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Multiview Subspace Clustering Using Low-rank
Representation

Jie Chen, Shengxiang Yang, Senior Member, IEEE, Hua Mao, Member, IEEE, Conor Fahy

Abstract—Maultiview subspace clustering is one of the most
widely used methods for exploiting the internal structures of
multiview data. Most previous studies have performed the task of
learning multiview representations by individually constructing
an affinity matrix for each view without simultaneously exploiting
the intrinsic characteristics of multiview data. In this paper, we
propose a multiview low-rank representation (MLRR) method
to comprehensively discover the correlation of multiview data
for multiview subspace clustering. MLRR considers symmetric
low-rank representations (LRRs) to be an approximately linear
spatial transformation under the new base, i.e., the multiview
data themselves, to fully exploit the angular information of the
principal directions of LRRs, which is adopted to construct
an affinity matrix for multiview subspace clustering, under
a symmetric condition. MLRR takes full advantage of LRR
techniques and a diversity regularization term to exploit the
diversity and consistency of multiple views, respectively, and this
method simultaneously imposes a symmetry constraint on LRRs.
Hence, the angular information of the principal directions of
rows is consistent with that of columns in symmetric LRRs. The
MLRR model can be efficiently calculated by solving a convex
optimization problem. Moreover, we present an intuitive fusion
strategy for symmetric LRRs from the perspective of spectral
clustering to obtain a compact representation, which can be
shared by multiple views and comprehensively represents the
intrinsic features of multiview data. Finally, the experimental re-
sults based on benchmark datasets demonstrate the effectiveness
and robustness of MLRR compared with several state-of-the-art
multiview subspace clustering algorithms.

Index Terms—Multiview data, low-rank representation, sub-
space clustering, spectral clustering

I. INTRODUCTION

Subspace clustering is an effective tool to explore the under-
lying structures of high-dimensional data [3], [13], [28], [37].
It shows significant compactness in developing applications
involving high-dimensional data, such as image representation
[50], motion segmentation [7] and multimedia understanding
[44]. Tt is well known that high-dimensional data often have a
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smaller intrinsic dimension [1], [6], [56]. We assume that high-
dimensional data are approximately drawn from multiple low-
dimensional subspaces. Therefore, the objective of subspace
clustering addresses the problem of clustering data into their
respective subspaces.

A number of subspace clustering methods aim to identify
groups and achieve impressive performance for single-view
data [22]. For example, spectral clustering-based methods and
their variants are widely used clustering methods [13], [18],
[28], [33]. However, many machine learning problems deal
with data involving several different representations or views
from multiple sources of features, where each representation or
view represents a type of feature set [26], [61]. Each of these
individual views may be insufficient to perform a clustering
task. Multiple views providing complementary information can
improve the performance of clustering tasks. For example,
the features of a handwritten image can be simultaneously
described by multiple styles, such as with different rotations,
translations, and thicknesses. These different features can
provide more differentiable information from different styles
of handwritten images and can help improve the clustering
performance in image information retrieval.

The goal of multiview subspace clustering is to simul-
taneously cluster data into respective clusters using multi-
view feature sets, where each cluster corresponds to a low-
dimensional subspace [45], [53], [57], [60], [63].Multiview
data consist of different views and can be represented by
multiple distinct feature sets. The consistency of different fea-
ture sets indicates that common information is shared among
different views. Different features can provide useful diversity
information extracted from different views. Hence, one of the
main challenges in multiview subspace clustering is to seek
a consensus feature representation that is able to effectively
exploit the consistency and diversity among different views.
Additionally, graph construction is an effective way to evaluate
the memberships between features in multiview subspace
clustering [43], [59]. For instance, Tang et al. presented a
cross-view graph diffusion method that was parameter free to
effectively learn a unified graph for multiview data clustering
[43]. Zhan et al. presented a graph learning-based multiview
clustering algorithm to learn a global graph into which the
initial graphs are integrated with the rank constraint on the
Laplacian matrix [59]. In particular, the mutual relationship
between pairwise data samples should be equivalent in graph
construction [23], [5], [19]. Jia et al. used symmetric nonneg-
ative matrix factorization to learn a similarity graph without
additional postprocessing for subspace clustering [19].

A variety of multiview representation learning approaches



have been presented to exactly solve the problem of learning
a shared representation of multiple views [25], [42], [44],
[55], [64]. The existing representative multiview representation
learning approaches, such as multimodal probabilistic-based
models [9] and neural network-based models [15], [34], ef-
fectively integrate the distinct features learned from multiple
different views into a compact representation. In general,
the multimodal probabilistic-based models, such as multiview
topic learning and multiview latent space Markov networks
[9], consider the problem of multiview feature learning as
seeking a compact set of latent random variables that estimate
a distribution for observed multiview data. Specifically, these
models construct probabilistic models of feature representation
using the probabilistic distributions of multiview data. In ad-
dition, neural network-based models, such as multimodal au-
toencoders [34] and multiview convolutional neural networks
[34], usually construct a successive network layer structure
to learn the respective features for individual views and then
fuse these features into a shared multiview representation.
However, these methods lack the ability to exploit the intrinsic
low-dimensional structures of high-dimensional data. In fact,
high-dimensional data of multiple views often imply low-
dimensional subspaces. Therefore, the multiple subspace struc-
ture of high-dimensional data should be taken into account
when exploiting the complementary knowledge contained in
multiview data.

Inspired by the success of /;-norm and nuclear norm tech-
niques, two major categories of data representation learning
theory have recently been introduced to learn feature represen-
tations of high-dimensional data, i.e., sparse representation and
low-rank representation (LRR) [3], [38], [40]. Sparse subspace
clustering (SSC) and LRR are two representative methods of
data representation that uncover the underlying structure of
high-dimensional data for subspace clustering [13], [28]. SSC
uses the sparsest representation of data points by solving the
l1-norm minimization problem. This method shows its ability
to capture the local structure of high-dimensional data. LRR
imposes a low-rank constraint on data points to find subspace
structures, which can be solved by the convex optimization
problem of nuclear norm minimization. This method is able
to effectively capture the global structure of high-dimensional
data. These methods show impressive clustering performance
in subspace clustering but mainly focus on learning feature
representations from a single view rather than multiple views.
Several impressive extensions of LRR techniques have been
proposed to discover the manifold structure embedded in high-
dimensional data [10], [30], [31]. These extensions provide a
discriminative representation that preserves projection learning
for image recognition and obtains competitive classification
results.

In recent years, data representation learning theories have
been widely extended to learn the joint feature representa-
tions of multiview data for multiview subspace clustering
[2], [11], [29], [32], [47], [58]. By introducing structured
sparsity constraints on a weight matrix, the work in [2]
proposed a multiview learning model to integrate all features
and learn the joint weight matrix for an individual feature
representation with respect to each cluster. Although the I3 ;-
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norm encourages the columns of a joint weight matrix to
be zero, the fusion mechanism of multiview features that
adopts the characteristic of structured sparsity for the matrix
is ambiguous. In [35], a multiview learning model, named
multiview learning with adaptive neighbors (MLAN), was
proposed to find complex structures of high-dimensional data
and learn relationships among multiple views. MLAN has
the ability to perform multiview clustering and local mani-
fold structure learning simultaneously. However, this model
is insufficient for capturing the global structure of high-
dimensional data. In addition, Wang proposed an iterative
low-rank-based structured optimization (ILRSO) method to
capture the local manifold structure of high-dimensional data
and obtain agreement among multiple views for multiview
spectral clustering [52]. Moreover, Wang further presented
a structured low-rank matrix factorization (SLRMF) method
by factorizing LRR as a clustered symmetric matrix [51].
Hence, significant characteristics of LRR have been developed
for extracting essential features of high-dimensional data,
especially in evaluating the membership of data samples, and
should be further researched.

