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Abstract

Understanding mechanisms underlying the formation of extreme events is the problem of primary

importance in various domains of study including hydrodynamics, optics, forecasting natural dis-

asters etc. In these domains, extreme events are known as Rogue Waves (RWs). RWs are localised

coherent structures of unusually large amplitude spontaneously emerging in nonlinear random

wave fields, and as such, can have damaging effect on the environment (e.g. offshore engineering

structures) or on the medium they propagate through (e.g. optical fibres).

Within this PhD project several problems related to the emergence, control and manipulation of

RWs in fibre optics and in hydrodynamics have been investigated. The particular emphasis is on

the study of RWs emerging in the propagation of the so-called partially coherent waves described

by the focusing nonlinear Schrödinger equation (fNLSE), the universal model for the propaga-

tion of modulationally unstable quasi-monochromatic wavepackets in a broad range of physical

media. fNLSE belongs to the class of the completely integrable equations possessing deep math-

ematical structure and amenable to analytical methods such as Inverse Scattering Transform and

Finite-Gap Integration. We use recent mathematical discoveries related to the semi-classical, or

small-dispersion, limit of fNLSE to investigate analytically, numerically and experimentally the

formation of RWs within the framework of integrable turbulence—the emerging theory of random

waves in integrable systems. The study of the RW formation in this project has also prompted the

investigation of a closely related problem concerned with dynamics of soliton and breather gases

as special types of integrable turbulence.

The project’s findings fall in five categories: (i) the analytical description of the emergence of the

so-called “heavy tails” in the probability distribution for the field intensity at the early stage of

the development of integrable turbulence; (ii) the development and experimental realisation in a

water tank of nonlinear spectral engineering, the IST-based method of control and manipulation

of RWs; (iii) the development of the spectral theory of bidirectional soliton gases; (iv) numerical

synthesis of breather gases and the verification of the recently developed spectral kinetic theory for

such gases; (v) the investigation of the RW formation in the compression of broad optical pulses in

the highly nonlinear propagation regimes, when the higher order effects such as self-steepening,

third order dispersion and Raman scattering need to be taken into account.
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Preface

This PhD project is primarily concerned with the analytical, numerical and experimental study

of the nonlinear wave propagation in optical fibres and in hydrodynamics. It was funded by the

Defence Science and Technology Laboratory (Dstl) in the framework of the UK-France PhD Pro-

gramme. The project has been completed under the joint supervision of Prof. G. El (Northumbria

University) and Prof. S. Randoux (University of Lille).

The original motivation for the project was the investigation of the effect of randomness, or inco-

herence, of the input signal, on the generation of the so-called rogue waves—the large-amplitude

fluctuations of the wave field that “appear out of nowhere and disappear without a trace”. Rogue

waves can have significant (and potentially harmful) effect on the medium they propagate through,

e.g. cause a damage of the optical fibre. The ability to predict and manipulate/suppress rogue

waves is therefore of major importance for telecommunications and signal processing in optical

systems but is also of great interest for shipbuilding industry and offshore engineering since rogue

waves are known to regularly occur in the ocean with potentially devastating consequences for

ships and oil platforms (in fact the original studies of rogue waves were performed in the context

of water waves). Since the first officially recorded measurement of a rogue wave in the North Sea

in 1995 there have been a myriad of theoretical and experimental research papers and monographs

on various aspects of rogue waves occurring in a broad range of physical media, particularly in

optical fibres.

The canonical mathematical model for the nonlinear propagation of quasi-monochromatic light

signals through optical fibres is the cubic Nonlinear Schrödinger NLS equation, which appears

in two modifications: defocusing and focusing, depending on the properties of the fibre. Cer-

tain particular solutions of the focusing Nonlinear Schrödinger Equation fNLSE called breathers

have been widely recognised as “analytical prototypes” for rogue waves and have been extensively

studied both theoretically and experimentally. The novelty of this project is that it considers rogue

waves in fibre optics and hydrodynamics within the unified theoretical framework of integrable

turbulence, the recently introduced new paradigm in the nonlinear wave theory. The integrable tur-

bulence approach to the understanding of rogue waves proved very useful because it encompasses

both the dynamical and statistical aspects of the rogue wave formation. One of the main theoretical

ix



contributions of this project is the introduction of the semi-classical NLS approximation in inte-

grable turbulence, which has enabled an effective application of recent deep mathematical results

from the integrable systems theory to the problems of practical significance, making an important

step towards our ability to predict and manipulate the rogue wave formation from a given random

wave field input.

The work on the rogue wave theory and applications within this project has prompted the theoreti-

cal research on a closely related aspect of integrable turbulence—the theory of soliton and breather

gases—that has been included in the project. The particular contribution of this work is the con-

struction of the theory of soliton gases in bidirectional nonlinear dispersive systems, motivated by

recent experiments on the generation of soliton gas in shallow water waves. The developed the-

ory is also applicable to the incoherent light propagation in optical fibres with normal dispersion

described by the defocusing Nonlinear Schrödinger Equation dNLSE. The work on breather gases

for the fNLSE has required the development of novel numerical approaches and enabled the first

verification of the recently developed spectral kinetic theory of breather gases.

Finally, a highly relevant research that has been included in the project is the work on the extreme

pulse compression in optical fibres, undertaken under the research contract with LumOptica Ltd.

This part of the project is concerned with the deterministic aspect of the fNLSE dynamics in

which the rogue wave formation from a given initial signal can be viewed as the manifestation

of the extreme pulse compression. Since the peak power in the rogue wave significantly exceeds

the initial maximum power of the input pulse one may need to include the higher order effects

such as the intrapulse Raman scattering and the third order dispersion to fully describe the pulse

compression. Importantly, the inclusion of the higher order effects destroys integrability of the

NLS equation so the main objectives of this part of the project were to investigate whether the

basic mechanism of the rogue wave formation introduced in the semi-classical integrable NLS

framework is robust with respect to the higher order corrections, and what are the qualitative and

quantitative modifications of the pulse compression that occur in highly nonlinear propagation

regimes.
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Introduction and Overview of

Concepts

The propagation and interaction of nonlinear dispersive waves is a fundamental area of research

with multitude of physical applications. It has originated in the works of Stokes, Boussinesq,

Korteweg and de Vries in the 19th century. The field experienced a major boost in the 1960s

with remarkable insights such as the discovery of solitons by Zabusky and Kruskal [10] and the

development of the Inverse Scattering Transform (IST) [11], applicable to completely integrable

Partial Differential Equations PDE. In parallel, Whitham introduced a general asymptotic method

to study modulated periodic nonlinear dispersive waves [12].

Hydrodynamics and nonlinear optics are the two major areas of physical applications of nonlinear

dispersive wave theory. The reason is that both nonlinear and dispersive regimes with small (often

negligible) dissipation are relatively easily accessible in both kinds of media. The prominent ex-

amples of the wave structures where nonlinearity and dispersion are in balance are solitons – the

localised waves that retain their shape, amplitude and velocity during the propagation. Solitons

are ubiquitous in water waves: e.g. internal solitons play important role in mixing processes in

the ocean and can affect radar signals [13, 14, 15]. Solitons are also one of the main objects of

study in nonlinear optics, particularly in optical fibres where they can provide robust information

transferred over large distances and have potential applications in optical communication and sig-

nal processing systems,[9, 16, 17, 18]. A remarkable analogy between water waves and optical

signal propagation in fibres goes beyond the qualitative similarity — in fact the 1D propagation

of weakly nonlinear quasi-monochromatic wave packets on deep water and the propagation of

powerful light beams along optical fibre in a broad range of propagation regimes are described

1



Abstract

by the same equation — the celebrated cubic Nonlinear Schrödinger (NLS) equation derived in

the 1960-s by several authors including Zakharov [19] and Benney [20] for water waves and by

Talanov [21] and Kelly [22] for optical propagation.

In fibre optics, which is the primary application area of this project, the NLS equation appears

in two modifications: defocusing and focusing, depending on the physical properties of the fibre

and the wavelength of the propagating light. In the regime of normal dispersion described by

the defocusing NLS equation the solitons appear as localised intensity depletions and are called

dark, or gray, solitons. In the anomalous dispersion propagation regime described by the focusing

NLS equation optical solitons appear as localised bright spots, and are called bright solitons. An-

other important difference between the wave propagation in the normal and anomalous dispersion

regimes is stability of the continuous or plane wave described by the simplest exponential solu-

tion of the NLS equation. The defocusing NLS equation describes the stable propagation regime,

while the focusing NLS equation describes the fundamental process of modulational instability

characterised by the disintegration of the plane wave into a series of nonlinear wave packets—

bright solitons or more complicated localised wave structures called breathers. The focusing NLS

equation is of the main concern in this project although some results for the defocusing NLS have

also been obtained.

The NLS equation belongs to the family of completely integrable nonlinear PDEs. The IST

method developed for the NLS equation (both focusing and defocusing) by Zakharov and Sha-

bat [23, 24] enables the integration of the NLS equation with decaying initial conditions, i.e. it

describes the propagation of the initially localised pulses. The IST method is sometimes called

the nonlinear Fourier transform due to its conceptual similarity to the famous Fourier method

for solving linear PDEs. A more complicated setting of non-decaying initial data with periodic

or quasiperiodic boundary conditions is addressed by the application of the so-called finite-gap

theory [25, 26] – a highly nontrivial extension of the IST method.

Along with decaying at infinity fundamental solitons the focusing NLS equation supports a family

of solutions called breathers, or solitons on finite background, that exhibit large peak amplitudes

and can, under special restrictions, demonstrate the unique property of localisation in both space in

time. Such special breather solutions, called Peregrine Solitons (PSs) are considered as “analytical

prototypes” of Rogue Waves (RWs) — the localised large-amplitude fluctuations of the wave field
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in modulationally unstable media [27, 28].

RWs were first observed/measured in deep water waves [29] followed by the ground breaking

experiments in optical fibres [30] and the subsequent avalanche of theoretical and experimental

works that have clearly demonstrated that rogue waves are ubiquitous phenomena, observable in

many physical contexts [31]. What makes RWs special is not only their large amplitudes (at least

twice the significant wave height) and the remarkable localisation properties but the statistics of

their occurrence which has been shown to significantly deviate from the normal (Gaussian) distri-

bution, previously used for the estimates of the wave amplitude distribution in random sea waves.

This deviation (exceedance) of the Probability Density Function PDF for the wave amplitude from

the Rayleigh distribution implied by the Gaussian statistics [32] is known as the “heavy tail ef-

fect” and is the definitive signature of the rogue wave presence in the wave field. The quantitative

measure of the “tailedness” of the PDF is the so-called kurtosis, the normalised fourth moment

of the PDF, denoted κ4. The Rayleigh PDF (Gaussian statistics) has κ4 = 2. Until recently, the

heavy tail effect κ4 > 2 has only been observed/studied in numerical simulations and physical

experiments [2, 33, 34, 35, 36] with no analytical treatment available.

Summarising, the RW formation as a physical phenomenon has two inherent aspects: dynamical

and statistical. As a dynamical object RWs are characterised by certain physical mechanisms

responsible for the amplitude growth and spatio-temporal localisation. As a statistical object,

RWs are characterised by the deviation of the probability distribution of the random wave field

from the one implied by the Gaussian statistics. The deviation from Gaussianity is measured by

the value of the kurtosis.

The mathematical property of integrability of the NLS equation and the statistical nature of RWs

suggest the unlikely combination of integrability and randomness that has been proposed by V. Za-

kharov in his paper entitled “Turbulence in integrable systems” [37]. It was proposed that the con-

cepts of classical turbulence theory (such as probability distribution, correlation function, power

spectrum etc.) can be applied to physical systems modelled by fully deterministic, integrable

equations. Unlike the classical turbulence in viscous hydrodynamics [38] or the weak (wave)

turbulence in non-integrable dispersive systems [39] (see also [32]), the integrable turbulence is

essentially a 1D phenomenon consisting in the generation of complex, spatio-temporal statistical

ensembles of nonlinear dispersive waves, e.g. solitons or breathers. The source of randomness in
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integrable turbulence is typically associated with stochastic initial or boundary conditions. There

are two contrasting types of initial conditions leading to integrable turbulence that are typically

considered in the mathematical modelling of this phenomenon. The first type are the so-called

partially coherent waves, that can be viewed as an infinite random sequence of smooth large-scale

pulses evolving at large times into a complex incoherent ensembles of solitons, breathers and lin-

ear dispersive waves [40]. The second type of initial conditions generating integrable turbulence

is given by a modulationally unstable plane wave perturbed by small random noise [41]. The nu-

merical simulations showed that the two above contrasting classes of initial conditions generate, at

large evolution time, two very different types of integrable turbulence. Namely, the long-time de-

velopment of the noise-induced integrable turbulence was shown in [41] to be characterised by the

Gaussian statistics (no statistically significant rogue waves present, κ4 = 2) while the integrable

turbulence resulted from the partially coherent wave demonstrated significant heavy tail effect,

κ4 > 2, at t � 1, suggesting the presence of rogue waves [40, 42]. Both types of integrable

turbulence can be (and have been) realised in fibre optics and water tank experiments [5, 34, 43]

but the theoretical explanation of the properties of integrable turbulence and their connection with

initial conditions was missing.

As was already mentioned, the hallmark dynamical features of RWs (the large peak amplitudes

and the spatio-temporal localisation) are captured by the PS solution of the focusing NLS equa-

tion. The physical relevance of PS has been confirmed in the optical fibre [44] and in the water

tank [45] experiments, where the PS was created by a careful choice of initial and boundary con-

ditions.

A breakthrough in the understanding of the fundamental nature of PSs as a persistent nonlinear

wave structure (not just a particular exotic solution of the NLS equation) has been made possible

owing to the rigorous mathematical study by Bertola and Tovbis [46] who showed that the spon-

taneous generation of large-amplitude spikes locally approximated by the PS solution represents

a universal mechanism of dispersive regularisation of a gradient catastrophe (a phenomenon of

the occurrence of infinite derivatives in the wave’s profile due to self-focusing). The peak inten-

sity of the PS is 3 times the value of the pulse intensity at the gradient catastrophe point. The

asymptotic analysis of Bertola and Tovbis was performed in the framework of the semi-classical,

small-dispersion limit of the focusing NLS equation. The universality of the PS generation in
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the Bertola-Tovbis scenario is understood in the sense that this regularisation mechanism persists

regardless of the particular amplitude shape or solitonic content (the IST discrete spectrum) of

the initial condition. In particular, the gradient catastrophe regularisation via the PS formation

for smooth, rapidly decaying purely solitonic initial conditions has been examined experimentally

using the optical fibre platform [4], which revealed the robustness of the mechanism in a broad

range of the input parameters, even outside of the applicability of the formal semi-classical NLS

setting implied in the Bertola-Tovbis analysis.

One of the main premises of this PhD project, inspired by the Bertola-Tovbis results, is that the

semi-classical limit of the focusing NLS equation provides a powerful mathematical framework for

the dynamical and statistical analysis of the evolution of partially coherent waves. In particular,

this framework can be applied for developing the methods of the prediction and manipulation of

the RW formation in the propagation of narrow-band incoherent signals in optical fibres and in

deep-water waves.

One of the important applied aspects of the spontaneous PS emergence is the fundamental prob-

lem of the nonlinear pulse compression, playing a major role in fibre optics [9, 18]. Indeed the PS

formation point represents the point of the maximum compression, where the peak power (9× the

power at the gradient catastrophe point) can achieve very high values so that the integrable, cubic

NLS description of the pulse propagation is no longer applicable and one needs to take into account

higher order effects such as Raman scattering, higher order dispersion etc. Is the Bertola-Tovbis

PS generation scenario still applicable, at least qualitatively, in such highly nonlinear regimes?

What peak powers are achievable at the maximum compression point? These pertinent questions

were investigated in a satellite study “Pulse compression in extremely nonlinear regimes” within

the research contract with LumOptica Ltd. In the Thesis we shall present some general theoret-

ical results obtained in this direction, without referring to the specific propagation regimes and

configurations studied in the LumOptica project.

Finally, along with RWs, another fundamental object arising within the integrable turbulence

framework is the soliton gas — an infinite random ensemble of localised soliton pulses nonlinearly

interacting with each other. It turns out that the collective, macroscopic dynamics of a soliton gas

can be described using the IST mathematical tools. The central idea in this theory is the modi-
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fication of the average velocity of a “trial” or “test” soliton in a gas due to the accumulation of

the phase-shifts occurring in the pairwise interactions with other solitons in the gas. The result-

ing spectral kinetic equation for soliton gas describes the evolution of the distribution function of

solitons with respect to their IST spectral values and the position of their centres. Such kinetic

equation was originally proposed by Zakharov in 1971 for the rarefied gas of KdV solitons [47]

and later generalised to the case of dense soliton gases for the KdV and focusing NLS equations in

[48, 49]. Soliton gas has been recently observed in the ocean [50] but also has been generated in

laboratory experiments [51, 52]. The concept of soliton gas has been recently extended to a more

general case of breather gas in [53]. The breather gas can be viewed as rogue wave integrable

turbulence whose properties need detailed study.

The PhD project includes three main themes under the general umbrella of integrable turbulence

and rogue waves in optical fibres and hydrodynamics

1. Dynamical and statistical aspects of rogue waves in optical fibres and hydrodynamics

using the semi-classical focusing NLS framework.

2. Theory of soliton and breather gases.

3. Optical pulse compression in highly nonlinear propagation regimes.

The structure of the Thesis is as follows.

In Chapter 1 an overview of the mathematical and physical background of the project is provided.

This includes some important aspects of the theory of the focusing NLS equation, starting from

the physical contexts of nonlinear optics and hydrodynamics and proceeding to the integrability

properties (inverse scattering transform and finite gap theory). The main ideas of the rogue wave

theory are introduced within the framework of the focusing NLS equation, including both dynam-

ical and statistical aspects of this phenomenon. In particular, the semi-classical theory of Bertola

and Tovbis on the regularisation of the focusing gradient catastrophes by the generation of Pere-

grine solitons is reviewed. The Chapter is concluded with the brief exposition of the soliton and

breather gas theory and the numerical methods of the integration of the NLS equation along with

the methods of numerical nonlinear spectral analysis of rogue waves.
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Chapter 2 is devoted to the analytical study of an early stage of the development of integrable

turbulence from partially coherent initial conditions. The focus is on the short-time asymptotic

evaluation of the kurtosis evolution in the semi-classical NLS equation, both focusing and de-

focusing. The material of this Chapter is based on the paper: G. Roberti (lead author), G. El,

S. Randoux and P. Suret. “Early stage of integrable turbulence in the one-dimensional nonlin-

ear Schrödinger equation: A semiclassical approach to statistics”, Phys. Rev. E, 100:032212,

2019.

Chapter 3 is concerned with the development of the method for the prediction and manipula-

tion of rogue waves in physical systems ruled by the focusing NLS equation. The proposed

method, termed nonlinear spectral engineering, employs the results of the semi-classical Bertola-

Tovbis theory, which is adapted to enable the comparison with experimental data. The Chapter

material is based on the joint paper: A. Tikan, F. Bonnefoy, G. Roberti, G. El, A. Tovbis, G.

Ducrozet, A. Cazaubiel, G. Prabhudesai, G. Michel, F. Copie, E. Falcon, S. Randoux, P. Suret,

“Prediction and manipulation of hydrodynamic rogue waves via nonlinear spectral engineering”,

arXiv:2108.02698 (2021) (submitted to a peer reviewed journal) and includes analytical, numer-

ical and experimental results. The experiment confirming the efficacy of the developed method

was performed in a 150m water tank facility in École Centrale de Nantes, France. The originally

planned follow up fibre optics experiments on the rogue wave control and manipulation were in-

terrupted by the Covid-19 pandemic but will resume in 2021/22.

Chapter 4 develops the theory of integrable turbulence in bidirectional soliton gases described

by the defocusing and resonant NLS equations, and is based on the results of the joint paper: T.

Congy, G. El and G. Roberti “Soliton gas in bidirectional dispersive hydrodynamics”, Phys. Rev.

E, 103:042201, 2021. The main areas of application of the Chapter’s results are nonlinear fibre

optics (normal dispersion propagation regime) and shallow-water waves.

Chapter 5 is concerned with the numerical realisation of breather gases and the verification of

the spectral kinetic theory developed in the recent paper [53] by El and Tovbis. This research has

required the development of the nontrivial numerical method of the breather gas synthesis based

on nonlinear spectral theory and involving high precision arithmetics. The material of the Chapter

is based on the paper: G. Roberti (lead author), G. El, A. Tovbis, F. Copie, P. Suret and S. Randoux
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“Numerical spectral synthesis of breather gas for the focusing nonlinear Schrödinger equation”,

Phys. Rev. E, 103:042205, 2021

Chapter 6 contains the theoretical results of the satellite research project “Pulse compression in

extremely nonlinear regimes”, where the influence of higher order effects (the intrapulse Raman

scattering and the third order dispersion) on the rogue wave formation in the propagation of high

intensity broad optical pulses through a fibre was studied using a combination of analytical and

numerical methods. The project has been completed under the Research Contract with LumOptica

Ltd.

Chapter 7 presents Conclusions and the future directions of research inspired by the PhD project.
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Publications and Conference presentations

The results of the project have been published in 4 research papers and reported at the UK-France

PhD Scheme Conference and at UK and international conferences on Applied Mathematics.

Publications in Peer Reviewed Journals

• G. Roberti, G. El, A. Tovbis, F. Copie, P. Suret and S. Randoux “Numerical spectral syn-

thesis of breather gas for the focusing nonlinear Schrödinger equation”, Phys. Rev. E,

103:042205, 2021

• T. Congy, G. El and G. Roberti “Soliton gas in bidirectional dispersive hydrodynamics”,

Phys. Rev. E, 103:042201, 2021

• G. Roberti, G. El, S. Randoux and P. Suret. “Early stage of integrable turbulence in the

one-dimensional nonlinear Schrödinger equation: A semiclassical approach to statistics”,

Phys. Rev. E, 100:032212, 2019

Pre-prints

• A. Tikan, F. Bonnefoy, G. Roberti, G. El, A. Tovbis, G. Ducrozet, A. Cazaubiel, G. Prab-

hudesai, G. Michel, F. Copie, E. Falcon, S. Randoux, P. Suret, “Prediction and manipula-

tion of hydrodynamic rogue waves via nonlinear spectral engineering”, arXiv:2108.02698

(2021), submitted for publication in a peer reviewed journal

Conference presentations

• 4th IMA on Nonlinearity and Coherent Structures: Nonlinear spectral synthesis of

breather gas in focusing NLS equation: a numerical approach, Contributed Talk, Lough-

borough, UK – Online, July 2021

• HYDW08 : New horizons in dispersive hydrodynamics: Numerical spectral synthesis

of breather gas for the focusing nonlinear Schrödinger equation, Poster, Cambridge, UK –

Online, June 2021

• Nonlinear Fourier Transform Workshop: Nonlinear spectral synthesis of breather gas in

focusing NLS equation: a numerical approach, Talk, Delft, NE, February 2020
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• 17th European Turbulence Conference, ETC 2019: Initial stage of the development of

integrable turbulence in 1D NLS dispersive hydrodynamics, Talk, Torino, IT, September

2019

• 3rd IMA on Nonlinearity and Coherent Structures: Initial stage of the development of

integrable turbulence in 1D NLS dispersive hydrodynamic, Contributed Talk, Newcastle

upon Tyne, UK, July 2019

• 7th UK-France PhD Scheme Conference: Analysis and control of large-amplitude fluc-

tuations of incoherent optical field in fibrelasers: integrable turbulence framework, Poster

and talk, Portsmouth, UK, June 2019

• British Applied Mathematics Colloquium: Initial stage of the development of integrable

turbulence in 1D NLS dispersive hydrodynamic, Contributed Talk, Bath, UK, April 2019

• 11th: IMACS on Nonlinear Evolution Equations and Wave Phenomena Initial stage of

the development of integrable turbulence in 1D NLS dispersive hydrodynamic, Contributed

Talk, Athens, GA, US, April 2019

• Dynamics Days Europe 2018: Initial stage of the development of integrable turbulence in

1D NLS dispersive hydrodynamic, Contributed Talk, Loughborough, UK, September 2018

• 6th UK-France PhD Scheme Conference: Analysis and control of large-amplitude fluc-

tuations of incoherent optical field in fibrelasers: integrable turbulence framework, Poster,

Paris, Fr, July 2018

• Workshop on Advances in the Theory of Nonlinear Waves: Phase shifts in dynamic

soliton tunnelling: focusing NLS framework, Poster and Talk, Newcastle, UK, May 2018
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Chapter 1

Mathematical and Physical

Background

1.1 Propagation of light in optical fibres and Nonlinear Schrödinger

equation

An optical fibre is a thin rod of high-quality glass that relies on the total internal reflection phe-

nomenon for the transmission of light signals with little losses. To achieve the internal total re-

flection, the fibre is built with an external cladding layer, with a slightly lower refractive index

than the core. The refractive index and dimension of the core are the physical characteristics that

determine the set of electromagnetic fields, modes, which can propagate in the fibre. If the core

is sufficiently small, the fibre will support the propagation of a single mode. The fibres designed

to meet this constrain are called single-mode fibres. In the following sections, we will discuss the

main physical effects and parameters of the optical fibres of interest. We will also introduce the

mathematical model describing the signal propagation in the fibre.

For the derivation reported in this Section we mainly refer to the classic books on nonlinear optics

by Agrawal [9] and on nonlinear dispersive waves by Ablowitz [54]
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Figure 1: Attenuation spectrum in a silica optical fibre at infrared band (cited from [1]).

1.1.1 Losses

Even if the fibre is designed to maximise the transmission of the light, the interaction with the

medium leads to a power loss in the signal. Given a signal of initial power P0 injected in a fibre,

the power PT at distance z along the fibre is:

PT = P0e
−α(λ)z, (1.1)

where the attenuation constant, α(λ), depends on the wavelength of the transmitted light signal.

The fibre losses can be ascribed to different mechanisms such as material absorption, scattering

and geometrical effect. The main contributing factor to the attenuation of the signal changes in

relation to its wavelength, as illustrated in Fig. 1. In the short wavelength regime, the Rayleigh

scattering is the main contributing mechanism. The microscopic density fluctuations formed in the

silica during the manufacturing process induce local variations of the refractive index of the fibre.

