>>:

u1
� = w1(u)u1

x

u2
� = w2(u)u2

x

; (3.41)

de�nes a symmetry of the system (3.38) ( u i
t � = u i

� t ), and all the symmetries of the

class of systems of hydrodynamic type can be determined in this way.

To show (a), we consider the hodograph transformation applied to the system (3.38),

leading to 8
>>>>>><
>>>>>>:

@2x + v1(u)@2t = 0

@1x + v2(u)@1t = 0

; (3.42)
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that can be reformulated as 8
>>>>>><
>>>>>>:

@2 (v1 t + x) = t @2v1

@1 (v2 t + x) = t @1v2

: (3.43)

With the introduction of �elds

wi (u) = vi (u) t + x ; i = 1;2; (3.44)

we get for the variable t

t =
w1 � w2

v1 � v2
: (3.45)

The substitution of (3.45) into (3.43) yields (3.39). Conversely, if we di � erentiate the

implicit functions u1(x; t), u2(x; t) from (3.40) and we use (3.39), we get the system (3.43).

For part (b) let us introduce a symmetry of (3.43)

u i
� = wi

j (u)u
j
x ; i = 1;2: (3.46)

From the symmetry property u i
t � = u i

� t , it follows that the matrix u i
j commutes with the

diagonal matrix vj � i
j , hence wi

j = wj � i
j is diagonal as well. Moreover, this property im-

plies that w1, w2 satisfy (3.39). As mentioned abovove, for a a multi-component system

of hydrodynamic type, Novikov conjectured that the combination of the existence of the

bracket (3.24) with non-degenerate metric and the diagonalization implies the integra-

bility of the system. Then Tsarev proved the conjecture in [112, 113] and introduced

a generalization of the hodograph method to integrate these systems. We will brie�y

review this approach.

Let us consider a multi-component diagonal Hamiltonian system of hydrodynamic

type

u i
t = vi (u)u i

x ; i = 1; : : : ; N ; (3.47)

with mutually distinct elements and gij (u) the corresponding metric (assumed to be non-

degenerate) describing the Hamiltonian structure.

Lemma 3.1.2 Let u1; : : : ; uN be �elds variables of a diagonal Hamiltonian system of hydro-

dynamic type. Then the corresponding metricgij (u) is diagonal as well.
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This is proved by (3.33). From a di � erential-geometric point of view, a diagonal metric

corresponds to a curvilinear orthogonal system of coordinates in a �at space (Euclidean

or pseudo-Euclidean). On the other side, if we choose an arbitrary system of curvilinear

orthogonal coordinates, then a family of Hamiltonian systems is associated with it.

Lemma 3.1.3 Letu1; : : : ; uN be a system of orthogonal curvilinear coordinates,gij (u) = gi (u) � ij

the associated metric, and� k
ij (u) the generated connection. Then all diagonal systems of hydro-

dynamic type

u i
t = wi (u)u i

x ; i = 1; : : : ; N ; (3.48)

Hamiltonian with respect to the Poisson bracket

n
u i (x) ; uj (y)

o
= gi (u(x))� 1

2
666664�

ij � 0(x � y) �
X

k

�
j
ik uk

x (x � y)

3
777775; (3.49)

are determined by the relations

@i wk = � k
ki (wi � wk) ; i , k : (3.50)

All these systems commute pairwise and they are parametrised locally by functions of one

variable.

We consider the condition (3.34) for the system to be Hamiltonian and u i
j = wj � i

j

0 = r i u
k
j � r j u

k
i = @i u

k
j � @j u

k
i +

NX

l =1

�
� k
i l u l

j � � l
i j uk

l � � k
j l u l

i + � l
j i uk

l

�

= @i wj � k
j � @j wi � k

i + � k
ij

�
wi � wj

�
:

(3.51)

This is an identity in the case of i; j; k all distinct, since � k
ij = 0 because we have zero

curvature and torsion. The non-trivial relation is given for the case j = k , i , yielding

to (3.50).

For a generic diagonal metric gij = gi � ij , we have

� k
ki = @i ln

p
gk ; (3.52)
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and inserting this in (3.50) we obtain the relations

@i

 
@j wk

wj � wk

!

= @j

 
@i wk

wi � wk

!

; i , k; j , k ; (3.53)

leading to the de�nition of a semi-Hamiltonian system. In particular, a diagonal sys-

tem of hydrodynamic type u i
t = wi (u)u i

x, i = 1; : : : ; N, is called semi-Hamiltonian if its

coe� cients satisfy (3.53). For N = 2 the relations (3.53) reduce to identities, hence ev-

ery diagonal system is semi-Hamiltonian. For N � 3 every Hamiltonian system is semi-

Hamiltonian, but the converse is not true. Then it is su � cient for a system of hydrody-

namic type to be diagonalizable and semi-Hamiltonian in order to be integrable, as it is

stated in the following theorem.

Theorem 3.1.4 Let

u i
t = vi (u)u i

x ; i = 1; : : : ; N ; (3.54)

be a diagonal semi-Hamiltonian system of hydrodynamic type, andw1(u); : : : ; wN (u) arbitrary

solutions to the system

@i wk = � k
ki (wi � wk) ; i , k ; (3.55)

with � k
ki = @i vk

vi � vk
coe� cients of a hydrodynamic �ow commuting with(3.54).

The functionsu1(x; t), : : :, uN (x; t) determined by the system

wi (u) = vi (u) t + x ; i = 1; : : : ; N ; (3.56)

satisfy(3.54); in addition, every smooth solution can be obtained in this way.

To show this, we di � erentiate (3.56) with respect to t and x, obtaining

8
>>>>>><
>>>>>>:

P
k (@kwi � t @kvi ) uk

t = vi

P
k (@kwi � t @kvi ) uk

x = 1

: (3.57)

Introducing the matrix M (u), with elements

M ik (u) = @kwi � t @kvi ; (3.58)

50



Hydrodynamic systems with �nitely many components

by (3.55), they can be formulated as

M ik (u) =
@kvi

vk � vi
(wk � wi � t (vk � vi )) ; i , k : (3.59)

If u = u(x; t) is a solution to (3.56), we have

wk � wi = t (vk � vi ) =) M ik = 0 ; i , k : (3.60)

Therefore, the only terms remaining are those for which i = k and (3.57) becomes

8
>>>>>><
>>>>>>:

M ii (u)u i
t = vi

M ii (u)u i
x = 1

=) u i
t = vi (u)u i

x ; i = 1; : : : ; N ; (3.61)

and u = u(x; t) is a solution to the system (3.54) as well. Also, because ofM ii (u)u i
x = 1, we

have that u i
x , 0 for any smooth solution to (3.54).

Conversely, let us consider u = u(x; t) a solution to (3.54) such that u i
x , 0 in the

neighbourhood of the point ( x0; t0) for i = 1; : : : ; N. Taking u i
0 = u i (x; t0) to be the initial

condition of the Cauchy problem for the original system (3.54), we have

wi (u0(x)) = vi (u0(x)) t0 + x ; (3.62)

on the curve u0(x). Since by assumption
�
u i

0

�

x
(x0) , 0, there exists a unique solution wi (u)

to (3.55) with initial condition (3.62). We introduce the function

� i (u;x; t) = wi (u) � vi (t ) t � x = 0 ; i = 1; : : : ; N : (3.63)

The Jacobian matrix is non degenerate in (u i
0;x0; t0)

@� i

@uk
= @kwi � t0 @kvi = M ik (3.64)

M ik =

8
>>>>><
>>>>>:

0 i , k

@i wi � t0 @i vi , 0 i = k

: (3.65)
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We di� erentiate � i with respect to x at the point ( u i
0;x0; t0)

M ii

�
u i

0

�

x
� 1 = 0 =) M ii =

@� i

@ui
, 0: (3.66)

Due to the theorem of implicit function, there exists a unique smooth solution ū i (x; t) in

a neighbourhood of (u i
0;x0; t0). By construction ū(x; t0) = u(x; t0) and from the previous

part, u(x; t0) is a solution to (3.54). Hence, ū(x; t) = u(x; t) in a neighbourhood of ( x0; t0)

by the uniqueness of the solution to the Cauchy problem.

Therefore, thanks to the theorem 3.1.4, the integration of a system of hydrodynamic

type (3.54) is reduced to that of the linear system (3.55) with the functions u1; : : : ; uN

implicitly determined by (3.56). In this sense, it is evident that this consists in a gen-

eralisation of the hodograph method, thus called generalised hodograph method. Inte-

grability for a multi-component system of hydrodynamic type with a �nite number of

components follows from the diagonalizability of the system and its semi-Hamiltonian

property. In the next section, we will investigate the case of systems of hydrodynamic

type with an in�nite number of components.

3.2 Hydrodynamic chains

Let us now move to systems of hydrodynamic type with an in�nite number of compo-

nents. They are called hydrodynamic chains [59, 100, 101] and are formulated as quasi-

linear partial di � erential equations

u i
t = v i

j (u)u
j
x ; i = 1; 2; : : : ; (3.67)

with u =
�
u1; u2; : : :

� >
an in�nite vector and v(u) =

n
v i

j (u)
o1

i;j =1
a 1 � 1 matrix. The pro-

totypical example of a hydrodynamic chain is given by the Benney's moments' equation

un
t = un+1

x + (n � 1) un� 1 u1
x ; n = 1; 2; : : : ; (3.68)

introduced in [24] to study long waves in shallow �uid with free surface in a gravitational

�eld.
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In general terms, a hydrodynamic chain takes the form [100]

un
t = ' n

1 u1
x + � � � + ' n

n+1 un+1
x ; n = 1; 2; : : : ; ' n

n+1 , 0; (3.69)

where ' n
j = ' n

j

�
u1; : : : ; un+1

�
. The class of conservative hydrodynamic chains of the type

u1
t = u2

x ; u2
t = f

�
u1;u2;u3

�

x
; u3

t = g
�
u1;u2;u3;u4

�

x
; : : : ; (3.70)

has been extensively studied (e.g. [104, 101]). In this case, the function f
�
u1;u2;u3

�

determines all the other equations of the chain (3.70) and the related hierarchy.

We will follow the approach established in [59] for the discussion concerning the in-

tegrability of hydrodynamic chains, motivated by the theory of �nite-component systems

of hydrodynamic type that we have treated in section 3.1. As we have seen, for those sys-

tems, the requirements of being diagonalizable in terms of the Riemann invariants and

semi-Hamiltonian are su � cient for the system to be integrable. The theory established

in [59] relates to the criterion of classi�cation of (2 + 1)-dimension integrable systems

grounded on the existence of in�nite hydrodynamic reductions [58]. This is based on the

observation that dispersionless limits of integrable systems in 2 + 1 dimensions possess

in�nitely many hydrodynamic reductions. Moreover, if the dispersionless system is not

linearly degenerate, in [60] it was shown that hydrodynamic reductions of dispersionless

limits of integrable systems can be deformed into those of the dispersive counterpart in

2 + 1 dimensions. In [61], a de�nition of integrability for 2 + 1-dimensional systems is

given, claiming that a 2 + 1-dimensional system is integrable if all the hydrodynamic re-

ductions of its dispersionless limit can be deformed into reductions of their dispersive

counterparts.

Ferapontov and Marshall [59] introduce a tensorial criterion for diagonalisability,

based on the construction of the so called Nijenhuis tensor and the Haantjes tensor and

they extend this concept to in�nite-component systems of hydrodynamic type. Their

idea comes from the results obtained by Nijenhuis [99] and Haantjes [69]. Their research

was aimed to �nd the conditions for which for a �eld of endomorphisms of the tan-

gent bundle of a manifold, with the assumption of simple eigenvalues, the distributions
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spanned by pairs of eigenvectors are integrable [85]. Ferapontov and Marshall in [59]

formulate the main result in [69] as a theorem, in the �eld of integrable systems, as we

will see in the following. Their statement is that a system of hydrodynamic type, with

mutually distinct characteristic speeds, is diagonalisable if and only if the corresponding

Haantjes tensor vanishes identically. The connection relies on the fact that, for systems

with �nitely many components, the solutions form a manifold in the theory of Riemann

invariants. Then they extend the result to in�nite-component systems.

For a system of hydrodynamic type with �nitely many components, we consider the

matrix v i
j (u). The Nijenhuis tensor of the matrix v i

j (u) is a (1;2) tensor de�ned as

N i
jk = v

p
j (u)@pv i

k(u) � v
p
k (u)@pv i

j (u) � v i
p(u)

�
@j v

p
k (u) � @kv

p
j (u)

�
; (3.71)

with @i = @=@ui . The Haantjes tensor of the matrix v i
j (u) is a (1;2) tensor that takes the

form

H i
jk = N i

pqv
p
j (u)v

q
k (u) � N

p
jq v i

p(u)v
q
k (u) � N

p
qk v i

p(u)v
q
j (u) + N

p
jk v i

q(u)v
q
p(u) : (3.72)

The diagonalizability condition for strictly hyperbolic systems can be formulated as the

following theorem, introduced in [69] and reformulated by Ferapontov and Marshall in

the context of hydrodynamic systems.

Theorem 3.2.1 A diagonalizable system of hydrodynamic type with mutually distinct char-

acteristic speeds is diagonalizable if and only if the corresponding Haantjes tensor(3.72) is

identically zero.

It is remarkable that these tensors can be de�ned in the in�nite-component case (3.67)

as well, provided that the matrix v i
j (u) is “su� ciently sparse”.

De�nition 3.2.1 An in�nite matrix V (u) =
n
v i

j (u)
o1

i;j =1
belongs to the classC (chain class) if

it satis�es the properties

(i ) each row ofV (u) contains �nitely many non-zero elements;

(ii ) each matrix element ofV (u) depends on �nitely many �eld variablesu i (x; t).
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For matrices belonging to class C, the sums on repeated indices in (3.71) and (3.72) re-

duce to a �nite number of terms, hence every component of the tensor H i
jk is well de�ned

and can be computed. In particular, for a �xed value of the upper index i , we have only

a �nite number of components of H i
jk that are non-zero.

De�nition 3.2.2 A hydrodynamic chain(3.67) with V (u) 2 C is diagonalizable if all compo-

nents of the Haantjes tensor(3.72) are zero.

As we will show in the following section, the vanishing of the Haantjes tensor is a neces-

sary (and in some cases su� cient) condition for a hydrodynamic chain to have an in�nite

number of �nite-component diagonalizable hydrodynamic reductions.

This approach, based on the construction of the Haantjes tensor has the advantage to

be “intrinsic”, in the sense that it is not required any knowledge of “estrinsic” objects,

like the Hamiltonian structure, the Lax pair or the commuting �ows for the system. As

we will see in the following, the diagonalizability condition is necessary for the system

to possess su� ciently many hydrodynamic reductions.

3.2.1 Hydrodynamic reductions and Gibbons–Tsarev system

A hydrodynamic reduction of an in�nite hydrodynamic chain is represented by paramet-

ric equations in a �nite number m of components, as

u1 = u1
�
R1; : : : ;Rm

�
; u2 = u2

�
R1; : : : ;Rm

�
; u3 = u3

�
R1; : : : ;Rm

�
; : : : ; (3.73)

where R1; : : : ;Rm are the Riemann invariants. They solve the diagonal system

Ri
t = � i (R) Ri

x ; i = 1; : : : ;m; R=
�
R1; : : : ;Rm

�
; (3.74)

and the characteristic speeds� i (R) satisfy the semi-Hamiltonian property (3.53) that we

recall

@i

 
@j � k

� j � � k

!

= @j

 
@i � k

� i � � k

!

: (3.75)

All the equations of the chain are satis�ed modulo (3.74), hence the in�nite-component

system reduces to a �nite-component one. The notion of hydrodynamic reductions un-

derpins the de�nition of integrability.
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De�nition 3.2.3 A hydrodynamic chain of classC (3.67) is integrable if it admits m-phase

solutions of the form

uk = uk
�
R1; : : : ; Rm

�
; (3.76)

for arbitrary m.

In [64], Gibbons and Tsarev show that the Benney chain possesses in�nitely many m-

component reductions, parametrized by m functions of a single variable. Integrability of

more generic hydrodynamic chains has been investigated in [104, 100] with the method

of hydrodynamic reductions, that we now brie�y review.

We consider the method of hydrodynamic reductions as described in [64, 65], applied

to the Benney chain (3.68) for illustrative purposes. The �rst equations of the chain are

u1
t = u2

x

u2
t = u3

x + u1 u1
x

u3
t = u4

x + 2 u2 u1
x

u4
t = u5

x + 3 u3 u1
x

:::

(3.77)

We look for solutions of the form u i = u i
�
R1; : : : ; Rm

�
, where R1; : : : ; Rm are the Riemann

invariants, satisfying the diagonal system (3.74) that we recall

Ri
t = � i (R)Ri

x :

Using this ansatz in the �rst of equations (3.77), we obtain

@i u
1 Ri

t = @i u
2 Ri

x

@i u
1

�
� i Ri

x

�
= @i u

2 Ri
x

Ri
x

�
� i @i u

1 � @i u
2
�

= 0

@i u
2 = � i @i u

1 ;

(3.78)

for i = 1; : : : ; mand with @i = @=@Ri .
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Applying the ansatz recursively in the other equations (3.77), we get

@i u
2 = � i @i u

1

@i u
3 =

� �
� i

� 2
� u

�
@i u

1

@i u
4 =

� �
� i

� 3
� u � i � 2u2

�
@i u

1

@i u
5 =

� �
� i

� 4
� u

�
� i

� 2
� 2u2 � i � 3u3

�
@i u

1

:::

(3.79)

Imposing the compatibility conditions

@i @j u
k = @j @i u

k ; (3.80)

for k = 2;3;4 in the expressions in (3.79) yields

@i @j u
1 =

@j � i

� j � � i
@i u

1 +
@i � j

� i � � j
@j u

1 ;

@j �
i @i u

1 + @i �
j @j u

1 = 0 ;

� i @j �
i @i u

1 + � j @i �
j @j u

1 + @i u
1 @j u

1 = 0 :

(3.81)

Solving (3.81) in @j � i , we get the so called Gibbons–Tsarev system for the Benney chain

@j �
i =

@j u1

� j � � i
;

@i @j u
1 = 2

@i u1@j u1

�
� i � � j

� 2 :
(3.82)

All the compatibility conditions (3.80) for k > 4 in (3.79) are satis�ed modulo (3.82) and

the semi-Hamiltonian property (3.75) is automatically ful�lled. Hence, the Benney chain

is integrable and the m-component reductions of the chain are described by (3.82).

This approach can be applied to any hydrodynamic chain of the class C and this has

lead Ferapontov and Marshall to formulate the following theorem, stated in [59].

Theorem 3.2.2 The vanishing of the Haantjes tensor is a necessary condition for the existence

of in�nitely many hydrodynamic reductions and, thus, for the integrability of a hydrodynamic
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chain.

To prove the theorem, let us consider a conservative hydrodynamic chain (3.70) written

in the form

um
t = vm

n (u)un
x ; m;n = 1; 2; : : : : (3.83)

We apply the ansatz described above, so we look for solutions dependent of a �nite num-

ber of Riemann invariants. We get

@i u
m Ri

t = vm
n @i u

n Ri
x ;

@i u
m � i Ri

x = vm
n @i u

n Ri
x ;

(3.84)

and equating the coe� cients of Ri
x, the previous becomes

vm
n @i u

n = � i @i u
m ; (3.85)

or expressed in vector form as

v(u)@i u = � i @i u : (3.86)

Hence, the characteristic speeds� i can be considered eigenvalues of the in�nite ma-

trix v(u) and @i u the corresponding eigenvectors. To impose the compatibility condi-

tion (3.80), we make use of the operator @j with j , i acting on (3.85) (with the nota-

tion vm
n;i = @i vm

n )

vm
n;k @j u

k @i u
n + vm

n @j @i u
n =

�
@j �

i
�

@i u
m + � i @j @i u

m ; (3.87)

and we exchange the indicesi $ j , yielding

vm
n;k @i u

k @j u
n + vm

n @j @i u
n =

�
@i �

j
�

@j u
m + � j @i @j u

m : (3.88)

The compatibility condition, then, gives

�
� i � � j

�
@i @j u

m = �
�
@j �

i
�
@i u

m +
�
@i �

j
�
@j u

m +
�
vm

n;k � vm
k;n

�
@i u

k@j u
n

@i @j u
m = �

@j � i

� i � � j
@i u

m +
@i � j

� i � � j
@j u

m +
vm

n;k � vm
k;n

� i � � j
@i u

k@j u
n :

(3.89)
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Substituting the latter in (3.87), we obtain

vm
n;k@j u

k@i u
n +

@j � i

� j � � i
vm

n @i u
n +

@i � j

� i � � j
vm

n @j u
n +

vm
l

�
v l

n;k � v l
k;n

�

� i � � j
@i u

l @j u
k =

= @j �
i @i u

m +
@j � i

� j � � i
� i @i u

m +
@i � j

� i � � j
� i @i u

m +
vm

n;k � vm
k;n

� i � � j
� i @i u

n @j u
k :

(3.90)

Using (3.85) we get

@j �
i @i u

m + @i �
j @j u

m =
� i � � j

� i � � j
vm

n;k @i u
k @j u

k +
vm

l

�
v l

n;k � v l
k;n

�

� i � � j
@i u

l @j u
k

+
v l

n

�
vm

n;k � vm
k;n

�

� i � � j
� i @i u

n @j u
k ;

(3.91)

and using the (3.85) twice on the �rst term of the right hand side we obtain

@j �
i @i u

m + @i �
j @j u

m =
1

� i � � j

�
v l

n vm
k;l � v l

k vm
n;l + vm

l (v l
n;k � v l

k;n)
�
@i u

n @j u
k : (3.92)

Since the Nijenhuis tensor is

N m
nk = v l

n vm
k;l � v l

k vm
n;l + vm

l

�
v l

n;k � v l
k;n

�
(3.93)

we have

@j �
i @i v

m + @i �
j @j v

m =
N m

nk

� i � � j
@i u

n @j u
k : (3.94)

where, as usual, the sum is on the reiterated indices, except for i; j .

We now determine the Gibbons–Tsarev system for the hydrodynamic chain. To do so,

we let the matrix v i
j (u) act on both sides of (3.94) in all the possible ways and using (3.85),

we obtain the system1

� i @j �
i @i u

m + � j @i �
j @j u

m =
vm

p N
p
nk @i un @j uk

� i � � j
(3.95)

� i @j �
i @i u

m + � i @i �
j @j u

m =
v

p
n N m

pk @i un @j uk

� i � � j
(3.96)

� j @j �
i @i u

m + � j @i �
j @j u

m =
v

p
k N m

np @i un @j uk

� i � � j
: (3.97)

1Here we compute the expressions for the components of tensors explicitly rather than showing them in
a vector form, as reported in [59].
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Considering the subtractions side by side of (3.95) � (3.96) and (3.95)� (3.97) we have

@i �
j @j u

m =
N m

pk v
p
n � N

p
nk vm

p

(� i � � j )2
@i u

n @j u
k (3.98)

@j �
i @i u

m =
N m

pn v
p
k � N

p
k n vm

p

(� i � � j )2
@i u

n @j u
k : (3.99)

As we can easily observe, (3.99) can be obtained from (3.98) exchanging the indicesi $ j .

Finally, we show that the Hantjees tensor is zero, starting from the equation (3.94).

Let us consider twice the action of the matrix v i
j (u) on both sides of the equation in all

the four possible ways

�
@j �

i
� �

� i
� 2

@i u
m +

�
@i �

j
� �

� j
� 2

@j u
m =

vm
q v

q
p N

p
nk@i un @j uk

� i � � j
(3.100)

�
@j �

i
� �

� i
� 2

@i u
m +

�
@i �

j
�
� i � j @j u

m =
vm

p v
q
n N

p
qk @i un @j uk

� i � � j
(3.101)

�
@j �

i
�
� i � j @i u

m +
�
@i �

j
� �

� j
� 2

@j u
m =

vm
q v

q
k N

p
nq @i un @j uk

� i � � j
(3.102)

�
@j �

i
�
� i � j @i u

m +
�
@i �

j
�
� i � j @j u

m =
v

p
n v

q
k N m

pq :@i un @j uk

� i � � j
(3.103)

Now, considering the expression given by (3.100) � (3.101) � (3.102) + (3.103), we have

0 =
�
vm

q v
q
p N

p
nk � vm

p v
q
n N

p
qk � vm

q v
q
k N

p
nq + v

p
n v

q
k N m

pq

� @i un @j uk

� i � � j
: (3.104)

Given the form of the Hantjees tensor (3.72), that we recall,

H m
nk = N m

pqv
p
n v

q
k � N

p
nq vm

p v
q
k � N

p
qk vm

p v
q
n + N

p
nk vm

q v
q
p ; (3.105)

we have H m
nk = 0 and the demonstration of the theorem 3.2.2 is completed.
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The Gibbons–Tsarev system is then formulated in terms of explicit indices as

@i @j u
m = �

@j � i

� i � � j
@i u

m +
@i � j

� i � � j
@j u

m +
vm

n;k � vm
k;n

� i � � j
@i u

n@j u
k (3.106)

@i �
j @j u

m =
N m

pk v
p
n � N

p
nk vm

p

(� i � � j )2
@i u

n @j u
k ; (3.107)

@j �
i @i u

m =
N m

pn v
p
k � N

p
k n vm

p

(� i � � j )2
@i u

n @j u
k ; (3.108)

and the semi-Hamiltonian property for the characteristic speeds (3.75) is satis�ed.

It is worth noticing that it is possible to build diagonalizable systems that are not

semi-Hamiltonian. An explicit example is given in [59], with the hydrodynamic chain

un
t = un+1

x + p(u1)un
x + un� 1 u1

x : (3.109)

The Haantjes tensorH i
jk is zero in all its components, hence the system is diagonalizable

and it is possible to construct in�nitely many hydrodynamic reductions, governed by

the same equations valid for the Benney chain. The di � erence with Benney is that the

Riemann invariants satisfy, in this case, the system

Ri
t =

�
� i (R) + p

�
u1

��
Ri

x ; (3.110)

and the characteristic speeds do not ful�ll the semi-Hamiltonian property.

Finally, we emphasize that the vanishing of the Haantjes tensor is also a su� cient con-

dition for the integrability of the hydrodynamic chain if the spectrum of the matrix v(u)

is simple in the characteristic speeds, as stated in the following theorem.

Theorem 3.2.3 The vanishing of the Haantjes tensor of a hydrodynamic chain is a necessary

and su� cient condition for the existence of two-component reductions parametrized by two

arbitrary functions of a single variable in the simple spectrum case.

In the study of chains, it is worth mentioning that there exists an equivalence between

chains and multi-dimensional dispersionless systems. As an example, the Benney chain

is related to the dispersionless version of KP (dKP) [124, 81]. The KP hierarchy can be
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written as
@z
@tn

=
�
(zn)+ ; z

	
; (3.111)

where z = z(p; t) is a complex function depending on the complex variable p and the in�-

nite set of complex parameters t = ft1; t2; : : :g. It is assumed to have a Laurent expansion

z = p +
X

n� 1

an(t )
pn ; (3.112)

in p ! 1 . The (zn)+ is the polynomial part of the expansion in powers of p and the

Poisson bracket is

ff ; gg= @pf @xg � @xf @pg ; x = t1 : (3.113)

The compatibility for equation (3.111) is given imposing the zero curvature condition

@(zm)+
@tn

�
@(zn)+

@tm
+

�
(zm)+ ; (zn)+

	
= 0 ; m , n: (3.114)

From (3.111) we can obtain the Benney equation for n = 2

(an+1)t + (an+2)x + na1 = 0 ; t = � 2t2 : (3.115)

For n = 3, we obtain the dKP equation

�
ut �

3
2

u ux

�

x
=

3
4

uyy ; u = 2 a1 ; t = t3 ; y = t2 : (3.116)

In section 7.4, we will use the de�nitions and the approaches here described to dis-

cuss the diagonalizability and the integrability of the new hydrodynamic chain emerging

from the study of the Pfa � lattice in the context of the ensemble of random symmetric

matrices.
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Nonlinear breaking of critical

phenomena

One of the main aspects of the dynamics of nonlinear systems is the emergence of sin-

gularities dynamically developed as a result of a gradient catastrophe. In this chapter,

we will consider the occurrence of such a phenomenon in section 4.1 and its regulari-

sation via higher order corrections. In particular, we will address two di � erent types of

regularisation that will give rise to very di � erent behaviours: the viscous regularisation

in section 4.2 and the dispersive regularisation in section 4.3. In the context of hydrody-

namic systems, viscous corrections lead to the breaking of the local Hamiltonian struc-

ture, while this is not the case for the dispersive ones. We will deal with two equations

that we have already encountered in section 1.1, i.e. the Burgers' equation (1.3) and the

KdV equation (1.2). Finally, in section 4.4, we will brie�y discuss the approach of inte-

grable perturbations to quasi-linear hydrodynamic systems and the universal behaviour

of solutions close to critical points.