In this paper, we present a multiview low-rank represen-
tation (MLRR) model to comprehensively discover the cor-
relation of multiview data for multiview subspace clustering.
Generally, different views contain complementary information.
MLRR adopts LRR techniques to explore the diversity of
multiple views, i.e., the different intrinsic low-rank structures
of multiview data. Such differences in low-rank structures
enhance the diversity of multiple views to capture the inher-
ent differences among individual views. In addition, MLRR
introduces a diversity regularization term to guarantee the
consistency of multiple views. We simultaneously consider a
symmetry constraint imposed on the MLRR model to improve
its learning ability of complementary knowledge. Moreover,
each multiview feature representation shows distinct degrees
of importance in the fusion of feature representations. Con-
sequently, MLRR presents an intuitive fusion strategy of
symmetric LRRs to obtain a compact representation from the
perspective of spectral clustering. The compact representation
is shared by multiple views to comprehensively represent the
intrinsic features of multiview data. As multiview data are
often contaminated by noise and outlying entries, an affinity
matrix can be finally constructed by calculating the angular
information of the principal directions of symmetric LRRs.

The main contributions of this paper are summarized below:

1) The MLRR model effectively exploits the intrinsic low-
dimensional structures of multiple views by an LRR
and a diversity regularization term under a symmetric
constraint.

2) The MLRR model considers symmetric LRRs to be an
approximately linear spatial transformation under the new
base, i.e., the multiview data themselves, to fully exploit
the angular information of the principal directions of
LRRs under a symmetric condition.

3) The fusion mechanism of symmetric LRRs is presented to
pursue a compact representation of multiple views from
the perspective of spectral clustering.

4) The MLRR model can be efficiently calculated by solving
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a convex optimization problem, and a rigorous conver-
gence proof for MLRR is provided.

5) Extensive experimental results obtained from benchmark
datasets demonstrate the effectiveness and robustness of
MLRR for multiview subspace clustering.

The rest of this paper is organized as follows. Related work
on LRR and multi-view subspace clustering are summarized in
Section II. Section III presents our proposed approach in detail.
Extensive experimental results and discussions are shown in
Section IV. Finally, conclusions are drawn in Section V.

II. RELATED WORK

This section provides a brief review of LRR techniques and
some related work on multiview subspace clustering.

A. Low-rank Representation

Let Y = [y1,y2...,Yn] € R¥" be a set of d-dimensional
data vectors. We assume that each data vector is drawn
from the union of k linear subspaces {S;}¥_, of unknown
dimensions. To find an LRR Z & R™*", LRR solves the
following rank minimization problem:

mzin rank(Z) s.t. Y =DZ, (D
where D = [d;,dy, ..., d,,] € R?*™ is a given dictionary used
to linearly represent the data vectors [28].

Since Problem (1) is nonconvex and NP-hard, LRR uses the
nuclear norm as a common surrogate for the rank function to
attain a convex solution as follows:

rnzin 1Z|, s.t. Y =DZ, (2)
where ||Z]|, denotes the nuclear norm of matrix Z. The above
optimization problem can be efficiently solved by singular
value decomposition (SVD). The solution Z of Problem (2)
is considered the set of LRR features of Y. In a single view,
the affinity matrix constructed as |Z| 4 |Z|” can be used for
spectral clustering [41] to obtain the final clustering result of
Y.

B. Multiview Subspace Clustering

Suppose that each data vector x; has n,, views in X. Without
loss of generality, we have X = [X(1) X () X ()] where
XV € R4 consists of the vectors of x? in the v-th view.
The purpose of multiview representation learning is to learn
comprehensive representations of multiview data, and this
approach is closely related to the expressive ability of data
representation models. The fused representation of multiple
views is critical for multiview subspace clustering, and ILRSO
methods are typical examples of multiview subspace clustering
involving LRR techniques from feature representation [51],
[52], [54].

To exploit the complementary information among multiple
views, RMSC adopts a low-rank and sparse decomposition
strategy for the feature fusion of multiple views [54]. This
algorithm first constructs affinity matrices S;(i = 1,2, ..., n,)
for the multiple views and then calculates the corresponding

transition probability matrix P; = (Di)flsi for each single
n
view, where D; is a diagonal matrix with dp = ) Si;.
j=1
The algorithm further imposes a low-rank constraint on the
transition probability matrix P to implement feature fusion
by minimizing the following objective function:

min

P, + A E.
P,{Ei}?:le ” ;(H ZH])

st. P,=P+E;,P>0,P1l=1i=1,2,...,n,,

3)

where A > 0 is a parameter. Finally, RMSC uses the shared
low-rank transition probability matrix as an input for spectral
clustering via Markov chains [62].

By combining low-rank and sparse decomposition, ILRSO
was proposed to explicitly learn a shared representation in
multiview spectral clustering [52]. By utilizing the differences
in low-rank and sparse representations from different views,
the objective function of the structured LRR is formulated as:

min Zf(Zi,Ei)

{Z:32 B eV (4)

s Ty
where A1, Ao, A3 and (3 are parameters and
(23, E) = || Zi]], + MIEi]l; + A2l Zi

PN (ELZ) S Y IZi-glh @
JEV,j#i
The above optimization problem can be solved by an alter-
nating direction method with adaptive penalty. The shared
representation of multiple views can be obtained by fusing
individual LRRs of multiple views as follows:

Ny

1
W=—3% W, (6)
[

where W, (j,k) = 1 (Z; (j,k) + Z; (k,j)). As a variant of
ILRSO, SLRMF employs clustered symmetric matrix factor-
ization instead of low-rank minimization, i.e.,

1 2
Z|, = in U] - |07,
1Zall, = min U5 Uil 7

where U, represents the factorized low-rank data-cluster
representation of X,; for the ¢-th view [51]. To avoid the
computational complexity of O(n?) caused by computing the
inverse matrix, an efficient updating strategy of updating a
low-rank data-cluster representation of high-dimensional data
is introduced in SLRMF.

III. MULTIVIEW LOW-RANK REPRESENTATION FOR
SUBSPACE CLUSTERING

This section presents an MLRR algorithm for multiview
subspace clustering. We first propose an MLRR model for
learning comprehensive representations that enhances diversity
and explores consistency. Then, we introduce a symmetric
constraint into LRR to perform an approximately linear spatial
transformation of multiview data. Third, we present a fusion
strategy of LRRs to obtain a compact representation, which



exhibits a great ability to capture complementary information
contained in multiple views. The angular information of the
principal directions of symmetric LRRs is further exploited to
construct a final affinity matrix, which enriches the relationship
among the data samples. Finally, we discuss the convergence
properties and computational complexity of MLRR.

A. The Diversity and Consistency of Different Views in MLRR

Consider the given multiview data X =
(XM X X™)] with n observations obtained from
n, views, each view of which consists of vectors {xV}." .
We assume that the majority of vectors are approximately
drawn from a union of multiple low-dimensional subspaces.
This assumption is reasonable because the intrinsic structures
of high-dimensional data often have a smaller dimension.
Multiple views usually describe the different types of features
of multiview data in various aspects, where each view
contains particular information. The diversity of different
views indicates that these views contain complementary
information. This implies that multiple views have their
own approximate low-dimensional structures of multiple
views with noise and corrupted observations. In other words,
the different low-dimensional structures of multiple views
can be used to characterize the diversity of the multiple
views. Consequently, learning separate LRRs from multiview
subspaces indicates that the separate information from
different views should be contained in a self-representation
with low-rank constraints. Specifically, a general optimization
problem is considered as follows:

i Xi; Zz A Xi, Ez s
(ZoB i;f ( )+ ;9( ) (8)

where f(-) represents a strategy of exploiting the separate
low-rank structures of the original views, g(-) characterizes a
certain type of corruption, and the parameter A > 0 balances
the effects of the LRR term and the corruption regularization
term. Hence, f(-) with low-rank constraints is adopted to
enhance the diversity of multiple views, i.e., the intrinsic low-
dimensional structures of the multiple views.