Given the difference of scales between the defects and the wavelength of interest, the resulting

scattering can be identified as Rayleigh scattering. The magnitude of this effect is proportional

to λ−4, hence its role as contributing factor in the fibre losses reduces as the wavelength of the

12



CHAPTER 1. MATHEMATICAL AND PHYSICAL BACKGROUND

signal increases. On the contrary, the major contributing effects to the attenuation in the far-

infrared regime (λ > 2µm) are the vibrational resonances of the silica that induce the so-called

infrared absorption peak. Besides the natural absorption of the silica, the few impurities in the

material have a strong effect on the transmission attenuation of the optical fibre. In glass fibre, the

OH ions created during the manufacturing process are one of the main sources of absorption. In

particular, they are responsible for the dominant absorption peak located about 1.4µm. However,

in modern communication silica fibres, the losses exhibit a minimum in a window of 5THz around

λ0 = 1.55µm. In this range of frequency, the attenuation constant is considered independent from

the wavelength with a value α ≈ 2× 10−5cm−1.

1.1.2 Chromatic Dispersion

One of the main effects influencing the propagation of the light in the optical fibre is the so-called

chromatic dispersion that arises from the dependency of the medium reflective index n(ω) on the

optical frequency ω. Consequently, the different spectral components associated with an optical

pulse travel at different speeds c
n(ω) , where c is the speed of light. This dependency extends to

the wavenumber β(ω) and in the limit of a quasi-monochromatic wave it can be expanded as the

Taylor series in ω about the centre of the spectrum ω0:

β(ω) = n(ω)
ω

c
= β0 + β1 (ω − ω0) +

1

2
β2 (ω − ω0)2 + · · · (1.2)

where

βm =

(
dmβ

dωm

)

ω=ω0

. (1.3)

In particular, β1 = 1
vg

is related to the group velocity vg at which the envelope of the signal moves.

β1 can be eliminated by choosing the frame of reference co-moving with the pulse. The broadening

of the pulse is governed by the parameter β2, the so-called group-velocity dispersion. In fused

silica, β2 varies with the wavelength λ = 2πc
ω0

and vanishes at the zero-dispersion wavelength

λD = 1.27µm. Moreover, this value discriminates two different regimes of dispersion, the so-

called normal dispersion (or defocusing) regime if β2 > 0 and the anomalous dispersion (or

focusing) regime if β2 < 0. While the coefficient β2 can vanishes at λ = λD, the dispersion in

the system does not disappear and the cubic term in the expansion (1.2) is required. This higher-
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order dispersive term, characterised by β3, commonly called the Third-Order-Dispersion (TOD)

parameter, plays an important role in the distortion of ultrashort optical pulses in both linear and

nonlinear regimes.

1.1.3 Nonlinear effects

Optical fibres, as any dielectric material, exhibit a nonlinear response to intense electromagnetic

fields. The displacement of bound electrons results in a non-linear dependency of the induced

polarisation vector P from the electric field E. In particular the dependence of the polarisation

vector on the electrical field is given by the expression:

P = ε0

(
χ(1) ·E + χ(2) : EE + χ(3)...EEE + · · ·

)
, (1.4)

where ε0 is the vacuum permittivity, χ(i) is the i-th order susceptibility tensor of rank j + 1, and

the symbols : and
... denote the rank 2 and 3 tensor products. Due to the symmetry of the silica

molecule (SiO2), χ(2) vanishes in silica glass optical fibres, and the lowest-order nonlinear effect

can be ascribed to the third-order susceptibility. Even if χ(3) is responsible for different nonlinear

processes such as the third-harmonic generation and the four-wave mixing, these phenomena are

negligible in optical fibres where most of the nonlinear effects arise from nonlinear refraction. In

its simplest form, the dependency of the refractive index n on the light intensity |E|2, the so called

Kerr nonlinearity, can be expressed as

n = n0(ω) + n2|E|2, (1.5)

where n2, also called the nonlinear refractive index, can be expressed in term of χ(3). Assuming

that the electric field is linearly polarised in the x-direction, the only component of the fourth-rank

tensor that contributes to n2 is χ(3)
xxxx

such that

n2 =
3

8n
Re
(
χ(3)
xxxx

)
. (1.6)

Moreover, under the same assumption on the optical field, it is possible to relate the real and imag-

inary parts of χ(1)
xx

, component of the first order susceptibility tensor χ(1), to the linear refractive
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index n0(ω) and to the attenuation coefficient α.

1.1.4 Nonlinear Schrödinger Equation

The first step in the study of the nonlinear phenomena in optical fibres is the introduction of

an effective mathematical model to describe the light propagation in the medium embedding the

physical effects described previously. Such a model is the well established Nonlinear Schrödinger

(NLS) equation.

The first step in the derivation is, starting from Maxwell’s equations, to write the wave equation

that involves the electric field E and polarisation vector P:

∇×∇×E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2
, (1.7)

where c is the speed of light in vacuum. Subsequently, with the introduction of a series of as-

sumptions and approximations based on the physical characteristics of the fibre and the signal, it

is possible to simplify the model and obtain the NLS equation. Considering the symmetry of the

system and of the SiO2 molecular structure, it is possible to reduce Eq. (1.7) to a scalar form.

The scalar approach is valid only if the electric field maintains its direction of polarisation during

the propagation; even if this is not strictly the case, this approximation holds well in practice.

Moreover, since the nonlinear effect is relatively weak in silica fibre, it is possible to consider the

nonlinear part of the polarisation vector P as a small perturbation of the linear problem. Another

key assumption is the quasi-monochromatic nature of the optical field. The spectrum of the signal,

centred at ω0, is assumed to be narrow, with spectral width ∆ω � ω0. Using the approximations

described here, the form of the electric field can be simplified in the following form:

E(r, t) =
1

2
x̂ {F (x, y)A(z, t) exp [i (β0z − ω0t)] + c.c.} , (1.8)

where x̂ is the polarisation unit vector, A(z, t) is the slowly varying pulse envelope, and F (x, y)

is the transverse modal distribution, often approximated by a Gaussian shape. Substituting (1.8) in

Eq. (1.7), it is then possible to derive the evolution of the slowly varying envelope of the electric
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field A(t, z) interacting with the fibre

i
∂A

∂z
= −iα

2
A+

β2

2

∂2A

∂t2
− γ|A|2A, (1.9)

where t identifies the time in the frame of reference moving at the group velocity vg = 1/β1 and

z represents the distance of propagation along the fibre. This equation includes, as required, the

dissipation of the fibre through the attenuation constant α, the dispersion characterised by β2, and

the nonlinearity characterised by

γ =
n2ω0

cAeff
, (1.10)

where Aeff is the effective core area

Aeff =

(∫∞
−∞ |F (x, y)|2dxdy

)2

∫∞
−∞ |F (x, y)|4dxdy , (1.11)

measuring the area over which the energy in the electric field is distributed.

Even if Eq. (1.9) is often referred to as NLS equation, this terminology usually identifies the

equation in the form without the fibre losses term in mathematics

i
∂A

∂z
= +

β2

2

∂2A

∂t2
− γ|A|2A. (1.12)

The NLS equation can be generalised by introducing higher order dispersive and nonlinear terms

as well as a term describing stimulated scattering. These effects derive from the relaxation of some

the assumptions and approximations involved in the derivation of the NLS equation.

1.1.5 Normalisation

It is standard to rescale Eq. (1.12) with the introduction of non-dimensional coordinates T = t/T0,

Z = z/Z0 and field u = A/
√
P0. There exists two main normalisations widely used:

• introducing P0 as the power scale of the system, we define T0 =
√
|β2|
γP0

and Z0 = 1
γP0

to

derive the following normalised NLS equation:

i
∂u

∂Z
+

1

2

∂2u

∂T 2
+ σ|u|2u = 0, (1.13)
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where σ = sgn(γβ2).

• introducing P0 as the power scale of the system, we define T0 =
√
|β2|
γP0

and Z0 = 2
γP0

to

derive the following normalised NLS equation:

i
∂u

∂Z
+
∂2u

∂T 2
+ 2σ|u|2u = 0, (1.14)

where σ = sgn(γβ2).

Since the nature of the system is defined by the relative sign of dispersive and nonlinear term, it is

standard to shift its characterisation to the nonlinear term with the introduction of the parameter σ.

In the normalised equations (1.13) and (1.14), σ = +1 corresponds to the focusing (anomalous

dispersion) regime and σ = −1 to the defocusing (normal dispersion) regime.

1.1.6 Hydrodynamics

The NLS equation is a universal model that arises in many physical systems: plasma physics, con-

dense matter [55], nonlinear optics [9] and water waves [56] are some of the best known examples.

It generally describes the dynamics of quasi-monochromatic, weakly nonlinear waves subject to

second order dispersion and cubic nonlinear interaction. In this work the NLS equation is used in

two contexts: (i) the description of nonlinear optical systems, particularly in optical fibres; (ii) the

propagation of unidirectional small-amplitude gravity waves in the deep-water regime, particularly

in 1-D water tank experiments. Besides the description of systems in controlled environment, this

model and its two-dimensional generalisation are used to describe open ocean phenomena, such

as wave packets generated by localised storm and quasi-monochromatic wavetrains generated by

steady wind.

In the context of surface waves, the focusing Nonlinear Schrödinger Equation fNLSE can be de-
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rived from the Euler-Bernoulli equations in the deep water and small-amplitude wave limit:

φxx + φzz = 0, −∞ < z < εη, (1.15a)

φz = 0, z → −∞, (1.15b)

φt +
ε

2

(
φ2
x + φ2

z

)
+ gη = 0, z = εη, (1.15c)

ηt + εηxφx = φz, z = εη, (1.15d)

where φ(t, x, z) is the velocity potential of the fluid, η(x, t) is the height of the fluid free surface

above the mean level z = 0, g is the gravitational constant of acceleration, and ε � 1 is the

small parameter encoding the small amplitude assumption. This system of equations expresses,

respectively, the ideal nature of the fluid (1.15a), the absence of flow through the bottom of the

system (1.15b), Bernoulli energy conservation (1.15c), and the absence of flow transverse to the

free surface (1.15d). Given the assumption of small amplitude waves, it is possible to rewrite

the free-surface equations (1.15c) and (1.15d), expanding around z = 0 the velocity potential φ

and its derivatives φt, φx and φz . Moreover, the wave envelope is expected to slowly vary in

space and time and thus one introduces slow temporal and spatial scales T = εt, X = εx and

Z = εz. Lastly, the presence of quadratic nonlinearity in the Euler-Bernoulli equations suggests to

consider second harmonics and mean terms generation resulting in the following ansatz (Stokes’

wave):

φ =
(
A1e

iθ+kk + c.c.
)

+ ε
(
A2e

2iθ+2|k|z + c. c.+φ̄
)
,

η =
(
B1e

iθ + c.c.
)

+ ε
(
B2e

2iθ + c.c. + η̄
)
,

(1.16)

where the complex coefficients A1, A2, B1, B2 and the real coefficient φ̄, η̄ depend on the slow

scales X,Z, T . While the envelope depends on slow variables, the carrier wave depends on the

rapid phase by θ = kx− ωt, where the dispersion relation is ω2 = g|k| in the deep water regime.

Following these approximations, it is possible to obtain an equation for A1 by substituting the

ansatz (1.16) in the Euler-Bernoulli system and by setting to zero the terms proportional to each

power of ε. As result, one obtain at O(ε2) the equation:

2iωAτ −
(
v2

g

2ω
Aξξ +

2k4

ω
|A|2A

)
= 0, (1.17)

where vg = g
2ω is the group velocity, A = A1, τ = εT and ξ = X − vgT . In this approximation,
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B1 is proportional to A. Eq. (1.17) is the standard formulation of the fNLSE for water waves in

the deep water limit. Differently from the nonlinear optic formulation (1.12), space is now the

dispersive variable and time the evolution one. Nevertheless, it is possible to normalise Eq. (1.17)

to obtain the forms Eq. (1.13) or (1.14).

1.1.7 Nonlinear Schrödinger Equation: exact solutions

In the previous sections, it has been shown how the NLS equation can be derived in different phys-

ical systems and admits different normalisations. For the purpose of this work, we will consider

the fNLSE normalised in the form:

i
∂u

∂t
+
∂2u

∂x2
+ 2|u|2u = 0. (1.18)

In this section, the main features of the fNLSE are discussed.

The fNLSE admits different families of exact solutions, the simplest being the plane wave solution,

sometimes called the condensate, that reads:

u(x, t) = u0e
2iu2

0t, (1.19)

where u0 is a constant amplitude. In the focusing regime, as it will be discussed in Section 1.2,

the plane wave solution is unstable with respect to long wave perturbations which initially grow

exponentially with time and eventually lead to the formation of large amplitude nonlinear coherent

structures.

Furthermore, together with a widespread class of nonlinear dispersive systems, the fNLSE sup-

ports a family of solitary wave solutions, called solitons in integrable systems, see Section 1.4.

The balance between nonlinear and dispersive effects leads to the existence of a self-reinforcing

solution that maintains its shape while it propagates at constant velocity. Moreover, the interac-

tion between solitons is elastic, such that speed and amplitude profile remain unaltered upon the

collision, while the position and phase experience well-defined shifts. The bright soliton solution
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Figure 2: Examples of exact solution of the fNLSE evaluated at t = 0: (a) the fundamental soliton,
(b) the Akhmediev breather, (c) the Kuznetsov-Ma breather and (d) the Peregrine soliton.

of the fNLSE (1.14), see Fig. 2(a), has the form:

u(x, t) = 2η sech [2η (x+ 4ξt− x0)] exp
[
−2iξx− 4i

(
ξ2 − η2

)
t+ iφ0

]
. (1.20)

The structure is centred at xc = x0−4ξt with amplitude 2η and velocity−4ξ, while the parameter

x0 and φ0 are the initial position and the phase of the pulse, respectively. Solitons belong to a class

of localised solutions with vanishing boundary conditions at infinity, but exact solutions of the

fNLSE with non-vanishing boundary conditions are also known. Breathers or Solitons on Finite

Background (SFBs) represent a rich class of solutions of the fNLSE. The Peregrine soliton PS

[27], Kuznetsov-Ma (KM) breather [57, 58] and Akhmediev breather (AB) [59] are well-known

members of this class, and are particular cases of the generic Tajiri-Watanabe (TW) breather [60]:

u(x, t) =
cos(µ) cos(2γ(x− νt) + 2iΨ)− cosh(Ψ) cosh (2Γ (x− Vbrt) + 2iµ)

cos(µ) cos(2γ(x− νt))− cosh(Ψ) cosh (2Γ (x− Vbrt))
e2it, (1.21)
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Figure 3: Examples of Tajiri-Watanabe breather solution of the fNLSE with λ = 0.2 + 0.5i:
(a) spatio-temporal evolution of wave filed amplitude |u(x, t)| and (b) amplitude profile of the
solution at t = 0.

where

Γ = − sinh(Ψ) cos(µ), γ = cosh(Ψ) sin(µ),

Vbr =
cosh(2Ψ) sin(2µ)

Γ
, ν =

sinh(2Ψ) cos(2µ)

γ
,

(1.22)

with Vbr and ν being respectively the group and the phase velocity of the wave packet. Without loss

of generality, the background amplitude has been assumed here to be unitary (|u(|x| → ∞)| = 1).

An example of the TW solution of the fNLSE is illustrated in Fig. 3. The two real parameters µ and

Ψ that characterise the breather structure can be recast to a single complex one λ = i cos(µ+ iΨ).

In particular, the amplitude ubr and group velocity Vbr of the breather are given by:

Vbr = −4Im(λ)
1 + coth2 Ψ

2
, ubr = 2 cosh(Φ) cos(µ) = 2Re(λ). (1.23)

The variation of the field u is constrained within the interval

|ubr − u0| ≤ |u| ≤ |ubr + u0| , (1.24)

with u0 = 1, the amplitude of the background. Away from the centre of the breather, the solution

(1.21) reads as the plane wave background (u(x, t)→ e2it for x→ ±∞). The TW (1.21) breather

is characterised by two oscillatory behaviours with a spacial period Tx and a temporal period Tt:
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Tx =
π

γ
, Tt =

π

νγ
. (1.25)

The shape of the solution (1.21) strongly depends on the parameter λ, ranging from a pulsing

disturbance to a propagating perturbation. The following is dedicated to well-known cases of TW

breather with purely imaginary parameter λ. Considering the parameter in the form

λ = i cos(µ+ iΨ) = sinh(Ψ) sin(µ) + i cosh(Ψ) cos(µ), (1.26)

the particular case Re(λ) = sinh(Ψ) sin(µ) = 0 can be realised in three possible ways: µ = 0,

Ψ = 0, or µ = Ψ = 0. In the first case, where µ → 0 (sin(µ) = 0), and subsequently Im(λ) =

cosh(Ψ) > 1, the solution (1.21) takes the form of the time-periodic Kuznetsov-Ma breather:

uKM(x, t) =
cos (ωKMt− 2iΨ)− cosh Ψ cosh(2Γx)

cos (ωKMt)− cosh Ψ cosh(2Γx)
e2it, (1.27)

where ωKM = 2π
Tt

is the time frequency, see Fig. 2(c). Moreover, this particular solution is lo-

calised in space (TL → ∞) and does not propagate (Vbr = 0). In the second case, when Ψ → 0

(sinh(Ψ) = 0), and subsequently 0 < Im(λ) = cos(µ) < 1 the solution (1.21) takes the form of

the space-periodic Akhmediev breather:

uAB(x, t) =
cos(µ) cos(2γx)− cosh(σt− 2iµ)

cos(µ) cos(2γx)− cosh(σt)
e2it, (1.28)

where σ = 2 sin(2µ). The AB solution of the fNLSE is a space periodic structure with period Tx

but is localised in time, see Fig. 2(b). In the last scenario, where both parameters µ and Ψ vanish

and Im(λ)→ 1, the breather solution tends to the PS:

uPR(x, t) =

[
1− 4 + 16it

1 + 4x2 + 16t2

]
e2it. (1.29)

This rational solution of the fNLSE is localised both in space and time, and, at the point of max-

imum compression during the evolution, the peak amplitude reaches three times the level of the

continuous background, see Fig. 2(d). For this reason, it is often listed as the prototype of rogue

waves, as we will discuss in section 1.3. Moreover, the fNLSE admits hierarchies of higher-order

breather solutions that can be obtained using the Darboux transform technique [61]. These so-
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lutions can be interpreted as nonlinear superposition of first-order breathers and can exhibit even

higher maximum amplitude.

These special families of solutions of the fNLSE play a crucial role in the nonlinear dynamics of

different physical phenomena. In the next section, some of these mechanisms are investigated in

more detail.

1.2 Modulational instability

In many nonlinear systems, the interplay between dispersion and nonlinearity can lead to the in-

stability of the steady state solutions: this phenomenon is known as Modulational Instability (MI)

or Benjamin-Feir Instability. First reported by Benjamin and Feir in 1967 [43, 62] in the context

of deep-water gravity waves, it is now known to be a ubiquitous mechanism associated to the

“focusing nature” of certain nonlinear dynamics. MI has now been observed in different physical

systems [63] including nonlinear optics [9], plasma waves [64], and matter waves [65]. The dy-

namics of MI can be roughly divided in two regimes: a linear and a nonlinear stage. While the

linear (early) stage of the evolution is characterised by the exponential growth of small amplitude,

long wave, perturbations, the nonlinear stage (long-time) dynamics leads to the formation of co-

herent structures of finite amplitude. The nonlinear evolution of the MI strongly depends on the

nature of the initial perturbation.

To understand the early stage of the MI dynamics, standard tools of linear stability analysis can

be employed. As was mentioned in the previous section, the plane wave solution (1.19) of the

fNLSE is unstable with respect to long-wave perturbations. Considering the plane wave solution

(u(x, t) = e2it) perturbed by a harmonic wave of small amplitude ε,

u(x, t) = e2it + εei(kx+Ωt), with |ε| � 1, (1.30)

and linearising (1.18) with respect to ε , one obtains the linear dispersion relation:

Ω2 = k4 − 4k2. (1.31)

Thus, when |k| < kc = 2, the system becomes unstable: Ω2 < 0 leads to the growth of the
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perturbation in time. The growth rate of the perturbation is given as a function of its wavenumber

g(k) = |k|
√
k2

c − k2, (1.32)

which has a maximum at kmax = ±
√

2, see Fig. 4(a). Thus, in the more general case of non-

harmonic excitation, the Fourier components of the perturbation with a wavenumber falling within

the range |k| < kc experience an exponential growth at the early stage of the evolution. This

classical (linear) mechanism, describing the early destabilisation of the condensate solution (u =

1) is not suitable for the description of the long-time, asymptotic stage of MI where the small

amplitude assumption is no longer valid.

Figure 4: (a) MI gain curve g(k) calculated from the linear stability analysis of (1.18). (b-d)
Schematics of three initial conditions leading to the development of MI of the condensate: (b)
harmonic perturbation, (c) random noise perturbation and (d) localised perturbation.

Three different scenarios arise in the nonlinear stage of MI depending on the nature of the initial

perturbation, see Fig. 4(b-d).

(i) In the first scenario, the perturbation is a simple harmonic wave. After the initial linear stage of

exponential growth, the dynamics is characterised by the periodic formation of AB-like structures.

These structures have been observed numerically and recently described analytically [66].

(ii) Away from refined experimental controlled conditions, the perturbation of the plane wave

is generally described by a small-amplitude random process leading to the concept of the noise

induced MI. The stochastic nature of the initial perturbation leads to the emergence of a more com-

plex wave field dynamics than observed in the harmonically perturbed condensate. Its description

requires the introduction of a statistical approach that falls in the framework of integrable tur-

bulence, see Section 1.5. Recently, the development of single-shot experimental techniques in

fibre lasers has made possible the observation of the stochastic nature of the noise-induced MI.
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Moreover, with the development of time-lens and recirculating fibre-loop system, the real-time

experimental investigation of the noise-induced MI has been reported [5].

(iii) In the third scenario, the perturbation is considered to be a localised distribution. It has been

shown recently that the resulting dynamic depends on the “soliton content” of the perturbation

[67]. This characterisation of the perturbation can be obtained by means of the IST, a nonlinear

analogue of the Fourier transform. A more detailed discussion of the IST and the connection

between the IST spectrum and the physical wave field u(x, t) is presented in Section 1.4. In the

case where the perturbation has no soliton content (i.e. no discrete IST spectrum, see Section 1.4),

the nonlinear dynamics of MI is characterised by the formation of a universal (i.e. independent

from the shape of the perturbation at leading order) symmetric nonlinear wave structure expanding

with time [68, 69]. This oscillatory structure is described by a modulated elliptic solution of the

fNLSE, with a transition from a steady soliton at the centre to a small-amplitude dispersive wave

propagating away from the initial perturbation at linear group velocity [70].

In the case of a localised perturbation with a purely solitonic content, the MI dynamics strongly

differs from the non-solitonic case. The evolution is described by the so-called superregular

breathers, a pair of peculiar periodic breathers with opposite velocities, whose nonlinear superpo-

sition at initial time constitutes the small perturbation of the condensate [71, 72, 73]. Furthermore,

it has been shown how these two cases could coexist when the perturbation exhibits the nonlinear

(IST) spectrum characterised by both discrete (solitonic) and continuous (dispersive wave) parts.

In this case the nonlinear dynamics exhibit features of both scenarios with superregular breathers

that lie inside or outside the wedge of the expanding nonlinear oscillatory structure [67].

1.3 Rogue Waves

The term Rogue Wave (RW) generally refers to the localised water wave phenomena of unusually

large amplitude and spontaneously (unpredictably) occurring in time. Being part of the marine

folklore for centuries, the existence of RWs has been accepted by the scientific community only

in the past few decades. The key event leading to its recognition has been the observation of the

so-called “New Year wave”, recorded on the 1st of January 1995 on the Draupner platform in the

North Sea [74]. The event, with a wave height of 25.6 meters, more than twice the significant
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Figure 5: (Adapted from [2] with permission from the authors) Exceedence probability, “heavy”
tailed distribution of wave height recorded in water tank experiment

wave height (the mean height of the highest third of the waves) of the surrounding area, was at

the time considered highly improbable and outside of any known model. Nowadays, even if the

physics behind the formation of RW is still being debated, their effects on offshore infrastructures

is taken into account in the engineering design [42, 75].

The prescription of a large amplitude is not sufficient to adequately define a RW. The concept of

RW is inherently related to the probability of such event to occur in a given ocean state. It has

been shown that, when the sea surface slope is sufficiently small [76], the sea level can be assumed

to be a linear superposition of many independent waves with random phases. It follows that the

random sea level exhibits Gaussian statistics and the wave heights are distributed according to the

Rayleigh distribution [77]. A RW is then defined as a large amplitude wave that appears with a

frequency that exceeds the one predicted by the linear wave theory (i.e. more often than expected

from the Gaussian statistics). The resulting Probability Density Function (PDF) of the amplitude

of the field, function describing here the likelihood of a specific wave amplitude event, deviates

from the Rayleigh distribution, see Fig. 5. In particular, the resulting PDF predicts more frequent

high amplitude waves than the Rayleigh distribution, a feature also known as “heavy tail”, which

can be observed by comparing the tails for the two distributions. This statistical feature is a key

characteristic of the RW phenomenon.

At leading order, the fNLSE is often adopted to model the formation of RWs. Even if this equa-
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tion may fail to describe the very steep profiles characterising the extreme event, it includes the

RWs’ statistical features and provides a reliable mathematical framework to investigate the phe-

nomenon.

The formation of RWs is now understood as an ubiquitous phenomenon and it is studied in many

different physical systems: light propagation in doped fibres [78], acoustic turbulence [79], non-

linear optical cavities [80] and microwave transport [81]. This work focuses, in particular, on the

nonlinear optics context where, since the first experimental observation by Solli et al. [30], the

study of RWs has become a rich subject of research.

Breather solutions of the fNLSE have recently attracted interest in the description of the RWs for-

mation due to their spatio-temporal localisation properties [31]. In particular the PS [82] captures

one of the main feature of RWs, it is localised both in space and time, i.e. PSs are the “waves

that appear from nowhere and disappear without a trace” [83]. Moreover, the maximum amplitude

of the PS is equal to three times the surrounding background, making it a particularity attractive

prototype of the extreme event. However, it has been shown [84] that often the localised large am-

plitude fluctuations recorded in hydrodynamic and optical experiments usually classified as PSs,

are rather nonlinear superpositions of breather solutions of the fNLSE.