4.1 Gradient catastrophe

The prototypical nonlinear PDE is the Hopf equation

ut + u ux = 0 ; (4.1)
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also de�ned to be quasi-linear since the coe� cient of the highest order derivative of the

function u (Dk with k = 1) depends at most on u itself ( Dk� 1).

The solution to the equation (4.1) is obtained via the characteristic method. Expres-

sion (4.1) can be seen as a total derivative ofu(x; t) along a line with slope

dx
dt

= u(x; t) ;
du
dt

= 0 ; (4.2)

at each point of the plane ( x; t). We consider the initial condition for the Cauchy problem

u(x;0) = f (x) ; x 2 R ; (4.3)

and hence the solution can be written as

x + u t = f � 1(u) ; (4.4)

where f � 1(u) is the inverse function of the initial datum f (x). On the axis (x;0) for

x = � (0) we have u(x;0) = f (� (0)), where � (t ) parametrises a point on the characteris-

tic line. We denote by F(� ) the slope of the characteristic curve intersecting the axis at

the point � , so that the solution is

x = � + F(� )t : (4.5)

In this context, a characteristic curve in the space ( x; t) describes the point-like propaga-

tion of the initial datum with velocity u(x; t). The solution at a generic time t is given by

moving each point on the initial curve u = f (x) at a distance F(� )t to the right.

Where the propagation velocity is a decreasing function, as in the case represented

in �gure 4.1 (a), the pro�le of u(x; t) undergoes a steepening process, and eventually

it breaks giving a multi-valued solution. The breaking occurs when the pro�le of the

solution develops an in�nite slope, i.e. ux ! 1 , a so called gradient catastrophe. At the

time

t = �
1

F0(� )
; (4.6)

the breaking of the pro�le emerges on the characteristic where F0(� ) < 0 and jF0(� )j is a
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(a)
(b)

Figure 4.1: (a) The solution to the Hopf equation (4.1) is shown for the initial condi-
tion u(x;0) = (1 � tanh(x))=2 evaluated at di � erent values of time in the plane ( x;u). (b)
Characteristic curves for the Hopf equation (4.1) with initial condition u(x;0) = (1+ x2)� 1

in the plane ( x; t). The characteristic line corresponding to the occurrence of the pro�le
breaking is drawn in magenta.

maximum, for � = � b. In �gure 4.1 (b), the family of characteristics (8.42) in the param-

eter � is shown for a speci�c initial condition. The region corresponding to F0(� ) < 0 is

the one where the characteristics converge. In the presence of an increasing initial condi-

tion the characteristics diverge after the breaking point and the emerging phenomenon

is called a rarefaction wave [119].

In the following we will analyse the shock waves arising from two possible mecha-

nisms of regularisation, i.e. viscous and dispersive. We will see how the di � erences in

their structure and evolution re�ects the necessity of a di � erent mathematical descrip-

tion of the two phenomena. As pointed out in [54], their modelling represents the essence

of their distinction:

. the viscous shock wave (�gure 4.2 (a)) is described by a travelling wave solution to

an ODE,

. the dispersive shock wave (�gure 4.2 (b)) is represented by a modulated periodic

train wave.
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(a) (b)

Figure 4.2: (a) The structure of a viscous shock: a smooth steady transition propagating
with shock speed U and width proportional to the viscous parameter � . (b) The structure
of a dispersive shock: an unsteady nonlinear wavetrain con�ned to an expanding region.

4.2 Viscous shock wave

The viscous shock wave is the phenomenon emerging from a dissipative regularisation of

the gradient catastrophe previously described. It consists of a travelling wave solution,

whose evolution is characterised by a �xed width and a single speed. The width depends

on the viscous parameter � , whereas the speed is given by a balance of physical integral

of motion across the shock and it is independent of the details of the shock internal

structure [119].

The Burgers equation is the archetype of a viscous nonlinear integrable PDE

ut + u ux = � u xx ; (4.7)

where � > 0 is the viscosity1 parameter. It provides the viscous small amplitude approx-

imation of the Hopf equation 2 (4.1).

As we mentioned in section 1.1, the Cole-Hopf transformation

u = � 2� @x log ' ; (4.8)

1The terms viscosity, di � usion and dissipation are all used in literature to name this kind of corrections.
2The Hopf equation (4.1) is also known as inviscid Burgers' equation.
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yields the heat equation in the new �eld variable '

' t = � ' xx : (4.9)

We consider a decreasing initial condition for the Cauchy problem

u(x;0) = f (x) : (4.10)

The heat equation (4.9) is then solved via the Poisson formula in ' . Recalling the Cole-

Hopf transformation we recover the expression for the solution to the Burgers' equa-

tion (4.7)

u(x; t) =
1

R1
�1

e� G(� )=2� d�

Z 1

�1

x � �
t

e� G(� )=2� d� : (4.11)

In the previous expression

G(� ;x; t) =
(x � � )2

2t
+

Z �

0
F(� 0)d� 0; (4.12)

where F(� ) is the function appearing in (8.42). With the assumption that there exists one

solution to the equation
@G
@�

�����
� =�

= F(� ) �
x � �

t
= 0 ; (4.13)

the leading order for the solution ( � ! 0) is obtain by the Laplace transform. Writing the

solution as

u(x; t) = u � (x; t) + O(� ) ; (4.14)

the leading order u � (x; t) satis�es the following

u � (x; t) =
x � � (x; t)

t
= F(� (x; t)) ; F̃ = F� 1 : (4.15)

Assuming that G(� ) has a local minimum at u � and that the function F(� (x; t)) is invert-

ible, at least locally

x � u � t = F̃ (u � ) : (4.16)

Hence, in the inviscid limit � ! 0 the leading order of the solution to the Burgers' equa-
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tion is given by the Hopf equation (4.1). The latter is then a good approximation of the

evolution of the solution before the critical time, when the hodograph equation admits

one solution.

The viscous shock wave emerges when the equation (4.13) admits multiple solutions.

In the inviscid limit, the dominant behaviour is given by the value � m(x; t) for which

G(� m) takes the lowest value. We thus have locally

u �
m(x; t) = F(� m(x; t)) : (4.17)

There exist subsets of the(x; t) plane where the equation

G(� l (x; t)) = G(� r (x; t)) (4.18)

has solution for di � erent indices3 l and r . Equation (4.18) represents the viscous shock

trajectory, the curve representing the jump of the solution form the value that on the left

is u �
l = F(� l (x; t)) and on the right u �

r = F(� r (x; t)).

Recalling (4.12), we recover the equal areas rule for F

Z � r

� l

F(� )d� =
1
2

(F(� l ) + F(� r )) (� r � � l ) : (4.19)

In particular, the viscous shock position is given by placing a discontinuity cutting the

solution to the Hopf equation into two lobes of equal areas (as in �gure 4.3). This is

evident mapping the solution back to t = 0 following the characteristics [119].

It is worth noting that the viscous shock wave in the � ! 0 limit, induces the conser-

vation of the quantity
Z 1

�1
u(x; t)dx = const ; (4.20)

that remains constant also for �nite values of � . Since in this case the expression for the

�ux is quadratic, the so called shock condition is such that the shock velocity U is given

by

U =
1
2

(F(� l ) + F(� r )) : (4.21)

3Left and right are intended with respect to the position of the gradient catastrophe.

68



Viscous shock wave

(a) (b)

Figure 4.3: Equal area realisation. In (a) at initial time t = 0 in the plane ( �;F ), in (b) after
the breaking of the pro�le in the plane ( x;u).

The dynamics of a viscous shock wave is described by the propagation of the discontinu-

ity front with velocity given by the shock condition. The solution at the time t is given

starting from the initial pro�le F(� ) and then translating this of a distance F(� )t to the

right, as shown in �gure 4.3. The shock cuts out the parts � l < � < � r . The shock is en-

tirely described by the function F(� ) considering all the chords constructed via the equal

area property. In particular, the pairs � = � l , � = � r corresponds to those characteristics

that meet on the shock.

The problem is then described by

ut + q(u)x = 0 ; conservation law

� U [u] + [q(u)] = 0 ; shock condition.
(4.22)

The �ux q(u) is q(u) = 1=2u2 for Hopf. The second expression refers to the compact

notation of

q(s� ; t) � q(s+; t) =
�
u(s� ; t) � u(s+; t)

	
�s (4.23)

where s(t ) represents the position of the shock evolving in time and s+ and s� represents

the limits xl ! s� and xr ! s+. The symbol [ � ] in (4.22) denotes the jump across the

discontinuity and U (t ) = �s(t ). The shock solution is a weak solution of the conservation

law.

This construction based on the introduction of viscous perturbations allows us to de-
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�ne suitable solutions to equations of hydrodynamic type, to regularise the discontinuity

due to nonlinearity. A solution u(x; t) is considered admissible if there exists a sequence

of solutions u(u; t; � ) to the Burgers' equation (4.7) such that [50]

u(x; t; � ) ����!
� ! 0

u(x; t) : (4.24)

We will encounter viscous shocks in the context of the mean �elds described with the

formalism of the nonlinear PDEs in chapter 5.

4.3 Dispersive shock wave

Dispersive shock waves appear as a dispersive regularisation mechanism [54] of the

gradient catastrophe emerging from nonlinearity. The KdV equation constitutes the

paradigmatic example of a dispersion nonlinear integrable PDE

ut + u ux = " 2 uxxx ; (4.25)

and it serves as the small dispersion approximation to the Hopf equation (4.1). After

the occurrence of the wave breaking that we have discussed in the previous section, the

solution to the equation (4.25) takes the form of a modulated locally periodic wave ' (see

�gure 4.2 (b)), whose form will be

' (#) = a+ bdn2 (#) ; (4.26)

where dn is a Jacobi elliptic function and # will encode the modulation. In particular, at

the leading edge it exhibits a solitary wave, while close to the trailing edge it transforms

into linear wave packet of vanishing amplitude. The unsteady nature of the dispersive

shock is manifested by the fact that it expands in time.

The modulation of the dispersive shock is obtained invoking Whitham modulation

theory [118] and matched asymptotic analysis. Without going into too much detail, we

brie�y describe the modulation procedure, following [54]. Starting from the conservation

laws associated with the original dispersive equations, the slow modulations of periodic
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nonlinear waves are determined by averaging those conservation laws over a family of

periodic travelling wave solutions. Given a n-th order nonlinear evolution equation

qt = K
�
q; qx; : : : ; q(n)

�
; (4.27)

for the Whitham method, there exists a n-parameter family of periodic travelling wave

solutions

q(x; t) = ' (#; u ) ; with

8
>>>>><
>>>>>:

u = (u1; : : : ; un)

# = k(u )x � ! (u ) t :
(4.28)

The vector u of n components represents the parameters,' is the phase,k(u ) and ! (u )

are the wave number and the frequency respectively. Imposing a �xed period of 2 � on '

the spatial and temporal periods are determined as

L(u ) =
2�

k(u )
; T(u ) =

2�
! (u )

: (4.29)

The assumption for the Whitham method to be applied is the existence of at least n � 1

conservation densities Pi [q] and corresponding �uxes Qi [q], constituting the conserva-

tion laws

(Pi )t + (Qi )x = 0 ; i = 1; : : : ; n� 1: (4.30)

The modulation equations are derived with the assumption of slow evolution of the pa-

rameters u = u (x; t) both in space and time

ju x j �
ju j
L

; ju t j �
ju j
T

: (4.31)

With the introduction of (4.28) in (4.30), we obtain the modulation equations

�
P i [' ]

�

t
+

�
Qi [' ]

�

t
= 0 ; i = 1; : : : ; n� 1; (4.32)

where the averaged expressions are given by

F [' ] =
1

2�

Z 2�

0
F [' (#; u )] d# : (4.33)
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To completely reconstruct the modulated wave, we need to consider the modulated wave

number #x = k(u ) and frequency #t = � ! (u ). The compatibility condition brings the

conservation of waves

#xt = #tx =) k(u )t + ! (u )x = 0 : (4.34)

The Whitham equations (4.32) and (4.34) are dispersionless and they can be represented

as a system of a hydrodynamic equations

u t + A(u ) u x = 0 ; (4.35)

where the matrix A(u) encodes the information about the nonlinearity and dispersion of

the original system.

In the case of the KdV equation (4.25), the modulation requires the introduction of

three parameters, the amplitude a, the wave number k, and the average of the wave

' . Whitham realised that the modulated system for KdV can be written in terms of

Riemann invariants R1 � R2 � R3 and relative characteristic speeds, that we have de�ned

in section 3.1. The modulated parameters may be expressed in terms of the Riemann

invariants as [54]

a = 2 (R2 � R1)

k =
�

p
R3 � R1p
6K(m)

; m =
R2 � R1

R3 � R1

' = R1 + R2 � R3 + 2 (R3 � R1)
E(m)
K(m)

;

(4.36)

where E(m) and K(m) are complete elliptic integral of the �rst and second kind respec-

tively

K(m) =
Z �= 2

0

1
q

1 � m sin2(z)
dz ; E(m) =

Z �= 2

0

q
1 � m2 sin2(z)dz : (4.37)
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The periodic wave can be expressed as

' (#) = R1 + R2 � R3 + 2 (R3 � R1) dn2
 
K(m)

�
#;m

!

; (4.38)

where dn is the so called delta amplitude, a Jacobi elliptic function, as anticipated above.

In the limit m ! 1; the wave takes the form of a soliton

' = ' + assech2
 r

as

12
(x � vs t � #0)

!

; vs = ' +
as

3
: (4.39)

In the limit m ! 0, the solution becomes a vanishing harmonic wave

' = ' +
ah

2
(cos(k x � ! 0 t ) � 1) + O

�
a2

h

�
; ! 0 = ' k � k3 : (4.40)

The Whitham method reduces the complexity of the problem, producing a nonlinear

modulation system of quasi-linear hydrodynamic form (4.35) with free boundary for the

leading and trailing edges of the dispersive shock. The boundary conditions are given

by matching the solution of the mean dispersive shock with the dispersionless external

solution along double characteristics to the modulation system. In [68], this approach

is followed for KdV and the dispersive shock wave arises as a rarefaction wave for the

Whitham system.

In �gure 4.4, two dispersive shock waves are shown, arising from di � erent initial

conditions. In (a), the “Martini glass” shape is obtained for a Riemann problem for KdV,

as it was considered in [68]. In (b), the “Bordeaux glass” is produced for KdV in corre-

spondence of a cubic wave breaking, in this sense the latter can be seen as an universal

mechanism of dispersive regularisation [54].

In the following, in section 6.4, we will observe the emerging of a structure similar to

the one shown in �gure 4.4 (b) in the context of the Hermitian matrix ensemble.

4.4 Universality

The Burgers' and the KdV equations represent the universal asymptotic regularisation

mechanisms, for viscous and dispersive corrections respectively. An extension to non-
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(a) (b)

Figure 4.4: (Adapted from [54] with authors' permission.) (a) In blue it is shown the dis-
persive shock wave for KdV-type equations in a Riemann problem. The dashed red line
represents the mean value of the wave. (b) In blue the dispersive shock wave emerging
after the cubic wave breaking for KdV-type equations. The dashed red line represents
the modulation solution in terms of the three Riemann invariants.

integrable systems introducing the concept of approximate integrability up to a �nite

order in the perturbation modelled via a small parameter was introduced in [47].

In 1 + 1 dimension, the perturbation system is given by

ut +a(u)ux +"
h
b1(u)uxx + b2(u)u2

x

i
+" 2

h
b3(u)uxxx + b4(u)ux uxx + b5(u)u3

x

i
+ � � � = 0 ; (4.41)

where the unperturbed system is the nonlinear hyperbolic system

ut + a(u)ux = 0 : (4.42)

This system admits a Hamiltonian description as

ut + fu(x) ; H0g= ut + @x
�H 0

�u (x)
= 0 ; (4.43)

with the Poisson brackets

fu(x) ; u(y)g= � 0(x � y) : (4.44)

The solutions to the perturbed equations in (4.41) are considered up to the Miura trans-

formation

u 7! u +
X

k� 1

" k Fk

�
u;ux; : : : ; u(k)

�
; (4.45)

74



Universality

Figure 4.5: In a (2 + 1)-dimensional hyperbolic system, the asymptotic universal be-
haviour of the function U (X;T) is shown. The function speci�es the asymptotics of the
Riemann invariants and it is a special solution to P2

I (�gure taken from [53]).

with Fk

�
u;ux; : : : ; u(k)

�
polynomial in the derivatives of u of degree k. Any Hamiltonian

perturbation of the equation (4.42) can be reduced to the form

ut + @x
�H

�u (x)
= 0 ; H = H0 + "H 1 + " 2 H2 + : : : : (4.46)

We report part of the conjecture formulated in [53]. The main idea underlying the

conjecture is the universality of the asymptotic approximation at the leading order.

Conjecture 4.4.1 The solution to the generic system(4.43) with generic" -independent smooth

initial data near a point of cusp catastrophe of the unperturbed hyperbolic system(4.42) is de-

scribed in the limit " ! 0 by a particular solution to theP2
I equation.

Hence, it is conjectured that the critical behaviour close to the gradient catastrophe is

independent of the choice of the initial data and the exact form of the Hamiltonian per-

turbation. In particular, the solution for (4.41) with a generic " -independent smooth

initial data near a point of cusp catastrophe of the unperturbed hyperbolic system (4.42)

is described in the limit " ! 0 by a particular solution to the P2
I equation (Painlevé) [53].

In �gure 4.5, it is shown the pro�le for the solution U (X;T) entering in the asymptotics
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for the Riemann invariants and being the solution to the P2
I , that is

X = U T �
� 1
6

U 3 +
1
24

�
U 2

X + 2U UXX

�
+

1
240

UXXXX

�
: (4.47)

The function U satis�es also the KdV equation, in the form

UT + U UX +
1
12

UXXX = 0 : (4.48)

The critical behaviour for dispersive hydrodynamic systems has been studied in [52]

for scalar hyperbolic systems and generalised in [53] for (2 + 1)-dimensional hyperbolic

and elliptic systems. Similar results concerning the universal behaviour of solutions close

to critical points hold in generalised viscous systems. These have been explored in [72]

and expanded in [50] and [17].
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Chapter 5

Mean-�eld models

In this chapter, we describe the method of di � erential identities [40, 21] and its �rst ap-

plications to problems in the realm of Statistical Mechanics. The main underlying idea

is that the phase transitions typically emerging in thermodynamic systems can be de-

scribed in terms of nonlinear waves. In particular, we will see how the nonlinear PDEs

formalism provides the natural framework to obtain and describe the equations of state.

In section 5.1, after some preliminary observations, we will present the connection estab-

lished in [95] between the main features of thermodynamics and those of nonlinear PDEs

theory. Then the method of di � erential identities will be explicitly applied to treat the

Curie-Weiss model in section 5.2, studying the critical behaviour of the order parameter

with the formalism developed in chapter 4. We will see how the model is intrinsically

related to the Burgers' equation and how viscous shock waves emerge and can be treated

in this context.

The approach has been successfully applied to model mean-�eld theories in a broad

class of system [14, 66, 39, 89, 27], as we will see in section 5.3.

5.1 Di � erential identities and Statistical Mechanics

A novel approach to solve problems historically of competence of Statistical Mechan-

ics relies on the theory of nonlinear PDEs via the method of di � erential identities [95].

A general class of thermodynamic systems can be e� ectively described by the theory of

nonlinear integrable conservation laws. This approach leads to the description of �rst or-
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(a) (b)

Figure 5.1: (a) The real gas isotherm is shown for a temperature T < Tc with the solid line.
The points A and B de�ne the range in the volume V where the phase transition occurs,
for a constant value of the pressure P. The dashed line represents the metastable state
predicted by the van der Waals model. (b) Van der Waals curves as nonlinear wave so-
lution to a hyperbolic PDE. Beyond the critical temperature the solution is multi-valued
and the shock wave emerges.

der phase transitions in terms of shock waves, interpreted as solutions of nonlinear PDEs

encoding the whole information on the evolution of the system with respect to some ap-

propriate tunable parameters. In general, it establishes a correspondence between phase

transition phenomenology and shock wave dynamics.

The �rst observation in this direction is reported in [40], where a new perspective is

suggested to interpret the occurrence of phase transitions in the van der Waals model.

The latter represents the simplest mathematical model providing the description of a

phase transitions in a thermodynamic system. For a thermodynamic system in equilib-

rium, the energy balance equation takes the form

dE = T dS� P dV ; (5.1)

with E the total energy, T the temperature, P the pressure, V the volume and S the

entropy, determining the state of the system. The equation of state of the system is given

by [87]

P +
@F
@V

(V ;T) = 0 ; with F = E(S;V) � T S : (5.2)

The equation of state can be interpreted as a stationary point of the Gibbs potential as a
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function of V

� = F + P V : (5.3)

The system is in a state of stable equilibrium when the Gibbs potential has a minimum

for both P and T constant. The existence of points at which the second derivative of �

with respect to V vanish identi�es the phase transition.

The classical example of a phase transition is the change of state of matter from gas

to liquid. In �gure 5.1 (a), an isothermal curve below the critical temperature is shown.

The phase transition takes place between the points A and B. The shape of the solid

curve between A and B is given by the van der Waals model and it corresponds to a non-

observable metastable state. The correct behaviour of the isotherm is recovered via the

Maxwell principle or the equal areas rule. The constant value of the pressure at a phase

transition is that for which the area of the lobe AC is the same of that for the lobe CB, in

�gure 5.1 (a).

The description provided by the equal areas rule is similar to what we have seen in

section 4.2 in the context of the viscous shock wave. This is even more evident if we con-

sider the isothermal curves displayed in �gure 5.1 (b), after an interchange of the vari-

ables P and V and a re�ection. At the critical temperature Tc, the gradient catastrophe

occurs, then the solution becomes multi-valued. Hence, the behaviour of the isotherm

provided by the van der Waals model for V as a function of P can be interpreted as the

solution to a hyperbolic PDE [40]

@V
@T

= ' (V )
@V
@P

: (5.4)

In section 4.1, we have studied the solution to this equation for ' (V ) = � V , i.e. the Hopf

equation. The behaviour of the solution is such that after the gradient catastrophe de-

velops a discontinuity and then it exists in a weak sense only. The position of the shock

is obtained via the �tting procedure described in section 4.2, for which the chord cuts

o� two lobes of equal area. In particular, in [40], it is shown that the function V (T ;P)

is solution to an equation of the form (5.4) under the assumption that the entropy is a

separable function, i.e. it can be decomposed into the sum of a function of V and a func-

tion of T. Then the hyperbolic equation (5.4) is equivalent to the balance equation (5.1).
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Thermodynamics Nonlinear conservation laws

Isothermal / isobaric curves  ! Nonlinear waves

Critical point  ! Gradient catastrophe

Phase transition  ! Shock

Maxwell principle  ! Equal areas rule

Clayperon equation  ! Shock condition

Triple point  ! Shock con�uence

Universality  ! Universality

Table 5.1: Correspondence between the main features in the framework of thermody-
namics and nonlinear conservation laws [95].

The method of characteristics provides an implicit solution for the equation (5.4) and

corresponds to the equation of state of the thermodynamic system.

In [95], this framework is expanded and a precise correspondence between phase

transition phenomenology and shock waves dynamics is given (see table 5.1). In partic-

ular, it is emphasised the connection between universality in the context of the critical

behaviour of wave breaking (see section 4.4) and the notion of universality in thermo-

dynamics. The method of di � erential identities leads to determine the equation of state

via a direct integration of the Maxwell's relations with the above mentioned assumption

on the entropy, rather than using the ansatz on the asymptotic expansion of the Gibbs

potential or its scaling properties.

In [21], it is shown how the approach here described leads to construct the partition

function for a �nite size system of n interacting particles. Starting from a suitable equa-

tion of state de�ned outside the critical region, the associated partition function is well

de�ned in the whole space of thermodynamic variables and conceals the equal areas rule.

The model consists in a �uid of n particles of mass m

Hn =
nX

i =1

~pi
2

2m
�

1
2

nX

i;j =1

 (~ri ; ~rj ) + P v(~r1 ; : : : ; ~rn ) ; (5.5)

where ~pi is the momentum of the i -th particle,  (~ri ; ~rj ) a potential shaping the two-body

interaction, P >0 a mean-�eld coupling constant, and v(~r1; : : : ;~rn ) the minimum volume

for a con�guration f~r1 ; : : : ; ~rn g. The partition function for the canonical ensemble can be
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written as

Z =
Z

e� �H n dn ~pi dn ~ri =
Z 1

b
en(xv+t a=v+ln( v� b)) dv ; (5.6)

with t = �=n, x = � P �=n, given that the expectation value of the volume hvi satis�es the

van der Waals equation  

P +
a

hvi 2

! �
hvi � b

�
= nRT ; (5.7)

outside the critical region. Then the partition function will be solution to the Klein–

Gordon equation
@2Z
@x@t

= n2 aZ ; (5.8)

and hencehvi satis�es the nonlinear viscous conservation law

@hvi
@t

=
@
@x

 
a

hvi
+

1
n

@lnhvi
@t

!

: (5.9)

Here the underlying assumption is that, for any point in the space of parameters ( x; t),

di � erent con�gurations occupying the same volume v appear with the same probability

density and that the logarithm of the probability density is linear in x and t .

The general character of the assumptions considered above makes the approach so

developed applicable to a broad class of mean-�eld theories.

5.2 Di � erential identities for Curie-Weiss model

We apply the method of di � erential identities to one of the classical example of mean-

�eld theory, the Curie-Weiss model, as presented in [96]. We will see how the latter is

connected to with the Burgers' equation 1, that we have studied in section 4.2.

We will start considering the interaction that models the physical system with a �nite

number n of components and we will identify the order parameters in the thermody-

namic limit, in the limit n ! 1 . Then we will introduce suitable di � erential identities

satis�ed by the order parameters and valid for �nite n. We will de�ne a reasonable initial

datum and provide �nite n solutions. Taking the thermodynamic limit of the equations

n ! 1 , we will derive conservation laws in form of hyperbolic systems for the order pa-

1In [33], the interpretation of the mean-�eld theory in terms of the the Burgers' equation was explicitly
given.
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rameters. The solutions to this hyperbolic system will represent the equations of state for

the model. As we have mentioned above, the shock trajectories will identify the phase

diagrams for the order parameters of the system.

The Curie-Weiss model is introduced as the mean-�eld theory for the Ising model.

We consider the Hamiltonian for a system of n spins � i = � 1, with i 2 f1; : : : ;nginteracting

with external scalar �eld h 2 R and with a uniform coupling matrix Jij = J >0

Hn(f� g; J; h) = �
J
n

X

i<j

� i � j � h
X

i

� i = �
J

2n

X

i;j

� i � j � h
X

i

� i : (5.10)

The sum refers to a given spin con�guration f� gand the corresponding partition function

is obtained considering the Gibbs distribution

Zn(�;J;h) =
X

f� g

e� � H n(f� g;J ;h) ; (5.11)

with � = 1=Tand T the temperature. From the partition function, the free energy is

fn(�;J;h) = �
1
�

� n(�;J;h) ; � n(�;J;h) =
1
n

ln Zn(�;J;h) : (5.12)

In the following we will call � n the free energy of the system, even though the physical

one is fn. The order parameter of the theory is the magnetisation of the system m(� ),

determined in the thermodynamic limit n ! 1 for a speci�c con�guration

m(� ) = lim
n!1

mn(� ) = lim
n!1

1
n

nX

i =1

� i : (5.13)

The expected value is de�ned in terms of the partition function as

hmi =
1

Zn

X

f� g

m(� )e� � H n : (5.14)

We now look for the di � erential identities for �nite n [96].
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We introduce the variables

t = J � ; x = h� ; (5.15)

and the partition function written in terms of mn(� ) takes the form

Zn(x; t) =
X

f� g

en(xmn+ t
2 m2

n) : (5.16)

Therefore, the partition function satis�es the di � erential identity

@Zn
@t

=
1

2n
@2Zn

@x2
; (5.17)

i.e. the partition function for the Curie-Weiss model is a solution to the heat equation.