In addition, each view usually shares some common in-
formation that characterizes feature correlations among the
multiple views. Each LRR characterizes the same multidata
from different views. If the multidata are a collection of
data vectors that are strictly drawn from a union of multiple
subspaces, the fact that each LRR matrix Z; is block-diagonal
can be proven rigorously [28]. As a result, it is reasonable that
each LRR shares the consistency of multiple views.

Suppose we have multiview data consisting of two views,
i.e., X and X), which have two corresponding LRRs Z (")
and Z(9), respectively. We propose the following cost function
as a measure of the consistency between the two views:

(X0, XD — 4 ((Zu) —z0) (20 - Z(j))T) O

where tr denotes the matrix trace. A smaller value of the
affinity ¢(X(®, X)) indicates that the i-th view and the j-
th view are more similar. Clearly, the degree of diversity
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decreases to zero when the two views are consistent with each
other. However, usually, there are no two identical views in
multiview data. Hence, we encourage the pairwise similarities
of each pair of multiview LRRs to be closer.

Considering the diversity of different views, we add a
diversity regularization term to Problem (8) as follows:

min Zf(Xi,ZZ-)—i—)\Zg(Xi,Ei)
{Z; E:}}, P i=1
o (10)
3 e (Xu),xw)’
1,J=1,i#]

where 7 is a scalar constant. Hence, f (-) and ¢ (-) characterize
the diversity and consistency of different views, respectively.

B. Symmetry Constraint

Generally, an LRR can be considered a linear combination
of vectors in a single view. The LRR effectively measures
the relationship of the weights among the vectors from the
perspective of matrix factorization. In many previous multi-
view subspace clustering methods, Zl(;) and Z jz) represent the
similarity measures of vectors z; and z7 in the v-th view after
a symmetrization postprocessing step. Actually, the mutual
relationship between x; and z; should be consistent from the
perspective of graph theory. However, the contribution of z7
and ¥ may not be equal to that of z{ and x} in practice.
These works directly adopt the LRR as the affinity matrix
for spectral clustering [4], [28], [49]. They ignore the intrinsic
characteristics preserved in LRRs, i.e., the angular information
of the principal directions of LRRs, since Z(*) is low-rank.
Consequently, Z(*) is considered to be an approximate result
of linear spatial transformation under the new base X(*). In
addition, the angular information of the principal directions
of rows should be consistent with that of columns in LRRs.
To address this issue, we employ a symmetry scheme where
the strategy is to impose a symmetry constraint on multiview
LRRs. This scheme ensures the final weight consistency
for each pair of data samples. By integrating the symmetry
constraint into Problem (10), we formulate our final MLRR
model as follows:

n

min - VAS) + A - HE(”)‘
{Z(v)vE(v)}:zl ; H * 1; 1
N () _ <w>H2
vy > |-z (11)

w,v=1,v#w

st XO = X0Z0) 4 B0 Z0) _ (Z<v>)T7

v=1,2...,ny.

On the one hand, the symmetry of Z(") enables each pair-
wise element, i.e., Zg}’) and Z;li)), to become more appropriate
when this mathematical optimization problem is solved. On
the other hand, the introduction of a symmetry constraint is
conducive to improving the ability of the MLRR model to
learn the feature correlations among multiple views. Hence,
the MLRR model makes full use of symmetric LRRs for
exploiting the low-dimensional structures of multiple views.
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C. Optimization Strategy

The MLRR model in Problem (11) learns symmetric LRRs
from different views. Problem (11) can be solved iteratively by
the inexact augmented Lagrange multipliers (ALM) algorithm
[27]. In the iterative procedure, the specific parameters updated
in the previous stage can be considered constants in the current
stage. For instance, the variables Z() (1<wv<mn,) can be
updated alternately, while the other variables are fixed. Hence,
we further consider the following problem:

min
Z(») E()

‘Z(v)

+ /\HE(“)

l

Ny 2

n (W) _ z(w)
5 > Hz Z(w

w=1,w#v

st X0 = X(0Z0) 4 B 7o) _ (zw))T_

» 12)

The objective function in Problem (12) is nonseparable. By
introducing an auxiliary variable J, the objective function in
Problem (12) can be converted to the following equivalent
problem:

min ‘J(”) + )\HE(”)
Z (), J(v) ) * l
NN |z (“’)Hz
+ 7\"" — 7

w=1,w#v

st. X® =x®z® L g
7 = 30 3@ — (J(v))T.
The augmented Lagrangian function in Problem (13) is

min
Z(") I E® J0=(3J0)" ¥,Y,

Ny
n Hz<v> _ Z(w>H2
S ;

w=1,w#v

+tr[YT (X(“) — X0z E<'“))]

HJ<v>

+>\HE<”>

l

+tr[YT (z<v> - J(”)>]

ol (HXm _xwzo g 4 Hz(v) )
F

2
F) ’
(14)

where Y; and Y- are Lagrange multipliers, and p > 0 is an
adaptive penalty parameter. The variables J(*), Z(*) and E(*)
can be updated alternately at each step, while the other two
variables are fixed. The updating rules at iteration ¢ + 1 are
formulated as follows:

v . 1) 1w
J£+)1: arg min —HJE_i_)l
@) _ (7 T M *
Jt+17(']t+1)
@\ |I? (15)
1| 2o o Y
i (s )
r F

T
zy), = ((X(’U)) X 4 (Z (ny —1) + 1) -1) H,

Algorithm 1 Solving Problem (11) by the inexact ALM
algorithm

Input: Data matrices X = { X(”)}Zil, parameters A\ and 7

Initialize:
{J(v) — 70 — 0}:;1 ’ {ng) _ Yév) _ 0}
1 =g = 1072, pinax = 1019, e = 1076

Ny
p=11,

v=1

1: while not converged do
2 for v=1ton, do
3: Fix others and update J(*) by solving Problem (15)
4: Fix others and update Z(*) by solving Problem (16)
5: Fix others and update E(*) by solving Problem (17)
6 Update the multipliers:
YW=y 4 (X — X()Z0) — E)
Ygu) _ Yév) + o (Z(v) _ J(v))
end for
Update the parameters p; and po:
H1 = min(P/ih /«Lmax);

M2 = min(pu27 MmaX);
9:  Check the convergence conditions:

10.: for v=1ton, do

11: it |2 —JW| <&

and X — X(JZ) —E®)|| < then
12: break;
13: end if

14:  end for
15: end while
Output: {Z(U)}:;y

Egi)l = argmin )\HEEi)l Hz
2 )

b

F

+

. v Y(U)
E[}) - (X(U) — Xz +- ; )

where

T T
H = (X(U)) X(v) _ (X(U)) Eg >+J1(H—)l

1 T ny (18)
4= (X(”)) YO Y g Yz

K w=1,w#v

The first equation in Problem (15) has a closed form
solution, which can be solved by Lemma 1 [5]. We assume that
some data vectors are corrupted in multiple views. Hence, we
adopt the /5 1 -norm to characterize a certain type of corruption,
which encourages the columns of E(*) to be zero. The last
equation in Problem (17) is a convex problem, which can
be solved using the [l ;-norm minimization operator [28].
The whole procedure for solving Problem (11) is outlined in
Algorithm 1.

Lemma 1 ([5]) For any given square matrix Z. € R™"*"™, the
minimizer of the following optimization problem is unique,

. .1 1 2 T



where p is a parameter. The unique solution of the above
problem has the following closed form

1
J=U,.( - -1V, (20)
o

where Z = UXVT is an SVD of the symmetric matrix
Z = (Z + ZT)/Q, Y, = diag(61, 92, ..., 0, ) where {r : §, >
l%} are strictly positive singular values, Pr and V, are the
corresponding singular vectors of matrix Z, and 1. is an r xr
identity matrix.