Coherent structures such as PSs and higher-order breathers characterise the nonlinear stage dy-

namics of noise-induced MI. However, quite surprisingly, the numerical simulations showed that

the large-amplitude fluctuations observed in this scenario at large times do not exhibit the statis-

tical features characterising RWs events. In other words, the PDF of the amplitude of the wave

field, at the asymptotic stage of the noise-driven MI, is not heavy-tailed but rather coincides with

the Rayleigh distribution [41]. Another scenario characterised by the formation of PS and higher-

order breathers is the evolution of partially coherent waves, which can be roughly viewed as an

infinite random sequence of broad smooth pulses. Generated as linear superposition of many in-

dependent Fourier modes with random phases, this scenario is initially characterised by Gaussian

statistic. The nonlinear evolution governed by the fNLSE quickly leads to a stage where the PDF

exceeds the exponential tail of the Rayleigh distribution by order of magnitude, which is a strong

indication of the presence of RW events [34, 85].

In the context of nonlinear optics RWs are local field fluctuations of a very large amplitude that
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can be damaging for signal transmission and even for the hardware (e.g. high power lasers and

amplifiers) but the possibility to control their emergence would open the way to a new generation

of high power integrated fibre-based sources.

1.4 Integrability and Inverse Scattering Transform

The NLS equation belongs to the family of completely integrable nonlinear Partially Differential

Equations (PDEs). The method used to solve this family of nonlinear PDEs is called the Inverse

Scattering Transform (IST). Within this method a nonlinear dispersive PDE is solved by a 3-step

algorithm, and each step involves solution of a linear problem.

A schematic of the IST method to solve the initial value problem for the NLS equation is shown

in Fig. 6. First, the spectral representation of the initial profile is obtained by solving a linear scat-

tering problem, the so-called direct scattering transform, where the initial wave field u(x, t = 0)

plays the role of an external potential. As result of the direct transform, scattering data at t = 0 are

obtained. The time evolution of the scattering data is governed by a simple linear equation which

is readily solved to give scattering data at any given time t > 0. The final step of the method is to

solve the inverse scattering problem (a linear integral equation) to reconstruct the potential u(x, t)

from the scattering data. The IST procedure is also known as the Nonlinear Fourier Transform

(NFT) due to the analogy with the spectral method based on the Fourier transform and used to

solve linear PDEs.

Figure 6: Schematic of the IST method to solve nonlinear PDE
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The scheme was first developed in the framework of the Korteweg-de Vries (KdV) equation by

Gardner, Greene, Kruskal, and Miura in 1967 [11] and soon after generalised by Lax [86]. The

specific scattering problem for the fNLSE was then investigated by Zakharov and Shabat in 1972

[23] (focusing case).

The IST method relies on the possibility to represent the nonlinear PDE as the compatibility con-

dition of two linear systems, the so-called Lax pair. In the case of the fNLSE in the form (1.18),

the corresponding Lax pair (also called the Zakharov-Shabat equations) is:

Rx =



−iλ u

−u∗ iλ


R, (1.33)

Rt =




i
(
|u|2 − 2λ2

)
iux + 2λu

iu∗x − 2λu∗ i
(
2λ2 − |u|2

)


R, (1.34)

whereR(x, t) is a two-dimensional eigenvector and λ ∈ C the corresponding complex eigenvalue,

called thereafter the complex spectral parameter.

The compatibility condition readsRtx = Rxt. Formally, the resolution of the eigenvalue (Zakharov-

Shabat scattering) problem (1.33) yields the set of eigenvalues λ ∈ S ⊂ C and the corresponding

eigenvectors R. The spectral set S in the Zakharov-Shabat problem has the property of Schwarz

symmetry, i.e. if λ ∈ S then also λ ∈ S.

However, the knowledge of the full spatio-temporal variation of the eigenvectors is not necessary

to reconstruct the potential u, as we will show in the following. We call thereafter the data neces-

sary to reconstruct such potential the scattering data. The temporal linear operator (1.34) governs

the time evolution of these scattering data, and as a result, the time evolution of the potential

u(x, t). The complete integrability of the fNLSE and the Lax pair formalism imply the existence

of an infinite hierarchy of conservation laws and conserved quantities. In particular, of primary

interest for this work are the mass, momentum and energy integrals. The mass, having the mean-

ing of the power in the optics context, is the first conserved quantity and takes the following form:

N =

∫ ∞

−∞
|u|2dx. (1.35)
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The second and third conserved quantities are respectively the momentum

P =

∫ ∞

−∞
u∗uxdx, (1.36)

and the total energy

E = EL + ENL, (1.37)

that can be split into a linear (kinetic energy) part:

EL =

∫ ∞

−∞
u∗uxxdx, (1.38)

and nonlinear (potential energy) part:

ENL =

∫ ∞

−∞
|u|4dx. (1.39)

Here we consider two families of initial conditions that can be solved using the IST method:

rapidly decaying potentials and quasi-periodic potentials.

1.4.1 Vanishing boundary conditions

The first case considered is the rapidly decaying potential, where u(x, t) decays to zero sufficiently

fast as x→ ±∞ [23]. In this context, the scattering data consist of a continuous spectrum defined

on λ ∈ R, a complex discrete spectrum λn ∈ C and the asymptotic behaviour (x → ±∞) of

the eigenvector R(x, t). Given the boundary conditions of the considered potential, u → 0 for

x → ±∞, the Jost functions ψ and φ are the unique solutions of the scattering problem with the

following asymptotic conditions:

ψ ∼




0

eiλx


 as x→ +∞,

φ ∼



e−iλx

0


 as x→ −∞.

(1.40)
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Considering the solution ψ = (ψ1, ψ2)T of the scattering problem (1.33), (1.40), it can be shown

that ψ̄ = (ψ∗2,−ψ∗1)T is solution of the same scattering problem. Moreover, the set
{
ψ, ψ̄

}
forms a

complete basis of the solution space and we can thus write the solution φ as the linear combination:

φ = a(λ)ψ̄ + b(λ)ψ, (1.41)

with a, b ∈ C; note that the scattering coefficient a(λ) and b(λ) are independent of the spacial

variable x and are obtained by comparing the asymptotic behaviours of φ and ψ, ψ̄. When λ ∈ R,

the Jost functions behave as plane waves for x = ±∞. Thus the direct scattering problem (1.33)

reduces to the determination of the “reflected” and “transmitted” plane wave, products of the

incident plane wave scattered by the potential. One can define the reflection coefficient in terms

of the scattering coefficients:

r(λ) =
b(λ)

a(λ)
, with λ ∈ R. (1.42)

The continuous spectrum is then defined as the non-vanishing reflection coefficient r(λ) 6= 0 and

indicates the presence of “radiation” within the potential [56].

If λ belongs to the complex discrete spectrum λn, the Jost functions decay at x→ ±∞. Moreover,

the points of the discrete spectrum correspond to the zeros of a(λ) in the upper half of the complex

plane. To each point of the discrete spectrum λn is associated a so-called norming constants cn:

cn = c(λn) = Res[r(λ)]|λ=λn =
b(λn)

a′(λn)
, (1.43)

with a′(λ) = ∂a/∂λ.

If the “spectral portrait” of the potential consists of only one discrete point λ ∈ C (more precisely,

two complex conjugate points) and no continuous spectrum part, the potential corresponds to the

soliton solution of the fNLSE. Considering the soliton solution written in the form (1.20), the real

and imaginary parts of the eigenvalue λ are associated to the velocity 4ξ and the amplitude 2η

with the expression:

λ = ξ + iη. (1.44)

Thus, the discrete part of the spectrum is often identified as the soliton content of the considered

potential u. In particular, a reflectionless potential, i.e. r(λ) = 0, corresponds to the pure N-
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soliton solution of the fNLSE. Moreover, if the considered potential is the single soliton solution

of the fNLSE, there exists a simple relation between the norming constant and the parameters x0

and φ0 of the soliton:

c(λ, t = 0) = e−2ηx0+iφ0 . (1.45)

However, for more complex potentials with continuous and discrete spectrum, the relation between

the norming constants and the soliton positions and phases is far from being simple.

As the propagation of the initial potential u(x, 0) is governed by the fNLSE, its scattering rep-

resentation evolves according to (1.34). The latter system is linear and determining the time-

evolution of the scattering data is much simpler than solving the fNLSE.

The discrete spectrum of the potential is a constant of motion (the isospectrality property):

∂λn
∂t

= 0 ⇒ λn(t) = λn(t = 0). (1.46)

Given the relation between the discrete spectrum and the parameters of the soliton solution, the

conservation of the discrete spectrum explains the core proprieties of the soliton solution, i.e.

elastic interaction and conservation of the shape, amplitude and velocity.

On the other hand, the norming constants cn associated to the discrete spectrum, and the reflection

coefficient r(λ) are not constants of motion. Solving the linear operator (1.34), one can determine

explicitly the time evolution of the reflection coefficient

r(λ, t) = e+4iλ2tr(λ, 0), (1.47)

and of the norming constants

cn(t) = e4iλ2
ntcn(0). (1.48)

The last step of the IST scheme is the reconstruction of the potential u(x, t) given the time evolved

scattering data. The relevant inverse scattering problem can be solved via the Marchenko method

[87]. For the fNLSE the corresponding Marchenko integral equation takes the form:

K1(x, y, t) = F ∗(x+ y, t)−
∫ ∞

x

∫ ∞

x
K1(x, z, t)F (z + s, t)F ∗(s+ y, t) ds dz, (1.49)
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where the scattering data {r(λ), λn, cn} define the Marchenko kernel F (x, t) of (1.49) as

F (x, t) =
1

2π

∫ ∞

−∞
dλ r(λ, t)eiλx − i

N∑

j=n

cn(t)e−iλnx. (1.50)

Finally, the potential can be obtained from the solution K1(x, y, t) as:

u(x, t) = −2K1(x, x, t). (1.51)

If reflectionless potentials are considered, the kernel of the Marchenko equation is separable and

the integral equation (1.49) turns to a system of linear algebraic equations. In this case, the poten-

tial obtained from the inverse problem is the N -soliton solution and its analytical expression can

be determined explicitly.

1.4.2 Periodic and quasi-periodic boundary conditions

In the context of not-vanishing boundary conditions, the so-called Finite Gap Theory (FGT)

[88, 89] is the framework adopted to extend the IST scheme to a certain class of periodic and

quasi-periodic potentials. The FGT, first developed for the fNLSE in [90, 91], has proven a pow-

erful analytical tool to investigate fundamental processes such as the modulational instability [92].

Moreover, the finite-gap solutions have been adopted both in water wave applications [26] and

fibre optic communication [93, 94].

The nonlinear spectral representation of a finite-gap solution of the fNLSE is characterised by a

series of Schwarz-symmetric 1D curvilinear segments called bands, or equivalently by the gaps

between them. The 2(n + 1) fixed endpoints of the spectral bands define the main spectrum of

a n-gap solution un(x, t). Moreover, this multiphase solution can be expressed in terms of the

multidimensional Riemann Theta function [26] that lives on the n-dimensional torus and whose

absolute value |un(x, t)| depends on the n real phases Θ = kx + ωt + Θ0 with the initial phase

vector Θ0 ∈ Tn. Thus, the finite-gap solution un(x, t) is generally quasi-periodic, unless some

additional constrains are imposed to ensure the exact periodicity of the potential. The constrains

on the wavenumber vector k and the frequency vector ω that define the winding on the phase torus

depend on the main spectrum λi of the finite-gap solution. This spectrum defines the two-sheeted
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hyperelliptic Riemann surface of genus n:

R : R(λ) =
n∏

i=0

(λ− λi)
1
2 (λ− λ∗i )

1
2 , (1.52)

where λ ∈ C is the complex spectral parameter and branchcuts made along spectral bands. The

genus n, that can be calculated as the number of bands minus one, identifies the number of non-

linear oscillatory modes of the finite-gap solution.

In the framework of the FGT, the well-known solutions of the fNLSE can be identified as specific

limits of generic finite-gap potentials. In this context, the plane wave is the genus 0 solution and

it is characterised by a single band crossing the real axis in the spectral plane, also known as the

Stokes spectral band. The genus one solution is described by the elliptic functions. The soliton

solution represents a special case of the genus one finite gap potential when the two Schwarz-

symmetric bands in the upper and lower spectral half planes collapse in two complex conjugate

points. These double points correspond to the discrete spectral points of the soliton scattering

representation, see Fig. 7(a). The spectral portrait of the TW breather solution consists of a Stokes

band and two symmetric collapsed bands, making it a degenerate genus two solution, see Fig.

7(b-d). These configurations can be generalised for higher-order soliton and breather solutions,

considering additional collapsed bands in the finite-gap spectral representation. In particular, the

recent analytical description of soliton and breather gases relies on such method where the gases

correspond to a special thermodynamic limit of a multiphase finite-gap solution of the fNLSE [53].

The direct scattering problem in the FGT framework aims to recover the main spectrum and the

phases of a given potential. In this discussion, we restrict the problem to the case of periodic

potentials [26, 95], a key scenario for the understanding of the algorithm implemented numerically

to compute the nonlinear spectrum of u, Section 1.6.2. In this context the mathematical procedure

adopted for the analysis is the Floquet theory.

Considering the initial periodic potential u(x, 0) = u(x + L, 0) of period L and a arbitrarily

chosen base point x = x0, two independent solutions, φ(x, x0, λ) = (φ1, φ2)T and φ̄(x, x0, λ) =
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Figure 7: Solitonic solutions of the fNLSE and their IST spectral portraits. The wave field ampli-
tude |u(x, t)| (left) and the spectral portraits (right) of (a) the fundamental soliton, (b) the Akhme-
diev breather, (c) the Kuznetsov-Ma breather and (d) the Peregrine soliton The red lines in spectra
plotted in (b–d) represent branchcuts (spectral bands). The blue points in (a–d) represent complex
conjugate double points.

(
φ̄1, φ̄2

)T, of (1.33) are introduced and assumed to take the values:

φ(x0, x0, λ) =




1

0


 , φ̄(x0, x0, λ) =




0

1


 . (1.53)

Then the fundamental matrix solution of (1.33) can be written as

M(λ, x0) = Φ(x, x0, λ) =



φ1(x, x0, λ) φ̄1(x, x0, λ)

φ2(x, x0, λ) φ̄2(x, x0, λ)


 , (1.54)

with the normalisation Φ(x0, x0, λ) = I. The monodromy or transfer matrix is then defined as the

matrix solution evaluated at x0 + L

T(λ, x0) = Φ(x0 + L, x0, λ), (1.55)

and it maps the solutions of (1.33) over the period L of the potential u. The monodromy matrices
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with different basis points are related by similarity transformation [26]

T(λ, x1) = ST(λ, x0)S−1. (1.56)

The trace and the determinant of the monodromy matrix are conserved under the transformation

(1.56) and are independent from the basis point x0. Therefore

Tr [T(λ)] = ∆(λ) and det [T(λ)] = 1. (1.57)

The Floquet discriminant ∆(λ), which plays a fundamental role in the spectral theory for periodic

potential, is then function only of the spectral parameter λ. To better understand the role of the

discriminant in the Floquet theory, we introduce the Bloch solution ψ(x, λ) of (1.33). The Bloch

function is defined by the condition

ψ(x+ L, λ) = eip(λ)Lψ(x, λ), (1.58)

where p(λ) is the Floquet exponent (or quasi-momentum). The condition (1.58), evaluated at the

basis point x0 takes the form:

ψ(x0 + L, λ) = m(λ)ψ(x0, λ), (1.59)

with m(λ) = eip(λ)L the Floquet multiplier. Considering the fundamental solutions φ and φ̄, the

Bloch function ψ can be written as:

ψ(x, λ) = Aφ(x, x0, λ) +Bφ̄(x, x0, λ), (1.60)

where A and B are complex coefficients. In particular, given the basis (1.53), we obtain

ψ(x0, λ) = Aφ(x0, x0, λ) +Bφ̄(x0, x0, λ) =



A

B


 , (1.61)
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and

ψ(x0 + L, λ) = Aφ(x0 + L, x0, λ) +Bφ̄(x0 + L, x0, λ) = T(λ)



A

B


 . (1.62)

Combining these relations with (1.59) we obtain

T(λ)



A

B


 = m(λ)



A

B


 . (1.63)

The nontrivial solutions of the eigenvalues problem (1.63) are obtained with

det [T−mI] = m2 − Tr [T]m+ det [T] = m2 −∆(λ)m+ 1 = 0, (1.64)

that yields

m±(λ) =
∆(λ)±

√
∆(λ)2 − 4

2
. (1.65)

The Bloch solution is therefore bounded and stable if

−2 ≤ ∆(λ) ≤ +2. (1.66)

The spectral bands are then identified by the values of λ for which the Floquet multiplier is com-

plex and has modulus one:
{
λ ∈ C,∆(λ)2 ≤ 4

}
. (1.67)

In particular, the points that satisfy the equality ∆(λ) = ±2, identify the values for which the

Bloch solutions are either periodic (m(λ) = +1) or antiperiodic (m(λ) = −1), and represent the

main spectrum of the periodic potential.

1.4.3 Finite-gap potentials and Rogue Waves

The validity of breather solutions of the fNLSE as prototype of RWs has been already discussed

in section 1.3. This model has been extended in [3] using the finite-gap (multiphase) solutions.

Considering the n-gap potential defined on the n-dimensional torus Tn, the conventional criterion
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to determine a RW can be adapted to this new framework:

Kn =
|un|2max

〈|un|2〉
> Cr, (1.68)

where |un|2max is the maximum amplitude of the finite-gap potential,
〈
|un|2

〉
is the mean value

obtained by averaging the intensity over the spacial domain and the constant (the enhancement

factor) Cr can be defined to match the agreed RW definition (e.g. one typically takes Cr = 8

in the context of ocean RWs [41, 77]). In this framework, the maximum amplitude of a finite-

gap potential |un|max can be computed from the spectral representation of the multiphase solution

using the explicit formula derived in [96]:

|un|max =

n∑

i=0

Imλi, (1.69)

where λi are the points of the main spectrum with Imλi > 0. The solution can be written in term of

the Riemann Theta function and depends on the n-components phase vector Θ = kx+ωt+ Θ0,

|un(x, t)| = fn(Θ(x, t)). An example of multiphase solution with n = 4 is illustrated in Fig. 8.

Since the wavenumbers ki and frequencies ωi are generally incommensurable, ergodicity implies

that the mean value
〈
|un|2

〉
can be evaluated in the phase domain by averaging the intensity over

the torus Tn.

Figure 8: (adapted from [3] with permission from authors) In the notation adopted in our work
ψ ≡ u. Example of multiphase solution n = 4; λi = (−0.39271 + i,−0.21336 + i, 0.010556 +
i, 0.20525 + i, 0.39027 + i); 〈|ψ|2〉 = 1.6452; K4 = 15.1959. (a) Plot of the amplitude of the
multiphase solution |ψ(x, t)| and (b) plot of |ψ(x)| for a fixed time t.

Beside, given the direction of the winding around the torus parameterised by the wavenumber
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vector k, a particular choice of the initial phase Θ0 selects a specific realisation of finite-gap

solution. [3] shows that, by uniformly distributing the initial phase vector Θ0 on the torus, the

probability of a RW event is given by the ratio between the area of the torus confined by the level

curve |un|2max = Cr
〈
|un|2

〉
and the total area of the torus. Thus, using the finite-gap potential as

prototype for the formation of RW events naturally introduces the statistical description needed to

fully characterise the phenomena.

1.4.4 Semi-classical theory and Bertola-Tovbis results

An important result obtained in the framework of the FGT is the analytical description of the PS

formation as the regularisation mechanism of gradient catastrophes in the so-called semi-classical

limit of the fNLSE. The semi-classical limit of the fNLSE arises in the context of strongly non-

linear initial condition and enables the study of the asymptotics space-time behaviour of the sys-

tem. This formulation can be derived from (1.13) with the introduction of the small parameter

ε� 1, determined by the ratio between two typical scales of the problem: the internal coherence

length (equivalent to the soliton width) and the typical scale of the initial condition, or physically

speaking, by the ratio of the dispersive and nonlinear lengths in the problem. Thus, rescaling the

variables ξ = εZ and τ = εT , the equation assumes the form:

iε
∂u

∂ξ
+
ε2

2

∂2u

∂τ2
+ |u|2u = 0. (1.70)

In this framework, a sufficiently smooth pulse undergoes a self-focusing process resulting in a

gradient catastrophe, the formation of infinite derivatives in the profile of the wave field |u(x, t)|.

The gradient catastrophe is then dispersively resolved by the generation of short-scale oscillations

of finite amplitude.

The initial, self-focusing stage of the evolution of the profile is dominated by nonlinearity and the

corresponding dynamics is approximately dispersionless. To describe the dynamics analytically,

it is convenient to introduce the Madelung transform [97, 98]

u(τ, ξ) =
√
ρ(x, t)ei

φ(ξ,τ)τ
ε , v(τ, ξ) =

∂φ(ξ, τ)

∂τ
, (1.71)
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Figure 9: Gradient catastrophe formation: (a) power ρ and (b) chirp v for the initial pulse ρ(τ, 0) =
sech(τ)2, v(τ, 0) = 0.

where
√
ρ = |u| is the wave amplitude and v the instantaneous frequency, commonly called

“chirp”. As a result equation (1.70) takes the form of the system:

ρξ + (ρv)τ = 0,

vξ + vvτ − ρτ +
ε2

4

[
ρ2
τ

2ρ2
− ρττ

ρ

]
= 0.

(1.72)

The dispersionless limit is then achieved by setting ε = 0, and the system (1.72) assumes the

form of the well-known set of nonlinear geometric optic equations [99, 100]. This approximation

is valid in the early stage of the self-focusing evolution until some critical point (τc, ξc), also

called the gradient catastrophe point [101], when the solution develops infinite derivatives, see

Fig. 9.

In the vicinity of the gradient catastrophe point, the contribution of the dispersive effects must

be included in the dynamics and the full dispersive system (1.72) has to be considered. It was

rigorously proven by M. Bertola and A. Tovbis [46] that the gradient catastrophe is universally

regularised by dispersive effects via the local emergence of a coherent structure, which is asymp-

totically described by the PS solution. An example of the regularisation process is shown in

Fig. 10. The universality of the PS formation is understood in the sense that this regularisation

mechanism persists regardless of the particular shape ρ, chirp v or solitonic content of the initial

condition u(τ, 0). More explicitly, this theory provides the following asymptotic description of
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the structure that emerges at the point of maximum compression:

ξm = ξc +O(ε4/5), (1.73)

and that coincides, at leading order O(1), with the PS profile (1.29):

u (τ, ξm) = a0

(
1− 4

1 + 4a2
0(τ/ε)2

)[
1 +O

(
ε1/5

)]
, (1.74)

where a0 =
√
ρ(0, ξc) is, at the leading order, the background amplitude at the point of gradient

catastrophe ξ = ξc. In particular, [46] have considered the evolution of a sech-modulated plane

wave,

u(τ, 0) = sech(τ)eiφ/ε, v = −µ log(cosh(τ)), (1.75)

where the chirp parameter µ ∈ R controls the initial phase. In this case, the nonlinear spectrum

of the potential can be calculated analytically [102] and it is shown to be determined by the chirp

parameter µ. For µ = 0 the potential is the exact N -soliton solution of the fNLSE (1.70) with

N = 1/ε. On the other hand, if µ ≥ 2 the spectrum is purely continuous. The point of gradient

catastrophe can be determined analytically: ξc = 1/(µ+ 2), and the maximum compression point

is asymptotically found as:

ξm = ξc + Cε4/5, (1.76)

where

C =

(
5|C1|

4

)1/5

(2b0)−3/2 |vp|
(

1 +O
(
ε4/5

))
, (1.77)

withC1 = 32
√

2i
15(2+µ)1/9 , b0 =

√
µ+ 2 and |vp| ≈ 2.38 is a universal constant. Even if the regularisa-

tion mechanism exhibits a universal behaviour, the critical point and the dynamic that characterises

the evolution after the formation of the PS depends on the choice of the initial chirp (i.e. the soliton

content). Therefore, by properly choosing the chirp µ of the initial profile, it is possible to control

the position of the emergence of the PS.

The PS formation as regularisation mechanism of the gradient catastrophe has been examined

experimentally using the optical fibre platform [4, 103]. These experiments revealed the robustness

of the mechanism that can be observed for a very broad range of value of ε, far from the formal

semi-classical limit ε → 0. The comparison between the semi-classical theory results and the
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Figure 10: Numerical simulation of the semi-classical fNLSE. Absolute value |u(τ, ξ)| versus
(τ, ξ) coordinates where the initial condition considered is u(τ, 0) = sech(τ) with ε = 0.01.

experimental observation of the PS formation from [4] is shown in Fig. 11.

The observation of the regularisation mechanism in water tank experiment with the particular aim

to control the point of the PS occurrence by spectral engineering of the initial profile has been

presented in [104] and will be discussed in Chapter 3. Additionally, in Chapter 6, an in-depth

study of higher-order effects on the gradient catastrophe regularisation is presented in the context

of high intensity optical fibre signals.

Figure 11: (Adapted from [4] with permission from the authors) fibre optics experimental obser-
vation of the Peregrine emergence as regularisation of the gradient catastrophe. Comparison of
experimental measurements (black line), of intensity (bottom) and phase (top), with simulations
(red line).
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1.5 Integrable Turbulence

Turbulence is one of the most recognisable forms of nonlinear motion that has been, and continues

to be, the subject of very active research in classical (viscous) fluid dynamics [105]. This funda-

mental phenomenon occurs also in dispersive media where turbulence is associated with the gen-

eration of complex, spatio-temporal statistical ensembles of interacting nonlinear waves.

The theory of weak wave turbulence in dispersive systems was developed by V. E. Zakharov in the

1960s [39]. The wave turbulence (WT) theory provides a framework for the statistical description

of weak turbulence in nonintegrable wave systems dominated by resonant interactions. One of

the most important results in the wave turbulence theory is the discovery by V. E. Zakharov in

1965 of a new type of solutions to a set of so-called kinetic equations, describing a constant

energy flux through scales. These solutions, called Kolmogorov-Zakharov spectra by analogy with

Kolmogorov energy cascade in hydrodynamics, have been observed in a variety of experiments

performed in turbulent wave systems [32].

The notion of turbulence can be extended to integrable systems where it is understood as the

complex, integrable, spatio-temporal dynamics of nonlinear random waves. Since many nonlin-

ear wave systems can be described by partial differential equations having an integrable “core

part”, the emerging theory of integrable turbulence, also initiated by Zakharov [37], has become

an active field of research with theoretical and numerical developments supported by a number

of experimental observations [35, 37, 40, 41, 71, 100, 106, 107, 108, 109]. Given the absence

of resonances in integrable systems, the mechanisms underlying integrable turbulence are of pro-

foundly different nature from those found in the standard WT [32, 39, 110] and thus require very

different theoretical approaches to their study. Notably, a key feature of integrable turbulence is

the establishment of an asymptotic state characterised by stationary statistical properties. This fea-

ture has been demonstrate in numerical simulations, even if Fermi-Pasta-Ulam-Tsingou (FPUT)

recurrences are expected in complete integrable system [111, 112, 113, 114]. However, it is im-

portant to note that the existence of the stationary state has been observed at finite time/distance

of propagation in numerical simulations and experiments, where the integrability is always broken

in the long propagation limit. Even if the results obtained in numerical simulations are robust and

do not depend on the scheme of integration, the rigorous mathematical proof of existence of the
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stationary state of integrable turbulence is still an open question.