The initial condition is constructed by considering t = 0, hence turning o � the two-

body interaction

Zn(x;0) =
X

f� g

enxmn = (2 cosh(x))n : (5.18)

Given the expression (5.17), the free energy� n satis�es the following equation

@�n
@t

=
1
2

 
@�n
@x

! 2

+ �
@2� n

@x2
; � =

1
2n

: (5.19)

that resembles the Burgers' equation (4.7). The corresponding initial datum is given by

Zn(x;0)

� n(x;0) = ln2 + ln cosh( x) : (5.20)

The derivatives of the free energy are related to the statistical moments of the order

parameters. In particular, we have

@�n
@x

= hmni

@2� n

@x2
= n

�
hm2

ni � h mni 2
�

= var (mn) :
(5.21)

Di � erentiating with respect to x the equation (5.19), we get

@hmni
@t

= hmni
@hmni

@x
+ �

@2hmni
@x2

; (5.22)
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hence,hmni satis�es the Burgers' equation. The corresponding initial datum is

hmn(x;0)i = tanh( x) : (5.23)

Then, in the thermodynamic limit, we have for any point where

lim
n!1

@hmni
@x

< 1 =) lim
n!1

var (mn) = 0 : (5.24)

Therefore, there exists a suitable region in the plane (x; t) for which the viscous term

can be neglected in the thermodynamic limit and the order parameter satis�es the Hopf

equation
@hm(� )i

@t
= hm(� )i

@hm(� )i
@x

: (5.25)

Following the approach developed in section 4.1, we can consider the method of the

characteristics and the equation of state takes the form

x + hmi t = arctanh(hmi ) : (5.26)

As we have already seen, the solution to the Hopf equation, due to nonlinearity and in

presence of a decreasing initial datum, develops a gradient catastrophe at a �nite time 2,

as in equation (4.6). We have

@hmi
@x

=
1 � h mi 2

1 + t (hmi 2 � 1)
= 1 =) t =

1
1 � h mi 2 : (5.27)

The minimum time for which the gradient catastrophe arises gives the critical value for

the order parameter

hmi c = 0 : (5.28)

The critical point, where the phase transition occurs, is identi�ed by the coordinates

tc = 1 ; xc = 0 ; hmi c = 0 : (5.29)

2The variable that mimics the time in the hyperbolic equation is related to the temperature T, for a �xed
value for the coupling constant J. Thus, the gradient catastrophe occurs for a �nite value of the temperature.
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(a) (b)

Figure 5.2: (a) The solid lines represent the set � = 0 sector, splitting the parameter space
in two regions. The � > 0 region (in orange) corresponds to a multi-valued solution for
the magnetisation. In the � < 0 region, the solution is single-valued. (b) The shock jump
for the magnetisation is depicted for T ' J = 1.

We will now study the shock structure in the proximity to the critical point, as in

section 4.2. We introduce the function

G(x; t; � ) = � lncosh(� ) +
(x � � )2

2t
: (5.30)

The equation of state (5.26) is recovered for

@G
@�

�����
� =arctanh(x)

= 0 : (5.31)

The expansion � ! 0 in the (5.31) gives3

1
3

t � 3 � (t � 1)� � x = 0 : (5.32)

The discriminant � of the expression (5.32) identi�es the regions in the space of param-

eters for which the solution is either multi-valued ( � > 0) or single-valued ( � < 0), as

shown in �gure 5.2 (a). The con�uence of the two lines with equation � = 0 corresponds

to the critical point.

We call the solutions in the multi-valued region � 1(x; t); � 2(x; t); � 3(x; t). The order

3We consider the �rst term in (5.30) f (� ) = � ln cosh(� ). Its derivative is f 0(� ) = � tanh(� ) and its expan-
sion for � ! 0 gives f 0(� ) = � � + � 3=3 + O(� 5).
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parameter is given by

hmi = �
x � � � (x; t)

t
; (5.33)

where � � is the zero such that the function G(x; t; � � ) reaches the minimum value. The

position of the shock is determined by the equal area condition (4.18)

G(x; t; � i (x; t)) = G(x; t; � j (x; t)) ; � i , � j ; i; j 2 f1;2;3g: (5.34)

This is explicitly represented by the relation

Rij = t(� i + � j )
�
� 2

i + � 2
j � 6

�
+ 6(2x � � i � � j ) = 0 : (5.35)

Close to critical point, R12 = 0 is satis�ed for x; t 2 R and de�nes the trajectory of the

shock.

Finally, using the roots � 1; � 2; � 3 it is possible to evaluate the jump � m developed by

the order parameter and shown in �gure 5.2 (b)

� m =

8
>>>>><
>>>>>:

2 tanh
q

3
�
1 � T

J

�
0 � T < J

0 T � J ;
(5.36)

going back to the original coupling constants.

The method of di � erential identities represents then a suitable tool to describe the

main features emerging in the Curie-Weiss model, taken as an example of a mean-�eld

theory.

5.3 Viscous regularisation in mean-�eld theories

The approach described above has been successfully applied in the study of di� erent

statistical systems that admit a description via a mean-�eld theory. Starting from the

observation in [40], the theory of the van der Waals model with the method of di � erential

identities has been extended in [21], where the possibility to produce solutions at �nite

size is emphasised. In [66], a multi-parameter extension of the van der Waals theory is

given, introducing two more deformation parameters.
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The procedure is e� ective in tackling problems in di � erent �elds. In [14], the model

of information processing in biochemical reaction is studied. Here, the approach is in-

voked to provide explicit �nite-size solutions in the context of the biochemical reactions.

The system is modelled considering the underlying similarities among the collective be-

haviours in chemical kinetics (biology), spin models (statistical mechanics), and opera-

tional ampli�ers (cybernetics).

The extension to systems of higher dimension in terms of order parameters is pro-

posed in [39] with the study of liquid crystals, a liquid substance possessing a microstruc-

ture that is the result of their molecular anisotropy. Here, phase transitions are de�ned

in terms of the spatial orientation of the crystals. The order parameters are the so called

molecular directors. The emergence of a uniaxial phase (the directors point on average in

the same direction) and a biaxial phase (simultatneous orientation along two orthogonal

axis) is studied. The shock wave corresponding to phase transitions is a shock wave in

(2 + 1)-dimensions in the space of parameters.

In [89], the Potts model is considered, i.e. the extension of the Curie-Weiss model for

q > 2 admissible values for spins. The model with q = 3 is analysed with the introduc-

tion of two order parameters, whose behaviour is studied via the method of di � erential

identities.

More recently, in [27] the procedure has been applied to the theory of exponential

random networks. In particular, the so called p-star model is considered, for which the

partition function satis�es the heat hierarchy. The order parameter of the theory is de-

�ned to be the connectance, obtained as a solution to a nonlinear viscous PDE.

All these examples refer to mean-�eld theories, that can be modelled via the method

of di � erential identities. At the leading order of the order parameter of the theory we

always �nd the Hopf equation, whose solution after a suitable choice of the initial datum

develops a gradient catastrophe. The emerging shock wave undergoes then a viscous

regularisation and its trajectory in the space of parameters models the critical behaviour

of the system.

In the following, we will illustrate the Hermitian matrix ensemble and the symmetric

matrix ensemble. In the case of the Hermitian ensemble, the Hopf equation will emerge

again but with a regularisation mechanism consisting in the formation of a dispersive
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shock wave.
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Chapter 6

Hermitian Matrix Ensemble and

dispersive shocks

In this chapter, we analyse the Hermitian matrix ensemble H n, following the description

given by Adler and van Moerbeke in [5, 7, 116] using the tools described in section 2.1.

In section 6.1, we will construct the associated discrete integrable structure, the Toda

lattice, and observe the emergence of the KP hierarchy for the Toda � -function, propor-

tional to the partition function of the ensemble H n. Then we will focus on the study

of a particular reduction of the Toda lattice, following [22], called Volterra lattice. This

reduction represents the structure arising by selecting the even coupling constants only

from the Toda lattice, as we will see in section 6.2. In section 6.3, we will consider the

the thermodynamic limit and we will study how the evolution in di � erent even times

of the lattice �elds takes the form of the Hopf hierarchy. In section 6.4, we will restrict

our analysis to the M 6 model, for which the order parameter of the theory expressed in

terms of � -functions undergoes a phase transition in the space of coupling constants near

the critical point. Finally, we will see how the singularity can be resolved in terms of a

multi-dimensional dispersive shock of the order parameter, leading to the emergence of

the already observed chaotic behaviours [77, 108].
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Chapter 6. Hermitian Matrix Ensemble and dispersive shocks

6.1 Hermitian Matrix Ensemble

6.1.1 H n as a tangent space and partition function

According to the scheme described in section 2.2, we consider the non-compact symmet-

ric spaceM = G=K, with G = SL(n;C) and the involution map de�ned on K as

� (g) =
�
ḡ>

� � 1
; (6.1)

so that the subgroup K is given by

K = f g 2 SL(n;C) j � (g) = gg= f g 2 SL(n;C) j g� 1 = ḡ> g= SU(n): (6.2)

The symmetric spaceM can be expressed as

SL(n;C)= SU(n) � f gḡ> j g 2 SL(n;C)g

= f positive de�nite matrices with det = 1 g:
(6.3)

The involution map � induces the map � � in the corresponding algebra, for which � � (A) =

� Ā> and the subalgebra t is hence su(n), consisting of n � n traceless skew-Hermitian

matrices. The vector spacep tangent to M at the identity is given by the space of n � n

Hermitian matrices H n, where � � (A) = Ā> . The algebra decomposition is then given by

sl(n;C) = t � p= su(n) � H n : (6.4)

For any matrix M 2 H n, the diagonal real elements M ii and the real and imaginary part

of non-diagonal elements ReM ij ; Im M ij with 1 � i < j � n are free variables. The Haar

measure onM 2 H n reads

dM B
nY

i =1

dM ii

Y

1� i < j � n

d ReM ij d Im M ij : (6.5)

A maximal abelian subalgebra a � p = H n is given by the subset of diagonal matrices z =

diag (z1; z2; : : : ; zn), where zi with 1 � i � n are eigenvalues. In particular, since the

matrices are Hermitian, they can be diagonalised through the action of a unitary operator
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and any M 2 H n can be expressed as

M = U zU � 1 ; U 2 K = SU(n): (6.6)

The unitary operator can be expressed via the exponential map as U = eA, with A 2 t = su(n),

a traceless skew-Hermitian matrix ( Ā> = � A). So,A takes the form

A =
X

1 � k < l � n

(akl (ekl � elk ) + i bkl (ekl + elk )) ; (6.7)

with ekl is the n� n sparse matrix with ( k; l) = 1 the only non-zero element and akl ;bkl 2 R.

From (6.6) and considering a small A, we have

dM = d
�
eA ze� A

�
= d (z+ [A; z] + : : :) (6.8)

To evaluate the commutator [A; z], we �rst consider that both the matrices ekl � elk and i (ekl + elk )

are elements of t = su(n). In addition, with z 2 p and recalling the Lie bracket (2.12), we

have

[ekl � elk ; z] = (zl � zk) (ekl + elk ) 2 p= H n

[i (ekl + elk ) ; z] = i (zl � zk) (ekl � elk ) 2 p= H n :
(6.9)

The commutator [A; z] is thus given by

[A; z] = (zl � zk)
X

1 � k < l � n

akl (ekl + elk ) + i bkl (ekl � elk ) 2 p= H n : (6.10)

Including this result in (6.8) and referring to (6.5), we have

dM =
nY

i =1

dzi

Y

1 � k < l � n

d ((zl � zk)akl )d ((zl � zk)bkl )

= � 2
n(z)

nY

i =1

dzi

Y

1 � k < l � n

dakl dbkl ;

(6.11)

93



Chapter 6. Hermitian Matrix Ensemble and dispersive shocks

where � n(z) is the Vandermonde determinant, de�ned as

� n(z) =
Y

1 � j < k � n

�
zk � zj

�
: (6.12)

The � n(z)2 in (6.11) can be seen as the Jacobian determinant of the mapM ! (z; U)

and dM can be written in polar coordinates as

dM = � 2
n(z) dz1 dz2 : : : dzn dU ; U 2 SU(n): (6.13)

As we have seen in section 2.1,H n is associated with the probability (2.5)

P(M 2 dM ) = P(M 2 dM ) = cn e� tr V (M ) dM ; (6.14)

where the trace can be expressed as a function of the eigenvalues only

tr V (M ) =
nX

i =1

V (zi ) ; (6.15)

and we introduce the weight

� (dz) = e� V (z) dz : (6.16)

Since (6.13) depends on the trace, the angular part of the polar coordinates dU can be

integrated out. Considering an interval E � R, we de�ne

H n(E) = f M 2 H n with spectral points 2 Eg � H n ; (6.17)

and the probability associated with the ensemble is obtained by the following matrix

integral

P(M 2 H n(E)) =
Z

H n(E)
cn e� tr V (M ) dM =

R
En � 2(z)

Qn
k=1 � (dzk)

R
Rn � 2(z)

Qn
k=1 � (dzk)

; (6.18)

where cn is the contribution of the integration of the angular part.
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The free theory partition function for the ensemble is then given by 1

Z (2)
n (0) = cn

Z

Rn
� 2

n(z)
nY

k=1

� (dzk) = cn

Z

Rn
� 2

n(z)
nY

k=1

e� V (zk) dzk : (6.19)

The weights appearing in the previous expressions are suitable functions

� (z)dz = e� V (z)dz (6.20)

de�ned on an interval F = [A; B] 2 R for which the logarithmic derivative is given by a

rational polynomial function

�
1

� (z)
@z� (z) = @zV (z) =

g(z)
f (z)

; (6.21)

and with boundary conditions

lim
z! A;B

f (z) � (z)zk = 0 for all k � 0: (6.22)

Considering the t � deformation of the integral in (6.19), we have

Z (2)
n (t ) = cn

Z

Rn
� 2

n(z)
nY

k=1

� t (dzk) = cn

Z

Rn
� 2

n(z)
nY

k=1

e� V (zk)+
P 1

i =1 t i zi
k dzk ; (6.23)

where the elements in t = (t1; t2; : : :) play the role of coupling constants in the formal

series.

6.1.2 Toda lattice

Following the approach presented in section 2.3, the Toda lattice arises from a suitable

decomposition of the algebra of invertible matrices [9]

gl(1 ) = g+ � g� = b� s ; (6.24)

1The labeling of the partition function refers to the fact that the considered integral is a � � integral
for � = 2. The parameter � is associated with the power of the Vandermonde determinant in the integral.
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where the subalgebrass and b are

b = f lower triangular matrices with diagonal g

s = f skew-symmetric matrices g;
(6.25)

and the inner product hA; Bi = tr (AB) . Recalling (2.21) we haveg�
� � g?

� , that in this case

are given by

g?
+ = b? = f strictly lower triangular matrices g

g?
� = s? = f symmetric matrices g:

(6.26)

The induced Hamiltonian structure (2.22) on s? is represented by the equations for the

Hamiltonian vector �elds

� H (L) = P̂� [ r +H (L); L] ; r +H (L) 2 b; (6.27)

reminding that P̂� is the projection onto g?
+ along g?

� (see section 2.3). Setting

H (k)
0 = �

1
2

tr Lk+1

k + 1
; L 2 s? ; (6.28)

the equation (2.27) for the AKS theorem reads

@L
@tk

=
� 1

2

�
Lk

�

s
; L

�
= �

� 1
2

�
Lk

�

b
; L

�
: (6.29)

The matrix L is built from the dressing of the shift operator � = f� i;j � 1g1 � i;j < 1 as

L(t ) = S(t ) � S(t )� 1 ; (6.30)

with S belonging to the group G+ associated with the algebra g+, as stated in the end of

the section 2.3, being a lower triangular matrix with non zero diagonal.
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As anticipated in the end of section 2.4, we follow the approach described in [5, 116]

to determine the matrix L in terms of suitable � -functions, that are proportional to the

partition function (6.23) given in terms of the weight � t (z)

Z (2)
n (t ) = cn

Z

Rn
� 2

n(z)
nY

k=1

� t (dzk) : (6.31)

The weight � t (z) is considered to de�ne the following inner product in R

( f ; g )t =
Z

R
f (z)g(z) � t (z)dz with � t (z) = e

P 1
i =1 t i zi

� (z) = e� V (z)+
P 1

i =1 t i zi
: (6.32)

The corresponding moments matrix is thus given by

mn(t ) =
�
� ij (t )

�

0� i;j < n
=

��
zi ; zj

�

t

�

0� i;j < n
; (6.33)

that is symmetric being a Hänkel matrix, since � ij depends on i + j . Because of the form

of the weight, it is easy to see that the moments � ij (t ) satisfy

@�ij
@tk

= � i +k;j ; (6.34)

leading to the following, for the corresponding semi-in�nite moments matrix m1 (t )

@m1 (t )
@tk

= � k m1 (t ) ; (6.35)

where � is the shift matrix previously recalled. The moments matrix so constructed

admits a Borel decomposition in a lower and upper triangular matrices, as

m1 (t ) = S(t )� 1 S(t)>� 1 ; (6.36)

with S(t ) a lower triangular matrix with non zero diagonal.

In the following, we will state the theorem due to Adler and van Moerbeke concerning

the � -function for the Hermitian ensemble.
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Theorem 6.1.1 The� -functions de�ned as determinants of the moments matrix

� n(t ) B det mn(t ) =
1
n!

Z

Rn
� 2

n(z)
nY

k=1

� t (zk)dzk / Z (2)
n (t ) ; (6.37)

(i ) satisfy the equation in the KP hierarchy

�
sk+4(@̃) �

1
2

@t1
@tk+3

�
� n(t ) � � n(t ) = 0 ; k = 0;1;2; : : : ; (6.38)

(ii ) constitute the elements of the Toda latticeL(t ) = S(t ) � S(t )� 1

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

@t1
log � 1

� 0

�
� 0 � 2

� 2
1

� 1=2
0 0 0 � � �

�
� 0 � 2

� 2
1

� 1=2
@t1

log � 2
� 1

�
� 1 � 3

� 2
2

� 1=2
0 0

0
�

� 1 � 3

� 2
2

� 1=2
@t1

log � 3
� 2

�
� 2 � 4

� 2
3

� 1=2
0

0 0
�

� 2 � 4

� 2
3

� 1=2
@t1

log � 4
� 3

�
� 3 � 5

� 2
4

� 1=2

:::
::: ::: :::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(6.39)

for which the commuting equations in di� erent �ows are(6.29)

@L
@tk

=
� 1

2

�
Lk

�

s
; L

�
= �

� 1
2

�
Lk

�

b
; L

�
; (6.40)

(iii ) enter in the de�nition of the two classes of eigenvectors ofL

. p (t;z) = (pn(t;z))n� 0, satisfying

L(t )p(t;z) = zp(t;z) ; (6.41)

wherepn(t;z) are then-th degree polynomials inz, orthonormal with respect to
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the t-dependent inner product

(pk(t;z) ; pl (t;z))t = � kl ; (6.42)

which admit the representation, with� (z) =
�
1; z ; z2; : : :

� >

pn(t;z) = (S(t ) � (z))n = zn h� 1=2
n

� n

�
t � [z� 1]

�

� n(t )
; with hn =

� n+1(t )
� n(t )

; (6.43)

. q (t;z) = (qn(t;z))n� 0, satisfying

L(t )q(t;z) = zq(t;z) ; (6.44)

whereqn(t;z) are de�ned as the Cauchy transform ofpn(t;z)

qn(t;z) = z
Z

Rn

pn(t;z)
z � u

� t (u)du ; (6.45)

and admit the following representation

qn(t;z) =
�
S(t )>� 1 �

�
z� 1

��

n
= z� n h� 1=2

n

� n

�
t + [z� 1]

�

� n(t )
: (6.46)

To show (6.37) we write the Vandermonde determinant as

� n(z) =
Y

1 � i;j � n

�
zi � zj

�
= det

0
BBBBBBBBBBBBBBBBBBBBBB@

1 1 : : : 1

z1 z2 : : : zn
:::

:::
:::

zn� 1
1 zn� 1

2 zn� 1
n

1
CCCCCCCCCCCCCCCCCCCCCCA

= det
�
zi � 1

j

�

1 � i;j � n
: (6.47)

Using the de�nition of the determinant and the property (det(A))2 = det (A)det (A> ) =

det (AA)

� 2
n(z) =

X

� 2Sn

(� 1)�
nY

k=1

�
zk� 1

� (k)

� X

� 02Sn

(� 1)�
0

nY

l =1

�
z� 0(l )� 1

l

�

=
X

� 2Sn

det
�
zl +k� 2

� (k)

�

1 � k;l � n
;

(6.48)
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with � , � 0 permutations belonging to the symmetric group Sn with n! elements. In the

partition function Z (2)
n (t ) (6.31), the Vandermonde determinant appears in the n-fold

integral, that can be written as

Z

Rn
� 2

n(z)
nY

k=1

� t (zk) dzk =
X

� 2Sn

Z

Rn
det

�
zl +k� 2

� (k)

�

1 � k;l � n
� t

�
z� (k)

�
dz� (k)

=
X

� 2Sn

det

 Z

Rn
zl +k� 2

� (k) � t

�
z� (k)

�
dz� (k)

!

1 � k;l � n

= n! det mn(t ) = n! � n(t ) :

(6.49)

We now focus on property ( i ). The � -functions satisfy the bilinear Hirota identity (6.38),

coming from the relation

Resz= 1

n
� n

�
t � [z� 1]

�
� n

�
t0+ [z� 1]

�
e� (t � t0;z)

o
= 0 ; 8t; t 02 C; (6.50)

� (t;z) =
1X

n=1

tnzn ; (6.51)

consisting of all the evolution equations of the KP hierarchy. The functions � n

�
t � [z� 1]

�

are written in terms of the Schur polynomials

1X

j =0

sj (t )zj = e
P 1

n=1 tn zn
; (6.52)

and @̃=
�
@t1

; 1
2@t2

; 1
3@t3

; : : :
�

as

� n

�
t � [z� 1]

�
=

1X

n=0

sn(� @̃) � n(t )z� n : (6.53)

We consider the change of variables(t; t 0) ! (x;y)

8
>>>>><
>>>>>:

t = x � y

t0= x + y ;
(6.54)
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the Hirota derivation

s(@t ) f � g = s

 
@

@y1
;

@
@y2

; : : :

!

f (t + y) g(t � y)

������
y=0

; (6.55)

the Schur polynomials (6.52) and the expressions (6.53) to evaluate the residue (6.50)

0 = Resz= 1

n
e� (� 2y;z) � n

�
x � y � [z� 1]

�
� n

�
x + y + [z� 1]

�o

=
1

2�i

I

C
dz

0
BBBBB@

1X

i =0

zi si (� 2y)

1
CCCCCA

0
BBBBBB@

1X

j =0

z� j sj

�
@̃

�
1
CCCCCCAe

P
k yk @k � n(x) � � n(x)

=
1

2�i

I

C
dz

0
BBBBBB@

1X

i;j =0

zi � j si (� 2y)sj

�
@̃

�
1
CCCCCCAe

P
k yk @k � n(x) � � n(x)

=

0
BBBBBB@

1X

j =0

sj (� 2y)sj +1

�
@̃

�
1
CCCCCCAe

P
k yk @k � n(x) � � n(x) :

(6.56)

Considering s0(� 2y)s1

�
@̃

�
= @x1

and a Taylor expansion in y = (t � t0)=2, we have

0
BBBBBB@
@x1

+
1X

j =1

sj +1

�
@̃

� �
� 2yj + O

�
y2

��
1
CCCCCCA

0
BBBBB@1 +

1X

k=1

yk@xk
+ O

�
y2

�
1
CCCCCA� n(x) � � n(x) = 0

0
BBBBB@@x1

+
1X

k=1

yk

�
@xk

@x1
� 2sk+1

�
@̃

��
1
CCCCCA� n(x) � � n(x) + O

�
y2

�
= 0 :

(6.57)

Since @x1
� n(x) � � n(x) = 0 and the coe� cient of yk is trivial for k = 1;2, with x ! t we

obtain the Hirota bilinear representation of the KP hierarchy (6.38).

The �rst part of property ( ii ), i.e. the explicit form of L(t ) in terms of � -functions

follows from its de�nition via the decomposition (6.30). The second part of property ( ii )

is a consequence of (6.30). Indeed we have

L(t ) = S(t ) � S(t )� 1 = S(t ) � S(t )� 1 S(t)>� 1 S(t)>

= S(t ) � m1 (t )S(t )> = S(t )m1 (t ) � > S(t)>

= S(t )S(t )� 1 S(t)>� 1 � > S(t)> =
�
S(t ) � S(t )� 1

� >
= L(t )> ;

(6.58)

henceL(t ) is symmetric and thus tridiagonal.
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Conjugating (6.35) with S(t ), we have

0 = S(t )

 

� (t )k m1 (t ) �
@m1 (t )

@tk

!

S(t )>

= S(t ) � (t )k S(t)� 1 �
@

@tk

�
S(t )� 1 S(t)>� 1

�
S(t )>

= L(t )k +
@S
@tk

S(t)� 1 + S(t )>� 1 @S(t)>

@tk
:

(6.59)

Taking into account the projections ( )� , selecting the upper/lower triangular part of the

matrix respectively plus the diagonal and ( )0 the projection selecting only the diagonal,

we can construct the two projections constituting the algebra splitting (6.24)

a = (a)b + (a)s

8
>>>>><
>>>>>:

(a)b = 2 (a)� � (a)0

(a)s = (a)+ � (a)� :
(6.60)

From (6.60) and (6.59), we obtain the �ows equations for the Toda lattice (6.40).

Finally, we consider the property ( iii ). The Borel decomposition of m1 (t ) (6.36) in-

duces the orthonormality of the polinomials pn(z; t) = (S(t ) � (z))n

(pk(z; t) ; pk(z; t) )t
���
0 � k;l � n

=
Z

R
S(t) � (z) � (z)> S(t)> � t (z)dz

= S(t )m1 (t )S(t )> = S(t )S(t )� 1 S(t)>� 1 S(t)> = I :

(6.61)

In particular,
�
pn(z; t) ; zk

�

t
= 0 for 0 � k � n � 1. Introducing hn(t ) = (� n+1(t )=�n(t ))1=2, a

classical result [110] is that they admit the integral representation

hn(t )pn(z; t) =
1

n! � n(t )

Z

Rn
� 2

n(u)
nY

k=1

(z � uk) � t (uk)duk

=
zn

n! � n(t )

Z

Rn
� 2

n(u)
nY

k=1

�
1 �

uk

z

�
� t (uk)duk

=
zn

n! � n(t )

Z

Rn

X

� 2Sn

det
�
uk+l � 2

� (k)

�

1 � k;l � n

nY

k=1

�
1 �

uk

z

�
� t (uk)duk

=
zn

n! � n(t )

Z

Rn

X

� 2Sn

det

0
BBBBB@uk+l � 2

� (k) �
uk+l � 1

� (k)

z

1
CCCCCA

1 � k;l � n

� t (u� (k))du� (k)

=
zn

� n(t )
det

�
� i;j (t ) �

1
z

� i;j +1(t )
�

0 � i;j � n� 1
:

(6.62)
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The expression in the parenthesis is

� i;j (t ) �
1
z

� i;j +1(t ) =
Z

R
u i +j

�
1 �

u
z

�
� t (u)du

=
Z

R
u i +j elog(1� u

z ) � t (u)du

=
Z

R
u i +j e

P
k

�
tk � 1

k zk

�
uk

� (u)du

= � i;j

�
t � [z� 1]

�
;

(6.63)

hence (6.62) becomes

hn(t )pn(z; t) = zn
� n

�
t � [z� 1]

�

� n(t )
: (6.64)

An analogous computation can be done for qn(z; t) de�ned in (6.45), giving

hn(t )qn(z; t) = z� n
� n

�
t + [z� 1]

�

� n(t )
: (6.65)

Recalling � (z) =
�
1; z; z2; : : :

� >
and the shift operator �

� � (z) = z � (z) ; � > � (z� 1) = z � (z� 1) � ze1 ; (6.66)

with e1 = (1;0;0; : : :)> , the vectors

p(z; t) = S(t ) � (z) ; q(z; t) = S(t )>� 1 � (z� 1) (6.67)

are eigenvectors of the Toda lattice

L(t )p(z; t) = S(t ) � S(t )� 1 S(t) � (z) = S(t ) � � (z)

= zS(t ) � (z) = zp(z; t) ;
(6.68)

L(t )> q(z; t) = S(t )>� 1 � S(t )> S(t)>� 1 � (z� 1) = S(t )>� 1 � � (z� 1)

= zS(t )>� 1 � (z� 1) � zS(t )>� 1 e1 = zq(z; t) � ze1 :
(6.69)
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Since for (6.57) L(t ) = L(t )> we have

((L(t ) � z I )p(z; t))n = 0 ; n � 0

((L(t ) � z I )q(z; t))n = 0 ; n � 1:
(6.70)

So far we have reviewed the fundamental features and general aspects of the theory to

describe the H n. In the following, we will consider the description provided in [22],

de�ning a suitable reduction of the Toda lattice, corresponding to the selection of the

even times only in the coupling constants in the expression for the partition function.