D. LRR Fusion for Multiview Clustering

Multiple views usually share some common information,
which can be represented by a compact representation. To fully
characterize the feature correlations of different views, we
present the fusion mechanism of LRRs learned from different
views from the spectral clustering perspective [41].

To efficiently integrate the features from multiple views, we
first consider the following general spectral clustering model
for multiple views:

N Tq,(v) ) TR _
mﬁn;Tr(FL F st. FIF=1 (I

where F is the clustering indicator matrix, L®

(D(”))_% (D(“) — Z(”)) (D(”))_% is the Laplacian matrix,

and D) is a diagonal matrix with diagonal elements Dgf) =

ZZE;). Theorem 1 shows the fusion mechanism of the
J
Laplacian matrices L(*) (v = 1,2,....n,).

Theorem 1 Let F be an optimal solution of Problem (21).
There exists a final fusion result of L") as follows:

My

L=n, - 1-Y (Dw))‘%zw (D(v>)‘ ’

v=1

SIS

where Z(V) represents the single representation of the v-th
view (v=1,2,...,ny).

Proof By linear algebra techniques, Problem (21) can be
converted to the following problem:

Ny

min Tr (FT 3 (L<v>)F> st. FIF=L

v=1

The above problem can be equivalently rewritten as the
standard spectral clustering model as follows:
minTr (FTLF)  s.t.
F

FTF =1, (22)

where L = f: (L(”)) is a Laplacian matrix.

v=1
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Algorithm 2 The MLRR algorithm

Input: Data matrix X = {X®)}""

spaces k, parameters A, n and « > 0
1: Solve Problem (11) by Algorithm 1, and obtain the
optimal solution {Z(”)}Zil.
S 7,(v)

2. Calculate the sum of {Z(”)}Zil: 7 =
v=1

3: Compute the skinny SVD Z* = U*}_ " (V*)T.
4: Calculate M = U*(3")1/2,
5: Construct the affinity matrix W, i.e.,

[W]ij=< m{ m; )2a

[ [ [y [

6: Compute the eigenvectors {v;}¥_, € R" corresponding
to the smallest k eigenvalues of the Laplacian matrix L =
D > (D-W)D z.

7: Let each point y; € R¥ (i = 1..n) be the vector
corresponding to the i—th row of V = {v;}¥_, € R"*¥

8: Cluster the points {y;}?_; by the k—means algorithm into
clusters {C;}F_,.

Output: The clustering results.

the number of sub-

Furthermore, we obtain a final fusion result of L") as
follows:

Ny _1 _1
_ @\ 72 (pe) _w®) () 2
-5 (o0 (00w (o)

N1 (D®) Fwe (D ‘5>

Z(I (o) "W (D)

Ny

=n, I-Y (D(w)‘%W(v) (D<v>)‘%,

v=1
O

According to Theorem 1, we can construct the new Lapla-
cian matrix L as follows:

L>I— (D) ? (Z z<”>> (D)2
, N (23)
—D}(D-7z)D*
~L.

This approach further motivates an intuitive fusion strategy of
symmetric LRRs of multiple views. Specifically, we calculate

the sum of LRRs of multiple views, i.e., Z* = 5 Z(*), which
represents the fusion representation of multiplléi\}iews.

We then construct an affinity matrix, which measures the
relationship among the samples in multiple views. Considering
a given matrix of LRR Z*, the angular information of the
principal directions of any two low-rank vectors approximately
drawn from the same subspace has a higher value than that
of those drawn from different subspaces. Specifically, we
consider Z* with the skinny SVD U*Y*(V*)". We further
use the angular information from all of the row vectors of
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matrix M, i.e., M = U*(3.")'/2, to define an affinity matrix
W as follows:

me, 2c
(Wlij = (2]) :
[ | [ ]

where m; and m; denote the i-th and j-th rows of matrix
M and « ensures that each value of the affinity matrix W
is positive for subspace clustering [5]. As Z* is symmetric,
we can obtain the same affinity matrix W using the angular
information of the column vectors of matrix M. Conse-
quently, the introduction of the symmetry constraint imposed
on LRRs of multiple views allows us to effectively evaluate
the membership of data samples in multiview data. Algorithm
2 summarizes the complete multiview subspace clustering
algorithm of MLRR. MLRR integrates symmetric LRRs into
a compact representation and makes full use of spectral
clustering techniques for multiview subspace clustering.

(24)

E. Analysis of MLRR

1) Convergence Analysis: The inexact variation of the
ALM algorithm has been extensively studied [27]. Although
the convergence property of a general ALM algorithm is still
an open issue, we provide a rigorous convergence proof for
MLRR. Algorithm 1 includes three critical steps, i.e., itera-
tively updating J, Z and E, in each iterative computation. Each
step of Algorithm 1 has a closed solution. There are two con-
vergence conditions in Algorithm 1, i.e., ||Z(”) —Jw) ||max <
e and || X —X®7zZ®) —E(”)Hmax < e, where ||A|l, ..
represents the maximum absolute value of all the entries in

a matrix A € R™*" je., max |aij\. To
1<z<m 1<y

analyze the convergence of Algorithm 1, we focus on these
two convergence conditions in the (¢4 1)-th iteration. Theorem
2 shows the convergence of Algorithm 1.

Theorem 2 Let Q = X(®) — X(”)Zgi)l _ Eg”) and Gmax =
|Qll,ax Where each entry q > 0 in Q. Then, let Gmax

be an entry in Q and chj) be any of the corresponding

entries in X during (X(” ) Q. In Algorithm 1, two
convergence conditions, i.e HZ(”) —JW) e < ¢ and
||X(“) — Xz _ E(”)Hmdx < &, will be satisfied eventu-
ally as t increases if it satisfies the following conditions, i.e.,

max

2) >0 and Vp € [1,d] Vg € [L,n],p # i,q # j,a) > 0

in XY), where t represents the number of iterations and ¢ is
a small constant, e.g., € = 10-9.

Proof We first consider the first convergence condition, i.e.,
HZH_1 J < e . According to Step 3 of Algorithm 1

t+1
and Lemma 1, we have
1 T
S (VS”)) :
7
— T
where ZEU) = Ugv)E(ng)) is the skinny SVD of the sym-

70 OO
metric matrix 2, ' = <Zt + (Zt ) )/2 Clearly, 1 dra-

matically rises as t gradually increases. This means that J Ei)l

Ji(‘l-;-)l = USU)(ZT -

become closer to the skinny SVD of the symmetric matrix ng)

as p increases. This implies that Jgi)l = U£”)2T V,(«U)
when | — +o00. Hence, the value of the first condition will
significantly decrease until it satisfies a certain condition as t
increases during iterative computations.

Then, we consider the other convergence condition, i.e.,
||X(“) —X®z® —E(“)H < e. According to Step 4 of

. o0

Algorithm 1, we have

2, =P ((x) X0 - (x0) B 317, ).

-1
where P = ((X<”))TX(”) —|—I) and p — +o0. Further-
more, we obtain

<X<u>>T <X<v> _

Suppose xz(]) > 0 and Vp € [1,d],Yq € [1,n],p # i,q #
j,x;q) >0 in X, and we get HZtH Jgi)l < xg;-))s

when p — 4-o00. Then,

28 gmax < H (X(”))TQ

X(U)Zgi)l + Egv)) = Zg:-)l Jgi)r

max

(v)
7] €.

max
Hence,
qmax S 8'

This indicates that the second convergence condition will
hold
<e

HX(U) _ X(U)Zgi)l _ Egv)

max

(v)

as the first convergence condition converges to x;;¢, Le.,
(v) (v) (@)
HZt+1 Jt+1 <z 7,] &,
max

if it satisfies the following conditions, i.e.,
2y} >0 and Vp € [1,d],¥q € [L,n],p # i,q # j () > 0
in X, 0

In fact, Algorithm 1 generally converges well in practical
applications. The number of iterations was always less than
150 in our experiments.