Given the integrable nature of the system, the choice of the random initial condition strongly af-

fects the statistical properties of the long-time statistically stationary state [35, 40, 41, 100, 115].

Here we present an overview of the evolution of two systems widely investigated in the frame-

work of integrable turbulence. First, we analyse the development of the asymptotic stage of the

noise induced MI, already introduced in Section 1.2. Second, we consider the different stages

of the evolution of partially coherent waves with Gaussian statistics, which represent the random

collection of slowly varying pulses of finite amplitude.

1.5.1 Noise induced Modulational Instability

Figure 12: Noise-induced modulation instability scenario of integrable turbulence: (a) initial ran-
dom perturbation of the condensate solution |u(x, 0)| and (b) 2D colour plot of the temporal evo-
lution of the amplitude of the wave field |u(x, t)|

The first case analysed in the framework of integrable turbulence is the nonlinear stage of evolution

of the noise induced MI. The typical development of this scenario is depicted in Fig. 12. It has

been numerically shown [41] that the condensate solution of the fNLSE (1.19), perturbed by a

small random noise, evolves into a stationary state for which different statistical features and

major characteristic of the wave field reach an asymptotic value. Of particular interest is the PDF

of the wave amplitude that asymptotically approaches the Rayleigh distribution; note that the time

evolution of the PDF is non trivial and oscillates, with a decaying amplitude, about the stationary

Rayleigh distribution. Moreover, one can study the evolution of the PDF using a single statistical
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Figure 13: (Adapted from [5] with permission from the authors) Experimental observation of
the evolution of the PDF of the normalised power [(a)–(e)] and the evolution of the normalised
fourth-order moment κ4 for the development of integrable turbulence in noise-induced MI.

indicator κ4: the normalised fourth order moment of the amplitude |u| defined by:

κ4(t) =

〈
|u|4
〉

〈|u|2〉2 . (1.78)

Similarly to the standard kurtosis, κ4 quantifies the “heaviness” of the tail of the distribution

(high amplitude event are more likely to happen) and the deviation from the Gaussian statistic.

The nonlinear stage of MI is characterised by the oscillatory decay of κ4 that reflects the recurring

appearance of heavy-tail in the PDF during the development of the stationary state. As discussed

in Section 1.3, the Rayleigh distribution and the corresponding value of the fourth order moment

κ4 = 2 are features of Gaussian processes. However, in the nonlinear stage of MI, this characteri-

sation holds only for the single point statistics of the field. Multi-point statistics of the stationary

state of the noise-induced MI are not Gaussian, effectively distinguishing this phenomena from a

purely Gaussian process. In particular, it has been shown that the two-point statistics, the autocor-

relation function of the power g(2) defined as:

g(2)(τ) =
〈|u(x, t)|2|u(x+ τ, t)|2〉

〈|u(x, t)|2〉 , (1.79)

oscillates around unity, whereas in the case of a purely Gaussian process is bounded from below:

g(2) ≥ 1. The damped oscillatory behaviour that characterises the transient to the stationary state

also manifests in other characteristics of the field: power spectrum, kinetic and potential energy of

the field. In particular, the power spectrum converges to a profile characterised by a power law in
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Figure 14: (Adapted from [5] with permission from the authors) Experimental observation of
the evolution of the two-points statistics of optical power g(2) for the development of integrable
turbulence in noise-induced MI.

the vicinity of the zero-th harmonic (i.e. low frequency region). The corresponding modes retain

a high percentage of the initial mass of the system and have large physical scales, thus forming the

so-called “quasi-condensate” [41].

Besides the detailed numerical study [41], the establishment of the stationary state and the forma-

tion of integrable turbulence from the development of MI has been recently studied and observed

in fibre optic experiment [5]. This latter work has shown that the transient oscillatory behaviour,

the asymptotic values and the distribution reached at the stationary state measured experimen-

tally are in quantitative agreement with the numerical prediction, once the effective losses of the

physical system are taken into account, see Fig. 13 and 14. The recirculating fibre loop system

developed to measure the spatio-temporal dynamics of MI [5] plays a key role on the future study

and understanding of integrable turbulence.

Furthermore, the recent result on spectral theory [53] and the connection established between

the stationary state of MI and the bound-state soliton gas [109] shed new light on the theoretical

framework of integrable turbulence.

1.5.2 Partially coherent waves

The evolution of initial Partially Coherent Waves (PCW) is another problem widely investigated

in the framework of integrable turbulence. PCWs consist of a collection of independent smooth

(i.e slowly varying) humps, and can be obtained as the linear superposition of a large number of

independent Fourier modes with random phases [34, 35, 106, 108, 116]:

uk(t = 0) = |u0k| eiφ0k , (1.80)
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Figure 15: Partially coherent wave scenario of integrable turbulence: (a) initial condition |u(x, 0)|
and (b) 2D color plot of the temporal evolution of the amplitude of the wave field |u(x, t)|

with φ0k the random phase uniformly distributed between 0 and 2π. A realisation of PCW evo-

lution is illustrated in Fig. 15. According to the central limit theorem, such superposition of

independent random variables generates a field with a Gaussian single point statistics [117]. In

particular, the PDF for the amplitude of the initial wave field is the Rayleigh distribution, and the

corresponding value of the normalised fourth-order moment is given by κ4(t = 0) = 2. PCW can

be found in physical problems where the initial condition is characterised by strong nonlinearity.

This type of initial condition emerges in the description of different optical phenomena: speckles

[118, 119], strongly multimode lasers [40] and spontaneous light emission [106, 108].

The scale of the smooth initial fluctuations in PCW is much larger than the internal coherence

length (i.e. the size of the fundamental soliton), and one can investigate the nonlinear evolution of

such smooth initial conditions taking advantage of the mathematical framework of dispersive hy-

drodynamics by using the semi-classical theory of nonlinear dispersive waves [120]. As described

in Section 1.4.4, the semi-classical formulation of the fNLSE (1.70) naturally encodes the two

distinct spatio-temporal scales of the system: the long scale specified by the initial fluctuations oc-

curring on the O(1) scale, and the short scale specified by the internal coherence length of O(ε).

This scale separation enables one to analyse and describe the different stages of the evolution with

different analytical methods.

As shown in [100], the scale separation in partially coherent waves allows to split the develop-

ment of integrable turbulence into different distinct stages, characterised by qualitatively different

dynamical and statistical features.
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At the initial or “prebreaking” stage of the evolution, the nonlinear effects dominate linear disper-

sion and the wave fronts of the random initial field experience gradual steepening leading to the

formation of gradient catastrophes. At this stage, the dynamical and statistical features of the field

can be analytically described in terms of random solutions of the dispersionless (geometric optics)

system:

ρξ + (ρv)τ = 0,

vξ + vvτ − σρτ = 0,

(1.81)

derived in the limit ε→ 0 from (1.72) , as discussed in Section 1.4.4. Here the parameter σ = ±1

distinguishes, respectively, the focusing and the defocusing regimes of the NLS equation. In

particular, in the defocusing regime, the dynamical and statistical features that occur at this early

stage of the evolution can be interpreted in terms of evolution of random Riemann waves [100]. In

Chapter 2 of this Thesis, this initial stage is studied, both in the focusing and defocusing regime,

using short time asymptotics, yielding the evolution of the normalised fourth order moment κ4

(1.78). The early evolution of κ4 notably provides an insight into the stationary state of integrable

turbulence, foreseeing the emergence of the well-known phenomena of heavy/low tails of the wave

field PDF.

The initial dispersionless approximation fails when the gradient catastrophe develop, and the full

dispersive system has to be considered. The gradient catastrophes have qualitatively different

geometrical natures in the defocusing regime (wave-breaking singularity [121]) and the focusing

regime (elliptic umbilic singularity [122]). However, both cases are regularised by dispersive

effects via the generation of nonlinear short wavelength oscillations corresponding to breather

structures in the focusing regime [46], and dispersive shock waves in the defocusing regime (see

Ref. [98] and references therein). As discussed in Section 1.4.4, the formation of a peregrine-like

structure in the focusing case universally characterises the regularisation process for a wide family

of sufficiently smooth initial pulses. Considering the initial partially coherent wave field as a

collection of independent humps, it has been numerically shown how the regularisation mechanism

affects the development of the integrable turbulence [6]. The gradient catastrophe points of the

different humps can be estimated from the width and amplitude of the initial pulses, and one

can thus compute the probability to observe the formation of a PS during the development of the

stationary state. The maximum of this probability has been shown to occur at the same time as the
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normalised fourth-order moment reaches its maximum (also called overshoot), see in Fig. 16(b,c).

Moreover, the overshoot of κ4 corresponds to the point at which the Fourier spectral width of the

field is maximal [33] and the RW events are more frequent, as the PDF of the amplitude of the

wave field exhibits the “heaviest” tail.

Figure 16: (Adapted from [6] with permission from the authors) In the notation adopted in our
work ψ ≡ u. Numerical simulations of a partially coherent wave propagation in the fNLSE. (a)
Probability density function of |ψ|2 at three different propagation distances. (b) spatio-temporal
diagram of |Ψ|. White boxes highlight the formation of the PS as regularisation mechanism of
the gradient catastrophe of the initial humps. (c) Evolution of the kurtosis (black). (d) Profile of
the wave field at two different propagation distances. (colours are preserved). For details of the
simulation refer to [6].

Following the initial stages of evolution described above, the system asymptotically reaches the

(statistically) stationary state. In the focusing regime, the stationary state for the partially coherent

wave is characterised by the heavy tail statistic associated to the appearance of large amplitude

fluctuations of the field. These fluctuations take the form of bright coherent structures localised in

space and time, which is characteristic of RW events [34, 36]. The deviation from the initial Gaus-

sian statistic is quantified by the normalised fourth-order moment of the amplitude that reaches its

asymptotic value at κ4 = 4. On the other hand, in the defocusing regime, the stationary state is

characterised by the low-tail statistics of the field. In this context the deviation from the Gaussian

statistic originates from the formation of dark solitons and dispersive shock waves (DSW), and

is quantified by an asymptotic value of κ4 lower than the initial Gaussian one: κ4(t = 0) = 2

[115, 118].
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1.5.3 Soliton Gas

The framework of integrable turbulence covers a broad range of turbulent wave regimes in inte-

grable systems. In view of the fundamental nature and ubiquity of solitons in physical systems,

one of the most interesting types of integrable turbulence is soliton turbulence or soliton gas, a

kind of strongly nonlinear turbulent wave motion that have been observed in the ocean [50, 123]

and realised in laboratory experiments [51, 52] . The spectral theory of soliton gas outlined here

has been presented in the recent review [124].

The theoretical notion of soliton gas was introduced in 1971 by V. Zakharov [47], who considered

an infinite ensemble of KdV solitons randomly distributed on the line. We consider the KdV

equation in the form

ut + 6uux + uxxx = 0 . (1.82)

The inverse scattering theory (see Section 1.4) associates solitons of the KdV equation (1.82) with

points of discrete spectrum of the Schrödinger operator L = −∂2
xx − u(x, t) in which t plays the

role of a parameter. The KdV soliton solution corresponds to a discrete spectral value λi = −η2
i ,

ηi > 0, and is given by the formula

us(x, t; ηi) = 2η2
i sech2[ηi(x− 4η2

i t− x0
i )] , (1.83)

where x0
i is the initial position of the soliton’s centre.

In a low-density, rarefied soliton gas, the solitons are well-separated and the corresponding KdV

solution can be almost everywhere approximated by an infinite “stochastic soliton lattice” [7].

u(x, t) ∼
∞∑

i=1

2η2
i sech2[ηi(x− 4η2

i t− x0
i )] , (1.84)

It is assumed that x0
i are independent random values distributed on R according to the Poisson

distribution with the density parameter β � 1, i.e. the probability of having n solitons within the

interval ∆ ⊂ R is given by

P∆(n, β) = e−β|∆|
(β|∆|)n
n!

.

The soliton gas is characterised by the spectral distribution function, or density of states (DOS)
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f(η, x, t) defined such that f(η0, x0, t0)dηdx is the number of solitons found at t = t0 in the

element [η0, η0 + dη]× [x0, x0 + dx] of the spectral phase space. Without loss of generality, one

can assume η ∈ [0, 1]. The total spatial density of the soliton gas is then given by β =
∫ 1

0 f(η)dη.

For a rarefied soliton gas described by equation (1.84), β � 1.

The macroscopic (large-scale, average) properties of soliton gas are determined by the “micro-

scopic” elementary processes of pairwise soliton interactions, which are:

(i) elastic, i.e. preserving the IST spectrum values ηj , so that the solitons retain their amplitudes

and speeds after the interaction;

(ii) accompanied by the phase (position) shifts [125]: namely, the collision of two solitons with

spectral parameters ηi > ηj , i 6= j results at t→∞ in the additional phase (position) shifts given

by

∆ij ≡ ∆(ηi, ηj) =
1

ηi
ln

∣∣∣∣
ηi + ηj
ηi − ηj

∣∣∣∣ , (1.85)

so that the taller soliton acquires shift forward and the smaller one – shift backwards [126]. The

total phase shift ∆i of a given soliton with spectral parameter ηi after its interaction with M

solitons with parameters ηj , j = 1, . . . ,M , j 6= i, is equal to the sum of the individual phase

shifts, ∆i =
∑M

j=1 ∆ij .

Consider the propagation of a “test” soliton with spectral parameter η ∈ [0, 1] in a uniform (equi-

librium) rarefied soliton gas with a given DOS f(µ). Due to the collisions of the “η-soliton” with

the “µ-solitons” (µ 6= η) in the gas, the effective (mean) velocity of this test soliton is approxi-

mately evaluated as

s(η) ≈ 4η2 +
1

η

1∫

0

ln

∣∣∣∣
η + µ

η − µ

∣∣∣∣ f(µ)[4η2 − 4µ2] dµ, (1.86)

where the leading order term represents the speed of “free” soliton s0(η) = 4η2 and the integral

term gives an effective correction to the average velocity due to soliton collisions. The modi-

fication of the effective soliton velocity due to its propagation in a soliton gas is illustrated in

Fig. 17.

In a weakly non-uniform gas, the DOS f becomes a slow function of x, t. The preservation of
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Figure 17: (adapted from [7] with permission from authors.) Comparison for the propagation of a
free soliton with the spectral parameter η = η1 in a void (black dashed line) with the propagation
of the test soliton with the same spectral parameter η1 (red solid line) through a one-component
rarefied soliton gas with the DOS f = f0δ(η − η0). One can see that the test soliton propagates
faster in the gas due to the interactions.

the spectral values ηi in time (isospectrality) under the KdV evolution implies the conservation

equation for f(η, x, t),

ft + (sf)x = 0, (1.87)

which, together with the expression (1.86) for the transport velocity s(η), constitutes the kinetic

equation for rarefied soliton gas introduced by Zakharov [47].

The generalisation of Zakharov’s approximate kinetic equation to the case of dense (β = O(1))

soliton gas was derived in [48] using the finite-gap spectral theory and the thermodynamic limit

of multiphase Whitham modulations equations. It was shown that in a dense KdV soliton gas the

transport velocity s(η) satisfies the linear integral equation

s(η) = 4η2 +
1

η

1∫

0

ln

∣∣∣∣
η + µ

η − µ

∣∣∣∣ f(µ)[s(η)− s(µ)]dµ . (1.88)

Equation (1.88) can be viewed as the equation of state of the KdV soliton gas. The transport

equation (1.87) complemented by the equation of state (1.88) represents the required nonlinear

spectral kinetic equation for a dense soliton gas.

One can see from the comparison of the equations of state (1.88) and (1.86) that the net effect of

soliton collisions in a dense KdV soliton gas can be evaluated using the elementary phenomeno-

logical principle introduced by Zakharov in [47] for a rarefied gas, one simply replaces the approx-
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imate, unperturbed soliton velocities 4η2 and 4µ2 in the interaction (integral) term of the equation

of state (1.86) for a rarefied soliton gas with their actual, effective values s(η) and s(µ) respec-

tively. This observation suggests a broad generalisation of the kinetic equation for the KdV soliton

gas to other integrable equations [49] as follows.

Consider a scalar (unidirectional) integrable equation of dispersive hydrodynamic type

ut + F (u)x = (D[u])x, (1.89)

where F (u) is the nonlinear hyperbolic flux and (D[u])x is the dispersion operator. E.g. for the

KdV equation (1.82) F (u) = 3u2, (D[u])x = −uxxx. Let the soliton solution of equation (1.89)

be characterised by the IST spectral parameter λ ∈ R, so that s0(λ) is the soliton velocity and

∆(λ, µ) is the expression for the phase (position) shift in a two-soliton interaction with λ > µ.

Introduce the DOS f(λ), where λ ∈ Γ ⊂ R. Then the equation of state of this soliton gas is given

by

s(λ) = s0(λ) +

∫

Γ
∆(λ, µ)[s(λ)− s(µ)]f(µ)dµ. (1.90)

The system (1.87), (1.90) represents the general kinetic equation for soliton gas in unidirectional

dispersive hydrodynamics.

As shown in [49, 124, 127] the kinetic equation (1.87), (1.90) admits a family of hydrodynamic

reductions obtained by the multi-component “cold-gas” ansatz for the DOS

f(λ, x, t) =

M∑

j=1

wj(x, t)δ(λ− ζj), (1.91)

where wj(x, t) > 0 are the components’ weights, and {ζj}Mj=1 ⊂ Γ (ζj 6= ζk ⇐⇒ j 6= k). In

practice the multicomponent delta-function distribution (1.91) is realised by placing the all discrete

spectrum eigenvalues in some narrow vicinity of ξj’s.

The substitution of (1.91) into the kinetic equation (1.87), (1.90) reduces it to a system of hydro-

dynamic conservation laws

(wi)t + (wisi)x = 0, i = 1, . . . ,M , (1.92)
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where the component densities wi(x, t) and the transport velocities sj(x, t) ≡ s(ζj , x, t) are re-

lated algebraically:

sj = s0j +

M∑

m=1,m 6=j
∆jmwm(sj − sm), j = 1, 2, . . .M. (1.93)

Here

s0j ≡ s0(ζj), ∆jm ≡ ∆(ζj , ζm), j 6= m. (1.94)

The system (1.92), (1.93) is called the cold-gas M -component hydrodynamic reduction of the

spectral kinetic equation.

Symmetrisation. Assume that the phase-shift kernel ∆(η, µ) in the equation of state (1.90) can be

represented as

∆(λ, µ) = a(µ)ε(λ, µ), where ε(λ, µ) = ε(µ, λ) > 0, λ 6= µ, (1.95)

for some non-singular real function a(µ) 6= 0 (e.g. for the KdV equation we have a(µ) = µ,

ε(λ, µ) = 1
λµ ln

∣∣∣λ+µ
λ−µ

∣∣∣, see (1.88)).

Then the following theorem can be proved:

Theorem [127]. M -component cold-gas reductions (1.92), (1.93) of the generalised kinetic

equation (1.87), (1.90) with the interaction kernel satisfying (1.95) are hyperbolic, linearly degen-

erate integrable hydrodynamic type systems for any M ∈ N.

Specifically, it was shown in [127] that the following fundamental properties are satisfied for the

system (1.92), (1.93):

(i) Riemann invariants.

Let uj = ajwj , where the symmetrising coefficients aj = a(ηj) are defined by (1.95). Then

there exists the invertible point transformation w→ r that reduces the system (1.92), (1.93) to the

diagonal (Riemann invariant) form

∂ri
∂t

+ Vi(r)
∂ri
∂x

= 0, i = 1, 2, . . . ,M, (1.96)
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where the characteristic velocities Vi are expressed in terms of the Riemann invariants r1, r2, . . . , rN

as

Vi(r) = si(w1(r), w2(r), . . . , wM (r)), i = 1, 2, . . . ,M. (1.97)

Here si(w1, . . . , wM ) are solutions of the system (1.93),

(ii) Linear degeneracy.

The characteristic velocities Vj of the diagonal system (1.96) satisfy

∂jVj = 0, j = 1, 2, . . . ,M, where ∂j ≡ ∂/∂rj , (1.98)

so that system (1.92), (1.93) is linearly degenerate in the Lax sense [128].

(iii) Semi-Hamiltonian property.

In addition to (1.98), the characteristic velocities Vi(r) satisfy the overdetermined system

∂j
∂kVi
Vk − Vi

= ∂k
∂jVi
Vj − Vi

, i 6= j 6= k, (1.99)

for each three distinct characteristic velocities (∂k ≡ ∂/∂rk). Diagonal hydrodynamic type

systems satisfying (1.99) are called semi-Hamiltonian [129]. The semi-Hamiltonian property

guarantees integrability of the hydrodynamic type system via the Generalised Hodograph Trans-

form.

In the context of this PhD project we shall not be concerned with integrability of the multicom-

ponent hydrodynamic reductions (1.92), (1.93) but will use the linear degeneracy property (1.98),

which implies that the solution of the Riemann problem (the problem of the resolution of an initial

discontinuity) for such systems contains only constant states separated by contact discontinuities

[130].

The spectral kinetic equation can be derived for the soliton and breather gases for the 1D fNLSE.

The key difference compared to the KdV theory or the general theory of unidirectional soliton

gas outlined above is that for the fNLSE the discrete eigenvalues of the Zakharov-Shabat opera-

tor (1.33), corresponding to the fNLSE solitons, are complex, {λi, λi} ∈ C. However, since the
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solitons of the fNLSE also exhibit elastic pairwise collisions characterised by the known posi-

tion shifts [23] the kinetic equation for the fNLSE soliton gas can be constructed using the same

phenomenological principles [49] and has the general form (1.87), (1.90), where

s0(λ) = −4Reλ, ∆(λ, µ) =
1

Imλ
ln

∣∣∣∣
µ− λ̄
µ− λ

∣∣∣∣ , (1.100)

and the integration in the equation of state is performed over some 2D or 1D compact domain Γ

in the complex plane. Explicitly we have [49]

ft + (fs)x = 0,

s(λ, x, t) = −4Reλ+
1

Imλ

∫∫

Γ+

ln

∣∣∣∣
µ− λ̄
µ− λ

∣∣∣∣ [s(λ, x, t)− s(µ, x, t)]f(µ, x, t)dξdζ,
(1.101)

where µ = ξ+iζ and Γ+ ⊂ C+\iR+ is a 1D or 2D compact domain. A special type of the fNLSE

soliton gas with Γ+ ⊂ iR+ is called the bound state (non-propagating) soliton gas and it requires

a separate consideration. Kinetic equation (1.101) has been recently systematically derived in [53]

using the thermodynamic limit of the fNLSE-Whitham modulation equations, an extension of the

original KdV procedure developed in [48].

Breather gas is spectrally characterised by a vertical branch cut, λ ∈ [−iq, iq], q > 0, corre-

sponding to the plane wave background of the amplitude q, and the discrete spectrum values λj

distributed with some density over a compact 1D or 2D Schwarz-symmetric domain in the spectral

complex plane, so that one has [53]:

s0(λ) = −2
Im[λR0(λ)]

Im[R0(λ)]
, ∆(λ, µ) =

1

Im[R0(λ)]
D(λ, µ), (1.102)

where

D(λ, µ) =

[
ln

∣∣∣∣
µ− λ̄
µ− λ

∣∣∣∣+ ln

∣∣∣∣
R0(λ)R0(µ) + λµ+ q2

R0(λ̄)R0(µ) + λ̄µ+ q2

∣∣∣∣
]
. (1.103)

Here, R0(z) =
√
z2 + q2 (with the branch cut [−iq, iq], and the branch of the radical defined

by R0(z) → z as z → ∞). The Schwarz symmetry means that, if λ belongs to Γ, so does λ.

One can see that the velocity s0(λ) in (1.102) coincides with the group velocity of the Tajiri-

Watanabe breather (cf. (1.22)) while the integral kernel ∆(λ, µ) can be identified with the known

expressions for the position shift in elastic two-breather interactions [131, 132]. This identification
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will be performed in Chapter 5 of this Thesis.

The general configuration of a breather gas can be viewed as a dense gas of the Tajiri-Watanabe

breathers, cf. (1.21). By choosing the DOS spectral support Γ in a special way, one can con-

sider the “rogue wave gas” consisting of one of the special breathers: AB, KM or PS , see Sec-

tion 1.1.7.

1.6 Numerical Methods

In Section 1.4, the IST method to solve the fNLSE has been introduced, and different families of

solutions and the corresponding nonlinear spectra have been discussed. However, the analytical

solutions of the direct scattering problem and the explicit evaluation of the spectrum can be ob-

tained only for some specific potentials. Therefore, numerical methods are usually employed to

calculate the IST spectra of generic potentials. We introduce here two algorithms adopted to solve

numerically the direct scattering problem (1.33).

1.6.1 Fourier collocation method

The first algorithm considered here is the so-called Fourier collocation method [133, 134]. This

method relies on the possibility to rewrite the scattering problem with periodic boundary condi-

tions in the Fourier space and thus solve a matrix eigenvalue problem for the Fourier coefficients.

One can rewrite the Zakharov–Shabat scattering problem (1.33) in the form:



−∂x u

u∗ ∂x


R = iλR, (1.104)

and then expand the eigenfunctions R = (φ1, φ2)T and the potential u into Fourier series. For

this purpose, the spacial domain of the problem is reduced to the interval [−L
2 ,

L
2 ], such that the
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eigenfunctions and the potential can be expand in 2N + 1 Fourier modes:

φ1/2(x) =
N∑

n=−N
a1/2,ne

ik0nx,

u(x, 0) =
N∑

n=−N
cne

ik0nx,

(1.105)

where k0 = 2π
L . Substituting these expansions in (1.33), the scattering problem takes the form of

the following eigenvalue system:



−B1 B2

B†2 B1






A1

A2


 = iz



A1

A2


 , (1.106)

where:

B1 = ik0 diag(−N,−N + 1, · · · , N − 1, N),

B2 =




c0 c−1 · · · c−N

c1 c0 c−1
. . . c−N

... c1 c0
. . . . . . . . .

cN
. . . . . . . . . . . . . . . c−N

cN
. . . . . . . . . . . .