6.2 From Toda lattice to Volterra lattice

We recall the form of the Toda lattice, associated to the study of the H n, introduced in

section 6.1.2

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

@t1
log � 1

� 0

�
� 0 � 2

� 2
1

� 1=2
0 0 0 � � �

�
� 0 � 2

� 2
1

� 1=2
@t1

log � 2
� 1

�
� 1 � 3

� 2
2

� 1=2
0 0

0
�

� 1 � 3

� 2
2

� 1=2
@t1

log � 3
� 2

�
� 2 � 4

� 2
3

� 1=2
0

0 0
�

� 2 � 4

� 2
3

� 1=2
@t1

log � 4
� 3

�
� 3 � 5

� 2
4

� 1=2

:::
::: ::: :::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (6.71)

where the �elds entering the matrix are explicitly reported in terms of � -functions of the

system. The matrix L(t ) representing the lattice satis�es the Lax equations (6.40)

@L
@tk

=
� 1

2

�
Lk

�

s
; L

�
: (6.72)

The matrix L(t ) is by construction symmetric and the projection s acts on a generic sym-

metric matrix a as

(a)s = (a)+ � (a)� ; (6.73)
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where the projections ( )� selects the upper / lower triangular part of the matrix respec-

tively, giving a skew-symmetric matrix.

The � -functions appearing within the elements of the Toda lattice are proportional to

the partition function for n � n Hermitian matrices (6.23)

Z (2)
n (t ) = cn

Z

Rn
� 2

n(z)
nY

k=1

� t (dzk) = cn

Z

Rn
� 2

n(z)
nY

k=1

e� 1
2 z2+

P 1
i =1 t i zi

k dzk ; (6.74)

as described in section 6.1.1. As we can see, in (6.74) the free theory is given by the

Gaussian Unitary Ensemble, obtained setting all the coupling constants t i to zero.

The � -function is de�ned as the determinant of the moments matrix

� n(t ) = det (mn(t )) ; (6.75)

built via the symmetric inner product (6.32), as

mn(t ) =
�
� ij (t )

�

0;� i;j � n
=

��
zi ; zj

�

t

�

0;� i;j � n
�
zi ; zj

�

t
=

Z

R
zi zj e� 1

2 z2+
P 1

i =1 t i zi
dz :

(6.76)

6.2.1 Initial condition with the GUE

We now consider the Lax matrix of the Toda lattice at the initial condition, with t = 0.

Looking at the structure of its elements and following a notation commonly used in the

literature, we distinguish between two di � erent �elds, an(t ) and bn(t ). The �elds an(t ) oc-

cupy the positions along the main diagonal and they are de�ned in terms of � -functions

as

an(t ) = @t1
log � n(t ) ; (6.77)

whereas the �elds bn(t ) appear in the �rst above and lower diagonals of L(t ) and they are

given by

bn(t ) =

 
� n+1(t ) � n� 1(t )

� n(t )2

! 1=2

: (6.78)

The expressions in (6.77) and (6.78) can be evaluated for t = 0, when the Hermitian

matrix ensemble reduces to the GUE. Following [91], the typical integrals appearing in
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the representation of � -functions for Gaussian ensembles at t = 0 can be given in terms

of a Selberg's integral. In particular,

Z

Rn
j� (x)j2


nY

k=1

e� ax2
k dxk = (2 � )n=2 (2a)� n(
 (n� 1)+1)=2

nY

k=1

� (1 + k 
 )
� (1 + 
 )

: (6.79)

In this, case 
 = 1 and a = 1=2

Z

Rn
� (x)2

nY

k=1

e� 1
2 x2

k dxk = (2 � )n=2
nY

k=1

� (1 + k): (6.80)

Recalling that the � -function is given in terms of the determinant of the moments matrix,

we have

� n(0) = (2 � )n=2
nY

k=1

k!
n!

; (6.81)

and we can compute bn(0) as

bn(0) =

 
� n+1(0) � n� 1(0)

� n(0)2

! 1=2

=
p

n: (6.82)

To evaluate the �elds an(0), we observe that if we enable the t1 interaction in the � -

functions, we have

� n(t1;0;0; : : :) = (2 � )n=2 e
nt21

2

nY

k=1

k!
n!

: (6.83)

Then we have

an(0) = @t1
log � n(t1;0;0; : : :)

���
t1=0

= 0 : (6.84)

The corresponding Lax matrix representation of the Toda lattice at t = 0 is entirely de-

scribed by the �elds bn(0), while the elements of the main diagonal vanish. In the next

section, we will see that if we set the �elds along the diagonal to zero also after the initial

time, we obtain the Volterra lattice.
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6.2.2 Discrete equations for the �elds in the Volterra lattice

The Volterra lattice emerges from Toda by letting all the elements of the main diagonal

be identically zero for t , 0. It was introduced in [78] and its Lax operator takes the form

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 b1(t ) 0 0 0 � � �

b1(t ) 0 b2(t ) 0 0

0 b2(t ) 0 b3(t ) 0

0 0 b3(t ) 0 b4(t )

:::
::: ::: :::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (6.85)

with t = (t2; t4; : : :). It is worth mentioning that the model involving odd weights di � ers

from the case here studied and it has been analysed in [55].

The Lax equations representing the Volterra lattice are the following

@L
@t2k

=
� 1
2

�
L2k

�

s
; L

�
; k = 1; 2; : : : : (6.86)

In terms of the �eld variables of the lattice the previous equation reads

@bn
@t2k

=
bn

2

�
bn+1

�
L2k� 1

�

n+1;n+2
� bn� 1

�
L2k� 1

�

n� 1;n

�
: (6.87)

Multiplying both sides of the equation by bn(t ) and introducing the notation

8
>>>>>><
>>>>>>:

Bn(t ) = b2
n(t )

V (2k)
n (t ) = bn(t )

�
L2k� 1(t )

�

n;n+1
;

(6.88)

the equation (6.87) becomes

@Bn
@t2k

= Bn

�
V (2k)

n+1 � V (2k)
n� 1

�
; k = 1; 2; : : : : (6.89)
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The �eld variable Bn(t ) is addressed as the order parameter of the system. In particu-

lar, the �elds V (2k)
n (t ) can be obtained as linear combinations of products involving the

variable Bn(t ). For the �rst three terms we have

V (2)
n = Bn

V (4)
n = V (2)

n

�
V (2)

n� 1 + V (2)
n + V (2)

n+1

�

V (6)
n = V (2)

n

�
V (2)

n� 1V (2)
n+1 + V (4)

n� 1 + V (4)
n + V (4)

n+1

�
:

(6.90)

Considering the theory of the orthogonal polynomials described in section 2.5, we have

that the �eld variables are essentially the coe � cients of the recursion relation (2.55).

This result is in this context established in [30, 26] and gives rise to the so called string

equation. We will refer to its expression given in [29], which in the case of even times

only takes the form

n = Bn �
1X

k=1

2k t2k V (2k)
n : (6.91)

In particular, the form of the operator in the second term of the right hand side of (6.91)

is produced imposing the string equation

[L; P] = 1 : (6.92)

In (6.92), the operator P is expressed as

P =
1
2

(L)s +
X

k� 1

k tk
�
L2k� 1

�

s
: (6.93)

In the following we will study the behaviour of the order parameter via the expres-

sion (6.91) selecting the model where t2k = 0 for k > 3, evaluating the thermodynamic

limit (for n ! 1 ). The order parameter will develop a singularity, that is regularised by

oscillations, observed in [77, 108] and interpreted as a chaotic behaviour. In [22], this

chaotic phase is instead interpreted as the occurrence of a propagating dispersive shock,

the regularisation mechanism described in 4.3.
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6.3 Thermodynamic limit and scalar hierarchy

We introduce a typical scale of the system N and the rescaled �eld variables

un =
Bn

N
; T2k = N k� 1 t2k ; W2k

n =
V (2k)

n

N k
: (6.94)

Then the expression (6.91) reads

n
N

= un �
1X

k=1

2k T2k W2k
n : (6.95)

We de�ne the interpolating function u(x) that will be the continuous �eld variable

8
>>>>>><
>>>>>>:

u(x) = un

u(x � " ) = un� 1

with x =
n
N

and " =
1
N

: (6.96)

As previously mentioned, we will focus on the case for which only the �rst three terms in

the corresponding coupling constants are on. In particular, the coupling constant T6 < 0,

so that the convergence of the integral in the partition function (6.74) is ensured. The

Taylor expansion for " ! 0 gives at the leading order

x = (1 � T2)u � 12T4 u2 � 60T6 u3 : (6.97)

We consider the continuum limit evaluated for the Volterra lattice equations (6.88) to

better understand the evolution of the solution to the recurrence relation u(x). It is worth

noting that u(x) is indeed an order parameter, since in the thermodynamic limit it can be

express in terms of the derivative of the “free energy” of the system (recalling that � is

essentially the partition function)

u(x) = @2
x ln � (x) : (6.98)

Using (6.94) in (6.88), we get the corresponding expression involving the interpolation

function u(x) and u(x � " ).
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Evaluating the Taylor series for " ! 0, the hierarchy can be written as

uT2k
=

1X

n=0

" n g(k)
n (u; @xu; : : : ; @n

xu) ; (6.99)

with g(k)
n di � erential polynomials of u. In the thermodynamic limit, with " ! 0 the

previous expression at the leading order gives us the Hopf hierarchy (also known as

Burgers-Hopf hierarchy [80])

uT2k
= ck uk ux ; with ck = (� 1)k

(2n + 1)!!
2n n!

: (6.100)

The solution to this equation is implicitly given by (6.97). From the latter, we can deter-

mine the condition for extremising the free energy

F[u] =
Z �

0
f0(u)dx ; � > 0

f0(u) = � xu +
1
2

(1 � T2)u2 � 4T4 u3 � 15T6 u4 :

(6.101)

The number of local minima and maxima of the free energy density depend on the sig-

nature of the discriminant � of (6.97), such as

8
>>>>>>>>><
>>>>>>>>>:

� > 0 two local minima and one local maximum ;

� = 0 boundary of the multi-valued region ;

� > 0 one minimum :

(6.102)

The phase transition occurs at the critical point, represented by the cusp point in the �g-

ure 6.1 (a). For a given choice ofT2, T4 in the plane (x;T6) the colored region represents

the condition for which (6.97) has three di � erent solutions, corresponding to the station-

ary points of the free energy density, displayed in (b) for two di � erent values of T6 as a

function of the �eld variable u.

All the �gures reported in this section are reproductions of those appeared in the

work [22].

The behaviour above described was expected from equation (6.100), since a generic

solution to the Hopf hierarchy develops a singularity for �nite value of the time vari-
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(a) (b)

Figure 6.1: In (a) the critical set � = 0 for T2 = 0, T4 = 0:1 in the plane (x;T6). The �lled
region corresponds to the case� > 0, where (6.97) admits multiple roots. In (b) the free
energy density is depicted as a function of the solution u for the points (0:22;� 0:0051)
and (0:22;� 0:0067) identi�ed in (a), in the region � > 0.

ables T2k, as we have seen in section 4.1. In particular, we will see how the singularity

is associated to the occurrence of a dispersive shock induced by dispersive corrections

to the Hopf hierarchy, as discussed in section 4.3. Approaching the gradient catastro-

phe, the dispersive corrections appearing in (6.99) induce oscillations manifesting the

emergence of a dispersive shock, as discussed in the following section.

6.4 Dispersive regularisation and possible scenarios in the mul-

tivalued region

In �gure 6.2 (a) � (e), it is shown the evolution of the solution u(x) to (6.97) and of un

evaluated via the recurrence relation (6.95) with k 2 f1;2;3g. Recalling that un = "Bn, the

recurrence relation becomes

n = Bn � 2T2 V (2)
n � 4T4 "V (4)

n � 6T6 " 2V (6)
n ; (6.103)

where V (2)
n ;V (4)

n ;V (6)
n are given by the relations (6.90).
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The initial constraint of the recurrence relation are given by the �elds

B0(t2; t4; t6) = 0 Bi (t2; t4; t6) =
� i +1(t2; t4; t6) � i � 1(t2; t4; t6)

� i (t2; t4; t6)2
; i = 1;2;3; (6.104)

with � 1 = 1 and � i as de�ned in (6.75) with only nonzero times ( t2; t4; t6).

In �gure 6.2 (a) the behaviour of the two overlapping solutions is represented for

values of T2;T4;T6 such that the order parameter is single valued (i.e. in the region � < 0

in �gure 6.1 (a)).

In �gure 6.2 (b), in proximity to the gradient catastrophe, we observe a deviation in

the evolution of the two functions and the pro�le representing the exact solution devel-

ops oscillations, that become evident in �gures 6.2 (c) � (e). Figure 6.1 (a) illustrates the

passage from the region � < 0 to � > 0.

The micro-oscillatory behaviour reveals the occurrence of a dispersive regularisation.

The ostensible chaotic phase, as it was interpreted in [77, 108], is then describable as the

onset of this mechanism of regularisation, for the presence of higher order corrections

to the leading order in (6.97). In [77], the phase transition is interpreted in terms of

the spectral distribution associated to the matrix model, extending to the M 6 theory the

approach laid out in [26] for the M 4 theory. In particular, the single valued phase is

connected to a spectral distribution with one single cut, whereas the multi-valued phase

corresponds to a spectral distribution with three cuts.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: The function u(x) and un are shown for constant values of T2;T4 and " = 0:01.
In (a) the behaviour of the function at a point in the � < 0 region is represented. In
(b) � = 0 in correspondence of the gradient catastrophe, from (c) to (e) it is shown the
solutions at the selected points of the region � > 0 in �gure 6.1.
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We now analyse the region � > 0, for which (6.97) admits three real and distinct

solutions. Here, di � erent scenarios are possible, depending on the ranges associated to

the coupling constants T2;T4;T6, obtained studying the sign of the coe � cients in (6.97).

As it was mentioned above, to ensure the converge of the integral to evaluate the � -

function, the time T6 must be strictly negative. We identify the possible three cases

(1 � 2T2) < 0; T4 > 0 scenario 1,

(1 � 2T2) > 0 scenario 2,

(1 � 2T2) < 0; T4 < 0 scenario 3.

(6.105)

Scenario 1 It is represented in �gures 6.2 (c) � (e) and it constitutes the same case anal-

ysed in [76, 77]. Sinceu(x) � 0, only non negative branches of the �eld variable represent

admissible states of the system. In particular, the three branches of the cubic, corre-

sponding to stationary points of the free energy density, are positive. We can observe a

complex structure that qualitatively looks like a dispersive shock wave, but displaying

an additional so called beating pattern [34].
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(a) (b)

(c) (d)

Figure 6.3: In (a), u(x) is reported for (1 � 2T2) > 0; T4 > 0. In (b), it is also represented un
for " = 0:01, where it is visible the propagation of the dispersive shock originated in the
region x < 0. The same is shown in (c) and (d) for the sector (1� 2T2) > 0; T4 < 0.

Scenario 2 The solution u(x) to (6.97) is shown in �gure 6.3 (a) and (c) for di � erent

values of T4, while the parameters T2 and T6 are kept constant. The function is three val-

ued, but one of the roots is negative and it does not lead to a stable state for the system.

Nonetheless, the existence of two other possible states, one stable and one unstable, leads

to the emergence of the dispersive shock, visible in �gure 6.3 (b) and (d). This is the case

even if in the region x > 0 there exists a non-negative branch of the cubic only: the gra-

dient catastrophe occurs for x < 0. In this case, the pro�le of the regulation mechanism

qualitatively resembles the one of the dispersive shock wave appearing in KdV with a

cubic wavebreaking [54] (the so called Bordeaux glass pro�le, see section 4.3).
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(a) (b)

Figure 6.4: In (a) u(x) is shown for (1 � 2T2) > 0; T4 > 0. In (b) it is also represented un
for " = 0:01. There is no dispersive shock in this case and the solution for u > 0 is single
valued.

Scenario 3 The solution u(x) is multivalued with only one positive branch for u(x) > 0,

as represented in �gure 6.4 (a), hence the system can be in one state only. In this case, the

two solutions shown in �gure 6.4 (b) overlap and there is no oscillation. Then one can

conclude that the regularisation mechanism given by the dispersive shock is associated

with the existence of accessible both stable and unstable states.

The emergence of a dispersive shock is a speci�c feature of matrix ensembles, whereas

viscous shocks are a speci�c feature of classical magnetic and �uid models. In section

5.3 we have observed the onset of a viscous shock in the order parameter for mean-�eld

statistical mechanical models. In this case, the underlying hydrodynamic system at the

leading order in the order parameter is given by the Hopf equation (e.g. equation (5.25)

for the Curie-Weiss model). In the context of the Hermitian matrix ensemble, at the

leading order in the thermodynamic limit, we encounter the Hopf hierarchy (6.100) in

even slow times T2k. This may suggest that from this point of view, the two systems are

speci�ed by the initial condition for the di � erential identity.

In the following chapter, we will show how ensembles of symmetric give rise to more

complex structures, i.e. hydrodynamic chains, compared to the scalar hierarchy emerg-

ing for the Hermitian matrix ensemble.
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Chapter 7

Symmetric Matrix Ensemble and

hydrodynamic chains

This chapter is dedicated to the study of the symmetric matrix ensemble Sn and a new as-

sociated hydrodynamic chain [23]. Firstly, in section 7.1, we will use the tools developed

in section 2.1 to describe the discrete integrable structure associated with the ensemble,

referred to as Pfa� lattice. We follow [11, 12, 116] and we will see how the KP-Pfa � hier-

archy emerges for the Pfa� an � -function, the latter being proportional to the partition

function for the ensemble Sn. In section 7.2, we will introduce a suitable notation for

the �eld variables of the Pfa � lattice with the aim of unveiling the existing underlying

double-chain structure.

Then, in section 7.3, we will describe the lattice emerging by selecting the even inter-

action terms only. This Pfa � reduction is realised with the aim of reducing the complexity

of the problem, passing from a double-chain structure to a single-chain one. In the ther-

modynamic limit at the leading order, the resultant system of equations for the evolution

in the �rst even time (i.e. t2) can be recast in the form of a hydrodynamic chain, as we

will discuss in section 7.4. Then we will investigate the integrability of the new in�nite

hydrodynamic chain, following the approach developed in section 3.2. In section 7.5, we

will conjecture that generalised hydrodynamic chains can be found at the leading order

of the continuum limit for higher even �ows as well, i.e. with respect to times t4; t6; : : :.

Finally, section 7.6 is devoted to the comparison between the hierarchies emerging at
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the leading order of the thermodynamic limit in the case of the Volterra lattice and the

corresponding even time reduction of the Pfa � lattice.

7.1 Symmetric Matrix Ensemble

7.1.1 Sn as a tangent space and partition function

Similarly to the Hermitian case treated in section 6.1.1, we follow the approach pre-

sented in section 2.2. We consider the non-compact symmetric spaceM = G=K, with G =

SL(n;R) and the involution map de�ned in K as

� (g) =
�
g>

� � 1
; (7.1)

so that the subgroup K is in this case given by

K = f g 2 SL(n;R) j � (g) = gg= f g 2 SL(n;R) j g� 1 = g> g= SO(n): (7.2)

The symmetric spaceM can be expressed as

SL(n;R)= SO(n) � f g g> j g 2 SL(n;R)g

= f positive de�nite matrices with det = 1 g:
(7.3)

The involution map � induces the map � � (A) = � A> , the subalgebra being t = so(n),

of n � n traceless skew-symmetric matrices. The tangent vector spacep to M at the iden-

tity is the space of n � n symmetric matrices Sn, for which � � (A) = A> . The algebra de-

composition is

sl(n;R) = t � p= so(n) � S n : (7.4)

The free variables in M 2 Sn are the real entries M ij for 1 � i � j � n and the Haar

measure onSn is

dM =
nY

1 � i � j � n

dM ij : (7.5)

Also in this case, a maximal abelian subalgebra a � p = Sn is given by the subset of

diagonal matrices z = diag (z1; z2; : : : ; zn), where zi with 1 � i � n are eigenvalues. Any
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symmetric matrix can be diagonalised through an orthogonal operator, so that

M = OzO� 1 ; O 2 K = SO(n): (7.6)

The orthogonal operator can be expressed via the exponential map asO = eA, with the

matrix A such that A 2 t = so(n), a traceless skew-symmetric matrix (A> = � A). Then A

takes the form

A =
X

1 � k < l � n

(akl (ekl � elk )) ; (7.7)

with the same formalism used in section 6.1.1. In this case, we have

[A; z] = (zl � zk)
X

1 � k � l � n

akl (ekl + elk ) 2 p= Sn ; (7.8)

so that the Haar measure onSn becomes

dM =
nY

i =1

dzi

Y

1 � k < l � n

d ((zl � zk)akl )

= j� n(z)j
nY

i =1

dzi

Y

1 � k < l � n

dakl :

(7.9)

Here, j� n(z)j is the Jacobian determinant of the map M ! (z; O) to the polar coordinates

dM = j� n(z)j dz1 dz2 : : : dzn dO; O 2 SO(n): (7.10)

Similarly to the Hermitian case, we have

P(M 2 Sn(E)) =
Z

H n(E)
cn e� tr V (M ) dM =

R
En j� (z)j

Qn
k=1 � (dzk)

R
Rn j� (z)j

Qn
k=1 � (dzk)

; (7.11)

and the free theory partition function is de�ned as

Z (1)
n (0) = cn

Z

Rn
j� n(z)j

nY

k=1

� (dzk) = cn

Z

Rn
j� n(z)j

nY

k=1

e� V (zk) dzk : (7.12)
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Deforming the potential we obtain

Z (1)
n (t ) = cn

Z

Rn
j� n(z)j

nY

k=1

� t (dzk) = cn

Z

Rn
j� n(z)j

nY

k=1

e� V (zk)+
P 1

i =1 t i zi
k dzk : (7.13)

7.1.2 Pfa� lattice

As in the case of Toda, the Pfa� lattice emerges from a suitable decomposition of the

algebra go(1 ) of invertible matrices 1(see section 2.3). It is seen as composed of 2� 2

blocks [9] and then it admits the natural decomposition

go(1 ) = d� � d0 � d+ = d� � d�
0 � d+

0 � d+ ; (7.14)

where d0 has 2� 2 blocks along the diagonal and zeros elsewhere,d� are the subalgebras of

upper/lower triangular matrices with 2 � 2 zero blocks along the diagonal. In addition, d0

can be further decomposed into

d�
0 = f all 2 � 2 blocks 2 d0 are proportional to Identity g

d+
0 = f all 2 � 2 blocks 2 d0 are tracelessg:

(7.15)

We introduce the skew-symmetric semi-in�nite matrix J

J =

0 1 0 0 0 0 � � �

� 1 0 0 0 0 0

0 0 0 1 0 0

0 0 � 1 0 0 0

0 0 0 0 0 1

0 0 0 0 � 1 0

:::
:::

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (7.16)

and the associated involution � : go(1 ) ! go(1 )

� : a 7! � (a) = J a> J : (7.17)

1In [37] go(1 ) is addressed as the algebra behind the so called BKP hierarchy for the corresponding � -
functions (here called Pfa � -KP), as well asgl(1 ) is the one for the KP hierarchy in the associated � -functions.
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To apply the AKS theorem, we consider the splitting

go(1 ) = g+ � g� = t � n ; (7.18)

where the subalgebrast and n are

t = d� � d�
0 = f lower triangular matrices with 2 � 2 diagonal blocks / Id g

n = d+
0 � d+ = f a 2 go(1 ) j a = J a> Jg= sp(1 ) ;

(7.19)

and the inner product hA; Bi = tr (AB) . Setting

H (k)
0 = �

tr Lk+1

k + 1
; (7.20)

the equation (2.27) for the AKS theorem reads

@L
@tk

= �
h �

Lk
�

t
; L

i
=

h�
Lk

�

n
; L

i
: (7.21)

The matrix L is, in this case, built from the dressing of the shift operator � = f� i;j � 1g1 � i;j < 1

as

L(t ) = Q(t ) � Q(t )� 1 ; (7.22)

with the matrix Q 2 G+, belonging to the group associated with the subalgebra g+, thus

being a lower triangular matrix with the 2 � 2 blocks along the diagonal proportional to

the identity. The projectors entering in (7.21) are explicitly given as follows. Given a 2

gl(1 )

a = (a)� + (a)0 + (a)+

= (a)t + (a)n

=
� �

(a)� � J (a)>+ J
�

+
1
2

�
(a)0 � J(a)>0 J

� �
+

� �
(a)+ + J (a)>+ J

�
+

1
2

�
(a)0 + J(a)>0 J

� �
:

(7.23)
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We now will follow the approach shown in [11, 12, 116] to express the Pfa � lattice in

terms of the corresponding Pfa � an � -functions. As for the Toda lattice, the � -function is

proportional to the partition function for the symmetric ensemble determined in (7.13)

Z (1)
n (t ) = cn

Z

Rn
j� n(z)j

nY

k=1

� t (dzk) : (7.24)

Let us introduce the inner product on the skew-symmetric weight � t (y;z) = � � t (z;y)

hf ; g i t =
Z Z

R2
f (y)g(z) � t (y;z)dy dz

=
Z Z

R2
f (y)g(z)" (y � z)e� V (y)� V (z)+

P 1
i =1 t i (yi +zi ) dy dz ;

(7.25)

where " (x) = sgn(x) and " (0) = 0. The moments matrix is, in this case, given by

mn(t ) =
�
� ij (t )

�

0� i;j < n
=

�
hyi ; zj i t

�

0� i;j < n
; (7.26)

that is skew-symmetric. Due to the form of the inner product, for the moments � ij (t ) we

have
@�ij
@tk

= � i +k;j + � i;j +k : (7.27)

For the corresponding semi-in�nite moments matrix m1 (t ) this leads to

@m1 (t )
@tk

= � k m1 (t ) + m1 (t ) � > k ; (7.28)

where � is the shift matrix mentioned above. The moments matrix so constructed ad-

mits a unique decomposition in terms of the inverse of the matrix of the aforementioned

group G+ and the semi-in�nite matrix J, as

m1 (t ) = Q(t )� 1 J Q(t )>� 1 ; (7.29)
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with the matrix Q(t ) of the form

Q(t) =

::: 0 0 0 0 : : :

Q2n;2n 0 0 0 : : :

0 Q2n;2n 0 0 : : :

� � Q2n+2;2n+2 0 : : :

� � 0 Q2n+2;2n+2 : : :

:::
:::

:::
:::

:::

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (7.30)

We can now state the theorem by Adler and van Moerbeke2.

Theorem 7.1.1 The� -functions de�ned as Pfa� an of the moments matrix

� 2n(t ) B pf m2n(t ) = (det m2n(t ))1=2 / Z (1)
2n (t ) ; (7.31)

(i ) satisfy the equation in the Pfa� -KP hierarchy

�
sk+4(@̃) �

1
2

@t1
@tk+3

�
� 2n(t ) � � 2n(t ) = sk(@̃) � 2n+2(t ) � � 2n� 2(t ) ; k = 0;1;2; : : : ;

(7.32)

(ii ) constitute the elements of the Pfa� lattice L(t ) = Q(t ) � Q(t )� 1

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 : : :

� @t1
log � 2

 
� 4 � 0

� 2
2

! 1=2

0 0 0
:::

� � � @t1
log � 2 1 0 0

:::

� � � @t1
log � 4

 
� 6 � 2

� 2
4

! 1=2

0
:::

� � � � � @t1
log � 4 1

:::

:::
:::

:::
:::

:::
:::

:::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(7.33)

2The theorem here presented is in the form reported in [116], where the results of several works are
collected (see e.g. [11, 12, 6]).
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for which the commuting equations in di� erent �ows are(7.21)

@L
@tk

= �
h �

Lk
�

t
; L

i
=

h�
Lk

�

n
; L

i
; (7.34)

(iii ) enter in the de�nition of the class of eigenvectors ofL q(t;z) = (qn(t;z))n� 0, satisfying

L(t )q(t;z) = zq(t;z) : (7.35)

Here, qn(t;z) are then-th degree polynomials inz, skew-orthonormal with respect to

the t-dependent inner product

hqi (t;z) ; qj (t;z)i t = Jij : (7.36)

They admit the representation(qn(z; t))n � 0 = Q(t) � (z), with � (z) =
�
1; z ; z2; : : :

� >
, and

q2n(t;z) = z2n h� 1=2
2n

� 2n

�
t � [z� 1]

�

� 2n(t )
; with h2n =

� 2n+2(t )
� 2n(t )

q2n+1(t;z) = z2n h� 1=2
2n

1
� 2n(t )

 

z+
@

@t1

!