2) Computational Complexity: We assume that the size
of X is d x n x m, where X has m views, each view
has n data vectors and each vector has d dimensions. The
first step of Algorithm 1 involves computing the SVD of an
n X n matrix, and the computational complexity is O(n?). The
computational complexity of the second step of Algorithm 1
is also O(n®) because it requires finding the inverse of an
n x n matrix. The computational complexity of the last step is
O(dn?) when solving |-|,. Hence, the overall computational
complexity of Algorithm 1 is O(m(2n® + dn?)) in each
iterative computation. In practice, we always have n > d.
The final computational complexity of Algorithm 1 can be
considered to be O(t x m x n3), where ¢t is the number
of iterations. In Algorithm 2, the computational complexity
of the last three steps is O(n?3). Therefore, the final overall
complexity of Algorithm 2 is O(t x m x n?).



3) The Arrangement of Data Vectors and Multi-views:
Here, we analyze whether the arrangement of data vectors
and multiple views may lead to any potential effect. The
solution of Algorithm 1 calculated by MLRR is globally
optimal. We assume that data vectors are arranged by sorting
clustering labels without noise. The matrix Z* is a block. If the
arrangement assumption is violated, we always find a matrix
transpose T to obtain a new block Z/, ie., Z =T x Z*.
In addition, we further consider any potential effect caused
by multiple views. We can obtain the same values for the
variables, i.e., Z(®), J® and E®, for each view after the
first-loop computation in Algorithm 1 when considering any
arrangement of multiple views. This indicates that the values
of Z(“), J®) and E®) cannot be affected by the arrangement
of multiple views in successive iterative steps. Consequently,
whether data vectors and multiple views are randomly shuffled
is irrelevant to the optimal solution of Algorithm 1. This
enables MLRR to be feasible in practical applications.

4) Connections to LRR-based Clustering Techniques: Like
this work, most LRR-based techniques claim that the goal
of finding the LRR is to obtain low-dimensional structures
of high-dimensional data. However, the analysis of the low-
dimensional matrix in this work differs from previous analyses
in two key ways. First, the original meaning of intrinsic low-
dimensional structures was ignored in previous works since
these LRR-based techniques employed the low-rank matrix
to directly measure the similarity among data samples. In
this work, the low-dimensional structures are still regarded
as intrinsic low-rank features of high-dimensional data, i.e.,
symmetric LRRs. Specifically, the symmetric LRR results of
MLRR are considered to be an approximately linear spatial
transformation under the new base, i.e., the multiview data
themselves. Consequently, it is reasonable to exploit the angu-
lar information of the principal directions of symmetric LRRs,
and a fused representation strategy is feasible. For example, a
few elements in Z deviate strongly from the real results, and
the influence of this deviation can be eliminated by exploiting
the angular information of the principal directions of sym-
metric LRRs. This further demonstrates that the assumption
of high-dimensional data is reasonable; i.e., high-dimensional
data are collections of data samples approximately drawn from
a union of multiple low-dimensional subspaces. Second, the
introduction of the symmetric constraint makes pursuing low-
rank features of high-dimensional data more reasonable, and
the angular information of the principal directions of rows
is consistent with that of columns in LRRs, eliminating the
need for a symmetrization postprocessing step. The purpose of
MLRR is to obtain a more reasonable affinity matrix produced
from the angular information of the principal directions of
symmetric LRRs from a different point of view.

IV. EXPERIMENTAL STUDY

In this section, we conduct extensive experiments on mul-
tiple benchmark datasets to evaluate the performance of the
proposed MLRR algorithm ! in comparison with some state-
of-the-art baselines.

Ihttps://github.com/chenjie20/MLRR
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TABLE I
STATISTICS OF THE MULTIVIEW DATASETS.

Datasets Clusters Views Data samples
BBC 5 4 685
3-sources 6 3 169
Reuters 6 5 600
Caltech-101 7 6 1474
Wiki 10 2 693
UCI Digit 10 3 2000
Flower17 17 7 1360
ProteinFold 27 12 694

A. Experimental Settings

1) Datasets: Eight publicly available datasets are used in
our experiments. The statistics of these datasets are summa-
rized in Table I. In addition, a brief description of each dataset
is summarized below.

e BBC Dataset [17]: It includes 4 views, each of which
contains 685 documents. The documents are naturally cat-
egorized into five classes: business, politics, sports, enter-
tainment and technology.

e 3-sources Dataset [16]: It is collected from three online
news sources: BBC, Reuters, and The Guardian. This
dataset consists of 948 news articles, which are manually
categorized into six classes, covering 416 distinct news
stories. There are 169 stories in all three sources, each of
which can be considered a single view of a story. Each story
is manually annotated with labels of topics in the dataset.

o Reuters Dataset [46]: It contains documents written in five
different languages and their translations over a common
set of six categories. We use documents in English as one
view and their translations to the other four languages,
e.g., French, German, Spanish and Italian, as the other four
views. We randomly select 600 documents for this dataset,
with each class containing 100 documents.

e Caltech-101 Dataset [14]: It contains 8,677 images of
objects that belong to 101 classes. We choose a subset that
has 1474 images with seven classes, i.e., Face, Motorbikes,
Dolla-Bill, Garfield, Snoopy, Stop-Sign and Windsor-Chair.

e Wiki Dataset [39]: This dataset is a document corpus
with paired texts and images. It consists of 693 Wikipedia
documents, which are divided into ten classes.

e UCI Digit Dataset [12]: It consists of 2,000 examples of
handwritten digits (0-9). There are 200 examples available
for each digit, with examples of each digit represented with
six types of features. We construct three views: 76 Fourier
coefficients of the character shapes, 216 profile correlations
and 64 Karhunen-Love coefficients.

o Flowerl7 Dataset [36] It consists of 17 different flower
categories with 80 images for each class. There are a total
of 7 views in this dataset.

e ProteinFold Dataset 2 This dataset includes 12 views, each
of which contains 694 protein domains that belong to 27
fold classes.

2) Compared Methods: We compared the performance of
MLRR against the following methods:

Zhttp://mkl.ucsd.edu/dataset/protein-fold-prediction
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TABLE I
CLUSTERING PERFORMANCE COMPARISON OF DIFFERENT METHODS ON EIGHT MULTIVIEW DATASETS. THE BEST AND SECOND BEST RESULTS ARE
SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY.