...
. . . . . . . . . . . . c−1

cN · · · c1 c0




,

A1 = (a1,−N , a1,−N+1, · · · , a1,N )T ,

A2 = (a2,−N , a2,−N+1, · · · , a2,N )T ,

and B†2 is the Hermitian of B2. The matrix B1 corresponds to the ∂x operator in the Fourier space

and the matrix B2 is the convolution for the functional multiplication by u(x, 0). The dimension

of the matrix in Eq. (1.106) is 2(2N + 1). The use of Fourier expansions in the derivation of the

algorithm naturally introduces a periodisation of the initial potential with a characteristic period

L. Thus, one should interpret the spectrum obtained here as the FGT spectrum. In particular, the

output of the algorithm is a series of “close” discrete points that represent the main spectrum of

the periodic potential, the ends points delimiting the spectral bands, c.f. Section 1.4.2. Moreover,

solving the eigenvalue problem forN even (odd), which yields periodic (anti-periodic) eigenfunc-
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tions, identifies the points of the main spectrum for ∆(λ) = +2 (∆(λ) = −2).

1.6.2 Boffetta-Osborne method

The second algorithm adopted in this work to solve the direct scattering problem allows us to

determine if any given point on the complex spectral plain belongs to the nonlinear spectrum of

the considered potential [26, 135]. Considering the periodic problem where u(x, t) = u(x+L, t),

the direct scattering problem (1.33) is written in the form:

Rx =



−iλ u

−u∗ iλ


R = Q(λ)R, (1.107)

whereR = (φ1, φ2)T . The domain is then discretised inN+1 points (∆x = L
N ) and the potential

assumes piecewise constant values un = u(xn) where xn = x0 + n∆x. The eigenfunction R(x)

can then be obtained integrating the eigenvalue problem on each integral ∆x:

R(xn + ∆x) = U(un)R(xn), (1.108)

where U(u;λ,∆x) is the exponential of the trace–vanishing matrix Q(λ):

U(u) = e∆xQ(λ)

=




cosh(k∆x)− iz
k sinh(k∆x) ψ

k sinh(k∆)

ψ∗
k sinh(k∆) cosh(k∆x) + iz

k sinh(k∆x)


 ,

(1.109)

and k2 = |u|2 − λ2 is constant in the interval ∆x. Then, introducing the four-component vector

field:

Θ(x, λ) = (R,R′)T , (1.110)

where R′ = ∂R
∂λ , one can write the recursion relation that yields the numerical approximation of

the solution (1.110) at the different nodes:

Θ(xn + ∆x) = T (un)Θ(xn), (1.111)
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where:

T (un) =



U(un) 0

U ′(un) U(un)


 , (1.112)

and U ′(un) = ∂U(un)
∂λ . Combining the recursion relation (1.111) evaluated at different nodes, one

obtains the numerical approximation

Θ(xN ) = T (uN )T (uN−1) . . . T (uN−2)T (u1)T (u0)Θ(x0) =
0∏

j=N−1

T (uj)Θ(x0). (1.113)

In particular, one can write the scattering matrix S in the form:

S(λ) =
0∏

j=N−1

T (uj) =




T(λ) 0

T′(λ) T(λ)


 , (1.114)

where T(x0, λ) =
∏0
j=N U(uj) is the monodromy matrix (1.55) and T′ = ∂T

∂z . The numerical

approximation of the monodromy matrix enables us to determine if a given point in the spectral

plane belongs to the nonlinear spectrum of the potential in exam. As discussed in Section 1.4.2,

the spectral band are identified by the values of λ for which the Floquet discriminant is real and

satisfies the condition:

Tr(T) = ∆(λ) ≤ ±2. (1.115)

In practice, given a periodic potential u(x, t), one can probe the spectral plane to determine for

which values of λ this condition is verified , and thus identify the spectral bands that constitute the

finite-gap spectrum.

On the other hand, if vanishing boundary conditions are assumed, it is possible to identify the

discrete and continuous spectrum of the potential by studying the scattering data of the problem.

Considering the potential u(x) defined on the domain x ∈ [−L,L] with u(−L) = u(L) = 0, one

can repeat the derivation presented above and obtain the scattering matrix (1.114). Formally, the

scattering matrix maps the asymptotic behaviours of the scattering problem solutions from−∞ to

+∞. However, we are constrained numerically to the finite domain [−L,L]. Then, considering
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asymptotic solutions (1.40) (1.41), evaluated at the boundaries of the domain:

R(−L, z) =




1

0


 eiλL,

R(L, λ) = a(λ)




1

0


 e−iλL + b(λ)




0

1


 eiλL,

(1.116)

the identity (1.113) can be written explicitly as:



R(L, λ)

R′(L, λ)


 =




T(λ) 0

T′(λ) T(λ)






R(−L, λ)

R′(−L, λ)


 . (1.117)

After few algebraic manipulations we obtain the relations between the scattering coefficients and

the scattering matrix:

a(λ) = S11e
2iλL,

b(λ) = S21,

∂a(z)

∂λ
= [S31 + iL(S11 + S33)]e2iλL,

∂b(λ)

∂λ
= S41 + iL(S43 − S21).

(1.118)

The scattering coefficients can be used to determine the discrete and continuous spectrum of the

potential with vanishing boundaries condition, see Section 1.4.1. As for the periodic boundary

conditions, the algorithm allows us to verify if a given point of the scattering plane λ belongs to

the discrete spectrum , i.e. a(λ) = 0. Moreover, the knowledge of the analytical form of the

derivatives of the scattering coefficients (1.118) allows the implementation the standard iterative

Newton algorithm to determine the zeros of a(λ) with quadratic convergence. On the other hand,

the continuous spectrum (1.42) can be computed using the scattering coefficients numerically

evaluated along the real axis of the spectral plane.

1.6.3 Local IST

As discussed in Section 1.4, the IST method has been developed to solve integrable nonlinear

PDEs. One of the key elements of this method is the evaluation of the nonlinear spectrum, which

is the spectral signature of potential that is conserved during the propagation. The IST spectrum
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is a global characteristic of the potential and does not provide information on the local dynamic

of the field. However, a local IST procedure has recently been successfully used to identify and

classify localised coherent structures that are parts of the larger-domain wave field [8, 84].

Figure 18: (adapted from [8] with permission from authors.) Example of application of the numer-
ical periodisation procedure to known solution of the fNLSE. (a) Spatial profile of a fundamental
soliton . (b) Spatial profile of the fundamental soliton periodised in space. (c) Spectral portrait
of the periodised soliton showing that the periodisation procedure produces a band having a small
size where the point of discrete spectrum of the exact solution would be. (d) Spatial profile of the
KM soliton. (e) Spatial profile of the KM soliton periodised. (f) Spectral portrait of the periodised
KM soliton showing that the periodisation procedure produces a band having a small size where
the point of discrete spectrum of the exact solution would be.

The numerical methods described in the previous sections are a fundamental tool to investigate the

nonlinear spectrum of complex structures and solve direct scattering problems otherwise impos-

sible to tackle analytically. In particular, the Fourier collocation method has been shown to be a

reliable and efficient algorithm to evaluate the nonlinear spectrum of decaying potentials, e.g. the

solitons solutions [134]. However, to achieve the correct and accurate evaluation of the IST spec-

trum, a “numerical box” much larger than the typical size of the decaying structure is required.

Likewise, in the context of non-decaying potentials such as the SFBs, the size of numerical box

needs to be much greater that the typical width of the SFB to capture the important features of the

branchcut of the spectrum [8]. Choosing a numerical box of size comparable to the typical size of

62



CHAPTER 1. MATHEMATICAL AND PHYSICAL BACKGROUND

the structure, effectively neglecting the informations related to the nonlinear interaction with the

surrounding field, leads to an inaccurate computation of the spectrum. As a result the analysis of

localised structures emerging from the nonlinear evolution of random wave fields, e.g. PCW or

MI, used to rely on fitting procedures. In this context, the localised coherent structures are com-

pared to the well-known analytical profile of SFB solution of the fNLSE [28, 40, 106, 136, 137].

Only recently a new procedure has been developed to overcome the limitations related to the ap-

plicability of the IST analysis to localised structures. It has been shown that the spectrum can be

accurately computed once the localised structure is properly periodised in space. With the periodi-

sation process a local finite-band approximation of structure is obtained, effectively including the

nonlinear interactions of the object with the surrounding wave field [8]. The period, i.e. the size of

the truncated portion of wave field in exam, defines the width of the bands in the spectrum, with

larger period corresponding to shorter bands, while the shape of the profile determines location

and number of bands. An example of the application to the periodisation procedure on simple

exact solutions of the fNLSE (soliton and PS) is reported from [8] in Fig. 18.

Thus, the periodisation procedure, providing an effective method to compute the nonlinear spec-

trum of localised pulses, becomes a key tool to investigate the coherent structure emerging during

the nonlinear evolution of random wave fields [84]. The possibility to compute the IST spectrum

of the localised pulses enables to identify the structures beyond the well-known exact SFBs solu-

tion of the fNLSE, expanding the classification of prototypes of RW event to higher genus breather

solution.
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Chapter 2

Early stage of integrable turbulence

2.1 Outline of the Problem

The work reviewed in this Chapter enters in the highly active field of research related to integrable

turbulence. This statistical approach to the description of the complex spatio-temporal evolution

of random wave fields introduced by Zakharov in [37], has produced a wide number of theoretical

and experimental results [40, 41, 71, 100, 106, 108, 109]. In particular, this framework has been

widely adopted to investigate two families of random systems: the noise-induced modulational

instability and the partially coherent waves. Of particular interest in our work is the study of the

evolution, in the framework of the NLS equation, of PCW with initial Gaussian statistics. The

long time evolution of this system in the focusing regime leads to the formation of an heavy-tailed

deviation from the initial Gaussian statistics in the probability density function (PDF) of the ran-

dom wave field amplitude. As we discussed in Section 1.3 this statistical feature is of central

importance in relation to the rogue wave events. On the other hand, in the defocusing regime, the

nonlinear evolution produces a low-tailed deviation from the initial Gaussian statistical distribu-

tion. Similarly to the standard kurtosis, the normalised fourth order moment of the amplitude of

the field κ4 is used to characterise the “heaviness” of the tail of the distribution, i.e. its deviation

from the initial statistical distribution:

κ4(t) =

〈
|u(x, t)|4

〉

〈|u|2〉2
, (2.1)
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with 〈· · · 〉 denoting the ensemble average over a large number of realisations of the random pro-

cess u. Since we are interested by the statistic of the extreme events in the field, we will study the

time evolution of the normalised fourth moment κ4 (we shall sometimes call it kurtosis although

the standard PDF kurtosis has a different normalisation). In the weakly nonlinear regime, it has

been analytically demonstrate that the kurtosis increases in the focusing case and decreases in the

defocusing [33].

The aim of this work is the characterisation of the early stage of evolution of integrable turbulence

in the strongly nonlinear regime. In this context we can exploit the semiclassical framework of the

NLS equation:

iε
∂u

∂t
+
ε2

2

∂2u

∂x2
+ σ|u|2u = 0, (2.2)

where ε � 1 is the small parameter and σ = ±1 identifies the focusing and defocusing regimes,

respectively. As discussed in Section 1.5.2, this formulation naturally encodes a scale separation

that will enable us to asymptotically study the early stage of the evolution of the system. More-

over, introducing the Madelung transformation we can reformulate the problem as the dispersive

hydrodynamic system (1.72) where ρ(x, t) represents the instantaneous power (or the fluid depth)

and v(x, t) the chirp (or the horizontal fluid velocity). In this formalism we can derive an equation

for the evolution of the normalised fourth order moment:

dκ4

dt
=

2

〈N〉2L

∫ L

0
〈ρvρt〉 dt, (2.3)

with N the optical power; the integral over the period L here defines the average on the do-

main.

The purpose of this work is to derive an analytical expression for the short-time evolution of

κ4(t) as solution of (2.3) and verify the result with the direct numerical simulation of the NLS

equation.

2.2 Summary of Results and Outlook

In the context of the dispersionless limit of the semiclassical theory of the NLS equation, we

derive an analytical expression for the short time evolution of the normalised fourth-order moment
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of the field κ4. The results are then verified by comparing the analytical description to the direct

numerical simulation of the NLS equation. I have been directly involved in the derivation of the

analytical results and in the numerical simulation performed on the PhLAM Linux Clusters of

Université de Lille, France.

The results of the project appeared in:

• G. Roberti, G. El, S. Randoux and P. Suret. “Early stage of integrable turbulence in the

one-dimensional nonlinear schrödinger equation: A semiclassical approach to statistics”,

Phys. Rev. E, 100:032212, 2019

The solution of equation (2.3) is obtained in the short-time asymptotics, when the dynamical and

statistical features of the field can be modelled by the nonlinear geometric optics equations

ρt + (ρu)x = 0,

vt + vvx − σρx = 0,
(2.4)

which is the dispersionless limit ε → 0 of the hydrodynamic system (1.72). In this context the

solution ρ(x, t) and v(x, t) of the system (2.4) are obtained as power-series expansion in time.

Given the solution of the dispersionless system, the expression for κ4(t) in the early stage of

evolution of the wave field can be computed:

κ4(t)− κ4(0) =
σt2

〈N〉2L

∫ L

0

〈
ρ0ρ

2
0x

〉
dx

− t4

2〈N〉2L

∫ L

0

〈
2

3
ρ2

0ρ0xρ0xxx +
17

6
ρ0ρ

2
0xρ0xx +

1

2
ρ4

0x

〉
dx+O

(
t6
)
,

(2.5)

where ρ0 = ρ(x, t = 0).

From equation (2.5) one can note that the normalised fourth-order moment κ4(t) of the field

evolves quadratically with time at leading order for t � 1. Moreover the value of σ = ±1, i.e.

the regime of the NLS equation, defines the increase/decrease of the value of κ4 in time giving an

insight in the heavy/low tail of the PDF at the long time propagation.

The expression in (2.5) is a general result derived with the only assumption ε � 1, without

any assumption on the statistic of the initial random wave field. However, this result can be

further simplified assuming Gaussian statistics of the initial condition, i.e. PCWs initial condition.
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Moreover, if we assume the shape of the Fourier power spectrum to be Gaussian

|u0(k)|2 = n0e
−k2

∆k2 , (2.6)

with n0 ∈ R+ the normalised amplitude and ∆k the width of the spectrum, we can write the short

time evolution of the normalised fourth-order moment k4(t) as:

κ4(t)− κ4(0) = 2σN(∆k)2t2 +
22N2(∆k)4

3
t4 +O

(
t6
)
. (2.7)

This formula (2.7) has been compared to direct numerical simulations of the NLS equation in

the focusing and defocusing regimes showing an excellent agreement for the early stage of the

evolution. We note that, while the short-time approximation may seem to have a restricted appli-

cation range, it, in fact, corresponds to the quite appreciable propagation distances in the context

of optical fibres.

The analytical results outlined in this work provide a convincing argument on applicability of the

semiclassical approach, suggesting new lines of future theoretical research:

• Application of the methodology developed in this work to investigate the early stage of

evolution of PCW in other nonlinear integrable system exhibiting RW solutions such as the

modified KdV equation and integrable versions of vector NLS equations.

• Exploiting the full potential of the semiclassical approach beyond the short time asymptotics

application, one could extend the description of the development of integrable turbulence at

longer time.
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We examine statistical properties of integrable turbulence in the defocusing and focusing regimes of one-
dimensional small-dispersion nonlinear Schrödinger equation (1D-NLSE). Specifically, we study the 1D-NLSE
evolution of partially coherent waves having Gaussian statistics at time t = 0. Using short time asymptotic
expansions and taking advantage of the scale separation in the semiclassical regime we obtain a simple explicit
formula describing an early stage of the evolution of the fourth moment of the random wave field amplitude, a
quantitative measure of the “tailedness” of the probability density function. Our results show excellent agreement
with numerical simulations of the full 1D-NLSE random field dynamics and provide insight into the emergence
of the well-known phenomenon of heavy (respectively, low) tails of the statistical distribution occurring in the
focusing (respectively, defocusing) regime of 1D-NLSE.

DOI: 10.1103/PhysRevE.100.032212

I. INTRODUCTION

Turbulence is one of the most recognizable forms of non-
linear motion that has been, and continues to be, the subject
of very active research in classical (viscous) fluid dynamics
[1]. This fundamental phenomenon occurs also in dispersive
media where turbulence is associated with the generation of
complex, spatiotemporal statistical ensembles of interacting
nonlinear waves. The theory of weak wave turbulence in
dispersive systems was developed by V. E. Zakharov in the
1960s [2]. The wave turbulence (WT) theory provides a
framework for the statistical description of weak turbulence
in nonintegrable wave systems dominated by resonant inter-
actions. One of the most important results in wave turbulence
theory is the discovery by V. E. Zakharov in 1965 of a
new type of solutions to kinetic equations corresponding to
a constant energy flux through scales. These solutions are
called Kolmogorov-Zakharov spectra, and they have been
observed in a variety of experiments performed in turbulent
wave systems [3].

The notion of turbulence can be extended to the realm of
integrable systems where it is understood as complex spa-
tiotemporal dynamics of nonlinear random waves in physical
systems whose behavior is well modeled by integrable non-
linear partial differential equations such as the Korteweg-
de Vries (KdV) equation or the one-dimensional nonlinear
Schrödinger equation (1D-NLSE). Since many nonlinear

*Corresponding author: Pierre.Suret@univ-lille.fr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

wave systems can be described by partial differential equa-
tions having an integrable core part the emerging theory of
integrable turbulence, also initiated by Zakharov [4], has
become an active field of research with the theoretical (mostly
numerical) developments supported by a number of experi-
mental observations [4–14]. Given the absence of resonances
in integrable systems, the mechanisms underlying integrable
turbulence are of profoundly different nature from those found
in the standard WT [2,3,15] and thus require very different
theoretical approaches to their study.

General properties of integrable wave systems can be
in principle analyzed using the inverse scattering transform
(IST) method [16], which thus provides a powerful analyt-
ical framework for the description of integrable turbulence.
However, only very few analytical results are available in this
direction due to the high complexity of the IST with random
potentials, so alternative approaches based on, e.g., asymp-
totic expansions could prove very valuable. In this paper,
such an asymptotic approach is developed in application to
integrable turbulence in the framework of 1D-NLSE which
plays a fundamental role in nonlinear physics due to the
unique combination of complete integrability and the ubiquity
in a broad range of applications.

Depending on the relative signs of dispersion and non-
linearity the 1D-NLSE can exhibit focusing or defocusing
properties which have strong effect on the evolution of the
statistics of random solutions. Generally speaking, nonlinear
wave propagation in media with self-focusing nonlinearity
tends to produce heavy-tailed deviations from the initial
Gaussian statistics, observed in the probability density func-
tion (PDF) of the random wave field amplitude. In recent
years, the question of the emergence of heavy-tailed statistical
distributions has been extensively studied in relation to the
occurrence of extreme events such as rogue waves, mainly

2470-0045/2019/100(3)/032212(9) 032212-1 Published by the American Physical Society
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in the physical contexts of fluid dynamics [17–20] and optics
[7,8,14,21–25]. Even though statistical properties of nonlin-
ear defocusing media have been less extensively examined,
several experiments have shown that defocusing nonlinearities
tend to produce low-tailed deviations from the initial Gaussian
statistical distribution [26,27].

The “heaviness” of the tail in the PDF of the field ampli-
tude distribution is characterized by the kurtosis (the fourth
standardized moment of the PDF). In the WT setting, the
theory based on the derivation of quasikinetic equations for
the lowest-order moments of the wave field has been de-
veloped in Refs. [15,28–30]. This theory has confirmed that
the kurtosis increases in the focusing case and decreases in
the defocusing case while the initial field is characterized by
Gaussian statistics. However, this kind of analytical treatment
is inherently limited to the weakly nonlinear propagation
regime.

To evaluate kurtosis for certain regimes of the fully
nonlinear integrable turbulence in the 1D-NLSE one can
take advantage of the mathematical framework of dispersive
hydrodynamics—the semiclassical theory of nonlinear disper-
sive waves [31]. The definitive feature of dispersive hydrody-
namics is the presence of two distinct spatiotemporal scales:
the long scale specified by initial conditions and the short
scale by the internal coherence length (i.e., the typical size
of the coherent soliton-like structures). This scale separation
enables one to analyze the wave evolution asymptotically.

The semiclassical, dispersive hydrodynamic approach de-
scribes the propagation regimes of a completely opposite
nature compared to the regimes considered in the framework
of wave turbulence theory. This approach can be applied to the
1D-NLSE propagation if the initial scale of the fluctuations of
the power of the complex field |ψ |2 are much larger than the
one corresponding to the balance between nonlinearity and
dispersion. In most of the standard cases, this separation of
scales corresponds to situations where the nonlinear part of
the energy is much greater that the linear (kinetic) part of
the energy at the initial time. As shown in Ref. [32], this
scale separation permits one to split the development of
integrable turbulence into two distinct stages characterized
by qualitatively different dynamical and statistical features.
At the initial (we shall call it “prebreaking”) stage of the
evolution nonlinear effects dominate linear dispersion and the
wave fronts of the random initial field experience gradual
steepening leading to the formation of gradient catastrophes
that are subsequently regularized through the generation of
dispersive shock waves in the defocusing regime [33] and
of Peregrine-like breather sequences in the focusing regime
[34]. As shown in Ref. [32], the dynamical and statistical
features that occur at the prebreaking stage of the defocusing
1D-NLSE can be interpreted in terms of the evolution of
random Riemann waves.

In this paper, we extend the analysis of the previous works
based on the semiclassical approach to the 1D-NLSE with ran-
dom initial data by calculating the short-time evolution of the
the normalized fourth moment κ4 of the amplitude of the field.
Similarly to the standard kurtosis, the quantity κ4 describes
the degree of the deviation from the initial statistical distribu-
tion which is often assumed to be Gaussian [35]. Using the

semiclassical Madelung transform and performing the zero
dispersion limit, we derive a general analytical expression for
the short-time evolution of the fourth moment of the random
1D-NLSE wave field in terms of hydrodynamic variables,
and show that this expression can be further simplified for
the wave field having Gaussian statistics at initial time. Our
analytical asymptotic results are shown to be in excellent
agreement with numerical simulations of the evolution of
partially coherent initial data in 1D-NLSE.

The paper is organized as follows: In Sec. II, using the
semiclassical approximation, we identify the initial stage
of the 1D-NLSE development of partially coherent waves
with the nonlinearity dominated, dispersionless regime and
derive the general expression for the short-time evolution of
the fourth-order moment κ4 as a power-series expansion in
time t .

In Sec. III, we apply the derived formula for κ4 to the
fundamental case of random waves characterized by Gaussian
statistics at time t = 0. In Sec. IV we provide a comparison
between our semiclassical analytical results and numerical
simulations of 1D-NLSE.

II. THE DISPERSIONLESS LIMIT OF THE 1D-NLSE AND
THE TIME EVOLUTION OF THE FOURTH-ORDER

MOMENT OF A RANDOM WAVE FIELD

We consider the 1D-NLSE in the normalized form

iε
∂ψ

∂t
+ ε2

2

∂2ψ

∂x2
+ σ |ψ |2ψ = 0, (1)

where ψ is a complex field, ε is the dispersion parameter,
σ = −1 in the defocusing regime, and σ = +1 in the focusing
regime.

The 1D-NLSE (1) is considered in a periodic box of size L,
ψ (x + L, t ) = ψ (x, t ) ∀t . The field ψ then can be represented
as a Fourier series:

ψ (x, t ) =
∑

k

ψk (t )e
2iπ
L kx with k ∈ Z, (2)

where the Fourier coefficients are given by

ψk (t ) = 1

L

∫ L

0
ψ (x, t )e−2iπkxdx. (3)

The “density of particles” N and the momentum P repre-
sent integrals of motion and are expressed in terms of Fourier
coefficients:

N = 1

L

∫ L

0
|ψ |2dx =

∑
k

|ψk|2, (4)

P = 1

L

∫ L

0
ψxψ

∗dx =
∑

k

(2π ik

L

)
|ψk|2. (5)

The Hamiltonian, that we represent in the form

H = ε2HL + HNL (6)

is also integral of motion, which is naturally split into two
parts: the linear (kinetic energy) part,

ε2HL(t ) = ε2

2L

∫ L

0
|ψx|2dx = ε2

2

∑
k

(2πk

L

)2
|ψk|2, (7)
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and the nonlinear part,

HNL(t ) = σ

2L

∫ L

0
|ψ |4dx. (8)

We now assume that the Fourier modes at initial time
ψ0k = ψk (t = 0) = |ψ0k|eiφ0k are complex random variables.
The complex field (2) is then a random periodic solution
of the 1D-NLSE. No particular hypothesis about statistical
properties of ψ0k needs to be introduced at this step but we
will show in Sec. III that the main result of our analysis
can be simplified if the initial statistics of the random wave
field is assumed to be Gaussian. We consider random initial
conditions for which N , HL(t = 0) and HNL(t = 0) are all
O(1). This is typically achieved by taking the initial power
spectrum n0k = |ψ0k|2 with the characteristic width 	k � 1,
which implies that the typical spatial size of the initial random
fluctuations is also of the order of unity and much larger
than the internal coherence length (that is, ε). Such random
waves are often called partially coherent, particularly in the
statistical optics context [36].

Given the 1D-NLSE evolution of individual realizations
of the random field ψ (x, t ) the challenge is to determine the
associated evolution of its statistical characteristics such as
the PDF of the amplitude |ψ |, the power spectrum |ψk|2,
etc. The particular objective of this paper is to determine the
short-time evolution of the normalized fourth moment κ4(t )
defined as

κ4(t ) = 〈|ψ (x, t )|4〉
〈|ψ (x, t )|2〉2

, (9)

where the brackets 〈. . . 〉 denote ensemble average performed
over a large number of realizations of the random process
ψ (x, t ). In what follows we shall be using the double average,
〈 1

L

∫ L
0 |ψ (x, t )|n dx〉, n = 2, 4, in Eq. (9) to compute κ4(t ).

This is implemented for the sake of convenience in the numer-
ical simulations since, if the averaging procedure over space
is not implemented, a very large statistical ensemble must be
built, which leads to a large, unrealistic computational cost
necessary to reach convergence of κ4(t ).

The fourth moment (9) is an important characteristic of
the PDF of a random process that quantifies the “heaviness”
of its tail. In particular, it can be used to characterize the
deviation from Gaussianity in the course of evolution, when
the initial statistics is Gaussian, in which case κ4 is known to
be equal 2 [35,37]. The determination of κ4, while providing
limited information about the PDF as a whole, is particularly
relevant to the rogue wave studies as the formation of a “heavy
tail” of the PDF is associated with the frequent appearance
of large-amplitude events in the random process’ realizations
[7,9,20,35].