� 2n

�
t � [z� 1]

�
:

(7.37)

In order to prove the formula (7.31), we consider the integral in the de�nition of the

partition function Z (1)
n (t ) in (7.13). It involves the Vandermonde determinant (see (6.47))

Z

R2n
j� 2n(z)j

2nY

k=1

� t (zk)dzk =

= (2n)!
Z

�1 < z1 < z2 < ::: < z2n < 1
det

�
zi

j +1

�

0 � i;j � 2n� 1

2nY

k=1

� t (zk)dzk ;

(7.38)

where we impose an ordering of the eigenvalues to remove the absolute value of the de-

terminant and, as a consequence of this, a factorial factor appears in front of the integral.
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We consider a shift of the indices i and j

(2n)!
Z

�1 < z1 < z2 < ::: < zn < 1
det

�
zi

j +1

�

0 � i;j � 2n� 1

2nY

k=1

� t (zk)dzk =

= (2n)!
Z

�1 < z1 < z2 < ::: < zn < 1
det

�
zi � 1

j

�

1 � i;j � 2n

2nY

k=1

� t (zk)dzk

= (2n)!
Z

�1 < z1 < z2 < ::: < zn < 1
det

�
zi � 1

j � t (zj )
�

1 � i;j � 2n

2nY

k=1

dzk :

(7.39)

Given the ordering of the eigenvalues and the fact that z1 appears only in the �rst column

of the matrix
�
zi � 1

j � t (zj )
�

1 � i;j � 2n
, this can be integrated for each element as

Fi (z2) =
Z z2

�1
� t (z1)zi � 1

1 dz1 ; 8i = 1; : : : ;2n (7.40)

and i -th element of the column substituted with Fi (z2)

det
�
zi � 1

j � t (zj )
�

1 � i;j � 2n
=

� t (z1) � t (z2) : : : � t (z2n)

z1 � t (z1) z2 � t (z2) : : : z2n � t (z2n)

:::
:::

:::

z2n� 1
1 � t (z1) z2n� 1

2 � t (z2) : : : z2n� 1
2n � t (z2n)

�������������������������

�������������������������

(Fi (z2))1� i � 2n

:

(7.41)

After the substitution, the eigenvalue z2 appears in the �rst two columns. We can reiter-

ate the procedure for z3, substituting the third column with

Fi (z4) =
Z z4

�1
� t (z3)zi � 1

3 dz3 ; 8i = 1; : : : ;2n; (7.42)

and then subtracting Fi (z2)

Fi (z4) � Fi (z2) =
Z z4

z2

� t (z)zi � 1 dz ; 8i = 1; : : : ;2n: (7.43)

In this way, all the variables z1; z3; z5; : : : can be integrated out and the expression in the
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last row of (7.39) becomes

(2n)!
Z

�1 < z2 < z4 < ::: < z2n < 1

nY

k=1

� t (z2k)dz2k

det
�
Fi (z2) ; zi

2 ; Fi (z4) � Fi (z2) ; : : : ; Fi (z2n) � Fi (z2n� 2) ; zi
2n

�

0 � i � 2n� 1
:

(7.44)

We introduce the function

Gi (z) = F0
i (z) =

@
@z

Z z

�1
xi � t (x)dx = zi � t (z) ; (7.45)

and using the invariance of the determinant with respect to the addition and subtraction

of columns, the expression in (7.44) takes the form

(2n)!
Z

�1 < z2 < z4 < ::: < z2n < 1
det

�
Fi (z2) ; Gi (z2) ; : : : ; Fi (z2n) ; Gi (z2n)

�

0 � i � 2n� 1

nY

k=1

dz2k =

=
(2n)!

n!

Z

Rn
det

�
Fi (z1) ; Gi (z1) ; : : : ; Fi (zn) ; Gi (zn)

�

0 � i � 2n� 1

nY

k=1

dzk ;

(7.46)

where in the last step the ordering of eigenvalues is removed invoking the symmetry of

the expression and this last can be seen as a sum overn terms of the kind � ij

� ij =
Z

R

�
Fi (z)Gj (z) � Fj (z)Gi (z)

�
dz

=
Z

�1 < y < x < 1

�
Gi (y)Gj (x) � Gj (y)Gi (x)

�
dxdy

=
1
2

Z

R2
Gi (x)Gj (y)" (x � y)dxdy ; with " (z) =

8
>>>>>>>><
>>>>>>>>:

1 z > 0

� 1 z < 0

0 z = 0 ;

(7.47)

using (7.45).
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Thus, the (7.46) brings to

(2n)!
n!

X

� 2S2n

(� 1)�
2n� 1Y

k=0

� � (k) � (k+1) =

=
(2n)!
2n n!

X

� 2S2n

(� 1)�
2n� 1Y

k=0

 Z

R2
x� (k) y� (k+1)e

P
i t i (xi +yi ) " (x � y) � (x) � (y)dxdy

!

= (2n)!pf m2n(t ) = (2n)! � 2n(t ) ;

(7.48)

where we recognize the Pfa� an � -function, that in the case of a matrix with an even

number of rows and columns is given by

pf m2n(t ) = (det m2n(t ))1=2 : (7.49)

The Pfa� an � -functions satisfy the bilinear identity [12, 6]

Resz= 1

n
� 2n

�
t � [z� 1]

�
� 2m+2

�
t0+ [z� 1]

�
e� (t � t0;z) z2n� 2m� 2

o

+ Resz=0

n
� 2n+2 (t � [z]) � 2m (t0+ [z]) e� (t0� t;z) z2n� 2m

o
= 0 ; 8t; t 02 C;

(7.50)

with � (t;z) de�ned in (6.51). Considering the change of variables ( t; t 0) ! (x;y) as in (6.54),

the Schur polynomials (6.52) and the Taylor expansion in y = (t � t0)=2, we obtain

1
2� i

I

z= 1
e�

P
k 2yk zk

� 2n

�
x � y � [z� 1]

�
� 2m+2

�
x + y + [z� 1]

�
z2n� 2m� 2 dz

+
1

2� i

I

z=0
e

P
k 2yk zk

� 2n+2 (x � y � [z]) � 2m (x + y + [z]) z2n� 2m dz =

=
1

2� i

I

z= 1

1X

j =0

zj sj (� 2y) e
P

k � yk @k

1X

k=0

z� k sk(� @̃)� 2n(x) � � 2m+2(x)z2n� 2m� 2 dz

+
1

2� i

I

z=0

1X

j =0

z� j sj (2y) e
P

k � yk @k

1X

k=0

zk sk(@̃) � 2n+2(x) � � 2m(x)z2n� 2m dz

=
X

j � k+2n� 2m=1

sj (� 2y) e
P

i � yi @i sk(� @̃) � 2n(x) � � 2m+2(x)

+
X

k� j +2n� 2m=� 1

sj (2y) e
P

i � yi @i sk(@̃) � 2n+2(x) � � 2m(x)

= : : : + yk

�� 1
2

@x1
@xk

� sk+1(@̃)
�
� 2n(x) � � 2n(x) + sk� 3(@̃) � 2n+2(x) � � 2n� 2(x)

�
+ : : : :

(7.51)

With x ! t , imposing that the coe� cients of yk are zero, we identify the Pfa � KP hier-
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achy (7.32).

The procedure to build the Pfa � lattice from the matrix Q(t ) described at the be-

ginning of the section allows us to write the elements in the diagonal and in the above

diagonal showed in (7.33) in terms of the sequence of Pfa� an � -functions explicitly. The

lower triangular part is composed of terms involving combinations of Schur polynomials

whose form is not speci�ed. In what follows, we will focus on a speci�c reduction of the

Pfa� lattice, obtained selecting the even times only in the weight of the inner product,

mimicking the way in which Volterra is obtained from Toda. A study of the equations

of the �ows obtained for the �rst even times in the reduction shows that the above men-

tioned expressions given in [6] for the �elds occupying the �rst lower diagonal are valid

only up to a truncated �nite lattice for n = 4 and cannot be generalised3.

For the last part of the property ( ii ), we consider the equations for the �ows of the

moments matrix (7.28) in conjugation with the matrix Q(t )

0 = Q(t )

 

� k m1 (t ) + m1 (t ) � > k �
@m1 (t )

@tk

!

Q(t )>

=
�
Q(t ) � k Q(t)� 1

�
J �

�
J Q(t )>� 1 � > k Q(t)> J

�
J+

@Q(t)
@tk

Q(t)� 1 J�

 

J Q(t )� 1> @Q(t)>

@tk
J

!

J

=

 

L(t )k +
@Q(t)
@tk

Q(t)� 1
!

� J

 

L(t )k +
@Q(t)
@tk

Q(t)� 1
! >

J ;

(7.52)

where we use the de�nition of the Pfa � lattice and the property J2 = � I . Evaluating the

projections ( )0 and ( )� , corresponding to selecting 2 � 2 blocks along the diagonal and

upper/lower triangular part with zero elements in the 2 � 2 blocks along the diagonal

respectively, we obtain the equations for the commuting vector �elds (7.34).

Finally, for ( iii ), from the skew-Borel decomposition, we get the skew-orthonormality

of the polynomials qn(z; t)

hqk(z; t) ; ql (z; t) i t

���
k;l � 0

= Q(t)
�
hyk ; zl i t

�

k;l � 0
Q(t)> = Q(t)m1 (t )Q(t )> = J : (7.53)

3Whenever we have explored an aspect of the lattices here reported, we have of course considered a
truncated version of the lattices, for which the boundary e � ects have been neglected.
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Then, using the �rst of (6.66) and the de�nition of the Pfa � lattice, we get

L(t )q(z; t) = Q(t ) � Q(t )� 1 Q(t) � (z) = Q(t ) � � (z)

= zQ(t ) � (z) = zq(z; t) :
(7.54)

Hence, the skew-orthogonal polynomials are eigenvectors of the Pfa� lattice.

7.2 Lattice equations in the �rst two �ows for the Pfa � hierar-

chy

In the following, we will introduce a suitable notation for the �elds constituting the Pfa �

lattice. This is meant to highlight how certain �elds evolve similarly, and will be helpful

later on in clarifying the underlying double chain structure for the �eld variables.

We start by recalling the form of the Pfa � lattice introduced in section 7.1.2

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 : : :

� @t1
log � 2

 
� 4 � 0

� 2
2

! 1=2

0 0 0
:::

� � � @t1
log � 2 1 0 0

:::

� � � @t1
log � 4

 
� 6 � 2

� 2
4

! 1=2

0
:::

� � � � � @t1
log � 4 1

:::

:::
::: ::: ::: ::: ::: :::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (7.55)

with the �elds of the main diagonal and the upper above diagonal explicitly given in

terms of � -functions of the system. The matrix L(t ) satis�es the Lax equations (7.34)

@L
@tk

= �
h �

Lk
�

t
; L

i
: (7.56)

From (7.23) the action of the projection labelled by t in (7.56) on a 2 � 2 blocks matrix a

(a)t =
�
(a)� � J (a)>+ J

�
+

1
2

�
(a)0 � J(a)>0 J

�
; (7.57)
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where J is the skew-symmetric matrix (7.16), ( ) � is the projection selecting the up-

per/lower triangular part without the 2 � 2 blocks along the main diagonal and ( ) 0 selects

the 2 � 2 blocks along the main diagonal.

The � -functions are proportional to the partition function describing Sn for 2n � 2n

symmetric matrices

Z (1)
2n (t ) = c2n

Z

R2n
j� 2n(z)j

2nY

k=1

� t (dzk) = c2n

Z

R2n
j� 2n(z)j

2nY

k=1

e� 1
2 z2

k+
P 1

i =1 t i z
i
k dzk ; (7.58)

as discussed in section 7.1.1, see in particular equation (7.13). Setting to zero the cou-

pling constants t i in (7.58), we �nd the free theory given by the Gaussian Orthogonal

Ensemble. We recall that the � -function is de�ned as the Pfa � an of the moments matrix

� 2n(t ) = pf (m2n(t )) = (det (m2n(t )))1=2

� 2n(t ) =
1

2n n!

X

� 2S2n

(� 1)�
2n� 1Y

k=0

 Z

R2
x� (k) y� (k+1)e� 1

2 (x2+y2)+
P

i t i (xi +yi ) " (x � y)dxdy

!

:
(7.59)

We observe that Lax equations for the Pfa� lattice (7.56) can be recast in the form of a

two-component in�nite chain. We introduce the following notation for the entries of the

lattice

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 0 : : :

w� 1
1 v0

1 w0
1 0 0 0 0 0 0 : : :

v� 1
1 w1

1 � v0
1 1 0 0 0 0 0 : : :

w� 2
1 v1

1 w� 1
2 v0

2 w0
2 0 0 0 0 : : :

v� 2
1 w2

1 v� 1
2 w1

2 � v0
2 1 0 0 0 : : :

w� 3
1 v2

1 w� 2
2 v1

2 w� 1
3 v0

3 w0
3 0 0 : : :

v� 3
1 w3

1 v� 2
2 w2

2 v� 1
3 w1

3 � v0
3 1 0 : : :

:::
::: ::: ::: ::: ::: ::: ::: ::: :::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (7.60)

We distinguish between the entries in the odd and even diagonals of the lattice, respec-

tively wk
n and vk

n, with k 2 Z and n 2 N . The �rst upper diagonal is the highest non-zero

odd diagonal of the lattice, and the non-constant �elds belonging to it are named w0
n.

132



Lattice equations in the �rst two �ows for the Pfa� hierarchy

The main diagonal is populated by the �elds v0
n . For the �elds appearing in the lower

triangular part of the lattice, the upper index in absolute value identi�es the diagonal to

which the �eld belongs, and negative and positive values refer to odd and even positions

of the diagonal respectively. Hence, the �elds wk
n occupy the odd positions of the (2 jkj� 1)-

th below diagonal for k < 0 and the even positions for k > 0. The same is valid for the

�elds vk
n in the (2 jkj)-th below diagonal. From (7.56), we can investigate the evolution

for the �elds vk
n and wk

n with respect to the di � erent times. With the chosen notation the

structure characterising the matrix L in 2 � 2 blocks is evident

L(t ) =

0 1 0 0 0 0 0 0 0 : : :

w� 1
1 v0

1 w0
1 0 0 0 0 0 0 : : :

v� 1
1 w1

1 � v0
1 1 0 0 0 0 0 : : :

w� 2
1 v1

1 w� 1
2 v0

2 w0
2 0 0 0 0 : : :

v� 2
1 w2

1 v� 1
2 w1

2 � v0
2 1 0 0 0 : : :

w� 3
1 v2

1 w� 2
2 v1

2 w� 1
3 v0

3 w0
3 0 0 : : :

v� 3
1 w3

1 v� 2
2 w2

2 v� 1
3 w1

3 � v0
3 1 0 : : :

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

We can rewrite this in terms of 2 � 2 blocks bij as follows

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

::: ::: 0 0 0 0 � � �

::: ::: 0 0 0 � � �

� � � b1j � 1 b0j � 1 0 0 � � �

� � � bi j � � � b1j b0j 0 � � �

� � � b1j +1 b0j +1 0

::: :::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (7.61)

where the blocks are given in terms of the previously introduced �elds vk
n and wk

n, as

bi j =

0
BBBBBBBBB@

w� i
i � j +1 v i � 1

i � j +1

v� i
i � j +1 wi

i � j +1

1
CCCCCCCCCA

; b0j =

0
BBBBBBBBB@

w0
j 0

v0
j 1

1
CCCCCCCCCA

; with j � i; i � 0: (7.62)
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In the following, we will display the equations for the �rst two �ows ( t1; t2) in terms

of the �elds vk
n and wk

n. We start by considering the equations for the t1-�ow in the

�elds vk
n

@t1
vk

n =
1
2

�
v0

n� 1 + v0
n � v0

n� k� 1 � v0
� k+n

�
vk

n + wk� 1
n � w0

nw� (k+1)
n+1

� w� 1
n w� k

n � w0
n� 1w� (k� 1)

n� 1 ; k < � 1

@t1
v� 1

n =
1
2

�
v0

n� 1 � v0
n+1

�
v� 1

n + w� 2
n � w0

n � w� 1
n w1

n � w0
n� 1w2

n� 1

@t1
v0

n = w0
nw1

n

@t1
v1

n =
1
2

�
v0

n+1 � v0
n� 1

�
v1

n � w� 2
n + w0

n + w� 1
n+1w1

n + w0
n+1w2

n

@t1
vk

n =
1
2

�
v0

k+n + v0
k+n� 1 � v0

n � v0
n� 1

�
vk

n + w0
n+k� 1wk� 1

n + w� 1
n+kwk

n

+ w0
n+kwk+1

n � w� (k+1)
n ; k > 1:

The equations for the �elds wk
n in the time t1 are

@t1
wk

n =
1
2

�
v0

n� k� 1 + v0
n� k� 2 + v0

n + v0
n� 1

�
wk

n + w0
n� k� 2vk+2

n � w0
nv� (k+2)

n+1

+ w� 1
n� k� 1vk+1

n � w� 1
n v� (k+1)

n + w0
n� k� 1vk

n � w0
n� 1v� k

n� 1; k < � 1

@t1
w� 1

n = w0
nv� 1

n � w0
n� 1v1

n� 1

@t1
w0

n =
1
2

�
v0

n+1 � 2v0
n + v0

n� 1

�
w0

n

@t1
wk

n = �
1
2

�
v0

n+k + v0
n+k� 1 + v0

n + v0
n� 1

�
wk

n + vk
n � v� k

n ; k > 0:
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For the second �ow in the time t2 we have for the �elds vk
n

@t2
vk

n = �
1
2

vk
n

�
(v0

n� k)2 � (v0
n� k� 1)2 � (v0

n)2 + (v0
n� 1)2 + w0

n� k w1
n� k � w0

n� k� 1 w1
n� k� 1

� w0
n w1

n + w0
n� 1 w1

n� 1

�
+ w0

n� k vk� 1
n � w0

n� k� 1 vk+1
n + w0

n vk+1
n+1 � w0

n� 1 vk� 1
n� 1

+
�
v0

n� k � v0
n� k� 1

�
wk� 1

n �
�
v0

n � v0
n� 1

�
w� 1

n w� k
n

�
�
w0

n vk+1
n � w0

n� 1 v� (k+1)
n� 1

�
w� k

n ; k < 0

@t2
v0

n = w0
n

�
v1

n + v� 1
n

�

@t2
vk

n =
1
2

vk
n

�
(v0

n+k)2 � (v0
n+k� 1)2 + (v0

n)2 � (v0
n� 1)2 + w0

n+k w1
n+k � w0

n+k� 1 w1
n+k� 1

+w0
n w1

n � w0
n� 1 w1

n� 1

�
+ w0

n+k vk+1
n � w0

n+k� 1 vk� 1
n + w0

n vk
n+1 � w0

n� 1 vk+1
n� 1

+
�
v0

n+k � v0
n+k� 1

�
w� 1

n+k wk
n �

�
v0

n � v0
n� 1

�
w� (k+1)

n

+
�
w0

n+k v� (k� 1)
n+k � w0

n+k� 1 vk� 1
n+k� 1

�
wk

n ; k > 0

Finally, the evolution of the �elds wk
n in t2 is given by the equations

@t2
wk

n =
1
2

wk
n

�
(v0

n� k� 1)2 � (v0
n� k� 2)2 + (v0

n)2 � (v0
n� 1)2

+w0
n� k� 1 w1

n� k� 1 � w0
n� k� 2 w1

n� k� 2 + w0
n w1

n � w0
n� 1 w1

n� 1

�

+ w0
n� k� 1 wk� 1

n � w0
n� k� 2 wk+1

n + w0
n wk+1

n+1

� w0
n� 1 wk� 1

n� 1 +
�
v0

n� k� 1 � v0
n� k� 2

�
w� 1

n� k� 1 vk+1
n �

�
v0

n � v0
n� 1

�
w� 1

n v� (k+1)
n

+
�
w0

n� k� 1 vk+2
n� k� 1 + w0

n� k� 2 v� (k+2)
n� k� 2

�
vk+1

n

�
�
w0

n vk+2
n + w0

n� 1 v� (k+2)
n� 1

�
v� (k+1)

n ; k < 0

@t2
w0

n =
1
2

w0
n

�
(v0

n+1)2 � (v0
n� 1)2 + w0

n+1 w1
n+1 � w0

n� 1 w1
n� 1

�
+ w0

n

�
w� 1

n+1 � w� 1
n� 1

�

@t2
w1

n = �
1
2

w1
n

�
(v0

n+1)2 � (v0
n� 1)2 + w0

n+1 w1
n+1 � w0

n� 1 w1
n� 1

�
+ w0

n+1 w2
n � (w0

n)2

+ w0
n w0

n+1 � w0
n� 1 w2

n� 1 +
�
v0

n+1 � v0
n

�
v1

n �
�
v0

n � v0
n� 1

�
v� 1

n
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@t2
wk

n = �
1
2

wk
n

�
(v0

n+k)2 � (v0
n+k� 1)2 + (v0

n)2 � (v0
n� 1)2 + w0

n+k w1
n+k

� w0
n+k� 1 w1

n+k� 1 + w0
n w1

n � w0
n� 1 w1

n� 1

�
+ w0

n+k wk+1
n � w0

n+k� 1 wk� 1
n

+ w0
n wk� 1

n+1 � w0
n� 1 wk+1

n� 1 +
�
v0

n+k � v0
n+k� 1

�
vk

n �
�
v0

n � v0
n� 1

�
v� k

n ; k > 1:

We can see how the complexity of the equations increases for higher �ows, comparing

the evolution of the �elds in t2 with those in t1. Nevertheless, it is worth noticing that the

number of �elds on which these expressions depend remains �nite. In the following we

will see how the number of elements of every equation reduces if we consider a particular

restriction, inspired by the form of initial condition of the Pfa � lattice related to the

symmetric matrix ensemble.

7.3 The even Pfa� lattice

We look for a suitable reduction of the Pfa � lattice with the aim of simplifying the struc-

ture, inspired by how the Volterra lattice is determined starting from the Toda lattice.

We consider the initial datum t = 0, for which the number of �eld variables entering the

lattice is considerably reduced. In particular, only the �elds wk
n survive in the new con-

�guration. Then we look for a suitable selection of the coupling constants such that the

expression for the lattice is completely given in terms of wk
n, the even Pfa� lattice.

7.3.1 Initial condition with the GOE

We now consider the initial condition for the Lax matrix L(t = 0). From (7.33), we have

the explicit form in terms of � -functions for the functions w0
n(t ) and v0

n(t ). Speci�cally,

the component w0
n(t ) can be expressed as follows

w0
n(t ) =

 
� 2n+2(t ) � 2n� 2(t )

� 2
2n(t )

! 1=2

: (7.63)

and the component v0
n(t ) as

v0
n(t ) = @t1

log � 2n(t ): (7.64)
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Both expressions can be evaluated fort = 0, emphasising that in this case the symmetric

matrix ensemble reduces to the GOE. We will consider again the Selberg's integral (6.79),

with in this case 
 = 1=2 and a = 1=2, giving

Z

Rn
j� (x)j

nY

k=1

e� 1
2 x2

k dxk = (2 � )n=2
nY

k=1

� (1 + k
2 )

� (1 + 1
2 )

; (7.65)

and since � (1 + 1=2) =
p

�= 2 we have

Z

Rn
j� (x)j

nY

k=1

e� 1
2 x2

k dxk = 2(n+2)=2 � (n� 1)=2
nY

k=1

�

 

1 +
k
2

!

: (7.66)

Recalling that the � -function is in this case written in terms of the Pfa � an of the moment

matrix with a skew-symmetric inner product and using the properties of the Gamma

function, we have

� 2n(0) = � n=2
n� 1Y

k=0

2� 2k(2k)! : (7.67)

Therefore, equations (7.63) and (7.67) imply

w0
n(0) = 2

p
�

p
2n(2n � 1): (7.68)

To evaluate (7.64), we consider only the dependence ont1 in the expression of the Pfaf-

�an � -function. Recalling that t = ft1; t2; t3; : : :g, we have

� 2n(t1;0;0; : : :) = � n=2 e
nt21

2

n� 1Y

k=0

2� 2k(2k)! : (7.69)

Hence, the �elds constituting the main diagonal of the Pfa � lattice vanish

@t1
� 2n(t )

�����
t=0

= nt1 � n=2 e
nt21

2

n� 1Y

k=0

2� 2k(2k)!
�����
t=0

= 0 =) v0
n(0) = 0 : (7.70)
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We observe that the �elds vk
n(0) for k , 0 vanish at t = 0 as well. This can be seen by

considering that the moment matrix m2n(0) in the case of a symmetric weight is

m2n(0) =
�
� i;j

�

0� i;j � n� 1
=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 � 0;1 0 � 0;3 0 � 0;5 : : :

� � 0;1 0 � 1;2 0 � 1;4 0 : : :

0 � � 1;2 0 � 2;3 0 � 2;5 : : :

� � 0;3 0 � � 2;3 0 � 3;4 0 : : :

0 � � 1;4 0 � � 3;4 0 � 4;5 : : :

� � 0;5 0 � � 2;5 0 � � 4;5 0 : : :
:::

:::
:::

:::
:::

:::
:::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (7.71)

because of the skew-symmetry of the inner product.

When considering the decomposition of the moment matrix to obtain the matrix Q(0)

that allows to build the Pfa � lattice (see equations (7.29) and (7.30)), we have

Q(0) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Q0;0 0 0 0 0 0 : : :

0 Q0;0 0 0 0 0 : : :

Q3;1 0 Q2;2 0 0 0 : : :

0 Q4;2 0 Q2;2 0 0 : : :

Q5;1 0 Q5;3 0 Q4;4 0 : : :

0 Q6;2 0 Q6;4 0 Q4;4 : : :

:::
:::

:::
:::

:::
:::

:::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (7.72)

and the corresponding Pfa� lattice has the form

L(0) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 0 : : :

w� 1
1 0 w0

1 0 0 0 0 0 0 : : :

0 w1
1 0 1 0 0 0 0 0 : : :

w� 2
1 0 w� 1

2 0 w0
2 0 0 0 0 : : :

0 w2
1 0 w1

2 0 1 0 0 0 : : :

w� 3
1 0 w� 2

2 0 w� 1
3 0 w0

3 0 0 : : :

0 w3
1 0 w2

2 0 w1
3 0 1 0 : : :

:::
::: ::: ::: ::: ::: ::: ::: ::: :::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (7.73)
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In what follows, we will study the Pfa � lattice in the speci�c restriction for which the

�elds that are zero at t = 0 remain zero for di � erent times.

7.3.2 The even reduction

We consider the symmetric matrix ensemble Sn with even power interactions speci�ed

by the partition function (7.13)

Z (1)
2n (t ) = c2n

Z

R2n
j� 2n(z)j

2nY

k=1

e� z2
2 +

P 1
i =1 t2i z2i

k dzk : (7.74)

We are going to show that it provides a solution to a reduction of the even Pfa � lattice,

i.e. the commuting �ows (7.56) associated to the even times t2k only. We will see how the

notation we have introduced is suitable for the description of this system, involving one

type of �elds only.