Datasets LRRgestsv ™ LRRconeat MLAN LRRSC GMC RMSL MCLES LMVSC MLRR
ACC
BBC 79.27 (0) 87.15 (0) 86.57 (0) 87.16 (0) 77.52 (0) 90.91 (0.81) 85.8 (1.05)  76.79 (0) 91.39 (0)
3-sources 60.95 (0) 66.27 (0) 81.07 (0) 78.7 (0) 85.21 (0) 78.46 (1.58) 83.02 (1.37) 76.92 (0) 89.29 (0.52)
Reuters 50.43 (0.2) 49.33 (0) 52.17 (0) 52 (0) 33.5 (0) 48.55 (1.8) 49.47 (1.57) 48.17 (0) 54 (0)
Caltech-101  54.75 (0) 51.7 (0) 81.95 (0) 57.21 (0) 80.94 (0) 80.05 (0.5) 82.94 (1.7) 71.25 (0.23) 84.06 (0.02)
‘Wiki 62.34 (0.07) 60.26 (0.28) 47.76 (1.83) 59.56 (0.17) 61.47 (0) 59.55 (1.19) 60.76 (1.36) 56.12 (0.32) 64.52 (0.05)
UCI digit 71.3 (0) 92.15 (0) 97.7 (0) 91.9 (0) 87.15 (0) 90.24 (1.81) 91.37 (1.34) 86.38 (0.24) 98.1 (0)
Flowerl7 42.21 (0.41) 55.57 (1.58) 51.43 (2.51) 58.63 (1.83) 48.93 (2.47) 55.42 (1.17) 49.92 (0.47) 52.9 (1.08) 64.79 (0.2)
ProteinFold 25.78 (1.4) 29.55 (1.82) 29.68 (1.98) 30.48 (0.79) 31.86 (1.93) 30.48 (1.58) 37.12 (0.91) 30.3 (0.56) 38.79 (0.48)
NMI
BBC 54.87 (0) 72.3 (0) 73.04 (0) 72.82 (0) 69.1 (0) 77.46 (1.63) 71.02 (0.17) 60.96 (0) 78.73 (0)
3-sources 51.96 (0) 63.11 (0) 75.34 (0) 69.7 (0) 7397 (0) 73.14 (1.47) 74.6 (1.04) 65.38 (0) 80.36 (0.9)
Reuters 32.75 (0.16) 36.65 (0) 40.68 (0) 34.63 (0.42) 2832 (0) 33.77 (1.87) 35.79 (0.57) 37.28 (0) 38.12 (0)
Caltech-101 42.8 (0) 57.39 (0) 62.37 (0) 61.53 (0) 61.18 (6.46) 66.94 (1.63) 56 (0.15) 55.3 (0.08) 69.56 (0)
Wiki 54.95 (0.08) 52.5 (0.24) 46.55 (0.78) 54.36 (0.26) 55.86 (0) 50.78 (1.75) 52.57 (1.58) 52.02 (0.19) 59.46 (0.01)
UCI digit 76.19 (0) 85.26 (0) 94.78 (0) 86.34 (0) 90.83 (0) 89.08 (1.27) 83.8 (1.58) 79.94 (0.02) 95.49 (0)
Flowerl7 46.36 (0.26) 56.25 (0.91) 54.41 (1.56) 56.58 (0.95) 52.15 (1.06) 55.47 (0.76) 51.35 (0.24) 51.28 (0.91) 61.73 (0.25)
ProteinFold 32.62 (0.83) 40.88 (1.2) 37.45 (1.01) 40.24 (0.49) 40.42 (1.19) 42.1 (1.13) 46.46 (0.52) 40.37 (0.71) 48.66 (0.54)
F-measure
BBC 79.14 (0) 87.2 (0) 85.74 (0) 87.35 (0) 79.97 (0) 90.89 (1.8) 84.19 (1.38) 77.55 (0) 91.25 (0)
3-sources 66.12 (0) 71.2 (0) 82.46 (0) 79.3 (0) 83.27 (0) 80.47 (1.46) 84.21 (1.69) 79.24 (0) 89.67 (0.51)
Reuters 50.26 (0.16) 51.25 (0) 50.26 (0) 51.67 (0.03) 41.75 (0) 50.89 (1.78) 47.04 (1.27) 48.89 (0) 56.98 (0)
Caltech-101  58.04 (0 60 (0) 79.25 (0) 71.64 (0) 79.5 (0) 8243 (0.75) 80.34 (1.65) 76 (0.4) 85.64 (0)
Wiki 64.21 (0.1) 63.07 (0.21) 54.9 (1.83) 62.98 (0.12) 64.02 (0) 60.44 (1.13) 59.41 (1.39) 62.25 (0.28) 65.91 (0.05)
UCI digit 82.48 (0) 92.16 (0) 97.72 (0) 97.05 (0) 90.74 (0) 92.36 (1.54) 90.5 (1.25) 86.57 (0.02) 98.11 (0)
Flowerl7 48.53 (0.49) 57.78 (1.27) 54.14 (1.96) 60.5 (1.5) 53.84 (2.44) 60.09 (0.99) 55.23 (0.08) 56.33 (1.23) 66.01 (0.22)
ProteinFold 27.13 (1.31) 32.51 (1.75) 32.02 (1.66) 31.5 (0.81) 33.83 (2.23) 33.97 (1.39) 40.75 (0.99) 34.44 (0.82) 39.03 (0.89)
Adj-RI
BBC 57.81 (0) 75.08 (0) 72.74 (0) 74.03 (0) 68.66 (0) 80.51 (1.75) 71.92 (0.28) 51.01 (0) 81.71 (0)
3-sources 44.48 (0) 53.46 (0) 66.64 (0) 63.65 (0) 73.19 (0) 70.38 (1.42) 78.28 (1.34) 60.57 (0) 85.22 (0.55)
Reuters 23.75 (0.14) 24.62 (0) 20.96 (0) 24.56 (0.26) 4.94 (0) 22.36 (1.6) 21.07 (0.18) 21.73 (0) 25.33 (0)
Caltech-101  28.95 (0) 38.48 (0) 60.77 (0) 42.57 (0) 58.88 (0) 63.52 (1.31) 71.12 (0.91) 40.13 (0.24) 80.63 (0))
Wiki 45.44 (0.11) 44.76 (0.18) 26.23 (2.1) 42.1 (0.28) 37.07 (0) 44.09 (1.27) 48.44 (1.45) 52.23 (1.31) 52.6 (0.08)
UCI digit 69.35 (0) 83.67 (0) 94.9 (0) 83.63 (0) 83.38 (0) 88.27 (1.52) 86.96 (1.45) 71.85 (0.05) 95.81 (0)
Flowerl7 21.28 (0.32) 36.13 (1.43) 30.97 (2.66) 38.41 (1.23) 29.65 (0.44) 33.62 (2.62) 29.39 (0.14) 27.24 (0.71) 47.03 (0.26)
ProteinFold 10.58 (1.37) 14.67 (1.75) 11.32 (1.54) 15.73 (0.6) 12.33 (2.4) 12.37 (1.25) 18.64 (0.53) 10.87 (0.81) 20.99 (0.5)

LRRgesisv’ [28]. We perform a standard LRR on an indi-
vidual view and report the best subspace clustering result
with a single view of data.

LRR(oneat[28]. We first obtain an LRR by concatenating the
aligned features from all views and then directly perform
standard spectral clustering on the LRR.

MLANTJ35]. It presents a multiview learning mode to learn
an optimal graph that can be partitioned into clusters di-
rectly. We apply principal component analysis (PCA) to
reduce the same number of dimensions for all views of
multidata.

LRSSC* [2] . It learns a joint subspace representation across
all views, i.e., an affinity matrix, by combining sparsity with
a low-rank property.

GMC’ [48]. It proposes a general graph-based multiview
clustering (GMC) model to generate a unified graph matrix
for multiview clustering by fusing the data graph matrices

3https://sites.google.com/site/guangcanliu/
“https://github.com/mbrbic/Multi-view-LRSSC
Shttps://github.com/cshaowang/gmc

of all views.

e RMSL® [24]. The reciprocal multi-layer subspace learning
(RMSL) algorithm consists of two main components, i.e.,
the hierarchical self-representative layers and backward
encoding networks.

e MCLES’ [8]. It presents a unified optimization framework
to implement multi-view clustering in latent embedding
space (MCLES).

e LMVSC? [21]. The large-scale multi-view subspace cluster-
ing (LMVSC) algorithm implements multi-view clustering
with linear order complexity.

For the competing algorithms, we adopted the source codes
provided by their authors. We applied a PCA algorithm to
preprocess the samples if the number of samples was less than
the dimension of any single view in the multiview data [20].
All competing methods were implemented in MATLAB, and
all experiments were performed on a Windows platform with

Shttps://github.com/Islrh/RMSL
https://github.com/Ttuo123/MCLES
8https://github.com/sckangz/LMVSC



an Intel i7-9700K CPU and 32 GB RAM.