Figure 1 shows a typical initial evolution of a random wave
in the regime where the cubic (Kerr) nonlinearity dominates
linear dispersive effects, which corresponds to the semiclassi-
cal regime described by Eq. (1) with ε � 1 (in the numerical
simulations we took ε = 0.1). As shown in Fig. 1, the self-
focusing dynamics tends to produce bright peaks while the
self-defocusing dynamics leads to a decrease of the peak
amplitudes but is accompanied by steepening of slopes in the
random amplitude profile. While only the short-time evolution
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FIG. 1. Numerical simulations of Eq. (1) (ε = 0.1) showing the
time evolution of a random field having Gaussian statistics at initial
time t = 0 (green solid lines). (a) Focusing regime (σ = +1). At
short evolution time (t < 0.56 in the plot) the self-focusing dynamics
produces bright peaks having the amplitude that grows in time.
(b) Defocusing regime (σ = −1). The self-defocusing dynamics
induces the decrease in time of the amplitudes of random peaks.
After some time (not reached in the plot), the random wave develops
gradient catastrophes that are regularized by dispersive effects lead-
ing to the generation of breather structures in the focusing regime
and of dispersive shock waves in the defocusing regime.

of the wave system is shown in Fig. 1, a longer development
leads to the formation of gradient catastrophes—the explosion
of the first derivatives of the wave’s profile. These gradient
catastrophes have qualitatively different geometrical nature in
the defocusing regime (the wave-breaking singularity [38])
and the focusing regime (the elliptic umbilic singularity [39]).
In both cases the gradient catastrophes are regularized by
dispersive effects via the generation of nonlinear short wave-
length oscillations: breather structures in the focusing regime
[40] and dispersive shock waves in the defocusing regime
(see Ref. [33] and references therein). For convenience, we
shall call the initial nonlinear evolution preceding the for-
mation of gradient catastrophes, the “prebreaking stage” in
both defocusing and focusing regimes. The advantage of the
semiclassical, dispersive-hydrodynamic approach employed
in this paper is that it enables one to asymptotically separate
the prebreaking and postbreaking stages of the evolution,
which exhibit qualitatively different behaviors and require
very different analytical methods for their descriptions.

The starting point of our analysis is the evolution of the
nonlinear part HNL of the Hamiltonian. Differentiating (8) we
obtain

dHNL

dt
= σ

L

∫ L

0
|ψ |2

[
ψ

∂ψ∗

∂t
+ ψ∗ ∂ψ

∂t

]
dx. (10)

Using Eq. (1) and integrating by parts, one readily finds

dHNL

dt
= σε

L

∫ L

0
Im[(ψxψ

∗)2]dx. (11)
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Now, using the Madelung transformation

ψ = √
ρei φ

ε , u = ∂φ

∂x
, (12)

Eq. (11) can be rewritten as

dHNL

dt
= σ

L

∫ L

0
ρuρxdx. (13)

Noticing from (9), (4), and (8) that

κ4(t ) = 2〈HNL〉
σ 〈N〉2

(14)

one obtains

dκ4

dt
= 2

σ 〈N〉2

d〈HNL〉
dt

= 2

〈N〉2L

∫ L

0
〈ρuρx〉dx. (15)

We now derive an analytical expression for κ4(t ) for short
evolution times, t � 1. If the dispersion parameter is small,
ε � 1, the initial dynamics are dominated by nonlinearity.
To describe these dynamics analytically, we consider the
semiclassical limit of the 1D-NLSE (1) which is found by
applying the Madelung transform (12) and letting ε → 0.
Assuming smooth evolution of ρ(x, t ) and u(x, t ) in the pre-
breaking regime, we obtain in the limit ε → 0 the following
well-known set of nonlinear geometric optics equations [32,
41–44],

ρt + (ρu)x = 0

ut + uux − σρx = 0. (16)

If σ = −1, then Eqs. (16) are identical to the shallow-water
equations for an incompressible fluid with ρ > 0 and u in-
terpreted as the fluid depth and the depth-averaged horizon-
tal fluid velocity, respectively. In the nonlinear fiber optics
context, ρ represents the instantaneous optical power and u
represents the instantaneous frequency (or chirp) [45].

Rigorous proofs of the pointwise convergence, as ε → 0,
of solutions of the 1D-NLSE (1) to the solutions of the
dispersionless system (16) with the same initial data, prior
to the formation of gradient catastrophe, can be found for
certain classes of initial data in Ref. [46] (defocusing) and
in Refs. [47,48] (focusing). Some important particular exact
solutions of system (16) for the focusing case have been found
as early as the 1960s and 1970s (see Refs. [49–51]). A detailed
mathematical analysis of the prebreaking dynamics in the
defocusing case can be found in Ref. [41] (see also Ref. [52]
for the special case of the wave breaking into vacuum).

It follows from the above consideration that, to study the
prebreaking dynamics of partially coherent waves in 1D-
NLSE (1), we need to be able to describe random solutions
of system (16) obtained by evolving initial data ρ(x, 0),
u(x, 0) with given statistics (e.g., corresponding to the Gaus-
sian statistics of ψ). The study of such solutions has been
recently initiated for the defocusing case in the context of
the interaction of random Riemann waves in fiber optics [32]
(see also Ref. [13]). In this connection one must stress that
the term “prebreaking dynamics” is understood here in the
probabilistic sense, as for random initial data there is always
a nonzero probability of having gradient catastrophe at any,
arbitrarily small, moment of time. However, due to initial data
having typical size 	x = O(1), we assume that for small ε
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FIG. 2. Black solid line: Numerical simulations of Eq. (1) with
ε = 0.1 in the focusing regime (σ = +1) showing the time evolution
of the normalized fourth-order moment of the random field having
at t = 0 the Gaussian statistics and the Fourier spectrum defined by
Eq. (26) with 	k = 1, N = 1. Green dashed line: Analytical result
given by Eq. (27) at leading order in t2. Red dashed-dotted line:
Analytical result given by Eq. (27) including t2 and t4 evolution
terms. The inset shows an enlarged view of the evolution of κ4(t )
for 0 < t < 0.2.

the contribution of such early gradient catastrophes to the
statistics is negligibly small.

To this end, with the short-time, prebreaking evolution in
mind, we look for the solutions of Eqs. (16) in the form of the
time power-series expansions for the realizations ρ(x, t ) and
u(x, t ):

ρ(x, t ) = ρ0(x) + ρ1(x)t + ρ2(x)t2 + ρ3(x)t3 + O(t4)

u(x, t ) = u1(x)t + u2(x)t2 + u3(x)t3 + O(t4) . (17)

These time power-series expansions provide the description
of the evolution of ρ and of u over timescales shorter than
the typical time t∗ at which the gradient catastrophes occur.
Rigorously speaking t∗ depends on the exact shapes of the
initial bell-shaped pulses found in the initial random field but
for partially coherent waves with the typical amplitude and
width of individual pulses equal to 1, t∗ is typically around
0.5, as shown in Ref. [40]. Our theoretical analysis is therefore
restricted to evolution times shorter than t∗ ≈ 0.5. This is
well illustrated by Figs. 2 and 3 that show that there is a
very good quantitative agreement between numerical simula-
tions of Eq. (1) and our analytical results between t = 0 and
t = 0.2.

Moreover, it is important to note that the term O(t4) is the
error between the Taylor expansion and the solution of the
model (16). We derive here a solution of the zero-dispersion
limit of 1D-NLSE (ε → 0) for short time. The neglected term
in (16) is O(ε2). Thus, for example, for small but finite values
of ε, the second order of the Taylor expansion in time of
ρ(t, x) reads [ρ2(x) + O(ε2)]t2. We show in Sec. III that the
results obtained in the zero-dispersion limit are robust and are
in good agreement with simulations of 1D-NLSE for ε = 0.1.
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FIG. 3. Black solid line: Numerical simulations of Eq. (1) with
ε = 0.1 in the defocusing regime (σ = −1) showing the time evo-
lution of the normalized fourth-order moment of the random field
having at t = 0 the Gaussian statistics and the Fourier spectrum
defined by Eq. (26) with 	k = 1, N = 1. Green dashed line: Ana-
lytical result given by Eq. (27) at leading order in t2. Red dashed-
dotted line: Analytical result given by Eq. (27) including t2 and t4

evolution terms. The inset shows an enlarged view of κ4(t ) plot for
0 < t < 0.2.

In (17) we assumed that initially, u(x, 0) = u0 = 0, which
agrees with typical physical condition u0 � ρ0 satisfied in
standard realistic experimental conditions. Indeed timescales
of amplitude and phase in partially coherent waves are gen-
erally similar [O(1) here]. Considering the normalizations
given by the Eq. (12), this means that the derivative of
the phase ∂ (φ0/ε)

∂x = O(1) and thus u0 = ∂φ0

∂x = O(ε), whereas
ρ0 = O(1). This assumption is for example satisfied in the
experiments on the propagation of partially coherent light
through optical fibers, see Ref. [32].

Substituting Eqs. (17) into Eqs. (16) we obtain

ρ(x, t ) = ρ0 − 1

4
σ
[
ρ2

0

]
xx

t2 + O(t4),

u(x, t ) = σρ0xt −
(

1

12

[
ρ2

0

]
xxx + 1

3
ρ0xρ0xx

)
t3 + O(t4).

(18)

Next, substituting Eqs. (18) into Eq. (15) and integrating in
time, we obtain the following expression for the time evolu-
tion of the normalized fourth moment of the field amplitude:

κ4(t ) − κ4(0) = σ t2

〈N〉2L

∫ L

0

〈
ρ0ρ

2
0x

〉
dx

− t4

2〈N〉2L

∫ L

0

〈
2

3
ρ2

0ρ0xρ0xxx

+ 17

6
ρ0ρ

2
0xρ0xx + 1

2
ρ4

0x

〉
dx + O(t6). (19)

Equation (19) is our main general result. We note that it
can also be obtained by a direct substitution of the expansion
of ρ = |ψ |2 in the kurtosis formula (9). We note, however, that
this would require computing the terms O(t4) in the expansion

(18) for ρ, which is avoided here by using in Eq. (15)
the O(t3) terms in the related expansion for u ensuring the
necessary O(t4) accuracy in Eq. (19).

One can make now two important observations. The first
one is that Eq. (19) shows that the normalized fourth-order
moment κ4(t ) of the field evolves quadratically with time
at leading order for t � 1. The second observation is that
Eq. (19) shows that the increasing or decreasing nature of the
time evolution of κ4(t ) is determined by the value taken by
σ . In the focusing regime (σ = +1), κ4(t ) is an increasing
function of time which means that the nonlinear evolution of
the wave field is characterized by PDFs that exhibit heavy
tailed deviations from the initial statistical distribution. On the
other hand, in the defocusing regime (σ = −1) κ4(t ) becomes
a decreasing function of time which implies low-tailed devi-
ations from the initial statistics occurring in this regime. The
statistical features described by Eq. (19) are in full qualitative
agreement with the results that have been recently obtained
in numerical and experimental investigations of integrable
turbulence [7–9,12,13,26].

Let us emphasize that the decreasing or increasing nature
of the time evolution of κ4 has also been shown to be deter-
mined by the defocusing or focusing nature of the propagation
regime for weakly nonlinear dispersive random waves that
are described by the 1D-NLSE [28]. Theoretical approaches
that have been used in the weakly nonlinear regime are
based on the wave turbulence theory and they consist in
deriving quasikinetic equations for the lowest-order moments
of the wave field [28,30]. Dispersion plays crucial role in that
consideration. Our work is based on a completely different,
dispersive-hydrodynamic approach, where dispersive effects
are initially not of dominant but of perturbative nature.

III. INITIAL CONDITIONS WITH GAUSSIAN STATISTICS

Equation (19) represents a general result that is derived
with the only assumption that ε � 1. As we already stressed,
it is valid before the typical time of the gradient catastrophe
occurrence, i.e., for t � 1 [for random initial conditions with
typical scales for ρ and x variations at O(1)]. Importantly,
Eq. (19) is derived without any assumption on the nature of
the initial statistics of the random wave field. In this section
we show that Eq. (19) can be further simplified if the random
wave field taken as initial condition has Gaussian statistics.
To this end, we assume that the random initial field ψ (x, 0) is
composed of a linear superposition of a large number of inde-
pendent random Fourier modes ψk (t = 0) = ψ0k = |ψ0k|eiφ0k ,
so that by the central limit theorem ψ (x, 0) is a Gaussian
random field [3].

In the random-phase and amplitude model, |ψ0k| and φ0k

are both taken as randomly distributed variables [3]. Here we
will mainly use the so-called random-phase (RP) model in
which only the phases φ0k of the Fourier modes are considered
as being random [3]. In this model, the phase of each Fourier
mode is randomly and uniformly distributed between −π

and π . Moreover, the phases of separate Fourier modes are
assumed to be uncorrelated so that 〈eiφ0k eiφ0k′ 〉 = δk′

k . In the
above expression, the brackets, as usual, represent the aver-
aging over an ensemble of many realizations of the random
process; δk′

k is the Kronecker symbol defined by δk′
k = 1 if
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k = k′ and δk′
k = 0 if k 
= k′. With the assumptions of the

RP model described above, the statistics of the initial field
is homogeneous, which means that all statistical moments
of the initial complex field ψ (x, t = 0) = ψ0(x) do not de-
pend on x [15,53]. This RP description of the initial random
field has been shown to describe in a satisfatory way many
experiments performed in the field of integrable turbulence
[7–9,12,13,18,19,26,54].

Given the δ correlation of the random phases, the second
moment of a field composed from the linear superposition
of a large number of independent Fourier components having
Gaussian statistics is readily evaluated as

〈ψkψ
∗
k′ 〉 = nk δk′

k , (20)

and the sixth moment can be factored into products of the
second moments by using Wick’s decomposition [3]〈

ψk1ψk2ψk3ψ
∗
k4
ψ∗

k5
ψ∗

k6

〉
= nk1 nk2 nk3

[
δ

k1
k4

δ
k2
k5

δ
k3
k6

+ δ
k1
k4

δ
k3
k5

δ
k2
k6

+ δ
k2
k4

δ
k1
k5

δ
k3
k6

+ δ
k2
k4

δ
k3
k5

δ
k1
k6

+ δ
k3
k4

δ
k1
k5

δ
k2
k6

+ δ
k3
k4

δ
k2
k5

δ
k1
k6

]
. (21)

Now, using Eq. (21), one can evaluate the coefficient for the
O(t2) term in the expansion (19):

σ

〈N〉2L

∫ L

0

〈
ρ0ρ

2
0x

〉
dx

= σ

〈N〉2

∑
k1,...k6

(2iπ

L

)2
δ

k1+k2+k3
k4+k5+k6

× 〈
ψ0k1ψ0k2ψ0k3ψ

∗
0k4

ψ∗
0k5

ψ∗
0k6

〉
(k2 − k5)(k3 − k6), (22)

where we have used the notation ψ0ki = ψki (0) for the Fourier
component at t = 0. Using Eq. (21), we obtain the following
expression for the short time evolution of the fourth-order
moment of a random wave field that has Gaussian statistics
at initial time, i.e., κ4(0) = 2:

κ4(t ) − κ4(0) = − σ

〈N〉2

∑
k1,k2,k3

n0k1 n0k2 n0k3

(2π

L

)2

× [−2(k2 − k3)2]t2 + O(t4), (23)

where n0ki = nki (0) are the components of the power spectrum
at t = 0. Using Eqs. (5), (4), and (7) and taking into account
that P = 0 for our random Gaussian field, we can finally
rewrite Eq. (23) as

κ4(t ) − κ4(0) = 8σ 〈HL(0)〉t2 + O(t4). (24)

[Note that HL = O(1) and HNL = O(1), whereas the linear
part of the Hamiltonian (6) is O(ε2)].

A similar, but somewhat lengthy, calculation permits one
to obtain a more accurate expression that includes O(t4)
correction (see Appendix):

κ4(t ) − κ4(0) = 8σ 〈HL(0)〉t2 +
[

208

3
〈HL(0)〉2

+ 4〈N〉
〈 ∑

k

(
2πk

L

)4

|ψ0k|2
〉]

t4 + O(t6).

(25)

Equations (24) and (25) show that the time evolution of the
fourth moment of the initially Gaussian random wave field
is determined by the linear part HL(0) of the Hamiltonian
computed for the initial condition.

Equation (25) can be further simplified if we assume that
the shape of the Fourier power spectrum of the initial random
field is described by a Gaussian,

|ψ0k|2 = n0e− k2

(	k)2 . (26)

The amplitude n0 ∈ R+ has to be determined from the nor-
malization condition provided by Eq. (4). The linear energy
density determined from Eq. (7) is 〈HL〉 = N (	k)2

4 , and we can
finally rewrite Eq. (25) only in terms of the density of particles
(or optical power) N and of the width 	k of the initial Fourier
spectrum,

κ4(t ) − κ4(0) = 2σN (	k)2t2 + 22N2(	k)4

3
t4 + O(t6).

(27)

IV. NUMERICAL SIMULATIONS

In this section, we use numerical simulations of Eq. (1) to
investigate the range and the degree of validity of the semi-
classical approach to the statistics of integrable turbulence
presented in Secs. II and III. The initial condition used in our
numerical simulations is a random complex field having Gaus-
sian statistics. The amplitudes of the Fourier components are
taken to be distributed according to Eq. (26). In our numerical
simulations, the spectral phases φ0k are random, statistically
independent real numbers, uniformly distributed between −π

and +π . The width 	k of the initial spectrum profile (26)
is taken to be unity (	k = 1), and the value of ε in (1) is
taken to be 0.1. The numerical simulations are performed by
using a pseudospectral method with the numerical box having
size L = 256 for the defocusing regime and L = 128 in the
focusing regime that is discretized by using 216 points.

Figure 2 shows the time evolution of the normalized fourth
moment κ4(t ) of the random wave field in the focusing regime
(σ = +1). The curve plotted with black line represents the
result of the numerical simulation of Eq. (1). In the large
box limit (L → ∞), the value assumed by κ4 at t = 0 should
be exactly 2. As can be seen from Fig. 2, in the numerical
experiments the value taken by κ4(t ) at t = 0 slightly differs
from 2 [see the inset in Fig. (2)] because the conditions of
the central limit theorem are not perfectly fulfilled in our
numerical simulations. Indeed, because of the finite value
of L, the number of Fourier modes in the spectrum given
by Eq. (26) is finite, in particular, in the full width at half
maximum (FWHM) we count

√
2 ln 2L
π

modes. Importantly,
the deviation of the initial condition from Gaussian statistics
affects only the value of κ4(0) in Eq. (21) but not the evolution.
In the initial (before the formation of a gradient catastrophe)
stage of the nonlinear evolution of the random wave, κ4(t ) is
at first an increasing function of time that later reaches a maxi-
mum around t ∼ 0.6. Then κ4(t ) becomes a decaying function
of time that reaches a stationary value around ∼4 at long
evolution time. A similar evolution of κ4(t ) has already been
evidenced in numerical simulations presented in Ref. [35].
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The occurrence of the maximum of κ4(t ) has been linked in
Ref. [55] to the formation of the Peregrine breathers as the
universal local structures regularizing gradient catastrophes in
the semiclassical focusing 1D-NLSE [34,40].

The curves plotted with green (dashed) and red (dashed-
dotted) lines in Fig. 2 show monotonic evolutions of κ4(t )
that are obtained from Eq. (27). In particular the curves
plotted in the inset of Fig. 2 clearly reveal a very good
quantitative agreement between numerical and theoretical
results. In particular, a better agreement between numerics
and theory is obtained by including the fourth-order correc-
tion term found in the time expansion of the solution, see
Eq. (27). A significant quantitative disagreement is found
between our theoretical results and the numerical simulation
at evolution times greater than ∼0.2. This arises from the fact
that our approach is only valid at evolution times that are
shorter that the typical wave breaking time (the prebreaking
description). The significant occurrence of wave breakings
at evolution times greater than ∼0.2 has strong influence on
the wave evolution and subsequently the wave statistics in a
way that cannot be accounted for by using our prebreaking
treatment.

Figure 3 shows the comparison between the numerical
simulation of Eq. (1) and the theoretical result given by
Eq. (27) in the defocusing regime (σ = −1). In the defocusing
regime, κ4(t ) is a monotonically decreasing function of time,
as already evidenced in Ref. [35]. As for the focusing regime,
a very good quantitative agreement is obtained between nu-
merics and the theory at short evolution time (t < 0.2), i.e.,
before the typical occurrence of gradient catastrophes.

While the developed theory is rigorously valid in the
semiclassical limit as ε → 0 Fig. 2 and Fig. 3 provide the
evidence of a good quantitative agreement between numerical
simulations and our theory for ε = 0.1. To further verify
the robustness of our results we have performed further nu-
merical simulations for ε ranging between 0.08 and 0.5. In
all cases a very good quantitative agreement was obtained
between the numerics and the theory at short evolution time
(t < 0.2).

V. CONCLUSION

In this paper, we have undertaken an analytical study
of the problem of the evolution of a random wave field
in the 1D-NLSE for both focusing and defocusing regimes.
This has been done from the perspective of dispersive hy-
drodynamics, a semiclassical theory of nonlinear dispersive
waves exhibiting two distinct spatiotemporal scales: the long
scale specified by initial conditions and the short scale by
the internal coherence length (i.e., the typical size ε of the
coherent structures) [31]. This scale separation enabled us to
split the time evolution of the nonlinear random wave system
(integrable turbulence) into the initial, “prebreaking” stage,
preceding the formation of gradient catastrophes, when the
evolution of the 1D-NLSE wave field is almost everywhere
smooth, and the “postbreaking” stage characterized by the
generation of short-scale nonlinear oscillations (breathers or
dispersive shock waves depending on the focusing vs. defo-
cusing character of the 1D-NLSE).

Our work is concerned with the initial, prebreaking stage
of the semiclassical integrable turbulence, when the dynam-
ical and statistical features can be analytically described in
terms of random solutions of the dispersionless (nonlinear
geometric optics) system (16). As a result, we have derived
a simple asymptotic formula describing the evolution of the
normalized fourth moment of the random wave field. This
formula, applied to the problem of the 1D-NLSE evolution of
random field having initial Gaussian statistics, describes the
initial stage of the formation of heavy tails of the PDF of the
field amplitude in the focusing case and the formation of low
tails in the defocusing case.

Recently, an exact and general identity that relates the
changes in the statistical properties of the wave field to the
changes of its Fourier spectrum has been derived by using
the Hamiltonian structure of 1D-NLSE [35]. In other words,
the knowledge of the fourth-order moment also provides the
description of spectral properties. The general description of
the stationary state of integrable turbulence and the theoretical
prediction of the fourth-order moment is still an open funda-
mental question. In the weakly nonlinear regime, the wave
turbulence approach provides a statistical description of the
nonlinear propagation of random wave fields in 1D-NLSE
systems [28–30,56]. Recently, using an approach based on
the so-called large deviation theory, it has been shown that
rogue waves obey a large deviation principle, i.e., the heavy
tails of the PDF of the random wave field are dominated by
single realizations [57,58]. This approach is very promising
but does not provide a simple formula for the evolution of
the statistics. In this article we have demonstrated that the
semiclassical approach is an extremely powerful tool enabling
one to describe in a simple way the early stage of integrable
turbulence in the strongly nonlinear (or small dispersion)
regime. The proposed methodology can be applied to the
description of partially coherent random nonlinear waves de-
scribed by other integrable equations, including shallow water
waves described by the KdV equation and its extensions. In
particular, the prebreaking statistics of bidirectional random
shallow water waves is equivalent to that described by the
defocusing 1D-NLSE and studied in this paper.

The semiclassical approach to the statistics of random
waves in integrable systems is general and can be used beyond
the short-time asymptotic regime. It is known very well that,
in the semiclassical limit the evolution of nonlinear dispersive
waves after the gradient catastrophe point is described by the
so-called Whitham modulation equations [59] governing the
behavior of the averaged integrals of motion, and replacing
the dispersionless system (16) (see Refs. [33,60–62] and
references therein for the application of the Whitham theory
to the defocusing and focusing 1D-NLSE). Such an extension
of the proposed method to longer times is very promising but
also highly nontrivial.
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APPENDIX: COMPUTATION OF O(t4) CORRECTIONS FOR THE CASE
OF GAUSSIAN STATISTICS AT t = 0

Here we provide the simplified expressions for the three terms that are found in the integral giving the coefficient of the O(t4)
term in Eq. (19). To obtain these expressions, we assume Gaussian statistics at the initial time and use Eq. (20) and Eq. (21) to
obtain

− 1

3〈N〉2L

∫ L

0

〈
ρ2

0ρ0xρ0xxx
〉
dx = − 1

3〈N〉2

(2iπ

L

)4 ∑
k1,...k6

〈
ψ0k1ψ0k2ψ0k3ψ0k4ψ

∗
0k5

ψ∗
0k6

ψ∗
0k7

ψ∗
0k8

〉

× δ
k1+k2+k3+k4
k5+k6+k7+k8
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Chapter 3

Prediction and manipulation of Rogue

Waves

3.1 Outline of the Problem

The fundamental mathematical results of Bertola and Tovbis [46] on the universal nature of the

PS as a localised coherent structure regularising gradient catastrophe in the semi-classical fNLSE

dynamics (see Section 1.4.4) have changed the widely accepted paradigm of the solitonic nature of

rogue waves by enabling the PS to emerge from a partially radiative or even completely solitonless

initial data. As Bertola and Tovbis showed, the amount of the “solitonic content” (IST discrete

spectrum) of the initial pulse affects only the point ξ = ξm of the maximum compression corre-

sponding to the PS emergence but does not change the main qualitative and quantitative features

of the dispersive regularisation scenario.

For convenience of the exposition we reproduce here the main results of the semi-classical theory

from Section 1.4.4 with the special emphasis on the distinction between the universal and initial

data-dependent results.

The following universal asymptotic description of the structure that emerges at the point of maxi-

mum compression ξ = ξm is valid [46]:

ξm = ξc + Cε4/5, (3.1)
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where ε is the formal small parameter in the semi-classical approximation (defined as ε =
√
LD/LNL,

where LD and LNL are the characteristic dispersive and nonlinear lengths in the system respec-

tively), ξc is the point (physical time) of gradient catastrophe, µ is the chirp parameter and

C =

(
5|C1|

4

)1/5

(2b0)−3/2|vp|(1 +O(ε4/5)),

with |vp| ≈ 2.38 being the universal constant, andC1 and b0 the initial data-dependent coefficients.