In this case, the equation � 2n(t ) = pf( m2n(t )) still holds with m2n(t ) = (� ij (t ))0� i;j � 2n� 1

and in the inner product we select only the times labelled by even indices

� ij (t ) = hxi ; yj i t =
Z Z

R2
xi yj � (x � y)e

P
k� 1 t2k (x2k+y2k)e� 1

2 (x2+y2) dxdy: (7.75)

Hence, the moments matrix m2n(t ) reads as

m2n(t ) =
�
� i j

�

0� i;j � 2n� 1
=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 � 01 0 � 03 0 � 05 : : :

� � 01 0 � 12 0 � 14 0 : : :

0 � � 12 0 � 23 0 � 25 : : :

� � 03 0 � � 23 0 � 34 0 : : :

0 � � 14 0 � � 34 0 � 45 : : :

� � 05 0 � � 25 0 � � 45 0 : : :

:::
:::

:::
:::

:::
:::

:::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (7.76)

for all times t = ft2; t4; t6; : : :g. The moments (7.75) satisfy the evolution equations

@�ij
@t2k

= � i +2k;j + � i;j +2k (7.77)
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which imply for the semi-in�nite moment matrix

@m1

@t2k
= � 2k m1 + m1 � 2k : (7.78)

We consider the reduction of the Lax equation (7.56) of the form

@L
@t2k

=
h
� (L2k)t ;L

i
; (7.79)

with

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 0 : : :

w� 1
1 0 w0

1 0 0 0 0 0 0 : : :

0 w1
1 0 1 0 0 0 0 0 : : :

w� 2
1 0 w� 1

2 0 w0
2 0 0 0 0 : : :

0 w2
1 0 w1

2 0 1 0 0 0 : : :

w� 3
1 0 w� 2

2 0 w� 1
3 0 w0

3 0 0 : : :

0 w3
1 0 w2

2 0 w1
3 0 1 0 : : :

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (7.80)

i.e. the Lax matrix associated with Sn with even power interactions is obtained from the

general one by setting the variables v0
n , vk

n identically equal to zero for any t . In other

words, the partition function gives a solution to a reduction of the even Pfa � hierarchy

which preserves the zeros of the initial Lax matrix L(0) given by the expression (7.73).
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The evolution equations for the �rst non trivial �ow t2 of the �elds constituting the even

Pfa� lattice read as

@t2
wk

n =
1
2

�
wk

nw0
nw1

n + wk
nw0

n� k� 1w1
n� k� 1 � wk

nw0
n� 1w1

n� 1 � wk
nw0

n� k� 2w1
n� k� 2

�

+ wk+1
n+1w0

n + wk� 1
n w0

n� k� 1 � wk� 1
n� 1w0

n� 1 � wk+1
n w0

n� k� 2; k < � 1

@t2
w� 1

n = w0
n

�
w� 1

n w1
n + w� 2

n + w0
n

�
� w0

n� 1

�
w� 1

n w1
n� 1 + w� 2

n� 1

�
�

�
w0

n� 1

� 2

@t2
w0

n =
1
2

�
w0

n+1w1
n+1 � w0

n� 1w1
n� 1

�
w0

n +
�
w� 1

n+1 � w� 1
n

�
w0

n

@t2
w1

n =
1
2

�
w0

n� 1w1
n� 1w1

n � w0
n+1w1

nw1
n+1

�
+ w0

n+1w2
n � w0

n� 1w2
n� 1

@t2
wk

n =
1
2

�
w0

n� 1w1
n� 1wk

n + w0
n+k� 1w1

n+k� 1wk
n � w0

nw1
nwk

n � w0
n+kw1

n+kwk
n

�

+ w0
nwk� 1

n+1 + w0
n+kwk+1

n � w0
n� 1wk+1

n� 1 � w0
n+k� 1wk� 1

n ; k > 1:

(7.81)

7.4 Thermodynamic limit and integrable hydrodynamic chain

We now consider the continuum limit of the equations for the Pfa � lattice, exploring the

asymptotic properties of the symmetric matrix ensemble Sn for large n, with a focus on

the case of even power interactions, where the Pfa� lattice is given by (7.80), satisfying

the Lax equations (7.79).

As mentioned above, the lattice equations for the reduced even Pfa� hierarchy (7.81)

constitute an in�nite chain for the variables wk
n, where k 2 Z identi�es the components

of the chain and n 2 N labels points on the lattice. As n ! 1 , for the variables wk
n we

have

wk
n+1 � wk

n = O(" ) ; " ! 0; (7.82)

with " such that x = "n remains �nite. In the following, we derive the continuum limit

equations for the chain and study the integrability at the leading order with respect to

the " expansion. We illustrate the result for the �rst equation of the hierarchy given by

the t2-�ows. Our considerations extend to the �ows in t4 and t6 as well, and we conjecture

they hold for any equation of the hierarchy.

We introduce the interpolation function wk(x=") with x = "n so that wk(n) = wk
n, and
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de�ne

uk(x) := wk
� x
"

�

with uk(x � " ) = wk
n� 1. Substituting uk(x) into the equations (7.81), expanding in Taylor

series for " ! 0 and setting t = " t 2, at the leading order O(" 0) we get the following system

of PDEs

uk
t =

�
(k + 2)uk+1 � kuk� 1 + u1uk

�
u0

x + u0uku1
x + u0uk� 1

x + u0uk+1
x ; k < 0

u0
t = u0u1u0

x +
�
u0

� 2
u1

x + u0u � 1
x

u1
t =

�
2u2 �

�
u1

� 2
�
u0

x � u0u1u1
x + u0u2

x

uk
t =

�
(k + 1)uk+1 � (k � 1)uk� 1 � u1uk

�
u0

x � u0uku1
x + u0uk� 1

x + u0uk+1
x ; k > 1

(7.83)

with the notation f t = @t f , f x = @xf . In particular, we note that the system (7.83) is an

in�nite chain of quasilinear PDEs of hydrodynamic type. In fact, the equations of the

chain are of the form

uk
t = ak

0 u0
x + ak

1 u1
x + ak

k� 1 uk� 1
x + ak

k+1 uk+1
x ; (7.84)

or equivalently in vector form

ut = A(u)ux ; u =
�
: : : ; u� 1; u0; u1; : : :

� >
; (7.85)

where A(u) =
n
ak

j

o+1

j;k=�1
is an in�nite matrix such that ak

j = 0 if j < f0;1;k � 1;k + 1gand

ak
0 =

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

(k + 2)uk+1 � kuk� 1 + u1uk if k < 0

u0u1 if k = 0

(k + 1)uk+1 � (k � 1)uk� 1 � u1uk if k � 1

ak
1 =

8
>>>>>><
>>>>>>:

u0uk if k � 0

� u0uk if k � 1

ak
k� 1 =

8
>>>>>><
>>>>>>:

u0 if k , 1

�
2u2 � (u1)2

�
if k = 1

ak
k+1 =

8
>>>>>><
>>>>>>:

u0 if k , 0

(u0)2 if k = 0
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By applying the same procedure, one can construct a hierarchy of in�nitely many com-

muting �ows, each of them in the form of a hydrodynamic chain from the thermody-

namic limit of the higher �ows of the hierarchy (7.79).

The hydrodynamic chain (7.83) is integrable as it possesses an in�nite hierarchy of

commuting �ows. In the following, we show that the hydrodynamic chain (7.83) is di-

agonalisable and integrable according to the criterion introduced and discussed in sec-

tion 3.2, namely the existence of integrable hydrodynamic reductions in an arbitrary

number of components.

Referring to de�nition 3.2.1 describing the chain class, and bearing in mind the form

of the matrix A(u) as speci�ed in (7.4), we have the following

Proposition 7.4.1 Given the chain(7.83), the associated matrixA(u) in (7.85) belongs to the

chain class.

Now, we can construct the Nijenhuis and Haantjes tensors of the in�nite (su � ciently

sparse) matrix A(u), to study the diagonalisability of the chain, as described in sec-

tion 3.2. We state the following proposition.

Proposition 7.4.2 Given the chain(7.83), the Haantjes tensor of the associated matrixA(u)

vanishes.

The proof proceeds by direct inspection. We recall the form of the Nijenhuis tensor

in (3.71)

N i
jk = a

p
j (u)@pai

k(u) � a
p
k(u)@pai

j (u) � ai
p(u)

�
@j a

p
k(u) � @ka

p
j (u)

�
:

Observing that, by de�nition, N i
jk is antisymmetric under the exchange of j and k, a

direct calculation shows that N 0
jk = 0 for any j and k. Similarly, for i , 0 the only nonzero

elements of N i
jk are

N i
0 � 1; N i

0 i ; N i
0 i � 1; N i

1 i � 1 N i
� 1 i � 1; N i

� 1+1 (7.86)

and their counterparts with the lower indices exchanged. These components can be com-

puted for a generic value of i , yielding
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. for ji j > 2

N i
01 =

8
>>>>><
>>>>>:

u0
�
(i � 1)u i � 1 � (i + 1)u i +1

�
if i > 2

u0
�
iu i � 1 � (i + 2)u i +1

�
if i < � 2

N i
0 � 1 =

8
>>>>><
>>>>>:

(i � 1)u i � 1 + u1u i � (i + 1)u i +1 if i > 2

iu i � 1 � u i u1 � (i + 2)u i +1 if i < � 2

N i
� 11 = � sgn(i )u0u i

N i
0 i = � 4u0

N i
1 i +1 = N i

1 i � 1 = (u0)2

N i
0 i +1 = N i

0 i � 1 = u0u1

N i
� 1 i +1 = N i

� 1 i � 1 = u0

. for ji j � 2

N 2
01 = u0(2u1 � 3u3)

N 2
0� 1 = u1(1 + u2) � 3u3

N 2
� 11 = � u0(� 1 + u2)

N 2
02 = � 4u0

N 2
03 = u0u1

N 2
13 = (u0)2

N 2
� 13 = u0

N 1
01 = � 2u0(2 + u2)

N 1
02 = u0u1

N 1
12 = (u0)2

N 1
� 10 = � (u1)2 + 2u2

N 1
� 11 = � u0u1

N 1
� 12 = u0

N � 2
01 = � 2u � 3u0

N � 2
0� 1 = � 2u � 3 + (� u � 2 + u0)u1

N � 2
� 11 = (u � 2 � u0)u0

N � 2
0� 2 = � 4u0

N � 2
0� 3 = u0u1

N � 2
1� 3 = (u0)2

N � 2
� 1� 3 = u0

N � 1
01 = � u0(u � 2 + 2u0)

N � 1
0� 1 = � u � 2 � 6u0 � u � 1u1

N � 1
0� 2 = u0u1

N � 1
1� 2 = (u0)2

N � 1
� 1� 2 = u0

N � 1
� 11 = u0u � 1
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Thermodynamic limit and integrable hydrodynamic chain

We recall the expression of the Haantjes tensor given in (3.72)

H i
jk = N i

pqa
p
j (u)a

q
k(u) � N

p
jq ai

p(u)a
q
k(u) � N

p
qk ai

p(u)a
q
j (u) + N

p
jk ai

q(u)a
q
p(u) :

The structure of N i
jk and A(u) induces constraints on the range of values the indices p

and q can take in the expression of the Haantjies tensor (3.72), and consequently on

potential nonzero elements. Indeed, the form of N i
jk , speci�ed by the elements (7.86),

implies that

H i
jk , 0; i 2 Z ; j;k 2 f0;� 1;� 2;3; i; i � 1; i � 2; i � 3g: (7.87)

Given the explicit expressions for ak
j in (7.4) and N i

jk above, a direct calculation demon-

strates that H i
jk = 0 for the listed values of the lower indices. This proves the statement.

We now study the integrability of the chain (7.85) by following the approach based

on the method of hydrodynamic reductions applied to the system (7.83) and reported in

section 3.2.1. We look for solutions of the form

uk = uk
�
R1;R2; : : : ;RN

�
(7.88)

for an arbitrary number N of components Ri = Ri (x; t). The functions
n
Ri

oN

i =1
are the

Riemann invariants and satisfy by de�nition the diagonal system

Ri
t = � i

�
R1; : : : ;RN

�
Ri

x (7.89)

where the characteristic speeds � i are such that the system (7.89) possesses the semi-

Hamiltonian property, that is

@k

 
@j � i

� j � � i

!

= @j

 
@k� i

� k � � i

!

; (7.90)

with the notation @i = @Ri . The diagonal form of the system (7.89) and the condi-

tion (7.90) guarantee that equations (7.89) constitute a system of conservation laws [109]

which is integrable via the generalised hodograph method, described in section 3.1.2.

Substituting the assumption (7.88) into the system (7.85) and using (7.89), we obtain the
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Chapter 7. Symmetric Matrix Ensemble and hydrodynamic chains

equations of the form

� i @i u = A(u)@i u; i = 1;2; : : :N (7.91)

where we used the fact that Ri
x for i = 1; : : : ;N are independent. We observe that, due to

the speci�c sparse structure of the matrix A(u), the components of the eigenvectors @i u

can be parametrised in terms of the components @i u0 and @i u1.

Let us consider, for example, the equations for @i u � 2, @i u � 1, @i u2 and @i u3:

@i u
� 2 =

1
(u0)2

�
(� i )2 � u0u1� i � u0(2u0 + u � 2 + u � 1u1)

�
@i u

0 �
�
� i + u � 1

�
@i u

1

@i u
� 1 =

 
� i

u0 � u1
!

@i u
0 � u0@i u

1

@i u
2 =

1
u0

�
(u1)2 � 2u2

�
@i u

0 +
1
u0

�
� i + u0u1

�
@i u

1

@i u
3 =

1
(u0)2

��
(u1)2 � 2u2

�
� i + u0

�
u1(1 + u2) � 3u3

��
@i u

0

+
1

(u0)2
�
(� i )2 + u0u1� i + (u0)2(u2 � 1)

�
@i u

1 ; i = 1; : : : ;N :

(7.92)

The compatibility conditions

@j @i u
� 2 = @i @j u

� 2 @j @i u
� 1 = @i @j u

� 1 @j @i u
2 = @i @j u

2 @j @i u
3 = @i @j u

3

lead to the associated Gibbons–Tsarev system. For our chain, this takes the form

@j �
i =

4(u0)2 � � i � j

u0(� i � � j )
@j u

0

@i �
j =

4(u0)2 � � i � j

u0(� j � � i )
@i u

0

@i @j u
0 =

(� i )2 + (� j )2 � 8(u0)2

u0(� i � � j )2
@i u

0@j u
0

@i @j u
1 = �

(� j � 2� i )� j + 4(u0)2

u0(� i � � j )2
@i u

0@j u
1 �

(� i � 2� j )� i + 4(u0)2

u0(� i � � j )2
@j u

0@i u
1:

(7.93)
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A direct calculation shows that the system of equations (7.93) is in involution, i.e. com-

patibility conditions of the form

@k@j �
i = @j @k� i @k@i @j u

0 = @i @k@j u
0 @k@i @j u

1 = @i @k@j u
1

are satis�ed modulo the equations (7.93) for all permutation of the derivatives with re-

spect to Ri , Rj , Rk. A �rst classi�cation of Gibbons–Tsarev systems has been provided

by Odesskii and Sokolov [100, 101]. We note that, at the best of our knowledge, the sys-

tem (7.93) has not appeared before in the literature and it is not included in the class

considered in the above mentioned works.

The compatibility of the Gibbons–Tsarev system (7.93) guarantees, that for any solu-

tion to the Riemann invariants system (7.83), it is possible to construct a solution to the

hydrodynamic chain, as reported in section 3.2.1.

Therefore, the above calculations prove the following

Theorem 7.4.1 The hydrodynamic chain(7.83) is integrable in the sense of the hydrodynamic

reductions.

We will then explore the structure of the chains associated with higher terms in the

Pfa� hierarchy.

7.5 Extension to higher �ows and generalisation of the chain

As mentioned in section 3.2, a hydrodynamic chain takes the form

un
t = ' n

1 u1
x + � � � + ' n

n+1 un+1
x ; n 2 N ; ' n

n+1 , 0; (7.94)

where ' n
j = ' n

j

�
u1; : : : ; un+1

�
and the integrability of the chain is studied by analysing

the corresponding Gibbons–Tsarev system, as in [100, 101]. The most known example is

given by the Benney chain

un
t = un+1

x + (n � 1) un� 1 u1
x ; n = 1; 2; : : : ; (7.95)
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whose Gibbons–Tsarev system is given by (3.82), that we recall

@j �
i =

@j u1

� j � � i

@i �
j =

@i u1

� i � � j

@i @j u
1 = 2

@i u1@j u1

�
� i � � j

� 2 ;

(7.96)

in terms of the characteristic speeds � j , the derivative with respect to the Riemann in-

variants Ri , and the �eld u1, that we call the seedof the chain.

The hydrodynamic chain associated to the continuum limit at the leading order of

the �rst �ow for the even Pfa � lattice is given by

uk
t = ak

0 u0
x + ak

1 u1
x + ak

k� 1 uk� 1
x + ak

k+1 uk+1
x ; k 2 Z ; (7.97)

and the associated Gibbons–Tsarev system is reported in (7.93). The new chain associ-

ated with the symmetric ensemble is double in�nite, unlike the Benney chain and other

known examples of integrable chains. In addition, the new chain is initialised by the two

central elements or seeds (the �elds u0 and u1) rather than one, as in the Benney chain.

From (7.97), we notice that the evolution of the the �eld uk with respect to the �rst

even slow time variable t depends on the spatial derivatives of the seeds of the chain u0

and u1 and of its nearest neighbours uk� 1 and uk+1. In the following, we will see that it

is possible to associate a hydrodynamic chain for the evolution of the �elds in t4 and t6

as well, observing a nominal proliferation of the seeds of the chain and a dependence of

the dynamics on an increasing number of nearest neighbours.

We study the continuum limit for the evolution equations of the �elds entering the

discrete Pfa� lattice for higher even �ows, t4 and t6. We recall the Lax equations for the

even �ows
@L

@̃t2q
=

h
�

�
L2q

�

t
; L

i
; q = f1; 2; : : :g (7.98)

in terms of the semi-in�nite Lax matrix L, whose elements are given by the discrete

variables wk
n, with k 2 Z and n 2 N .
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We have veri�ed that for t4 and t6 the leading order of the continuum limit can be recast

as

ut2q
= Aq(u)ux ; u =

�
: : : ; u� 1; u0; u1; : : :

� >
; (7.99)

where we consider slow time variables t2q = " t̃2q and the interpolating functions uk(x) =

wk(x=") = wk(n) = wk
n, where " = 1=N, in the limit N ! 1 . The matrix Aq(u) is an in�-

nite matrix of the chain class, for q = 1;2;3. Since the �ows of the hierarchy commute

pairwise, we have
h
Aq ; Ap

i
= 0 : (7.100)

We have veri�ed by direct inspection (7.100) for the matrices for q;p2 f1;2;3g. Therefore,

the continuum limit at the leading order can be written in terms of a hydrodynamic chain

for q = 1;2;3 and this has led us to conjecture a generalisation for q > 3. In the following,

we will show the form of the hydrodynamic chains associated to the higher �ows and the

possible generalisation. As we will see, the number of seeds of the chain and the number

of nearest neighbours in the interaction term increases with q. The explicit form of the

entries of the matrices is reported in appendix C.

• q = 1, ai
j 2 A1

uk
t2

= ak
0 u0

x + ak
1 u1

x + ak
k� 1 uk� 1

x + ak
k+1 uk+1

x (7.101)

the seeds of the chain areu0; u1 and the interaction is with �rst nearest neighbours;

• q = 2 , ai
j 2 A2

uk
t4

= ak
� 1 u � 1

x + ak
0 u0

x + ak
1 u1

x + ak
2 u2

x

+ ak
k� 2 uk� 2

x + ak
k� 1 uk� 1

x + ak
k+1 uk+1

x + ak
k+2 uk+2

x

(7.102)

the seeds areu � 1; u0; u1; u2 and the interaction is with second nearest neighbours;
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• q = 3 , ai
j 2 A3

uk
t6

= ak
� 2 u � 2

x + ak
� 1 u � 1

x + ak
0 u0

x + ak
1 u1

x + ak
2 u2

x + ak
3 u3

x

+ ak
k� 3 uk� 3

x + ak
k� 2 uk� 2

x + ak
k� 1 uk� 1

x + ak
k+1 uk+1

x + ak
k+2 uk+2

x + ak
k+3 uk+3

x

(7.103)

the seeds areu � 2; u� 1; u0; u1; u2; u3 and the interaction is with third nearest neigh-

bours.

We can generalise the form of the hydrodynamic chain for the generic q� th �ow

uk
t2q

=
qX

p=� (q� 1)

ak
p u

p
x +

qX

p=1

�
ak

k� p u
k� p
x + ak

k+p u
k+p
x

�
(7.104)

with ai
j 2 Aq. The generic hydrodynamic chain for the q-th �ow of the even Pfa � lattice

is then characterised by 2q seeds and interaction with q-th nearest neighbours.

7.6 Leading order of even times hierarchy for Toda and Pfa �

We have studied the hydrodynamic system of PDEs emerging from the study of the sym-

metric matrix ensemble, consisting of in�nitely many components in terms of the �eld

variables. The system is described by an in�nite number of order parameters. The order

parameters of the model with even order interactions satisfy a reduction of the even Pfa �

hierarchy.

It is worth to emphasise that only the model with even rescaled interactions leads to

an integrable hydrodynamic chain hierarchy, given by (7.104)

uk
t2q

=
qX

p=� (q� 1)

ak
p u

p
x +

qX

p=1

�
ak

k� p u
k� p
x + ak

k+p u
k+p
x

�
; k 2 Z ; q 2 N :

This represents the main di � erence with the case of the Hermitian matrix ensemble,

where the leading order in even slow times is described by a scalar hydrodynamic system,

i.e. the Volterra lattice. The collection of the equations representing the evolution at

150



Leading order of even times hierarchy for Toda and Pfa�

di � erent times gives the Hopf hierarchy (6.100)

ut2k
= ck uk ux ; k 2 N :

In the context of the perspective o � ered by the approach of di � erential identities, we

have seen in section 6.4 the emergence of a dispersive shock. The latter characterises a

phase transition where asymptotic stable states are connected by an intermediate state,

where the dispersive nature of �nite size corrections induce fast oscillations in the order

parameter. In this case, the description is possible in terms of one order parameter only.

151



Chapter 7. Symmetric Matrix Ensemble and hydrodynamic chains

152



Part IV

Explorative studies
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Chapter 8

Towards networks

In this chapter we will consider a particular case of symmetric matrices, the adjacency

matrices arising in the context of graph theory. Section 8.1 is dedicated to a brief intro-

duction of the subject. In section 8.2 we will address the problem of the so called two-star

model as presented in [102]. The same problem will be treated with the tools developed

in chapter 5 in section 8.3, invoking the method of di � erential identities. We then will

consider the one-dimensional Ising model, in section 8.4, and write a suitable partition

function constructed from the corresponding adjacency matrices. Finally, we will give

an insight on the automorphisms of di � erent con�gurations in section 8.5 and we will

discuss the form of the partition function for exponential random graphs in section 8.6.

8.1 Graphs

A network is described in mathematical term by the graph, a collection of vertices con-

nected by edges [98]. Those primary elements acquire di� erent nomenclature with re-

spect to the �eld we are considering (nodes and links, sites and bonds, actors and ties).

We will focus on the study of the simple graph in �gure 8.1, with n vertices and m

edges, without neither multiedges (more than one edge connects a pair of vertices) nor

self-edges (connecting a vertex with itself).

One of the possible way to represent a network is via its edge list, not so useful in terms

of a mathematical analysis. Another more proper way is to consider the adjacency matrix
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Chapter 8. Towards networks

Figure 8.1: Simple graph with n = 6 vertices

of the graph representing the network, de�ned by

Aij =

8
>>>>><
>>>>>:

1 if i and j are connected by an edge

0 otherwise
(8.1)

The adjacency matrix describing the graph shown in �gure 8.1 is

A =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 1

1 0 1 1 0 0

0 1 0 1 0 0

0 1 1 0 1 1

0 0 0 1 0 0

1 0 0 1 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(8.2)

with every element of the diagonal is zero, since there are no self-edge and it is sym-

metric, due to the fact that if there is a connection between i and j , the same is for the

connection between j and i (A = A> ).

In order to represent self-edges of speci�c vertices, once they are addressed with a

label, the related element in the diagonal will be twice the multiplicity of the edge: if

there is a simple loop connecting vertex i with itself, we have two legs on that vertex.

Sometimes it may be useful to consider edges with a certain weight. In that case, the

element corresponding to an edge will account for the weight of that connection. One can

pass from this kind of description to a multi-edge one, in which the weight is rearranged

in term of multiplicity in units of the minimum weighted edge in the network.

We now introduce the degree ki of a vertex i as the number of edges adjacent to it.
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The adjacency matrix depends on the enumeration of vertices, but of course di � erent

enumerations are conjugates of each other via a permutation matrix. Also, the fact that

the matrix is symmetric implies that there exist an orthonormal basis of eigenvectors

u1;u2; : : : ;un 2 Rn with real eigenvalues

kmax � � 1 � � 2 � � � � � � n � � kmax with kmax = max
i 2V

ki (8.3)

The multiplicities are taken into account, so that multiplicity 3 means that � j = � j +1 =

� j +2. The � i are the zeros of the characteristic polynomial

p(� ) = det( � 1n � A) (8.4)

and the eigenvalues � 1; � 2; : : : ; � n form the adjacency spectrum of the graph G. We will

see that just by studying the adjacency spectrum we can have di� erent information about

the characteristics of the graph.

A graph is named directed if its edges have a direction, they are represented by arrows

connecting the vertices and the adjacency matrix describing is

Aij =

8
>>>>><
>>>>>:

1 if there is an edge from i to j

0 otherwise
(8.5)

corresponding to an asymmetric matrix. The undirected network can be seen as a di-

rected one where the undirected edges may be seen as two directed edges going in oppo-

site directions.

We will study the problem of the so called two-star model, that allow a description of

the Curie-Weiss model. We will review the problem both with the mean-�eld approach

and via the method of di � erential identities developed in chapter 5 and in particular

following the development of section 5.2.
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8.2 The two-star model in the mean-�eld approach

The two-star model appears in the context of statistical mechanics of networks [103, 102,

15]. With this approach it is possible to study di � erent con�gurations of a system by

considering an ensemble of networks, where every possible con�guration is represented

by a graph G. We can associate a HamiltonianH (G) to any con�guration and then de�ne

a partition function Z for the ensemble, being this the starting point for a statistical

approach. For every graph the probability is given by

P(G) =
e� H (G)

Z
; Z =

X

fGg

e� H (G) ; (8.6)

with the partition function de�ned as the sum over all the possible graphs. The Hamilto-

nian is written in terms of the adjacency matrix elements taking into account the number

of edges connecting verticesm and the number of two-stars m2s for each con�guration.

The two-star is an elemental structure that can be found in a graph, denoting a vertex

shared by two di � erent edges. By counting these kind of subgraphs, it is possible to have

information about the way in which the edges are distributed in the entire graph, either

they tend to appear in clusters or they are randomly spread.

Given the form of AG, one can de�ne m and m2s as

m =
X

i<j

aij =
1
2

X

i , j

aij ; (8.7)

m2s =
X

i

X

j , i

X

k, i;j

aij aik =
1
2

X

i , j

aij

X

k, i;j

(aik + ajk ) : (8.8)

The hamiltonian for a con�guration G can be written in terms of the Lagrange multipli-

ers � , 
 by using the de�nitions in (8.7) and (8.8)

H (G) = � �
1
2

X

i , j

aij � 

1
2

X

i , j

aij

X

k, i;j

(aik + ajk ) : (8.9)

In order to evaluate the previous expression, we adopt the mean-�eld approach, replac-

ing all the quantities with their mean values on the graph. The mean value for the term

multiplying � is given by (8.7) and we have to determine the mean value for the re-
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maining term, multiplied by 
 . The latter counts for all the possible pairs of vertices

in the graph connected by an edge. In the mean-�eld approach, every pair of vertices

can be connected by an edge with a given probability p, so that what is actually �xed in

the graph is the number of vertices N and the probability p. We can now evaluate the

expectation value of the two-stars, as

* X

k, i;j

aik

+

=
X

k, i;j

haik i =
X

k, i;j

p = (N � 2)p � Np ; (8.10)

for large values of N .