3) Evaluation Metrics: We employed four metrics to eval-
uate the clustering performance of all competing algorithms,
i.e., clustering accuracy (ACC), normalized mutual informa-
tion (NMI), F-measure and adjusted rand index (Adj-RI). The
last three metrics have specific definitions. In our experiments,
the clustering accuracy is defined as follows:

1 n
ACC = - Zé(ci,map(;vi»

i=1

(25)

where ¢; denotes the class label of x;, d(x,y) measures the
equivalence of z and y, and map(z;) is the permutation
mapping function that maps each cluster label z; to the class
label contained in one permutation of all class labels. A larger
value indicates better clustering performance for these metrics.

4) Parameter Settings: For a fair comparison, we manually
tuned the parameters of the competing methods following the
advice of their respective authors and reported the best results.
The final step of the competing methods was run with the k-
means algorithm. We adopted the standard implementation of
k-means provided by MATLAB, and these methods shared
the same parameters of k-means in the experiments. The
performance of MLRR is independent of the arrangement of
data vectors and multiple views. Hence, we performed all
experiments only once and reported the metrics as the final
results, i.e., ACC, NMI, F-measure and Adj-RI.

There are three parameters, ie., A, 7 and «, in
the MLRR. The initial parameter A is chosen from
{1e72,5¢72,0.1,0.5,1,10, 1e?,5¢*} while the other initial
parameter 7 is chosen from {5e° 1e72 5¢720.1,0.5,1}.
In fact, parameter A\ is closely related to the prior of the
corruption level of multidata. Parameter 7 is usually dependent
on the differences among multiple views. Parameter o usually
ranges from 1 to 5. The specific values of the parameters are
given in the experiments.

B. Evaluation of Clustering Quality

1) Performance Comparison: We evaluated the proposed
algorithm on eight multiview datasets. Table II shows the
clustering results of the competing methods on the datasets.
The eight groups of MLRR parameters were: (1) A = 5e~2,
n=01La=12A=0517=01 a=5 3) A=0.6,
n= 573, a=3; (4) A =0.5, n=01a=55) A=04,
n=01a=506)A=9%"2n=93 a=>5; () \=600,
n =201 a=1and (8§ XA =50, n = 0.1, a = 2 for these
experiments, respectively.

Table II clearly shows that our approach generally performs
better than the other baselines regarding the four test met-
rics. For example, MLRR achieved high clustering ACCs of
91.39%, 89.29%, 54%, 84.06%, 64.52%, 98.1%, 59.27% and
38.79% for the BBC, 3-sources, Reuters, Caltech-101, Wiki,
UCI digit, Flowerl7 and ProteinFold datasets, respectively.
These clustering ACCs were improved by at least 0.48%,
4.08%, 1.83%, 1.12%, 2.18%, 0.4%, 0.64% and 1.67% when
compared with the second-best methods. We also observed
significant advantages for the F-measures in all the datasets.
In addition, MLRR obtained competitive clustering results for
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almost all NMI and Adj-RI and significantly outperformed
the other methods, except on the Reuters dataset. Specifically,
MLRR yielded NMI improvements of at least 2.27%, 5.02%,
2.62%, 3.6%, 0.71%, 0.85% and 2.2% compared with the
other methods for the BBC, 3-sources, Caltech-101, Wiki, UCI
digit, Flowerl7 and ProteinFold, datasets, respectively. These
results confirm that our proposed method is very effective with
respect to different numbers of views and clusters in multiview
subspace clustering. As expected, the clustering performance
of the multiview methods is much better than that of the best
single-view algorithms. This is because different views contain
complementary information in multidata.

Considering LRRs in multiple views, we obtained the fol-
lowing observations for LRR g¢stsv and LRR g0t in Table
II. We reported the best clustering results of individual views
in Table II, i.e., LRR g¢s1.5v. We also simultaneously reported
the clustering results in Table II by concatenating aligned
features from all views, i.e., LRRgopneqt. Table II shows that
LRRoncqt consistently achieved higher clustering ACCs than
LRRp¢stsyv for the BBC, 3-sources, UCI digit, Flowerl7 and
ProteinFold datasets. However, LRRp.s;sv slightly outper-
formed LRR ¢oncqt for the other datasets. Hence, the clustering
performance of LRR on the datasets cannot remain relatively
stable when simply concatenating LRRs of all views in mul-
tidata. Compared with the clustering results of MLRR, this
finding also confirms the effectiveness and robustness of the
fusion strategy of MLRR for performing multiview subspace
clustering tasks.

2) Computational Time: To evaluate the efficiency of the
proposed MLRR algorithm, we performed experiments on all
the datasets. For the sake of fairness, we did not report the
computational cost of LRRg.s;5y because this method only
perform a clustering task on an individual view. Instead of
LRR gestsv, LRReooneqt 18 the appropriate representative of
multiview subspace clustering to evaluate the computational
cost of a standard LRR.

We report the computational costs of all the methods in
Table III. MLAN achieved a lower computational cost by
iteratively modifying the similarity matrix. In addition, Table
IIT shows that MLRR and LMVSC achieve similar computa-
tional costs overall, which are lower than those of RMSL and
MCLES. Clearly, MLRR’s computational cost is much lower
than LRR¢oneqt’s. This confirms that it is worth developing
a symmetric LRR model rather than simply concatenating
separate LRRs into a compact representation, which signifi-
cantly reduces the computational cost of multiview subspace
clustering from the perspective of LRR.

C. The Effect of the Symmetry Constraint

The symmetry constraint of LRR is a critical factor that
guarantees weight consistency for each pair of data vectors in
multiple views. To show the effect of the symmetry factor in
MLRR, we performed two groups of experiments to evaluate
NMI and ACC on different datasets. We first considered
two special variants of MLRR, i.e., MLRR, and MLRRy.
Symmetrization is only performed on Z(") after each iteration

of Algorithm 1, i.e., Z;:l = % (Z(”) + (Z("))T> while the
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TABLE III
COMPUTATIONAL TIME (IN SECONDS) OF THE COMPETING METHODS ON DIFFERENT DATASETS.

Datasets LRRconcat  MLAN LRRSC GMC RMSL MCLES LMVSC MLRR
BBC 88.49 1.01 7.65 1.5 60.29 315.18 20.48 54.5
3-sources 4.56 0.13 0.9 0.68 33 10.05 1.87 2.26
Reuters 81.15 0.97 2.01 3.33 §89.29 186.15 57.9 72.58
Caltech-101 1179.4 5.72 24.79 481 489.04 11535 250.59 234.3
Wiki 55.58 0.58 2.37 591 22.22 283.22 55.25 18.85
UCI digit 622.51 8.5 168.51 49.21 704.25 8235.6 58.91 362.32
Flower17 918.03 47.13 123.39 209 1373.83  8598.3 1373.4 246.27
ProteinFold 314.57 24.7 35.44 13.2  688.29 1998.9 36.5 76.61
1 3 1 T 100 100
T ]
o8l (T — MLRR /\ 80 80
007 Em e \l O = ——
E 0.6 Z 06 \ ;\\\:/ \ % 60 ) | Z
05 H o MIRR 05 / - Ea—
04 - Etii“ \ 04 V/ \ R — 4
o \ { 20
Yo © @ © 0 @ M Yo © @ © o @ M 2 3 4 5 6 2 3 4 5 6
The datasets The datasets The number of views The number of views
(a) ACC (b) NMI (a) ACC (b) NMI

Fig. 1. ACC and NMI of MLRR, MLRR,, and MLRR}, on different datasets:
(a) BBC, (b) 3-sources, (c) Reuters, (d) Caltech-101, (e) Wiki, (f) UCI Digit,
(g) Flower17 and (h) ProteinFold.