E.g. for the initial profile

u(τ, 0) = sech(τ)eiφ/ε, φ = −µ log(cosh(τ)), (3.2)

the exact analytical expressions for ξc, b0 and C1 are:

ξc = 1/(2 + µ), b0 = |u(0, ξc)| =
√
µ+ 2, C1 =

32
√

2i

15(2 + µ)9/4
. (3.3)

For µ = 0 the initial condition (3.2) represents an exact N -soliton solution (pure discrete IST

spectrum) of the fNLSE with N = 1/ε. For µ ≥ 2 the potential (3.2) is solitonless. The uni-

versality of the Bertola-Tovbis regularisation mechanism is demonstrated in in Fig. 19 where the

results of the numerical simulations of the fNLSE evolution for purely solitonic and solitonless

propagation regimes are shown.

Figure 19: Universal regularisation of the gradient catastrophe via the local emergence of the
Peregrine soliton for the initial condition u(τ, 0) = sech(τ) exp[−iµ log(cosh(τ))/ε] with (a,b)
µ = 0 (exact 10-soliton solution) (c,d) µ = 0 (solitonless solution). (a,c) spatio-temporal evolution
of the amplitude of the solution and (b,d) profile of the soliton at the maximum compression point
ξm. (b,d) Inset with the IST spectrum of the solution.

The profile of the structure that emerges at ξ = ξm is described by the universal asymptotic
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formula:

u(τ, ξm) = a0

(
1− 4

1 + 4a2
0(τ/ε)2

)
[1 +O(ε1/5)], (3.4)

which coincides at leading order with the formula of the PS profile (1.29). Here the background

amplitude for the case of the initial data (3.2) is given by

a0 =
√

2 + µ+O(ε1/5) , (3.5)

i.e. is determined at leading order by the value of |u| at the gradient catastrophe point. The

maximum value of |u| in the local PS is then 3a0 and is determined up to O(ε1/5).

For other initial profiles (e.g. Gaussian) the determination of ξc, b0 andC is performed numerically

but often the results for sech profile (3.2) turn out to be a good approximation for other localised

initial data (see Chapter 6).

The gradient catastrophe regularisation via the PS formation for smooth, rapidly decaying purely

solitonic initial conditions have been examined experimentally using the optical fibre platform [4,

103] which revealed the robustness of the mechanism even when typical nonlinear and dispersive

lengths are of the same order of magnitude. However, the full verification of the universality of

the Bertola-Tovbis results in application to physical systems would require the investigation of the

RW compression in the propagation of partially radiative, or even solitonless initial pulses, similar

to the one presented in Fig. 19

The asymptotic results of Bertola and Tovbis suggest that the definitive parameters ξm (3.1) and

a0 (3.5) of the RW compression can be manipulated by an appropriate choice of the chirp factor

µ related to the solitonic content of the pulse.

The material of this Chapter is concerned with the theoretical development and experimental re-

alisation of the method of nonlinear spectral engineering for the control and manipulation of the

RW emergence from single pulses using the insights from the semi-classical fNLSE theory.

79



CHAPTER 3. PREDICTION AND MANIPULATION OF ROGUE WAVES

3.2 Summary of Results and Outlook

The Bertola-Tovbis results (3.1)-(3.5) have been re-contextualised in the framework of deep water

waves and applied to the particular conditions of the experiment performed in a 120 m long water

tank with the water depth h = 3 m. The experiment has been performed in École Centrale de

Nantes, France. I have been directly involved in the formulation of the problem, the numerical

simulations and in the interpretation of the experimental results.

The results of the project appear in the pre-print

• A. Tikan, F. Bonnefoy, G. Roberti, G. El, A. Tovbis, G. Ducrozet, A. Cazaubiel, G. Prab-

hudesai, G. Michel, F. Copie, E. Falcon, S. Randoux, P. Suret, “Prediction and manipula-

tion of hydrodynamic rogue waves via nonlinear spectral engineering”, arXiv:2108.02698

(2021), submitted for publication in a peer reviewed journal.

In this work we provide an experimental confirmation of the robustness the Bertola-Tovbis sce-

nario of the PS emergence in the context of deep-water wave propagation modelled by the per-

turbed fNLSE including relevant higher order terms (the so-called Dysthe equation [138]). It is

done by showing that the generation of a RW having the distinct PS signature (both amplitude and

phase profiles) occurs locally, in the vicinity of the point of the gradient catastrophe and indepen-

dently of the solitonic content of the initial pulse as defined by the Zakharov-Shabat scattering

problem (see Section 1.4) corresponding to integrable, non-perturbed fNLSE dynamics governing

the propagation at leading order. Due to the presence of higher order, nonintegrable effects in the

real water tank propagation conditions, the PS type profiles observed in the experiment are slightly

asymmetric, but most importantly, the point ξm of the maximum compression is well described by

the appropriately scaled Bertola-Tovbis formula (3.1). The amount of the solitonic content in the

input pulse is determined through the nonlinear Fourier (IST) analysis of the experimental data

and is modified by varying the phase of the input structure. In particular, we demonstrate that,

somewhat paradoxically (but in full agreement with the Bertola-Tovbis results) the PS-type RW

generation is observed even in a completely solitonless case.

Further, by changing the chirp of the initial wave packet and hence, varying its solitonic content

as defined by the IST, we managed to manipulate the point of the maximum compression (RW
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emergence) in a controllable way. Our experimental results are in excellent agreement with the

direct numerical simulations of the nonlinear wave packet propagation using the Dysthe equation.

The Dysthe equation does not belong to the class of equations integrable by the IST. Nonetheless,

having an integrable core in the form of the fNLSE, this model can be analysed using perturbation

methods. In particular, the IST spectra of the PS-like coherent structures occurring in the Dysthe

equation pulse evolution have been determined and analysed following the recently developed

numerical approaches [139, 140, 141, 142]. It has been shown that the fact that the actual wave

evolution in a water tank is described by a non-integrable equation results in the nontrivial slow

dynamics of the locally defined IST spectra.

The outlined theoretical and experimental results on the nonlinear spectral engineering of RWs

suggest two major lines of future theoretical and experimental research:

• Using nonlinear spectral engineering for the prediction and manipulation of RWs in fibre

optics pulse compression.

• Application of the method to the propagation of partially coherent input signals, where the

local emergence of PS’s has been shown in [6] to leave a distinct trace in the evolution of the

statistical properties of the signal, in particular the overshoot in kurtosis plot, see Fig. 16.
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Peregrine soliton (PS) is widely regarded as a prototype nonlinear structure capturing properties
of rogue waves that emerge in the nonlinear propagation of unidirectional wave trains. As an
exact breather solution of the one-dimensional focusing nonlinear Schrödinger equation with nonzero
boundary conditions, the PS can be viewed as a soliton on finite background, i.e. a nonlinear
superposition of a soliton and a monochromatic wave. A recent mathematical work showed that
both nonzero boundary conditions and solitonic content are not pre-requisites for the PS occurrence.
Instead, it has been demonstrated that PS can emerge locally, as an asymptotic structure arising
from the propagation of an arbitrary large decaying pulse, independently of its solitonic content.
This mathematical discovery has changed the widely accepted paradigm of the solitonic nature of
rogue waves by enabling the PS to emerge from a partially radiative or even completely solitonless
initial data. In this work, we realize the mathematically predicted universal mechanism of the
local PS emergence in a water tank experiment with a particular aim to control the point of the PS
occurrence in space-time by imposing an appropriately chosen initial chirp. By employing the inverse
scattering transform for the synthesis of the initial data, we are able to engineer a localized wave
packet with a prescribed solitonic and radiative content. This enabled us to control the position
of the emergence of the rogue wave by adjusting the inverse scattering spectrum. The proposed
method of the nonlinear spectral engineering is found to be robust to higher-order nonlinear effects
inevitable in realistic wave propagation conditions.

INTRODUCTION

The prediction of extreme events in various nonlinear
media has been the subject of a very active research for
several decades [1–6]. While the original motivation was
related to the modeling of the emergence of giant water
waves in the ocean, also called rogue waves (RWs) [2],
the subsequent research revealed that RWs are a funda-
mental and ubiquitous physical phenomenon occurring,
apart from classical fluids, in optical media and superflu-
ids [3, 7].

The RW formation as a physical phenomenon has two
inherent aspects: dynamical and statistical. As a dynam-
ical object RWs are identified according to physical mech-
anisms responsible for the amplitude growth and spa-
tiotemporal localization. As a statistical object, RWs are
characterized by the deviation of the probability distri-
bution of the random wave field from the one implied by
the Gaussian statistics [8–11]. Among different contexts
of the RW’s emergence, nonlinear dynamics of unidirec-
tional waves on the surface of the deep water has been
widely studied due to integrability [12] of the mathemat-
ical model describing the weakly nonlinear deep-water
waves at leading order. Indeed, as has been shown by
V. Zakharov [13], the evolution of the narrow-band wave
packets in the limit of infinite water depth is governed
by the one-dimensional focusing nonlinear Schrödinger
equation (1-D fNLSe), which can be integrated by means
of the inverse scattering transform (IST) also known as
nonlinear Fourier transform [14].

The research area that considers nonlinear evolution
of random waves in integrable models has been dubbed
integrable turbulence in [15]. There are two types of ini-
tial conditions usually considered in this framework: (i) a
plane wave (condensate) perturbed by a small-amplitude
noise and (ii) a partially coherent wave with large-scale
finite-amplitude variations characterized by long-range
incoherence. The latter can be viewed as an infinite se-
quence of large-scale pulses randomly distributed along
the line. The variation of the statistical properties of the
IST spectrum occurring in the transition between these
two contrasting types of initial conditions has been ex-
amined in [16, 17]. The random nonlinear wave field (the
integrable turbulence) generated in both cases exhibits
deviations from the Gaussian statistics [18–23] but those
deviations are manifested at different stages of the evo-
lution. While in the development of the noise-induced
modulational instability the non-Gaussian features are
observed at the initial stage of the evolution and are of
transient character, the nonlinear evolution of partially
coherent initial conditions leads to the long-time statis-
tically stationary non-Gaussian state [8, 21]. The non-
Gaussianity of the asymptotic state in the evolution of
partially coherent wave (the so-called heavy tailed dis-
tribution) is associated with the presence of RWs. Ex-
act breather solutions of the 1-D fNLSe, also called soli-
tons on finite background [24–27], are often considered
as the main candidates for the role of RWs [28–30]. The
PS [26, 31, 32] is a particular member of this family of so-
lutions that exhibits spatiotemporal localization, thereby
reflecting the main qualitative features of RWs [33].
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The PS solution plays a special role in the context of
the dynamics of partially coherent waves. In the strongly
nonlinear regime of propagation, the individual large-
scale pulses forming a partially coherent wave undergo
self-focusing resulting in a gradient catastrophe, a phe-
nomenon of the occurrence of infinite derivatives in the
wave’s profile. Importantly, the initial, self-focusing stage
of the evolution of a partially coherent wave is dominated
by nonlinearity and is approximately dispersionless. For
the 1-D fNLSe, it was rigorously proved by Bertola and
Tovbis (BT) [34] that the gradient catastrophe is univer-
sally regularized by dispersive effects via the local emer-
gence of a coherent structure, which is asymptotically
described by the PS solution in the semiclassical, small-
dispersion limit. The universality of the PS generation is
understood in the sense that this regularization mecha-
nism persists regardless of the particular shape, chirp or
solitonic content of the initial condition. In particular,
the gradient catastrophe regularization via the PS forma-
tion for smooth, rapidly decaying purely solitonic initial
conditions have been examined experimentally using the
optical fiber platform [35, 36], which revealed the robust-
ness of the mechanism even when typical nonlinear and
dispersive lengths are of the same order of magnitude.

Recently, it has been shown that the local emergence
of PSs leaves a distinct trace in the evolution of statisti-
cal properties of the partially coherent waves. Numeri-
cal simulations performed in [37] have demonstrated that
the width and the position of the computed probability
density function of local PS emergence positions coin-
cides with the parameters of the most probable distance
interval for the RW observation, which has been subse-
quently confirmed in water tank experiments [38]. Impor-
tantly, the above optics and hydrodynamics experimental
results were obtained in the carefully chosen propagation
regimes well approximated by the 1-D fNLSe

While having been confirmed experimentally for ap-
proximately integrable propagation regimes, the applica-
bility of the universal PS regularization scenario to more
physically realistic conditions remains an open question.
Indeed, the presence of dissipation and the influence of
the higher-order nonlinear terms can significantly modify
the integrable 1-D fNLSe dynamics. Having an experi-
mental confirmation of the robustness of the core univer-
sal PS resolution dynamics in a physically realistic con-
text would be extremely valuable as it would open a way
to a practical, quantitative prediction and manipulation
of the spontaneous emergence of RWs via the methods
of nonlinear spectral (IST) theory underlying the BT re-
sults. Of course, special care should be taken in the in-
terpretation of the IST data in the context of perturbed
integrable dynamics.

In this paper, using the BT theory as a starting point,
we experimentally demonstrate the universality of the
spontaneous emergence of the PS-like coherent structures
in the evolution of weakly nonlinear wave packets on deep

water. As the simplest mathematical model that has an
integrable core and takes into account the higher-order
nonlinear effects in the propagation of weakly nonlinear
wave packets on deep water, we use a version of the gen-
eralized fNLSe proposed in [39] which is usually referred
to as the Dysthe equation (see Methods section).

The experiments are performed in a 120 m long water
tank with a water depth h = 3 m. We provide an experi-
mental confirmation of the robustness the BT scenario of
the PS emergence in the context of ‘non-integrable’ deep-
water wave propagation. It is done by showing that the
generation of a RW having the structure similar to PS
occurs locally, in the vicinity of the point of the gradient
catastrophe and independently of the IST solitonic con-
tent of the initial pulse. In particular, we demonstrate
that, somewhat paradoxically (but in full agreement with
the BT results) the PS-type RW generation is observed
even in a completely solitonless case.

Further, by changing the chirp of the initial wave
packet and hence, varying its solitonic content as defined
by the IST, we managed to manipulate the point of the
PS maximum compression in a controllable way. Our ex-
perimental results are shown to be in excellent agreement
with the numerical simulations of the Dysthe equation.
For the analysis of the RW emergence in the wavepacket
propagation modeled by the Dysthe equation we employ
the recently developed IST based method [40] of the
analysis of nonlinear wave dynamics applicable to the
models which are not integrable but have an integrable
’core’ [41–44].

RESULTS

Semi-classical limit of 1-D fNLSe. Universal
formation of the Peregrine soliton

We write the 1-D fNLSe in the following form:

iε
∂ψ

∂ξ
+
ε2

2

∂2ψ

∂τ2
+ |ψ|2ψ = 0, (1)

where ψ is the normalized complex envelope of the water
waves, ξ and τ are normalized space coordinate and nor-
malized time, ε =

√
LNL/LD, with LNL and LD typical

nonlinear and linear lengths in the system [11].
Despite the fact that 1-D fNLSe is a fully integrable

equation [12], explicit analytic results are available only
in some particular cases. One of the examples when an
effective analytical description is possible is the so-called
semi-classical limit of 1-D fNLSe. This approach is ap-
plied to the description of nonlinear dispersive waves in
the case when ε� 1 in Eq. (1).

We consider Equation (1) using the Madelung trans-
formation [45, 46]:

ψ (ξ, τ) =
√
ρ (ξ, τ)eiφ(ξ,τ)/ε, u (ξ, τ) = φτ (ξ, τ) , (2)
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where
√
ρ is the wave amplitude and u–the instantaneous

frequency. As a result the 1-D fNLSe assumes the form
of a system

ρξ + (ρu)τ = 0 (3)

uξ + uuτ − ρτ +
ε2

4

[
ρ2τ
2ρ2
− ρττ

ρ

]

τ

= 0. (4)

Equations (3), (4) are analogous to Euler’s dispersive hy-
drodynamics for the fluid with density ρ and velocity u
but characterized by negative pressure p = −ρ2/2 due to
the focusing effects.

The last term in Eq. (4) is proportional to ε2, there-
fore, assuming finite derivatives in the initial data, it can
be neglected at the early stage of the propagation. The
description of the evolution of smooth and decaying ini-
tial profiles by Eqs. (3) and (4) with neglected dispersive
terms, i.e. with ε = 0, is valid until the gradients of ρ or u
become infinitely large at some point (τc, ξc), termed the
gradient catastrophe point. The dispersionless evolution
problem is ill-posed for ξ > ξc, and the full dispersive sys-
tem has to be considered in this region. To describe the
solution in the vicinity of the gradient catastrophe point
(τc, ξc) BT [34] employed the inverse scattering transform
in the semi-classical (ε� 1) approximation. It has been
found that the gradient catastrophe is dispersively regu-
larized by the universal appearance of a large amplitude
ε-scaled spikes that are asymptotically described by the
PS solution. Here the term ‘universal’ is used to stress
that the BT scenario does not depend on the exact shape,
chirp or solitonic content of the smooth (more precisely,
analytic) initial condition. It is remarkable that locations
of these spikes are determined by the poles of the special
tritronquée solution of the Painlevé I equation, whose
role in the gradient catastrophe was first recognized by
B. Dubrovin et al. [47].

More explicitly, the theory developed in [34] provides
the following asymptotic description of the structure that
emerges at the point of maximum compression ξ = ξm:

ξm = ξc + Cε4/5, (5)

where ξc is the point of gradient catastrophe, and C =(
5|C1|

4

)1/5
(2b0)−3/2|vp|(1 + O(ε4/5)) with C1 - an ini-

tial data-dependent coefficient, b0 =
√
ρ(0, ξc) - the

wave amplitude at the point of gradient catastrophe, and
|vp| ≈ 2.38 is a universal constant.

The amplitude profile of the spike that emerges at ξ =
ξm is described by the asymptotic formula:

|ψ(τ, ξm)| = a0

(
1− 4

1 + 4a20(τ/ε)2

)
[1 +O(ε1/5)], (6)

which coincides at leading order with the formula of the
PS amplitude profile. Here the background amplitude
a0 = b0 +O(ε1/5), i.e. is determined at leading order by
the wave amplitude at the gradient catastrophe point.

a b

c

d e

f

λ 
p
la

n
e

λ 
p
la

n
e

FIG. 1. Universal regularization of the gradient catas-
trophe by local emergence of the Peregrine soli-
ton. Parameter ε in the simulation is equal to 1/10.
(a-c) Spatiotemporal diagram, the amplitude and phase
cross-section at the maximum compression point (orange).
Exact 10-soliton solution is taken as an initial condition
(green). (d-f) The counterpart plots for a solitonless solu-
tion sech(τ) exp[−iµ log(cosh(τ))/ε], where µ = 2. Plots in
the right corner of (b) and (e) show the corresponding dis-
crete IST spectra (λ plane). Vertical axis shows the imaginary
part while the horizontal one - the real part of the discrete
IST spectrum.

1 0 1 2
0
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ps

N=5
N=10
N=20
Theory 0

FIG. 2. The PS emergence distance as a function of
the chirp parameter µ. Comparison of the numerical
simulations with the theoretical predictions. Numeri-
cal simulations of N = 5, 10 and 20 solitons solutions of the
1-D fNLSe are depicted by orange, blue and red dots respec-
tively. Theoretical prediction according to Eq. (5) are plotted
with the solid line of the corresponding color. The limiting
case N →∞ is plotted with the black line.
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The maximum value of |ψ| in the local PS is then 3a0
and is determined up to O(ε1/5). The expression for the
phase of the asymptotic solution at the maximum com-
pression point also coincides at leading order with the
PS’s phase but we do not present it here. We stress that
the described approximate PS solution is valid locally, in
the ε-vicinity of the point (0, ξm)

The local emergence of the PS in the evolution of a de-
caying N -soliton pulse has been experimentally observed
in [35, 36]. Importantly, the fiber optics experiments
in [35] demonstrated that the BT scenario is very robust
and can be observed for the values of ε significantly ex-
ceeding those implied by the formal asymptotic validity
of the semi-classical limit of 1-D fNLSe. Specifically, the
regularization of the gradient catastrophe by the emer-
gence of a coherent structure that can be locally fitted by
the PS was observed in [35] for ε ≈ 0.45 using high-power
pulses with a Gaussian profile and a constant phase.

The universality of the described gradient catastrophe
regularization mechanism can be illustrated as follows.
Consider the 1-D fNLSe Eq. (1) with the initial condition

ψ(0, τ) = sech(τ)eiφ/ε, φ = −µ log(cosh(τ)) (7)

for two different values of the chirp parameter µ. In the
particular case of initial data Eq. (7), coefficients found
in Eq. (5) take the following form: ξc = 1/(2 + µ), C1 =

32
√
2i

15(2+µ)9/4
, b0 =

√
µ+ 2. For µ = 0 the profile Eq. (7) is

the exact N -soliton solution of the 1-D fNLSe (Eq. (1))
with ε = 1/N . On the other hand, if µ ≥ 2 the profile
Eq. (7) is completely solitonless [48].

The spatiotemporal diagrams and the profiles of the
amplitude |ψ| and phase φ at the maximum compres-
sion point for the evolution of the above two profiles are
shown in Fig. 1. In both cases the simulations were per-
formed with ε = 1/10 and the value of µ in the sec-
ond set of simulations was taken to be equal 2 ensuring
the absence of the discrete spectrum. In order to verify
the solitonic content of the initial data, the IST spec-
trum of the initial pulse was evaluated numerically us-
ing the Fourier collocation method [49] (see the Methods
section). The discrete part of the IST spectrum of the
N -soliton profile is represented by N discrete eigenval-
ues (and their conjugates) in the complex λ-plane, lo-
cated equidistantly along the imaginary axis (Fig. 1(b)
inset). The IST spectrum of the solitonless initial condi-
tion (Eq. (7) with µ = 2) contains no discrete part, see
Fig. 1(e) inset. We note that the IST spectra of Gaussian
pulses used in the optical experiments of [35] contained
both discrete and continuous spectrum parts.

One can see that, although the solitonic content of
the two initial conditions is completely different, in both
cases the pulse experiences the gradient catastrophe and
the coherent structure that emerges at the maximum
compression point has the signature amplitude and phase
profiles of the PS. As predicted by Eq. (5), the maxi-

mum compression point is shifted further in the presence
of the solitonic content. After the first spike we observe
in Fig. 1(a) the generation of a growing chain of large-
amplitude breathers. The qualitative evolution of the
solitonless pulse close to the PS regularization point is
similar but the long time behaviour is very different, dis-
playing in the ξ,τ -plane an expanding cone filled with
small-amplitude dispersive waves, see Fig. 1(d).

The predicted accuracy of the PS emergence position
by Eq. (5) is examined by numerically simulating Eq. (1)
for a series of initial conditions in the form of Eq. (7)
with different values of the chirp parameter µ ∈ [−1, 2].
The results are displayed in Fig. 2, where solid lines show
the estimates of the PS emergence distance according to
Eq. (5) for 5, 10 and 20 solitons at µ = 0 (orange, blue
and red colors, respectively) and the asymptotic case of
infinite number of solitons is shown by the black curve.
The points depict the position of PS emergence found in
numerical simulations of Eq. (1) (color correspondence is
preserved). Fig. 2 demonstrates the rapid convergence of
the theoretical estimates towards the results of 1-D fNLSe
simulations with increasing number of solitons in the ini-
tial condition and, importantly, their ability to provide a
sufficiently accurate prediction even for low soliton num-
bers, i.e. way beyond the semiclassical zero-dispersion
limit considered in the derivation of Eq. (5).

The above examples clearly show that, despite the
widely accepted paradigm of the ‘solitonic’ nature of the
PS, the presence of the discrete IST spectrum in the ini-
tial data is not a pre-requisite for the PS emergence. One
can also conclude that the emergence of the local PS as
a result of N -soliton self-compression observed in [35] is
just a particular case of the general regularization mech-
anism described by the BT semiclassical theory.

Experimental results and comparison with
numerical simulations

Experimental parameters and conditions

We investigate the influence of the soliton content on
the emergence of RW in the 120 m long water tank with
a water depth h = 3 m. To measure the surface wave
elevation along the tank, 20 resistive probes have been
installed equidistantly with the separation of 6 m. A
schematic representation of the water tank is shown is
Fig. 3. Detailed description of the experimental platform
as well as the mode of operation can be found in [38,
40]. All the experiments are performed in the deep-water
regime with a typical value of kh =15.8, where k = 2π/λ
is the wavenumber. The central frequency of the wave
packet is set to 1.15 Hz. Additional information can be
found in the Methods section.
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6 m

120 m

FIG. 3. Schematic representation of the water tank. Experimental investigations are provided in the water tank of
the Hydrodynamics, Energetics, and Atmospheric Environment Lab (LHEEA) at Ecole Centrale de Nantes (France). Wave
elevation is measured by a set of equidistantly-spaced probes over 120 m of the water tank length (the total length is 148 m),
at every 6 m. It is equipped with a parabolic shaped absorbing beach (≈8 m long). With the addition of pool lanes arranged
in a W pattern in front of the beach, the measured amplitude reflection coefficient is as low as 1%.

a

b

c

FIG. 4. Initial conditions for experiments and simulations. Four columns correspond to the values of µ = -0.5, 0, 1 and
2, respectively. (a) Comparison of the wave packets measured at the first probe located at 6 m from the wave maker (black
line), corresponding envelope (bold black line), and simulations of Dysthe equation (red line) starting from the exact analytical
expression. (b) Corresponding phase. (c) Discrete IST spectra of signals measured at the first probe (black crosses), analytical
solution (blue dots) and result of simulations of Dysthe equation at 6 m of propagation (red dots).

Initial conditions

We first verify the applicability of the semi-classical
theory to the conditions of our water wave experiment.
We generate a sequence of wave packets having the same
(3 solitons) envelope but different values of the chirp pa-
rameter µ according to Eq. (7). The parameter µ is varied
from -0.8 (the value corresponding to the PS emergence
point way beyond the water tank length) to 2 (completely
solitonless case). Examples of the initial state measured
at the 1st probe (6 m from the wave maker) are plotted in
Fig. 4(a) (black line for the wave elevation). Bold black
line shows the calculated envelope of the wave packet by
using the Hilbert transform (see Methods section). Four
columns of Fig. 4 correspond to four values of µ: -0.5, 0,

1, and 2. Red line shows the numerical simulations of the
Dysthe equation at 6 m distance started from purely nu-
merical initial conditions. Fig. 4(b) depicts correspond-
ing phase profiles.