The probability associated to any graph in the ensemble with m edges andN vertices,

in terms of the probability that an edge connects two vertices p, is given by

P(G) = pm (1 � p)
N (N � 1)

2 � m = pm (1 � p)(
N
2)� m : (8.11)

It is possible to determine the expectation value of the number of edges hmi , by consider-

ing that the number of distinct con�gurations with N vertices and m edges is equal to the

number of ways we can pick the position of edges among N (N � 1)=2 distinct pairs. Ev-

ery graph enters in the ensemble with the same probability P(G), so that the probability

distribution for the number of edges m is

P(m) =

 � N
2
�

m

!

pm (1 � p)(
N
2)� m ; (8.12)

hence the binomial distribution, with expectation value

hmi =

 
N
2

!

p : (8.13)

Substituting the results (8.10) and (8.13) in (8.9), we obtain the mean-�eld hamilto-

nian HN

HN (G) = � (� + 2
Np )m = � #(N;p)m (8.14)

with the introduction of the function #(N;p) in order to simplify the next calculations.

The partition function associated to the networks' ensemble in the mean-�eld approach
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is given by

ZN =
X

fGg

e� HN (G) =
X

faij g

e#
P

i<j aij =
X

faij g

Y

i<j

e#aij =
Y

i<j

�
1 + e#

�
=

�
1 + e#

� (N
2)

: (8.15)

In order to obtain a consistence relation involving the probability p, we can use the de�-

nition of the expected value of the number of edges hmi via the partition function as

hmi =
P

G m e� HN (G)

ZN (G)
=

1
ZN

@ZN
@#

=

 
N
2

!
e#

1 + e#
=

 
N
2

!
1

1 + e� #
: (8.16)

By considering the equivalence between (8.13) and (8.16), we get

 
N
2

!

p =

 
N
2

!
1

1 + e� #
=) p =

1
1 + e� #

: (8.17)

We can write the previous in terms of the �xed variables, N and p, as

p =
1
2

�
1 + tanh

� �
2

+ 
 Np
��

: (8.18)

By rescaling the parameters in the previous equation, with b = �=2 and c = 
N= 2, so that

the equation is

p =
1
2

[1 + tanh (b+ 2cp)] ; (8.19)

that will be evaluated in terms of the parameters b and c.

In �gure 8.2 the behaviour of p(b) as a function of b is shown, with di � erent values

for the parameter c. We can observe that in correspondence ofc = 1 a gradient catastro-

phe occurs, the function becomes multivalued for c > 1, beyond the critical point. The

spontaneous symmetry breaking produces two di � erent possible con�guration for the

present graph for values of the parameter c > 1. In particular, the network can be either

dense, with a high number of edges connecting vertices, or sparse.

By di � erentiating the expression in (8.19) with respect to p on both sides we get

1 = csech2(b+ 2cp)

1
c

= 1 � tanh2(b+ 2cp);
(8.20)
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(a)
(b)

Figure 8.2: (a) The probability that an edge connects two vertices p is shown as a function
of the parameter b, for di � erent values of the parameter c. The dashed line represents
the gradient catastrophe, beyond which the pro�le of the function (for c > 1) is not more
single-valued in b. (b) The phase diagram in terms of the parameters b and c.

using the fact that sech2(x) = 1 � tanh2(x). From (8.19) we can write (8.20) as

1 � (2p � 1)2 =
1
c

p2 � p +
1
4c

= 0 :
(8.21)

The roots of the equation are easily found as

p1;2 =
1
2

�

r

1 �
1
c

: (8.22)

In order to produce the diagram for the phase transition observed, we write b from (8.19)

as a function of p and c

b = arctanh(2p � 1) � 2cp

b = � arctanh

r

1 �
1
c

� c

0
BBBB@1 �

r

1 �
1
c

1
CCCCA:

(8.23)

These curves are the boundaries for the coexistence region shown in the right of �gure

8.2, where the regions of the space of parameters are represented. The critical point is
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localised by the coordinates

bc = 1 ; cc = 1 : (8.24)

In the next section, we will tackle the same problem by considering the approach estab-

lished in chapter 5.

8.3 Di � erential identities for the two-star model

The same problem can be treated with the formalism of non-linear PDEs by starting

from the analogy with the Curie-Weiss system, mean-�eld approach for the Ising model.

The two-star model can be seen as an Ising model, if we look at the Hamiltonian (8.9)

previously discussed, we can identify a term referring to en external �eld and a term

related to the interaction between pairs. The elements of the adjacency matrix play the

role of spins, represented by the edges. In contrast with the original Ising model, where

spins can assume values inf+1;� 1g, here the set of possible values is f0;1g. With the

Curie-Weiss approach the two-body interaction term is substituted by a mean-�eld term,

as if every spin interacts with all the others. With this prescriptions, the mean-�eld

Hamiltonian can be written as

HN (G) = �
J

N (N � 1)

X

ij

aij

X

kl

akl � h
X

ij

aij ; (8.25)

where the �rst term describes the mean-�eld interaction, with the coupling constant J,

and the second refers to the interaction with the external �eld h. The term referring to

the interaction between “spins” is long ranged and weak, of order 1 =N2 (since here we are

considering pairs of vertices). Since the indices are not correlated, the �rst term of (8.25)

can be written as
X

ij

aij

X

kl

akl =

0
BBBBBB@

X

ij

aij

1
CCCCCCA

2

: (8.26)
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The order parameter is given in this context by the number of edges appearing in the

graph, normalized to the maximum number of possible pairs of vertices, as

m =
2

N (N � 1)

X

i , j

aij : (8.27)

The aim is to determine a partial di � erential equation in terms of the expectation

value of the order parameter hmi , in order to discuss the phase diagram of the system.

By using (8.27) the Hamiltonian becomes

HN (G) = � J
N (N � 1)

2
m2 � h

N (N � 1)
2

m = �

 
N
2

! �
Jm2 + hm

�
: (8.28)

The partition function for the system is de�ned, with � = 1=T, as

ZN (G) =
X

G

e� �H N (G) =
X

G

e(N
2)( 1

2 tm2+xm) ; (8.29)

having rescaled the coupling constants J and h as

t = J�

x = h� :
(8.30)

By taking the derivative of ZN (x; t) with respect to x and t , we can write a di � erential

identity for ZN

@ZN
@t

=
N (N � 1)

4
m2 ZN

@2ZN

@x2
=

(N (N � 1))2

4
m2 ZN

=)
@ZN
@t

=
1

N (N � 1)
@2ZN

@x2
(8.31)

hence the partition function satis�es the heat equation. We have to involve an initial

condition, given by t = 0. The evaluation is the same as in (8.15), so that we have

ZN (x;0) = (1 + ex)(
N
2) : (8.32)
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The free energy of the system isfN

fN (x; t) = �
1
�

� N (x; t) with � N =
2

N (N � 1)
ln ZN : (8.33)

By imposing the result of (8.31), we obtain the PDE satis�ed by � N

@t � N =
1
2

(@x � N )2 +
1

N (N � 1)
@2

x � N

@t � N =
1
2

(@x � N )2 + � @2
x � N ;

(8.34)

with � = 1=N(N � 1), multiplying a dispersion term in � N . The initial condition is given

by (8.32), as

� N (x;0) =
2

N (N � 1)
ln ZN (x;0) = ln (1 + ex) : (8.35)

By writing explicitly the �rst and second derivatives of � N with respect to x we can iden-

tify the expectation value of the order parameter hmi and the variance varhmi respectively

@x � N =
1

ZN

X

G

me(N
2)(xm+ t

2 m2) = hmi : (8.36)

@2
x � N =

1

Z2
N

N (N � 1)
2

8
>>><
>>>:

X

G

m2 e(N
2)(xm+ t

2 m2) �

2
666664

X

G

me(N
2)(xm+ t

2 m2)
3
777775

2
9
>>>=
>>>;

= varhmi : (8.37)

We can now take the derivative with respect to x of the PDE (8.34), using the fact that

the order of derivatives with respect to x and t is not important, obtaining

@t (@x � N ) = (@x � N )@x(@x � N ) + �@2
x(@x � N ) (8.38)

hence, we have that the order parameter satis�es the Burgers equation

@t hmi = hmi @xhmi + � @2
xhmi : (8.39)

The initial condition is given by

hm(x;0)i = @x� N (x;0) =
ex

1 + ex =
1
2

�
1 + tanh

x
2

�
: (8.40)
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The initial datum does not depend on the number of vertices N of the graph. In the

thermodynamic limit, in a neighbourhood of the critical point, we can neglect the viscous

term, proportional to var hmi , so that the Burgers equation reduces to the Hopf equation

@t hmi � h mi @xhmi = 0 : (8.41)

The solution to this equation is implicitly given via the method of characteristics

x + hmi t = f (hmi ) ; (8.42)

with hmi representing the characteristic speed. The form of the function f (hmi ) is given

by inverting the function for the initial datum

hm(x;0)i = f � 1(x) =
1
2

�
1 + tanh

x
2

�
=) x = 2arctanh (2hm(x;0)i � 1) : (8.43)

With this prescription for the initial pro�le of the function, since the value of hmi is

(a) (b)

Figure 8.3: (a) Behaviour of the order parameter m as a function of the coupling x for
di � erent value of the coupling t . (b) Magnetization in the space of parameters for spins
with values in f+1;� 1g.

constant along the characteristic curve, the equation is

x + hmi t = 2arctanh (2hmi � 1) : (8.44)
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In order to determine the coordinates for the critical point in terms of the parameters x

and t , we look for the gradient catastrophe, expected since the non-linearity of the equa-

tion (8.41). We take the derivative with respect to x

1 + @xhmi t = 4sech2 (2hmi � 1)@xhmi ; (8.45)

so that we get

@xhmi = �
1

t � 4sech2(1 � 2hmi )
= �

1

t � 4 + 4tanh2(1 � 2hmi )
: (8.46)

The critical time tc is de�ned as the value of t for which the derivative @x hmi ! 1 . This

is if the denominator of (8.46) is zero. Hence

tc = 4 � 4tanh2(1 � 2hmi ) : (8.47)

The degeneracy condition corresponds to the half of the possible edges connecting ver-

tices, the most disordered phase. Since we are considering the normalized order param-

eter, this is given by hmi c = 1=2. The critical point is identi�ed by the coordinates

tc = 4 ; xc = � 2: (8.48)

Finally, we can compare the result obtained with this description with that of the

classical Curie-Weiss problem, for which the spin values in f+1;� 1g. In the �rst case

(Figure 8.3(a)), we have that a shock wave is formed propagating backwards, towards

negative values of x. In the second case (Figure 8.3(b)), we observe a �xed point in the

origin, since the reference frame corresponds to the characteristic curve.

8.4 Ising model in one dimension

In our search for di � erential identities, following the Curie-Weiss model, we will try to

build the partition function for the Ising model in one dimension, starting from suitably

de�ned adjacency matrices.
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We start by considering the Ising model in one dimension. The Ising model describe

a system composed ofN interacting spins � i , where � i assumes values inf+1;� 1g. In

one dimension the system is represented by a chain, with �rst neighbours interaction

between spins. The Hamiltonian describing the model is

HN = � J
NX

i =1

� i � i +1 � h
NX

i =1

� i ; (8.49)

where the �rst term describes the interaction between spins, with coupling constant J,

and the second term refers to the interaction with an external �eld, with coupling con-

stant h. In order to neglect border e � ects, we introduce the periodical boundary condi-

tion, for which � N +1 = � 1, the structure of the system modifying as in Figure 8.4.

Figure 8.4: Chain of spins � i (left) with periodical boundary conditions (right).

By taking into account the constraint, the Hamiltonian reads as

HN (J;h) = � J
NX

i =1

� i � i +1 �
h
2

NX

i =1

(� i + � i +1) : (8.50)

The partition function ZN is given in terms of all the possible spin con�gurations, for

which the Hamiltonian is de�ned as

ZN (J;h) =
X

f� g

e� �H N (J;h) (8.51)

with f� grepresenting the set of con�gurations and � = 1=(kBT) is related to the inverse

of temperature via the Boltzmann constant.

The standard procedure to de�ne the partition function associated to the Ising model

in one dimension involves a 2 � 2 transfer matrix and the solution is given in terms of its

the two eigenvalues � � as

ZN = � N
+ + � N

� ; (8.52)
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where the eigenvalues are written in terms of the coupling constants J and h as

� � = eJcoshh �
q

e2Jcosh2 h � 2sinh2J : (8.53)

The idea is to de�ne the partition function in terms of the adjacency matrix associated

to a properly de�ned graph. In order to draw a graph describing the structure of the

system, we consider a change of variables� i ! ci , de�ned as

� i = 2ci � 1 ci =
� i + 1

2
ci 2 f0;1g: (8.54)

In terms of the variables ci the transformed Hamiltonian is written as

HN = � J
NX

i =1

(2ci � 1)(2ci +1 � 1) �
h
2

NX

i =1

(2ci � 1 + 2ci +1 � 1)

= � 4J
NX

i =1

ci ci +1 � (h � 2J)
NX

i =1

(ci + ci +1) � (J � h) N

= � � 1

NX

i =1

ci ci +1 � � 2

NX

i =1

(ci + ci +1) +
�
� 2 +

� 1

4

�
N ;

(8.55)

where in the last expression a scaling of the coupling constants is taken into account

8
>>>>><
>>>>>:

� 1 = 4 J

� 2 = h � 2J
(8.56)

Since the values of the variables ci are in f0;1gwe can de�ne the adjacency matrix asso-

ciated to a graph G = (V ;E) representing the system, characterised by V vertices and E

edges. In this case, the graph is a simple undirected cycle CN , where each vertex is

connected to two other vertices via two edges, being a 2-regular graph. The graph is

represented by its adjacency matrix, the N � N matrix A with elements

Aij =

8
>>>>><
>>>>>:

1 if ci � cj

0 otherwise
(8.57)

Since the graph is simple and undirected, the corresponding matrix A has zeros as di-
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agonal elements and it is symmetric. Every vertex is labelled by the variable ci and in

order to involve these variables in the adjacency matrix, we consider the dual-edge graph,

where for each edge in the original graph, a vertex is drawn in the dual and in the latter

two vertices are connected by an edge if the corresponding edges in the original one share

a vertex.

Figure 8.5: Graph representing the spin chain with periodical boundary (left) with ver-
tices ci and edges (i; j ) and its edge-dual (right).

In this way, the variables ci label the edges mapping the spins. In particular, the

original spin +1 corresponds to an existing edge between two vertices, a spin � 1 to the

situation in which two vertices are not connected. The adjacency matrix associated to the

edge-dual graph Â for N spins is given by

Â =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 c2 0 0 : : : 0 c1

c2 0 c3 0 : : : 0 0

0 c3 0 c4 : : : 0 0
:::

:::
:::

0 0 0 0 : : : 0 cN

c1 0 0 0 : : : cN 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

with ci 2 f0;1g 8i = 1; : : : ;N : (8.58)

The generic element of the previous matrix is given by

(Â)i;j = ci +1 � i;j � 1 + ci � i;j +1 with cN +1 = c1 (8.59)

where � is the Kronecker delta and we have stressed the signi�cant constraint given

by the periodical conditions. It is possible to reproduce the structures involved in the

Hamiltonian (8.55) by considering traces of powers of Â. In particular, we seek expres-

sions with the purpose of reproducing the interaction with the external �eld (one-body)

and the interaction between �rst neighbours (two-body).
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We start by computing odd powers of the adjacency matrix, for which we have

tr Â2n+1 = 2(2n + 1)
NX

i =1

ci ci +1 : : :ci +2n+1� 2n+1;N (8.60)

where we assumen � 1. As we can see, for the Kronecker delta involving the number of

spins, the contribution of the expression is non zero only for the con�gurations in which

the number of spins coincides with the power of the adjacency matrix and when they

have values ci = 1 for each i . Since the �rst non-zero term in (8.60) appears for n = 1

and describes a three-body interaction, we can exclude the presence of such terms in the

speci�c problem we are studying. For the quadratic term we get

tr Â2 =
NX

i =1

NX

j =1

Âij Âj i =
NX

i =1

NX

j =1

�
ci +1 � i;j � 1 + ci � i;j +1

� �
cj +1 � j;i � 1 + cj � j;i +1

�

=
NX

i =1

NX

j =1

�
ci +1cj +1 � i;j � 1 � j;i � 1 + ci +1cj � i;j � 1 � j;i +1 + ci cj +1 � i;j +1 � j;i � 1 + ci cj � i;j +1 � j;i +1

�

=
NX

i =1

�
ci +1ci � 2;N + c2

i +1 + c2
i + ci ci � 1 � 2;N

�

=
NX

i =1

�
2c2

i + 2 ci ci +1 � 2;N

�

=
NX

i =1

�
2ci + 2 ci ci +1 � 2;N

�

(8.61)

where we have used the fact that ci 2 f0;1g. The term multiplied by � 2;N is derived by

considering that the highlighted terms appearing in the second row give in general a zero

contribution, except for the case in which the index j can be at the same time equal toi � 1

and i +1. By involving the periodical condition cN +1 = c1, this occurrence is veri�ed only

for N = 2 for each i = 1;2 and the term is non zero only for ci = 1.
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We will now consider the trace of the quartic power of the adjacency matrix, as follows

tr Â4 =
NX

i =1

NX

j;k;l =1

Âij Âjk Âkl Âli

=
NX

i =1

NX

j;k;l =1

�
ci +1 � i;j � 1 + ci � i;j +1

� �
cj +1 � j;k � 1 + cj � j;k+1

�

�
�
ck+1 � k;l� 1 + ck � k;l+1

��
cl +1 � l;i � 1 + cl � l;i +1

�

(8.62)

for which we can evaluate the terms giving a non zero contribution, obtaining

tr Â4 =
NX

i =1

�
2c4

i + 4 c2
i c2

i +1 + 2 ci ci +1ci +2ci +3� 4;N

�

=
NX

i =1

�
2ci + 4 ci ci +1 + 2 ci ci +1ci +2ci +3� 4;N

�
;

(8.63)

where the term involving � 4;N is derived in an analogous way to the term � 2;N in (8.61),

by imposing the periodical condition. Summarizing we get

tr Â2 =
NX

i =1

�
ci + ci +1

�
+ 2 � 2;N

NX

i =1

ci ci +1 (8.64)

tr Â4 =
NX

i =1

�
ci + ci +1

�
+ 4

NX

i =1

ci ci +1 + 2 � 4;N

NX

i =1

ci ci +1ci +2ci +3 (8.65)

We can rearrange the terms appearing in (8.55) in order to write the Hamiltonian

involving the traces of the matrices, giving that

NX

i =1

ci ci +1 =
1
4

0
BBBBB@tr Â4 � 2 � 4;N

NX

i =1

ci ci +1ci +2ci +3 � tr Â2 + 2 � 2;N

NX

i =1

ci ci +1

1
CCCCCA (8.66)

NX

i =1

�
ci + ci +1

�
= tr Â2 � 2 � 2;N

NX

i =1

ci ci +1 : (8.67)

Hence, the Hamiltonian of the system becomes

HN (� 2; � 4) = � � 2

0
BBBBB@tr Â2 � 2 � 2;N

NX

i =1

ci ci +1

1
CCCCCA� � 4

0
BBBBB@tr Â4 � 2 � 4;N

NX

i =1

ci ci +1ci +2ci +3

1
CCCCCA+ �N ;

(8.68)
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where a rede�nition of the coupling constants ( � 1; � 2) ! (� 2; � 4) is considered

8
>>>>>><
>>>>>>:

� 2 = � 1 �
� 2

4

� 4 =
� 1

4

(8.69)

and � is written as a function of � 2 and � 4 as

� (� 2; � 4) = � 2 +
� 1

4
= � 2 + 2� 4 : (8.70)

By assuming a Boltzmann distribution for the adjacency matrices of the form (8.58), rep-

resenting the set of all possible con�gurations of the system fÂg, the partition function

for the system can be written as

ZN (� 2; � 4) =
X

fÂg

e
� H N

�
fÂg; � 2 ; � 4

�

; (8.71)

and it can easily checked that it corresponds to (8.52). The partition function can be

rewritten in terms of eigenvalues. Since the matrices belonging to the set fÂgare sym-

metric they are diagonalizable, with eigenvalues � i 2 R. By using the cyclic property of

the trace, we have

tr Âm = tr
�
OD̂O� 1

� m
= tr

�
O� 1OD̂

� m
= tr

�
D̂

� m
=

NX

i =1

� m
i for m = 2;4: (8.72)

After a suitable rede�nition of the coupling constants, the partition function takes the

form

ZN (x2 ; x4) =
X

f� g

cN (� )
NY

i =1

e� x2 � 2
i � x4 � 4

i ; (8.73)

where � represents a con�guration. As we can see in (8.73), it is not possible express the

partition function in terms of the spectrum only. This is because to express the original

adjacency matrix we start with N degrees of freedom and we haveN � 1 degrees of free-

dom when we consider the eigenvalues. The invariance of the trace imposes a constraint

on the total sum of eigenvalues. Then new parameters are needed to restore the proper

number of degrees of freedom and this may be related to the degree sequence for the
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Automorphisms of graphs

graph (see section 8.1). The coe� cients cN (� ) encode the information about the symme-

try of the speci�c con�guration, related to the symmetry group underpinning the graph

structure and its automorphisms, as we will see in section 8.5.

It seems that with our description, we are in some way modelling the interaction

term for the spins. Indeed, if we consider the mean-�eld version of the Ising model, the

interaction will be represented by a star

Figure 8.6: Star graphs representing the mean-�eld interaction term for a system com-
posed of 3, 4 and 5 spins respectively.

The spectrum � of a star graph is given by

� (SN � 1) = f�
p

N � 1;
p

N � 1; 0; : : : ;0g; (8.74)

therefore in this case we have

tr A4
star =

1
2

�
tr A2

star

� 2
; (8.75)

and we recover the typical form of the partition function for the two-star version of the

Curie-Weiss model.

8.5 Automorphisms of graphs

In order to give a proper expression for the coe � cients c(� ) in equation (8.73), we con-

sider the following de�nitions in the context of graph theory [18].

De�nition 8.5.1 Isomorphisms of graphs are bijections of the vertex sets preserving adja-

cency as well as non-adjacency.

De�nition 8.5.2 Automorphisms of the graphX = (V ;E) are X ! X isomorphisms, they

form the subgroup Aut(X) of the symmetric group Sym(V ).
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Chapter 8. Towards networks

De�nition 8.5.3 Homomorphisms of graphs are de�ned as adjacency preserving maps. A

map f : V1 ! V2 is a homomorpism of the graphX1 = (V1;E1) to the graphX2 = (V2;E2) if

(f (x); f (y)) 2 E2 whenever a(x;y) 2 E1. Non-adjacency is not preserved in a homomorphism,

so a bijective homomorphism is not necessarily an isomorphism. The chromatic number of

the graphX is the smallest cardinal numberm such that the set Hom(X;Km) of X ! Km

homomorphisms is nonempty.

A graph and its complement have the same automorphisms. The automorphism

group of the complete graph Kn and the empty graph K̄n is the symmetric group Sn

(of order n!). The automorphism group of the cycle of length n is the dihedral group Dn

(of order 2n). A star has Sn as automorphism group (of order n!). A path of length � 1

has 2 automorphisms.

The automorphism group of a graph is determined by the automorphism groups and

the isomorphisms of its connected components.

In the case of the Ising model the coe� cients c(� ) in (8.73) are given in terms of

automorphisms of a con�guration, as

cN (� ) =
jDN j

jAut( � )j
=

2N
jAut( � )j

; (8.76)

since we are essentially considering cycles (elements of the dihedral group Dn).

The relevance of the symmetry factor becomes evident when we consider more com-

plex structures than cycles, as we will see in the nex section.

8.6 Exponential random graphs

A random graph is de�ned to be G(n;p), where p is the probability associated to an edge

between a pair of vertices [57, 103, 15]. We consider the adjacency matrix of an undi-
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Exponential random graphs

(a) (b)

Figure 8.7: Example of two di � erent con�gurations sharing the same spectrum � (a) =
� (b) = f� 2;2;0;0;0gand possessing di� erent symmetry factors c5(a) = 5, c5(b) = 15.

rected random graph

A =

0
BBBBBBBBBBBBBBBBBBBBBB@

0 a12 : : : a1N

a12 0 : : : a2N
:::

:::

a1N 0

1
CCCCCCCCCCCCCCCCCCCCCCA

ai j =

8
>>>>><
>>>>>:

1 i � j with probability p

0 otherwise

We consider the occurrence of an edge with probability p � 1=2 and every entry in the

matrix aij 2 f0;1g. The probability distribution for every entry is then the Bernoulli dis-

tribution. Since the graph is undirected, the adjacency matrix is symmetric, i.e. it is

invariant under orthogonal transformations

A ! O> AO; with OO> = 1 : (8.77)

With the assumption that the entries are independent, we have a symmetric matrix with

entries independent and identically distributed. As we have seen in section 2.1, this leads

to a Gaussian weight in the partition function. The partition function is

ZN (a) =
X

f� g

cN (� )
NY

i =1

e� a � 2
i : (8.78)

Here, it is crucial distinguishing between con�gurations having the same spectrum and

di � erent symmetry factor, related to the number of the associated automorphisms. In

�gure 8.7 it is shown an example of two isospectral con�gurations with di � erent number
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Chapter 8. Towards networks

of automorphisms. The symmetry factor is given by

cN (� ) =
jSN j

jAut( � )j
=

N !
jAut( � )j

; (8.79)

with SN the symmetric group. In the jargon of graphs what is di � erent between the two

con�gurations reported in �gure 8.7 (a) and (b) is the degree sequence

d(a) = f1;1;1;1;4g;

d(b) = f2;2;0;2;2g;
(8.80)

whereas the sum of the degrees is the same, this given by the fact that the number of

edges for the two graphs is the same.

Giving the similarity of the forms of the partition functions constructed in this chap-

ter with those encountered in the theory of random matrix ensembles, we expect that

some results can be applied to real networks.
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Conclusions

In this thesis we have investigated several integrable systems in the framework o � ered

by the approach of di � erential identities. We have seen how mean-�eld theories can be

suitably described via the introduction of nonlinear equations of hydrodynamic type sat-

is�ed by the order parameters of the theory. The breaking of the solutions induced by

the e� ects of nonlinearity is regularised via a viscous shock solution. We have explic-

itly applied the method to the Curie-Weiss model, where we have found that the order

parameter satis�es a Hopf equation.

We have then studied the Volterra reduction of the Toda lattice, connected with the

Hermitian matrix ensemble with even interactions only. At the leading order in the con-

tinuum limit of the �eld variable, we have obtained the Hopf hierarchy. We have analysed

the speci�c case of all but the �rst three times set to zero. With this assumption, we have

studied the dynamics of the solution and we have observed the emergence of a structure

characterised by fast oscillations after the breaking. This feature resembles the structure

of a dispersive shock and occurs in di� erent scenarios in the space of parameters.

Within the perspective of the corresponding hydrodynamic systems, it seems that the

magnetisation in the Curie-Weiss model and the continuum limit of the order parameter

in the Volterra lattice belong to the same class of solutions, both being solutions of the

Hopf hierarchy. What distinguish the two systems is the initial datum and the regulari-

sation mechanism.

Particular emphasis has been given to the study of the symmetric matrix ensemble

and its underpinning integrable structure, the Pfa � lattice. We have introduced a suit-

able notation of the �eld variables constituting the elements of the lattice, making the

double-chain structure shared by the �eld variables manifest. We have considered the
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GOE as the free theory (or initial datum) for the Pfa � lattice and we have introduced a

suitable reduction, by selecting the even times only, in analogy with the construction of

the Volterra lattice from the Toda lattice. We have studied the behaviour at the leading

order in the continuum limit of the �eld variables in the �rst �ow, where the equations

can be recast in form of a new hydrodynamic chain.

The introduced hydrodynamic chain constitutes an interesting object per se, given

that it di � ers from the standard integrable hydrodynamic chains studied in literature,

for the presence of an additional seed. We have addressed the question of integrability of

the chain, analysing the geometric structure behind it via the evaluation of the Nijenhuis

and Haantjes tensors and we have obtained the corresponding Gibbons–Tsarev system.

We have extended the study to the next two �ows, �nding a hydrodynamic chain-like

structure as well. Also, we have observed a nominal proliferation of seeds in the hydro-

dynamic chains associated to higher �ows and a dependence on an increasing number of

nearest neighbours in the dynamics. We have then conjectured the existence of a hydro-

dynamic chain hierarchy. From these observations, it seems that the symmetric matrix

ensemble is a system characterised by a sort of intrinsic multi-dimensionality. This is

something that is evident starting from the more complex structure of the underlying

Pfa� lattice compared to the Toda lattice. Therefore, we expect a broader and richer pat-

terns of possible behaviours in the context of the symmetric matrix ensemble compared

to those observed for the Hermitian matrix ensemble.