(a) MLRR (b) MLRR,

(d) MLRR

(e) MLRR,

(f) MLRR,

Fig. 2. Comparisons of the affinity graph matrices produced by MLRR,
MLRR, and MLRR} on two datasets: (a)-(c) Caltech-101, (d)-(f) UCI Digit.

symmetry constraint is ignored in MLRR,. In addition, the
symmetrization postprocessing step is applied in MLRRy,
where the symmetry constraint is ignored. Fig. 1(a) shows a
comparison of the experimental results of MLRR, MLRR, and
MLRRy,. The experimental results of MLRR and MLRR,, were
obtained under the same parameter settings, whereas the opti-
mal experimental results of MLRR;, were obtained by tuning
the parameters. We can see that MLRR consistently outper-
formed MLRR, and MLRR;, on different datasets. Moreover,
MLRR,, achieved better results than MLRR; in most cases.
These findings indicate that performing symmetrization during
iterative computations has advantages over the symmetrization

Fig. 3. ACC and NMI of MLRR and LRR g4ty using different numbers
of views for the Caltech-101 dataset.

postprocessing step. We also show intuitive examples of the
affinity graphs produced by MLRR, MLRR, and MLRR,
on the Caltech-101 and UCI Digit datasets. The results are
illustrated in Fig. 2. The affinity graphs for MLRR reveal
a distinct block-diagonal structure, which is attributed to the
final good clustering performance. However, there are a small
number of noisy values in the affinity graphs of the variant.
These examples demonstrate that the symmetry constraint
plays an important role in the MLRR model.

D. Evaluation of Increasing Number of Views

Since the clustering performance of MLRR is closely related
to the number of views, we conducted another experiment to
illustrate the effect of various numbers of views. Specifically,
we designed five groups of views of the Caltech-101 dataset,
where each group included 2 to 6 views of each sample.
We also reported the results of LRR g5t 5y, which provided
some useful statistical information for the Caltech-101 dataset.
Figs. 3(a) and 3(b) show the ACC and NMI values of MLRR
and LRR g¢s;5v when the number of views varies from 2 to
6. The ACC of MLRR rapidly increases when the number of
views varies from 2 to 4. Then, the ACC of MLRR remains
relatively stable when the number of views is between 4 and
6. We also observed that the ACC of MLRR is similar to
that of LRRp.s:sy under different numbers of views. The
clustering results of LRRp.s;5y show that multiple views
contain more information when the number of views increases.
This confirms that an increasing number of views can improve
the clustering performance of MLRR. Moreover, MLRR can
effectively capture important information as the number of
views varies.



(a) BBC (b) 3-sources

(e) Wiki (f) UCI Digit
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(g) Flowerl7 (h) ProteinFold

Fig. 4. ACC with different A and n combinations on different datasets: (a) a =1, (b)) a=1,(c)a=1,(d) a=5 () a=5 ) a=5,(g) o =1 and

h) a=2.

(b) 3-sources

(e) Wiki (f) UCI Digit

(g) Flowerl7

(h) ProteinFold

Fig. 5. NMI with different A and 7 combinations on different datasets: (a) a =1, (b)) a=1,(c)a=1,(d) a=5,() a=5,(f) a =5, (g) a =1 and

h) o= 2.

E. Parameter Sensitivity Analysis and Convergence Study

1) Parameter Sensitivity Analysis: For the sake of studying
the sensitivity of parameters in the proposed method, we
considered different values of a, i.e., (a) a =1, (b) a = 1,
@a=1Wda=5C a=5 F a=5,(g a=1and
(h) a = 2, where MLRR achieved the best performance in
the previous experiments. We conducted experiments to study
the influences of the parameters A and 1 of MLRR with a
fixed a. We let A\ and 5 range from 5e¢ 3 to 1 or 0.1 to 500
in steps of half-orders of magnitude. Figs. 4 and 5 show the
influences of the parameters A and 7 in terms of ACC and

NMI, respectively. We can observe that the ACC and NMI
values of MLRR remain very stable under a fixed range of
values of A\ and a wide range of values of 7.

2) Convergence Study: The convergence of Algorithm 1
was analyzed theoretically in Section III. We further conducted
an experimental analysis to validate its convergence speed.
For comparison, we also analyzed the speed of LRRpcstsv s
and the best clustering results were chosen. Fig. 6 shows
the convergence curves of the proposed Algorithm 1 and
LRRp.stsy on eight datasets. The numbers of iterations of
Algorithm 1 are less than 150 for the datasets. For example, the
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Fig. 6. Convergence curves of the proposed Algorithm 1 and LRRg.s¢sv for different datasets.

minimum and maximum iterations are 78 and 118 for the UCI
Digit and Reuters datasets, respectively. Hence, Algorithm 1
always converges well for the datasets.

In addition, the number of iterations of Algorithm 1 is much
lower than that of LRR g5t 5y. Compared with LRRpcgtsv,
the objective value of Algorithm 1 decreases dramatically as
the number of iterations increases. This is because the LRRs
of multidata can share the diversity and consistency among
different views of multidata. Consequently, this approach
effectively improves the convergence speed of learning the
LRRs of multidata.

F. Discussion

To learn the intrinsic structure of multiple views, various
criteria are employed to characterize the data representation,
e.g., LRR and sparse representation. For example, ILRSO
simultaneously considers low-rank and sparse representation
as well as the local manifold structure in each view. It
considers the sum of all similarity matrices as an affinity
matrix, which effectively reveals the membership of data
vectors in multiple views. Moreover, the SLRMF technique
is used to improve the efficiency of the ILRSO method.
Although it is similar to SLRMF and ILRSO in adopting
LRR techniques, MLRR does not intuitively pursue an affinity
matrix. It recovers the multiple subspaces of multiple views by
exploiting the diversity and consistency among different views.
MLRR focus on learning the optimal affinity matrix preserved
in an approximately linear spatial transformation under the
new base, which is completely different from several of the
representative works mentioned above.

The LRR can be applied in single-view subspace clustering.
However, each view of the data may contain distinct knowl-
edge in multidata. Hence, MLRR is employed to exploit the
complementarity of multiple views by pursing the symmetric
LRRs of multiple views, where different views share com-
plementary information with each other. The complementary

information underlying multiple views can be exploited by
MLRR to improve the learning performance of data repre-
sentation. As expected, MLRR improves subspace clustering
performance when the number of views gradually increases.
In theory, if there is only one view, MLRR is regarded as an
LRR-based model for single-view subspace clustering.

V. CONCLUSIONS

In this paper, we proposed an MLRR model to solve the
multiview subspace clustering problem. MLRR effectively
exploits the diversity of multiple views, i.e., different low-
dimensional structures of multiple views, and simultaneously
measures the consistency among different views. In contrast
with most multiview subspace clustering methods, MLRR
presents a new construction of the affinity matrix in multiview
subspace clustering from another point of view, i.e., by fully
exploiting the angular information of the principal directions
of LRRs under a symmetric condition. Specifically, it focuses
on two important aspects, i.e., feature learning and feature
fusion. It successfully learns the symmetric LRRs that imply
the complementary knowledge contained in multiple views.
Moreover, a fusion strategy of symmetric LRRs is presented
to obtain a compact representation, which can be shared by
multiple views and comprehensively represents the intrinsic
features of multiview data. The angular information of the
principal directions of the compact representation is employed
to evaluate the membership of multiview data. Hence, the
intrinsic characteristics preserved in symmetric LRRs are
adopted to effectively characterize multiple subspaces. In
addition, MLRR naturally avoids the symmetrization postpro-
cessing step. Compared with standard LRR algorithms, MLRR
converges much faster due to sharing the common information
of multiple views, as shown in the experiments. The exper-
imental results on benchmark datasets showed that MLRR
produces very competitive results compared with several state-
of-the-art multiview subspace clustering algorithms.
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