In the last part of the work we have applied the above mentioned method of di � er-

ential identities to the two-star model, in the context of graph theory, reproducing the

classical result of the mean-�eld underlying theory. Finally, we have determined the

partition function for the one-dimensional Ising model in terms of the elements of the

adjacency matrix associated to cycles.



Appendix A

Exploring the Pfa � lattice

A.1 Observations on the structure of the Pfa � lattice

Let us consider, for N = 8, the matrix L of the form

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

L1;1(t ) 1 0 0 0 0 0 0

L2;1(t ) L2;2(t ) L2;3(t ) 0 0 0 0 0

L3;1(t ) L3;2(t ) L3;3(t ) 1 0 0 0 0

L4;1(t ) L4;2(t ) L4;3(t ) L4;4(t ) L4;5(t ) 0 0 0

L5;1(t ) L5;2(t ) L5;3(t ) L5;4(t ) L5;5(t ) 1 0 0

L6;1(t ) L6;2(t ) L6;3(t ) L6;4(t ) L6;5(t ) L6;6(t ) L6;7(t ) 0

L7;1(t ) L7;2(t ) L7;3(t ) L7;4(t ) L7;5(t ) L7;6(t ) L7;7(t ) 1

L8;1(t ) L8;2(t ) L8;3(t ) L8;4(t ) L8;5(t ) L8;6(t ) L8;7(t ) L8;8(t )

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

where Li;j are functions of t = ft1; t2; : : :gand L2n;2n+1 are related to the Pfa� an � � functions

L2n;2n+1 =

 
h2n

h2n� 2

! 1=2

(A.1)

The Hamiltonian commuting equations are

@L
@tk

=
h
�

�
Lk

�

t
;L

i
: (A.2)
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Chapter A. Exploring the Pfa� lattice

In order to explore the structure of the di � erent elements of the matrix L, we will consider

the equations (A.2) for di � erent tk and solve the corresponding system of equations in

terms of elements Li;j .

To determine other constraints on the elements of the matrix, we will consider that L

is introduced as a matrix given by dressing the shift matrix � with the matrix Q, decom-

position of the moments matrix

L(t ) = Q(t ) � Q(t )� 1 : (A.3)

A.2 Equations for derivatives w.r.t. t1

We now consider the equation
@L
@t1

=
�
� (L)t ;L

�
(A.4)

explicitly for N = 4;6.

With N = 4, the matrix L is

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBB@

L1;1(t ) 1

L2;1(t ) L2;2(t ) L2;3(t ) 0

L3;1(t ) L3;2(t ) L3;3(t ) 1

L4;1(t ) L4;2(t ) L4;3(t ) L4;4(t )

1
CCCCCCCCCCCCCCCCCCCCCCA

(A.5)

The system of equations that we can write by considering every non zero element of the

matrix L is the following ( @=@t1 = @1)

@1L1;1 = 0

@1L1;2 = 0

@1L2;1 = L2;3 L3;1

@1L2;2 = L2;3 L3;2

@1L2;3 =
1
2

L2;3
�
� L1;1 � L2;2 + L3;3 + L4;4

�

(A.6)
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Equations for derivatives w.r.t.t1

@1L3;1 = � L2;3 � L2;1 L3;2 + L4;1 +
1
2

L3;1
�
� L1;1 + L2;2 + L3;3 � L4;4

�

@1L3;2 = L3;1 + L4;2 +
1
2

L3;2
�
L1;1 � L2;2 + L3;3 � L4;4

�

@1L3;3 = � L2;3 L3;2

@1L3;4 = 0

@1L4;1 = � L2;1 L4;2 + L3;1 L4;3 + L2;3
�
L1;1 � L4;4

�
+

1
2

L4;1
�
� L1;1 + L2;2 � L3;3 + L4;4

�

@1L4;2 = L2;3 � L4;1 + L3;2 L4;3 +
1
2

L4;2
�
L1;1 � L2;2 � L3;3 + L4;4

�

@1L4;3 = � L2;3 L4;2

@1L4;4 = 0

(A.7)

Inserting the constraints related to the form of Q, it is possible to solve the system.

The matrix L for N = 4 have the structure in terms of Q elements given by

L = Q� Q� 1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0

�
q3;1

q4;4
�

q3;2

q4;4

q2;2

q4;4
0

�
q3;1 q3;2 + q4;1 q4;4

q2;2 q4;4

� q2
3;2 + (q3;1 � q4;2)q4;4

q2;2 q4;4

q3;2

q4;4
1

q3;1 q4;2

q2;2 q4;4

� q3;2 q4;2 + q4;1 q4;4

q2;2 q4;4

q4;2

q4;4
0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A.8)

where Q has the following structure

Q =

0
BBBBBBBBBBBBBBBBBBBBBB@

q2;2 0

0 q2;2

q3;1 q3;2 q4;4 0

q4;1 q4;2 0 q4;4

1
CCCCCCCCCCCCCCCCCCCCCCA

(A.9)
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Chapter A. Exploring the Pfa� lattice

The added constraints are, then,

L1;1 = L4;4 = 0

L2;2 = � L3;3

L1;2 = L3;4 = 1

(A.10)

With these prescriptions, the system is

@1L2;1 = L3;1 L2;3

@1L2;2 = L3;2 L2;3

@1L2;3 = � L2;2 L2;3

@1L3;1 = � L2;1 L3;2 + L4;1 � L2;3

@1L3;2 = L3;1 + L4;2 � L3;2 L2;2

@1L4;1 = � L2;1 L4;2 + L3;1 L4;3 + L4;1 L2;2

@1L4;2 = L3;2 L4;3 � L4;1 + L2;3

@1L4;3 = � L4;2 L2;3 ;

(A.11)

reducing the number of equations to 8, with variables ~L = fL2;1; L2;2; L2;3; L3;1; L3;2; L4;1; L4;2; L4;3g.

The latter elements are e� ected by more constraints than those previously considered,

thus yielding to the fact that the variables Li;j are not the best option to treat the system.

If we consider as new variables the entries of the matrix Q, we will produce a system

with 5 distinct equations and 6 variables fq2;2; q3;1; q3;2; q4;1; q4;2; q4;4g. By analysing the

form of the L matrix in terms of Q entries, we recognise a suitable change of independent

variables, for which it is possible to write a closed system of 5 equations.

The number of independent variables per N is

Nvar =
(N � 2)=2X

i =1

i +
N � 2

2
: (A.12)
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Equations for derivatives w.r.t.t1

We introduce the variables ai with i = 0;1; : : : ;4, written in terms of Q entries

a0 =
q2;2

q4;4

a1 =
q3;1

q4;4

a2 =
q3;2

q4;4

a3 =
q4;2

q4;4

a4 =
q4;1

q4;4

The form of the matrix L in terms of this set of variables is

L =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0

� a1 � a2 a0 0

�
a1 a2 + a4

a0

a1 � a2
2 � a3

a0
a2 1

�
a1 a3

a0

� a2 a3 + a4

a0
a3 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A.13)

Starting from the system (A.11), we obtain the following in terms of ai variables

@1a0 = a0 a2

@1a1 = a1 a2 + a4

@1a2 = � a1 + a2
2 + a3

@1a3 = a2 a3 � a4

@1a4 = a2
0 + a1 a3

(A.14)

The elements of the matrix L show a precise structure in terms of ai .

The “skeleton” of the matrix in terms of the independent variables is
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Chapter A. Exploring the Pfa� lattice

First, we notice that the independent �elds appear as shown in the following.

Then the additional terms in the lower part of the matrix are given by multiplying

the entries appearing in the more external frame

Finally, every element is rescaled by the entry a0 and we reproduce the form of L for

N = 4.
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Equations for derivatives w.r.t.t1

It is possible to identify the system (A.14) by analysing the second step of the con-

struction for the L matrix.

We can identify the equations for the system in ai variables by comparing the skeleton

matrix and the matrix obtained in the steps previously shown

We reproduce the system

@1a1 = a1 a2 + a4

@1a2 = � a1 + a2
2 + a3

@1a3 = a2 a3 � a4

@1a4 = a2
0 + a1 a3

@1a0 = a0 a2
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Chapter A. Exploring the Pfa� lattice

For N = 6 the matrix L is

L(t ) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

L1;1(t ) 1 0 0 0 0

L2;1(t ) L2;2(t ) L2;3(t ) 0

L3;1(t ) L3;2(t ) L3;3(t ) 1 0 0

L4;1(t ) L4;2(t ) L4;3(t ) L4;4(t ) L4;5(t ) 0

L5;1(t ) L5;2(t ) L5;3(t ) L5;4(t ) L5;5(t ) 1

L6;1(t ) L6;2(t ) L6;3(t ) L6;4(t ) L6;5(t ) L6;6(t )

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A.15)

Investigating the form of L written in terms of the decomposition matrix Q, we obtain a

pretty complicate form, still useful to deduce some constraints on L elements

L1;1 = L6;6 = 0

L3;3 = � L2;2

L5;5 = � L4;4

(A.16)

The form of the Q matrix for N = 6 is

Q =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

q2;2 0 0 0

0 q2;2 0 0 0 0

q3;1 q3;2 q4;4 0 0 0

q4;1 q4;2 0 q4;4 0 0

q5;1 q5;2 q5;3 q5;4 q6;6 0

q6;1 q6;2 q6;3 q6;4 0 q6;6

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A.17)

As in the previous case, we introduce a new set of variables, related to ratios of Q ele-
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Equations for derivatives w.r.t.t1

ments

a0 =
q2;2

q4;4
a1 =

q3;1

q4;4

a2 =
q3;2

q4;4
a3 =

q4;2

q4;4

a4 =
q4;1

q4;4
b0 =

q4;4

q6;6

b1 =
q5;3

q6;6
b2 =

q5;4

q6;6

b3 =
q6;4

q6;6
b4 =

q6;3

q6;6

b5 =
q5;1

q6;6
b6 =

q5;2

q6;6

b7 =
q6;2

q6;6
b8 =

q6;1

q6;6

With this set of variables, we produce a closed system of 14 di � erential equations.

@1a0 = a0 a2 �
1
2

a0 b2 @1b0 = b0 b2 �
1
2

b0 a2

@1a1 = a1 a2 + a4 @1b1 = b1 b2 + b4 � b6

@1a2 = � a1 + a2
2 + a3 @1b2 = � b1 + b2

2 + b3

@1a3 = a2(a3 � b1) � a3 b2 � (a4 � b6) @1b3 = b2 b3 � b4

@1a4 = a2
0 + a1(a3 � b1) � a4 b2 + b5 @1b4 = b2

0 + b1 b3 + b7

@1b5 = b2 b5 + b8

@1b6 = b5 + b2 b6 + b7

@1b7 = a2 b2
0 + b3 b6 � b8

@1b8 = a1 b2
0 + b3 b5
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Chapter A. Exploring the Pfa� lattice

The matrix L has the following form expressed with variables ai and bi

L =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0

� a1 � a2 a0 0 0 0

� a1 a2� a4
a0

a1� a2
2� a3

a0
a2 1 0 0

� a1 (a3� b1)+a4 b2� b5
a0

� a2 (a3� b1)+a4+a3 b2� b6
a0

a3 � b1 � b2 b0 0

� a4(b1� b2
2 � b3)+a1(b1 b2+b4� b6)� b2 b5� b8

a0 b0

� a3(b1� b2
2 � b3)+a2(b1 b2+b4� b6)+b5� b2 b6� b7

a0 b0

� b1 b2� b4+b6
b0

b1� b2
2 � b3

b0
b2 1

� a4(� b2 b3+b4)� a1(� b1 b3+b7)� b3 b5� b7
a0 b0

� a3(� b2 b3� b4)+a2(b1 b3� b7)� b3 b6+b8
a0 b0

� b1 b3+b7
b0

� b2 b3+b4
b0

b3 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

We now analyse the structure of the matrix L, starting from the independent variables

ai and bi

We consider the diagonal shifting of every independent variable

188



Equations for derivatives w.r.t.t1

We obtain the additional terms by multiplying the terms appearing in the external

rows of the blocks progressively. First, we consider separately the action of the ai and of

bi

Then we consider the mixed action of the two classes of variables in two steps. The

�rst considering the second row and the third column

and the second step considering the independent variables of the third row ( � a4 for the

�rst element and � a3 for the second) and the forth column

Finally, we rescale the entries in the bulk blocks with the variables a0 and b0
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Chapter A. Exploring the Pfa� lattice

and we can reproduce entirely the complete form of the matrix L for N = 6

Analogously to what we did for the case N = 4, we will analyse the structure of the

matrix L in terms of the variables ai and bi in order to easily produce the equations

composing the system for N = 6. We start considering the lower part of the matrix,

involving equations in bi variables for i = 1; : : : ;8
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Equations for derivatives w.r.t.t1

We reproduce the following equations

@1b1 = b1 b2 + b4 � b6 @1b5 = b2 b5 + b8

@1b2 = � b1 + b2
2 + b3 @1b6 = b5 + b2 b6 + b7

@1b3 = b2 b3 � b4 @1b7 = a2 b2
0 + b3 b6 � b8

@1b4 = b2
0 + b1 b3 + b7 @1b8 = a1 b2

0 + b3 b5

We now consider the equations with ai variables by comparing the skeleton matrix

with independent �elds and the step of the matrix involving all the products in ai vari-

ables
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Chapter A. Exploring the Pfa� lattice

We have the equations

@1a1 = a1 b2 + a4

@1a2 = � a1 + a2
2 + a3

@1a3 = a2(a3 � b1) � a3 b2 � (a4 � b6)

@1a4 = a2
0 + a1(a3 � b1) � a4 b2 + b5

Finally, for the equations involving the variables a0 and b0 with derivatives in the skele-

ton matrix, they are connected respectively to a2 and b2 and we obtain the last two equa-

tions in the system

@1a0 = a0 a2 �
1
2

a0 b2 @1b0 = b0 b2 �
1
2

b0 a2 :
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Appendix B

Continuous limit of the even Pfa �

lattice

B.1 Equations for t2-�ow and higher order corrections

We provide, for the reduced even Pfa� Hierarchy, the corrections to the leading order of

equation (7.83) up to O(" 3):

uk
t =

��
(k + 2)uk+1 � kuk� 1 � u1u0

x uk
�
u0

x � u0u1
x uk + u0uk� 1
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�
+

1
2

�
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xx(� uk� 1)
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2u0

x u1
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�
� 2u0
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�
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��
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+
1
12

�
2

�
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�
((k + 1)3 + 1)uk+1 � k3uk� 1

�
+ 3u0
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x + 3u0
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xx +u0

�
uk� 1
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� uk
�
3k2 + 3k + 2

� �
3u1

x u0
xx + 3u0

x u1
xx + u1u0

xxx + u0u1
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��
" 2 + O

�
� 3

�
; k < 0

u0
t = u0

�
u � 1

x + u1u0
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x

�
+

1
2

�
u0u � 1

xx

�
" +

1
6

u0
�
3u1

x u0
xx + 3u0

x u1
xx + u � 1

xxx + u1u0
xxx

+u0u1
xxx

�
" 2 + O

�
" 3

�

u1
t =

�
2u2u0

x � u1
�
u1u0

x + u0u1
x

�
+ u0u2

x

�
+

�
� u0

x u2
x �

1
2

u0u2
xx

�
" +

1
6

�
� u0

xxx(u1)2

�
�
3u1

x u0
xx + 3u0

x u1
xx + u0u1

xxx

�
u1 + 3u2

x u0
xx + 3u0

x u2
xx + 2u2u0

xxx + u0u2
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�
" 2 + O

�
" 3

�
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uk
t =

��
(k + 1)uk+1 � (k � 1)uk� 1 + u1uk

�
u0

x + u0u1
x uk + u0uk� 1

x + u0uk+1
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�

+
1
2

�
u0

xx

�
(k2 � 1)uk+1 � (k2 � 2k + 1)uk� 1

�
� 2u0

x uk+1
x +(k � 1)

�
2u0

x u1
x + u1u0

xx + u0u1
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�
uk

+u0uk� 1
xx � u0uk+1
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1
12

�
2

�
u0

xxx

�
(k3 + 1)uk+1 � (k � 1)3uk� 1

�
+ 3u0
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+u0
�
uk� 1
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�
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3u1
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" 2

+ O
�
" 3

�
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Appendix C

Hydrodynamic chains for �ow t4

Here, we list the discrete equations in t4 and the leading order of the continuum limit,

recasting the expressions in terms of the corresponding hydrodynamic chains reported

in (7.102)

uk
t4

= ak
� 1 u � 1

x + ak
0 u0

x + ak
1 u1

x + ak
2 u2

x + ak
k� 2 uk� 2

x + ak
k� 1 uk� 1

x + ak
k+1 uk+1

x + ak
k+2 uk+2

x (C.1)

C.1 Discrete equations in t4

• �eld u � 1
n

@t4
u � 1
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• �eld u0
n
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n
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Discrete equations int4

• �eld uk
n for k > 2
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Continuum limit in t4

C.2 Continuum limit in t4

The leading order of the thermodynamic limit with the time rescaled as t = "t 4 can

be recast in the hydrodynamic chain
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2 u2
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(C.8)

whose coe� cients are listed below.
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x + u0

x (u1
x )2uk

x + 2u0
x u2

x uk
x � u � 1

x u1+k
x � ku� 1

x u1+k
x � u0

x u1
x u1+k

x

� 2ku0
x u1

x u1+k
x � 2u0

x u2+k
x � ku0

x u2+k
x

�
k > 2

� 2
�
u � 1

x u1
x + 3u0

x (u1
x )2 + u � 1

x u1
x u2

x + u0
x (u1

x )2u2
x + 2u0

x (u2
x )2

� 3u � 1
x u3

x � 5u0
x u1

x u3
x � 4u0

x u4
x

�
k = 2

� 2
�
u0

x u1
x + u � 1

x (u1
x )2 + u0

x (u1
x )3 � 2u � 1

x u2
x � u0

x u1
x u2

x � 3u0
x u3

x

�
k = 1

2u0
x

�
u � 2

x + 2u � 1
x u1

x + u0
x (u1

x )2 + 2u0
x u2

x

�
k = 0

2
�
u � 2

x u � 1
x + 2u � 3

x u0
x + 2u � 1

x u0
x + (u � 1

x )2u1
x + 3u � 2

x u0
x u1

x

+4(u0
x )2u1

x + u � 1
x u0

x (u1
x )2 + 2u � 1

x u0
x u2

x

�
k = � 1

2
�
3u0

x u � 2+k
x + ku0

x u � 2+k
x + 2u � 1

x u � 1+k
x + ku� 1

x u � 1+k
x + 5u0

x u1
x u � 1+k

x

� 2ku0
x u1

x u � 1+k
x + ku� 1

x u1+k
x + u0

x u1
x u1+k

x + 2ku0
x u1

x u1+k
x + u0

x u2+k
x

+ku0
x u2+k

x + u � 1
x u1

x uk
x + u0

x (u1
x )2uk

x + 2u0
x u2

x uk
x

�
k < � 1

(C.14)
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Appendix D

Permutations for one-dimensional

Ising model

The partition function for the Ising model in one dimension is written in terms of the

adjacency matrix Â as

ZN (x2;x4) =
X

fÂg

�
ex2 tr Â2+x4 tr Â4

�
e� N (x2+2x4) : (D.1)

SinceÂ is symmetric it can be diagonalised

Â = OD̂OT ; (D.2)

with D̂ is the diagonal matrix of the eigenvalues of Â and the matrix O is given by the

corresponding eigenvectors.

D.1 Transformation of adjacency matrix for di � erent con�gu-

rations

We observe that, given the adjacency matrix ÂN for a speci�c con�guration, it is possible

to identify a set of transformations Pi acting on the associated eigenvectors orthogonal
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matrix by permuting its rows, that leave invariant the structure of ÂN itself

ÂN = OD̂OT Õ = Pi O

ÂN = ÕD̂ÕT = Pi OD̂OT PT
i

ÂN = Pi ÂN P� 1
i :

(D.3)

where the last expression is given by the fact that a permutation matrix is orthogonal.

The e� ect of the transformation Pi on the adjacency matrix is to permute rows (acting

from the left) and columns (acting from the right via the inverse). Hence, we have

ÂN Pi = Pi ÂN =)
h
ÂN ;Pi

i
= 0 (D.4)

that means that the permutations that leave invariant the adjacency matrix are those that

commute with ÂN .

The permutations of n objects form a group, called the symmetric group Sn of order

n!. In terms of matrices every element of the group is given by a permutation of the

eigenvectors of the identity matrix.

The permutation � of n elements � : f1; : : : ;ng ! f 1; : : : ;ngcan be represented in the

following two-line form as
0
BBBBBBB@

1 2 � � � n

� (1) � (2) � � � � (n)

1
CCCCCCCCA

(D.5)

and there are two natural ways to represent a permutation with a permutation matrix,

starting from the n � n identity matrix In. The �rst way is to consider a permutation of

columns of In, the second a permutation of rows. We will consider the matrix P� = pij

associated to the permutation of rows of In, as

pij =

8
>>>>><
>>>>>:

1 if i = � (j )

0 otherwise
(D.6)

The entries in the i � th column are all 0 except for 1 in correspondence of the row � (j ),

we can write

P� =
�
e� (1) e� (2) � � � e� (n)

�
(D.7)
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where ej is a standard basis vector, a column of length n with 1 in the j � th position and

0 in every other position.

Let us consider for example the permutation

� =

0
BBBBBBB@

1 2 3 4 5

1 4 2 5 3

1
CCCCCCCCA

(D.8)

the corresponding permutation matrix P� is given by

P� =
�
e� (1) e� (2) e� (3) e� (4) e� (5)

�
=

�
e1 e4 e2 e5 e3

�
=

2
666666666666666666666666666664

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

3
777777777777777777777777777775

(D.9)

where the second row in I5 occupies the forth one in P� , the third row occupies the second

one and so forth, following the prescription (D.8).

The n � n permutation matrices that can be constructed starting from the In identity

matrix form a group under matrix multiplication with identity matrix as identity ele-

ment. Any permutation may be written as a product of transpositions, a cycle composed

of two elements. In general a cycle of degree m is a permutation interchanging m objects

cyclically.

The group Sn of permutations of n objects f1; : : : ;ng can be generated by the n � 1

fundamental transpositions (1 $ 2); (1 $ 3); : : : ; (1 $ n).

Case N=3

We consider the group of row permutations for 3 � 3 matrices. It is composed of 6 ele-

ments, each of them can be expressed in terms of the 2 fundamental elements

p1 = (1 $ 2) p2 = (1 $ 3) (D.10)
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The symmetric group S3 is then

S3 = f 1; p1; p2; p1p2; p2p1; p1p2p1 g (D.11)

where 1 corresponds to the identical permutation, p2
1 = p2

2 = 1 and p1p2p1 = p2p1p2. It

can also represented formally as

S3 = hp1;p2 j p2
1 = p2

2 = (p1p2)3 = 1i (D.12)

The operators associated to the elements are identi�ed by matrices M 3� 3 as follows

I3 =

0
BBBBBBBBBBBBBBB@

1 0 0

0 1 0

0 0 1

1
CCCCCCCCCCCCCCCA

P1 =

0
BBBBBBBBBBBBBBB@

0 1 0

1 0 0

0 0 1

1
CCCCCCCCCCCCCCCA

P2 =

0
BBBBBBBBBBBBBBB@

0 0 1

0 1 0

1 0 0

1
CCCCCCCCCCCCCCCA

P1P2 =

0
BBBBBBBBBBBBBBB@

0 1 0

0 0 1

1 0 0

1
CCCCCCCCCCCCCCCA

P2P1 =

0
BBBBBBBBBBBBBBB@

0 0 1

1 0 0

0 1 0

1
CCCCCCCCCCCCCCCA

P1P2P1 =

0
BBBBBBBBBBBBBBB@

1 0 0

0 0 1

0 1 0

1
CCCCCCCCCCCCCCCA

By considering the possible con�gurations represented by the adjacency matrices for N =

3 we have the following relations between the speci�c adjacency matrix and the various

permutation matrices.

The adjacency associated to the con�guration with no link and labelled as Â3(0) triv-

ially commutes with all the elements of the group S3

Â3(0) =

0
BBBBBBBBBBBBBBB@

0 0 0

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCA

� (Â3(0)) = f0;0;0g

h
Â3(0); I3

i
=

h
Â3(0);P1

i
=

h
Â3(0);P2

i
= 0

h
Â3(0);P1P2

i
=

h
Â3(0);P2P1

i
=

h
Â3(0);P1P2P1

i
= 0

(D.13)

The same is veri�ed by the complementary con�guration, where all the links are on being
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represented by the adjacency matrix Â3(3)

Â3(3) =

0
BBBBBBBBBBBBBBB@

0 1 1

1 0 1

1 1 0

1
CCCCCCCCCCCCCCCA

� (Â3(3)) = f2;� 1;� 1g

h
Â3(3); I3

i
=

h
Â3(3);P1

i
=

h
Â3(3);P2

i
= 0

h
Â3(3);P1P2

i
=

h
Â3(3);P2P1

i
=

h
Â3(3);P1P2P1

i
= 0

(D.14)

We notice that with equal commutation relations with the elements of S3 what allows us

to distinguish Â3(0) from Â3(3) is the spectrum of eigenvalues related to the matrices.

The situation is di � erent for the intermediate con�gurations, where each adjacency

matrix commutes with just one of the elements of S3, other than with I3, this being trivial.

The other elements of the group, �xed the adjacency matrix, allow us to pass from a

con�guration to another representing the same structure (having the same spectrum).

The possible con�gurations represented by the adjacency matrix with spectrum � (Â3(1))

are shown in the following. Each adjacency matrix is accompanied by the corresponding

graph, the permutation matrix with which it commutes (the trivial I3 is not shown) and

the transformations taking it to the equivalent con�gurations are represented.

� (Â3(1)) = f� 1;1;0g

Â3(1;2) =

0
BBBBBBBBBBBBBB@

0 1 0

1 0 0

0 0 0

1
CCCCCCCCCCCCCCA

h
Â3(1;2);P1

i
= 0

P2P1; P1P2P1

P1P2; P1P2P1

P1; P1P2

P1; P2P1

P2; P1P2

P2; P2P1

Â3(1;1) =

0
BBBBBBBBBBBBBB@

0 0 1

0 0 0

1 0 0

1
CCCCCCCCCCCCCCA

h
Â3(1;1);P2

i
= 0

Â3(1;3) =

0
BBBBBBBBBBBBBB@

0 0 0

0 0 1

0 1 0

1
CCCCCCCCCCCCCCA

h
Â3(1;3);P1P2P2

i
= 0
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The same is given for the con�gurations related to the spectrum � (Â3(2))

� (Â3(2)) = f�
p

2;
p

2;0g

Â3(2;3) =

0
BBBBBBBBBBBBBB@

0 0 1

0 0 1

1 1 0

1
CCCCCCCCCCCCCCA

h
Â3(2;3);P1

i
= 0

P2P1; P1P2P1

P1P2; P1P2P1

P1; P1P2

P1; P2P1

P2; P1P2

P2; P2P1

Â3(2;2) =

0
BBBBBBBBBBBBBB@

0 1 0

1 0 1

0 1 0

1
CCCCCCCCCCCCCCA

h
Â3(2;2);P2

i
= 0

Â3(2;1) =

0
BBBBBBBBBBBBBB@

0 1 1

1 0 0

1 0 0

1
CCCCCCCCCCCCCCA

h
Â3(2;1);P1P2P2

i
= 0

Now we consider the general form of the adjacency matrix for N = 3 and look for the

constraints on the values of the entries, by imposing the relations of commutation with

the di � erent permutation matrices, representations of the group S3.
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The general form for Â3 is

Â3 =

0
BBBBBBBBBBBBBBB@

0 c2 c1

c2 0 c3

c1 c3 0

1
CCCCCCCCCCCCCCCA

(D.15)

Imposing that the commutator respectively with P1, P2, P1P2P1, P1P2 and P2P1 is zero

we get

� (Â3(2)) � (Â3(1)) � (Â3(3)) � (Â3(0))

f�
p

2;
p

2;0g f� 1;1;0g f2;� 1;1g f0;0;0g

h
Â3; P1

i
= 0 ! c3 = c1

h
Â3; P2

i
= 0 ! c3 = c2

h
Â3; P1P2P1

i
= 0 ! c2 = c1

h
Â3; P1P2

i
= 0 ! c3 = c2 = c1

h
Â3; P2P1

i
= 0 ! c3 = c2 = c1
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