The precise control over the IST spectrum is essential
for the experimental verification of the result of BT [34].
We analyzed the solitonic content of the initial conditions
using the Fourier-collocation method [see Fig. 4 (c)]. As
proposed in [41, 42], we solve here the direct stuttering
problem and use the discrete part of the IST spectrum
for characterizing the solitonic content of the structures
under investigation. The discrete IST spectra of the wa-
ter waves are depicted by black crosses, the numerical
data at z = 0 m by blue dots and at z = 6 m by red
dots. We consider the initial conditions having exactly
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FIG. 5. Spatiotemporal evolution. Comparison of the experimental data with numerical simulations of exact 3
soliton solution in Dysthe and NLS models. (a) spatiotemporal diagram retrieved from the experimental measurements
using the Hilbert transform. (b) Simulations of Dysthe equation starting. (c) Simulations of 1-D fNLSe. Exact analytical
solution is taken as initial data for the numerical simulations.

b

a

FIG. 6. Cross-section of Fig. 5 at the maximum compression points. (a) Measured envelope of water waves (bold
black) with underlying carrying wave (black) and simulations of the Dysthe equation (red). (b) Corresponding phase. The
positions of maximum compression can be different for numerical simulations and experiment. From left to right the values of
µ are -0.5, 0, 1 and 2.

three solitons if the parameter µ is set to zero as can be
seen from the Fig. 4(c), second column. According to
the theoretical prediction [34, 48], the solitonic content
of the pulse changes when the value of the chirp param-
eter µ is being varied. In particular, when µ increases
the imaginary part of the discrete eigenvalues decreases
until the point when the initial conditions become com-
pletely solitonless. This occurs for values of µ ≥ 2. Also,
from the IST spectra shown in Fig. 4 it follows that the
nonlinear propagation over z = 6 m does not exhibit
significant deviation from the integrable case. However,

the IST spectra corresponding to µ = 2 already show
a deviation from isospectrality due to the presence of
the higher-order nonlinear terms in the governing non-
integrable (Dysthe) equation.

Nonlinear evolution

Nonlinear wave evolution from the initial conditions
discussed in the previous section is shown in spatiotempo-
ral diagrams of |A(z, t)|, where A is the complex wave en-
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velope (see Fig. 5). We compare three cases: water tank
experiments [plots (a)], simulations of the Dysthe equa-
tions [plots (b)] and simulations of the 1-D fNLSe [plots
(c)] for four values of the chirp parameter µ = −0.5, 0, 1
and 2. The experimental data confirms that the max-
imum compression point can be easily manipulated by
adjusting the value of µ. The first column corresponding
to µ = −0.5, shows a smooth evolution of the wave packet
resulting in the emergence of a localized structure near
the edge of the water tank. By increasing the chirp pa-
rameter, we observe that the PS maximum compression
occurs closer to the wavemaker position while the tempo-
ral profile of the local PS packet loses its initial symmetry.
In the spatiotemporal diagram corresponding to µ = 1,
the coherent structures following the maximum compres-
sion point (propagation distance ≈ 72 m) resemble the
localized spikes described in [34] despite the broken sym-
metry. In the solitonless case (µ = 2), the compression
point is found as close as 30 m from the wavemaker, and
the subsequent spatiotemporal evolution is confined to
an asymmetric cone.

The experimental data is found to be in an outstand-
ing agreement with numerical simulations of the Dysthe
equation [see Fig. 5(a) and (b)]. The simulations capture
the entire spatiotemporal behaviour including small nu-
ances related to the effect of the higher-order nonlinear
terms. In order to take into account the effect of finite
depth, we include a corresponding coefficient in the simu-
lated model (see Methods section and Appendix in [40]).
The evolution of both experimental and simulated signals
exhibits the dispersive regularization of gradient catas-
trophe by the emergence of a ‘tilted’ local PS-like struc-
ture which follows from the similarity with the corre-
sponding 1-D fNLS model dynamics [Fig. 5(c)] where
the presence of the local PS is a verified fact [35, 50].
The asymmetric shape of the emerging PS-like structure,
which has been observed in different hydrodynamic mod-
els [51], is related to the local spectral red-shift which is
similar to the effect of Raman scattering in nonlinear
fiber optics where the asymmetry of the local PSs has
been observed as well, usually in the context of super-
continuum generation [52]. This also follows from the
plots of cross-section at the maximum compression point
depicted in Fig. 6. The envelopes of both experimen-
tal and simulated signals resemble an asymmetric local
PS profile. By increasing the chirp parameter µ, we ob-
served further deviation form the PS shape due to the in-
creasing role of the amplitude-sensitive higher-order non-
linear effects. Indeed, higher values of µ correspond to
the increased pulse amplitude at the gradient catastro-
phe point, which plays a role of the effective PS back-
ground [34, 35]. The amplitude of the PS (according to
Eq. (6)) is exactly three times the background value.

We provide a systematic comparison of the dependence
of the local PS-like structures emergence position on the
value of the chirp parameter µ (solid line Fig. 7). A

Experiment

FIG. 7. Dependence of the Peregrine soliton emer-
gence distance on the initial chirp µ. Each horizontal
gray line represents the position of the probe in the water
tank, the black dashed line shows the maximum propaga-
tion distance available in the experiments. The positions of
the maximum compression point measured experimentally are
shown by the green dots with the error bar which corresponds
to the distance between probes. It is compared with the sim-
ulation of the exact 3 solitons solution in the 1-D fNLSe (blue
dots) and the Dysthe equation (orange dots). The prediction
according to Eq. (5) is plotted with the solid red line.

comparison between the data obtained in experiments,
simulations of both 1-D fNLS and Dysthe equation, and
prediction form the semi-classical theory for ε = 1/3 are
shown in Fig. 7. Semi-classical analysis, despite being
derived in the zero-dispersion limit, predicts the result of
experiments for high values of µ. Moreover, all the data
presented in Fig. 7 demonstrates the same tendency. As
followed from spatiotemporal diagrams (Fig. 5), numer-
ical simulations of the Dysthe equation capture the wa-
ter wave dynamics. Indeed, corresponding data depicted
by orange crosses and greed dots (green ticks indicate
a minimum error value related to the distance between
the probes) respectively, demonstrate a good agreement
along all the values of µ. Experimental data at values of
µ < −0.5 are plotted at z = 120 m which indicates that
the compression point occurs at distances larger than the
length of the water tank.

IST spectra evolution

When the 1-D fNLSe is employed for the simulation of
nonlinear wave propagation, the global IST spectrum is
preserved. However, following the results of the compari-
son with the experimental data (Fig. 5), it becomes clear
that the higher-order nonlinear effects must be taken
into account in order to fully capture the complex self-
focusing dynamics affected by the local spectral down-
shift. The Dysthe equation does not belong to the class
of equations integrable by the IST technique. Nonethe-
less, having an integrable core in the form of 1-D fNLSe,
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this model can be analysed using perturbation methods
if the nonintegrable part is included with a small fac-
tor [53].

Recently, an approach which does not require the
higher-order terms to be small has been introduced.
In [41–43] and [44] it has been shown that IST spectra
can be utilized for the characterization of coherent struc-
tures in strongly dissipative nonlinear models such as
the Ginzburg-Landau equation for mode-locked lasers or
the Lugiato-Lefever equation for passive microresonators.
The essence of this approach relies on the fact that for
each moment of time the direct scattering problem –the
first step in the IST method [14] – can be solved for
the given complex envelope of the field which has to be
renormalized according to the employed convention [43].
Therefore, coherent structures that emerge in these com-
plex models can be characterized by a discrete part of
the IST spectrum and, therefore, represented by a point
in the IST plane.

We use this approach for the characterization of the ex-
perimental data and simulations of the Dysthe equation
presented in the previous section. For the demonstra-
tion, we choose two values of the chirp parameter µ=-0.8
and 0. The resulting IST spectra evolution is shown in
Fig. 8. Color gradient represents the length of the non-
linear propagation and varies from blue (z = 6 m) to
red (z = 120 m). When the chirp parameter is small
the discrete IST spectrum is almost conserved for both
the experiments and the Dysthe model [54], which sig-
nifies that the nonlinear evolution is close to the one
described by the 1-D fNLSe. Indeed, for µ = −0.8
the gradient catastrophe occurs beyond the water tank
length so the intensity-related higher-order nonlinear ef-
fects can be neglected. The spectral evolution corre-
sponding to the initial condition with µ = 0—the exact
three-soliton solution—demonstrates an intriguing be-
haviour. Namely, the two upper points of the IST spec-
trum make closed and open loops for simulations and
experiment, respectively. The term ‘closed loop’ signifies
that the discrete eigenvalues return to their initial posi-
tions while the open loop describes the situation when
two eigenvalues exchange positions during the nonlinear
evolution. The presence of a loop signifies that pass-
ing through the local PS stage, where the influence of
the higher-order nonlinear effects is significant, discrete
eigenvalues deviate from their initial position, however,
entering the intermediate stage they return to the neigh-
borhood of the origin, thereby, converging to the solution
given by the 1-D fNLSe. Investigation of the difference
between open and closed loops, as well as a possible ex-
change of the eigenvalues with the continuum, is beyond
of the scope of this manuscript and is proposed as a novel
and open problem in the nonintegrable systems evolu-
tion.

b

a

FIG. 8. Comparison of the discrete IST spectra evolu-
tion in the Dysthe model and experiments. (a) Simula-
tions of the Dysthe equation. (b) Experimental data. Colors
from blue to red correspond to the propagation over the full
water tank length.

DISCUSSION

There are four key conclusions of this article that we
would like to highlight: (i) the local emergence of the
PSs as a regularization of the gradient catastrophe can
occur in a completely solitonless case, which means that
the soliton self-compression is a particular case of this
more general process; (ii) the point of the PS emergence
can be predicted and easily manipulated by adjusting the
chirp parameter, i.e. by controlling the solitonic content
of the initial conditions; (iii) structures similar to the lo-
cal PS are observed in water tank experiments and sim-
ulations of the Dysthe model where coherent structures
undergo significant red-shift in the spectral domain due
to the influence of higher-order terms, which indicates
another degree of universality of the gradient catastro-
phe regularization process; (iv) the IST spectra analysis
of the non-integrable nonlinear wave evolution provides
insights into the deviation and the convergence to the
integrable dynamics as well as reveals unusual behaviour
of the discrete points on the IST plane.

Our experimental observations also suggest that the
dynamics of the N -soliton solutions rapidly deviates from
the one predicted by the 1-D NLS model mainly due
to the asymmetry induced by the frequency downshift.
However, the local emergence of the coherent structures
that can be seen as a modified analogue of the PS can be
clearly observed. We, therefore, believe that further ex-
tension of the approaches used for the integrable systems
to the non-integrable ones can improve our understand-
ing of the realistic mechanisms taking place in the open
sea.
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METHODS

Water tank parameters and mode of operation

Experimental investigations of the gradient catastro-
phe regularization for solitonic and solitonless initial con-
ditions have been performed in the water tank facility
of the Hydrodynamics, Energetics, and Atmospheric En-
vironment Lab (LHEEA) in Ecole Centrale de Nantes
(France).

The water tank is 148 m long (120 m are effectively
used), 5 m wide, and 3 m deep. It is equipped with a 8 m
long absorbing beach having a parabolic shape. With the
addition of pool lanes arranged in a “W” pattern in front
of the beach the measured amplitude reflection coeffi-
cient is as low as 1%. Unidirectional waves are generated
with a flap-type wave maker programmed remotely with
a computer. The setup comprises of 20 equally-spaced
resistive wave-gauges that are installed along the water
tank at distances zj = 6+(j−1)6 m, where j = 1, 2, ...20
from the wave maker located at z = 0 m. This provides
an effective measuring range of 114 m.

Models and numerical simulations

1-D fNLSe in the hydrodynamic formulation can be
expressed as follows [11]:

∂A

∂z
+
i

g

∂2A

∂t2
+ iαk30|A|2A = 0, (8)

here A is the complex envelope of the water wave, g is the
acceleration of gravity and k0 - the wave number and α =
0.93 is the finite depth correction. The general expression
for α (see e.g. [55] for the details) is stated as:

α =
cosh (4k0h) + 8− 2 tanh2 (k0h)

8 sinh4 (k0h)

− (2 cosh2 (k0h) + 0.5)2

sinh2 (2k0h)

(
k0h

tanh (k0h)
− 1

4

)
,

(9)

where h is the water tank depth.
The Dysthe equation (a higher-order nonlinear gener-

alized version of the 1-D fNLSe) is written in the following
way [39]:

∂A

∂z
+
i

g

∂2A

∂t2
+ iαk30|A|2A−

k30
ω0

[
6|A|2 ∂A

∂t
+ 2A

∂|A|2
∂t
− iAH

(
∂|A|2
∂t

)]
= 0, (10)

where H stands for the Hilbert transform defined as fol-
lows:

F(H(f(t))) = −i sign(ω)F(f(t)),

where F represents the Fourier transform and sign is the
signum function .

For the numerical simulations, we used 2048 points
simulation box to avoid numerical errors appearing due
to the periodicity in the Fourier space. z-axis has been
discredited with 1000 point. For simulations of the non-
linear Eq. (8)and (10), we use step-adaptive Dormand-
Prince Runge-Kutta method of Order 8(5,3) and ap-
proximate the dispersion operator by a pseudo-spectral
scheme.

Calculation of IST spectra

Introducing the change of variables ξ = 2εt and τ = εx
in Eq. (1), we obtain 1-D NLSe in the following form:

i
∂u

∂t
+
∂2u

∂x2
+ 2|u|2u = 0 (11)

We can define a so-called Lax pair for the 1-D fNLSe
discovered by Zakharov and Shabat [12]:

Yx =

[
−iξ u
−u∗ iξ

]
Y (12)

Yt =

[
−i2ξ2 + i|u|2 iux + 2ξu
iu∗x − 2ξu∗ i2ξ2 − i|u|2

]
Y, (13)

where ξ is the spectral parameter and Y is a vector or
matrix function. Equation (11) is a compatibility condi-
tion for Eqs. (13) and (12) (guaranties the equality of Ytx
and Yxt).

Equation (12) can be inverted to show the spectral
problem in more explicit way [49]:

[
−∂x u
u∗ ∂x

]
Y = iξY (14)

This problem can be numerically solved in the Fourier
space with a standard routine integrated into the SciPy
package of Python.

Numerically retrieved IST spectra are post-processed
in order to eliminate points not constituting the discrete
part of the spectrum, i.e. not representing the solitonic
content of the analysed signal. This is realized by choos-
ing a threshold on the imaginary axis of the IST spec-
trum (eigenvalues of the spectral problem represented
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by Eq. (14)) and keeping only the eigenvalues that ex-
ceed the value. The threshold can be found empirically
by changing the box discretization which affects non-
representative part of the spectrum while keeping the ac-
tual IST spectrum unchanged within a reasonable range
of parameters.
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† École Centrale de Nantes, LHEEA, UMR 6598 CNRS,
F-44 321 Nantes, France

‡ Department of Mathematics, Physics and Electrical
Engineering, Northumbria University, Newcastle upon
Tyne, NE1 8ST, United Kingdom

§ Department of Mathematics, University of Central
Florida, Orlando, Florida, 32816, USA
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Chapter 4

Bidirectional soliton gas in dispersive

hydrodynamics

4.1 Outline of the Problem

The main motivation for this work was the experimental realisation of rarefied bidirectional soliton

gases in a shallow water tank [51, 143]. The bidirectional shallow water wave dynamics can be

modelled by the Kaup-Boussinesq (KB) system [144]:

ηT + (ηw)X = −1

3
wXXX , wT + wwX + ηX = 0, (4.1)

where η is the surface wave elevation and w the depth-mean longitudinal velocity. The KB equa-

tion has two families of soliton solution that we denote in the following as: left-propagating soli-

tons and right-propagating solitons. Note that “right” and “left” propagating solitons is not an

adequate terminology to define the soliton family since a right-propagating soliton can have a

negative velocity after a Galilean boost. Besides we show that the transport velocity of a soliton

is affected by collisions with other solitons, and a right-propagating soliton could “effectively”

propagate to the left after multiple collisions in a soliton gas. A different definition is used in

the article to rigorously identify the two different families of soliton denoted (−) and (+): in the

reference frame chosen in (4.1), the (−) family coincides with left-propagating soliton solution

and the (+) family coincides with right-propagating soliton solution, and we will choose the phe-
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nomenological terminology for simplicity; note that this is also the case for the soliton solutions

of the equation (4.3).

The nonlinear change of variables

η = ρ+
1

2

(
u+

ρx
2ρ

)

x

, w = v +
ρx
2ρ
, X =

2√
3
x, T =

2√
3
t, (4.2)

transforms the KB system into the so-called resonant NLS equation (rNLSE) :

ρt + (ρv)x = 0, (ρv)t +
(
ρv2 + P (ρ)

)
x

= a(ρ(ln ρ)xx)x, (4.3)

where a = −1. The link between these two systems is surprising as the rNLSE has been origi-

nally derived in magneto-hydrodynamics of cold collisionless plasma, see for instance [145]. As a

result the KB soliton gas dynamics maps to the rNLSE soliton gas dynamics. We chose to present

the results using the rNLSE rather than the KB equation since they could be easily compared to

another well-established bidirectional wave model: the defocusing NLS equation (dNLSE). The

dNLSE can be written in the form (4.3) with a = +1, and can be seen as the positive dispersion

counterpart (a > 0) of the rNLSE. Note that the rNLSE and the dNLSE (together with the fNLSE)

belong to the more general family of integrable Eulerian bidirectional systems (see [12]). An es-

sential difference with the fNLSE studied so far is the real nature of the IST spectrum for both the

dNLSE and the rNLSE. In that sense these equations are rather seen as bidirectional extensions of

the KdV equation which also possesses a real IST spectrum.

The aim of this work is to provide a consistent general extension of the kinetic theory initially

developed for the KdV soliton gas [49] to these physically important bidirectional systems, and

more generally to integrable bidirectional Eulerian systems. As presented in Section 1.5.3, we

have for non spatially homogeneous KdV soliton gases f ≡ f(λ, x, t)

ft + (sf)x = 0, s(λ, x, t) = s0(λ) +

∫ ∞

0
∆(λ, µ)f(µ, x, t)|s(λ, x, t)− s(µ, x, t)|dµ, (4.4)

where s0(λ) = 4λ2 is the velocity of an isolated single soliton of parameter λ and ∆(λ, µ) =

sgn(λ−µ)
λ ln |(λ− µ)/(λ+ µ)| the expression for the phase (position) shift of a λ-soliton in a two-
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soliton interaction with a µ-soliton. Contrarily to Section 1.5.3, ∆(λ, µ) (and the phase-shift

defined) is defined for all sign of λ − µ. The heuristic method proposed in [49], and used in our

work, relies on one important observation that the kinetic description of the gas only depends on

the phase-shift relation, or phase-shift kernel, for pairwise collisions. Although this has be proven

for only one additional system [53], the successful comparison between analytical predictions and

numerical results for dNLSE and rNLSE soliton gases supports this conjecture.

Before introducing a similar description for bidirectional gases, one needs to discuss the different

types of soliton pairwise collisions in the bidirectional systems. As written above, we suppose

for simplicity that (−) denotes the left-propagating solitons family and (+) the right-propagating

solitons family. Both dNLSE and rNLSE soliton solutions correspond to single peak pulses of the

field ρ(x, t), propagating on a constant background ρ = 1. The dNLSE soliton is commonly called

dark soliton and corresponds to a depletion of the field ρ(x, t), while the rNLSE soliton is called

anti-dark soliton and corresponds to an augmentation of the field ρ(x, t), cf. Figure 2 of the paper.

We distinguish two types of the pairwise collisions occurring in bidirectional systems:

• overtaking collisions involving solitons belonging to the same family (solitons propagating

in the same direction) characterised by the position shifts ∆++(λ, µ) and ∆−−(λ, µ),

• head-on collisions between solitons of different kind, (solitons propagating in opposite di-

rections), characterised by the position shifts ∆+−(λ, µ) and ∆−+(λ, µ).

For instance ∆−+(λ, µ) is the position shift of a soliton of parameter λ propagating to the left

(−) in a collision with a soliton of parameter µ propagating to the right (+). We qualify the

bidirectional soliton gas “isotropic” if the position shifts for the overtaking and head-on collisions

between λ and µ-solitons satisfy the following sign conditions:

sgn[∆++(λ, µ)] = sgn[∆+−(λ, µ)], sgn[∆−−(λ, µ)] = sgn[∆−+(λ, µ)]. (4.5)

i.e. the λ-soliton experiences a shift of a certain sign, say shift forward, irrespectively of the type

of the collision (i.e. the family of the µ-soliton). If the conditions in (4.5) are not satisfied, the

sign of the phase shift depends on the type of the collision and we call the corresponding soliton

gas “anisotropic”. The phase-shift expressions for the dNLSE and the rNLSE equations are given

respectively in equations (11) and (17) of the paper. Figure 1 clearly illustrates that the dNLSE
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soliton gas is isotropic whereas the rNLSE soliton gas is anisotropic. Thus Eq. (4.3) provides a

prototypical example to investigate bidirectional soliton gases, with an isotropic regime if a = +1

(dNLSE) and an anisotropic regime if a = −1 (rNLSE).

4.2 Summary of Results and Outlook

This work appears in the publication

• T. Congy, G. El and G. Roberti, “Soliton gas in bidirectional dispersive hydrodynamics”,

Phys. Rev. E, 103:042201, 2021.

We can construct the kinetic description for soliton gases of dNLSE and rNLSE systems (and

more generally integrable Eulerian dispersive hydrodynamic equations). We introduce two sep-

arate DOS’s: f−(λ, x, t) for the population of left-propagating solitons and f+(λ, x, t) for the

population of right-propagating solitons. For the dNLSE the spectral support of f− is (−1, 0]

and the spectral support of f+ is [0, 1): the two supports intersect at λ = 0 corresponding to the

zero-velocity dark soliton. For the rNLSE the spectral support of f− is (−∞,−1) and the spectral

support of f+ is (1,∞): the two supports are disjoint and there is no zero-velocity solution. The

isospectrality of integrable evolution implies now two separate conservation laws:

(f−)t + (s−f−)x = 0, (f+)t + (s+f+)x = 0, (4.6)

where s−(λ, x, t) and s+(λ, x, t) are the transport velocities associated with the motion of (−)

solitons and (+) solitons respectively. We derive the equations of state for s± using the direct

phenomenological approach presented for the KdV soliton gas: s±(λ, x, t) is identified as the

velocity of a trial λ-soliton of the gas. Let’s consider a tracer λ-soliton propagating to the right

(+ family), and let’s compute its displacement in a gas over a time interval dt sufficiently large to

incorporate a large number of collisions, but sufficiently small to ensure that the spatio-temporal

field f±(λ, x, t) is stationary over dt and homogeneous on a typical spatial scale c±(λ)dt. Having

this in mind, we drop the (x, t)-dependence for convenience. The displacement is given by two

distinct contributions:

• each overtaking collision with a right-propagating µ-soliton shifts the λ-soliton by the dis-
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tance ∆++(λ, µ). f+(µ)|s+(λ)− s+(µ)|dt is the average number of such collisions during

the time dt, and the resulting displacement of the λ-soliton is given by
∫

∆++(λ, µ)f+(µ)|s+(λ)−

s+(µ)|dt dµ where the integration is performed over the spectral support of f+(λ).

• Each head-on collision with a left-propagating µ-soliton shifts the λ-soliton by ∆+−(λ, µ).

f−(µ)|s+(λ)−s−(µ)|dt is the average number of such collisions during the time dt, and the

resulting displacement of the λ-soliton is given by
∫

∆+−(λ, µ)f−(µ)|s+(λ)−s−(µ)|dt dµ

where the integration is now performed over the spectral support of f−(λ).

Equating the total displacements of the right-propagating λ-solitons to s+(λ)dt, we obtain the

second component of the system:

s−(λ) = c−(λ) +

∫
∆−−(λ, µ)f−(µ)|s−(λ)− s−(µ)|dµ+

∫
∆−+(λ, µ)f+(µ)|s−(λ)− s+(µ)|dµ,

s+(λ) = c+(λ) +

∫
∆++(λ, µ)f+(µ)|s+(λ)− s+(µ)|dµ+

∫
∆+−(λ, µ)f−(µ)|s+(λ)− s−(µ)|dµ.

(4.7)

The first component of (4.7) is obtained by considering a left-propagating λ-soliton and using a

similar procedure, and the equation of state (4.7) of a bidirectional gas corresponds in general to a

two coupled linear system of integral equations.

Note that the supports of f− and f+ for the dNLSE soliton gas form a simply connected set

(−1, 0]∪[0, 1) = (−1, 1), and since the gas is isotropic, the distinction between the left- and right-

propagating solitons becomes unnecessary. Thus the kinetic equation (4.6),(4.7) for bidirectional

dNLSE soliton gas is naturally reduced to a unidirectional gas equation similar to (4.4) for a single

DOS f(λ) defined on the set (−1, 1):

f(λ) =





f−(λ), −1 < λ ≤ 0 (left-propagating soliton),

f+(λ), 0 ≤ λ < +1 (right-propagating soliton).
(4.8)

The dimension of the system (4.7) does not depend on the bidirectional nature of the system but

rather on the anisotropic nature of their interaction and the support of their IST spectrum.

The DOS f(λ) (or f±(λ) in the anisotropic case) represents a comprehensive spectral characteris-
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tics that determines all statistical parameters of the nonlinear random wave field (ρ(x, t), u(x, t))

in a soliton gas. The most obvious set of such statistical parameters are the ensemble averages of

the conserved quantities. For instance the ensemble-average 〈η〉 in the case of a KB soliton gas

corresponds to the average surface wave elevation. We propose in this work a simple heuristic

approach that enables one to link the spectral DOS of a soliton gas with the ensemble averages

of conserved quantities of the integrable system (4.3). As an illustration let’s consider the first

conserved quantity of the dNLSE: ρ(x, t).

We consider here a homogeneous soliton gas, i.e. a gas whose statistical properties, particularly

the DOS, do not depend on x, t. The generalisation to a “slowly modulated” soliton gas described

by f(λ, x, t) is trivial and explained in the paper. The proposed approach is based on the natu-

ral assumption that the nonlinear wave field in a homogeneous soliton gas represents an ergodic

random process, both in x and t. The ergodicity property implies that ensemble-averages in the

soliton gas, such as 〈ρ(x, t)〉, can be replaced by the corresponding spatial averages:

〈ρ〉 = 1 + lim
L→∞

I

2L
, I =

∫ x+L

x−L
(ρ(y, t)− 1)dy, (4.9)

for a single representative realisation of soliton gas; for computational convenience we substract

the background ρ = 1 from the field ρ(y, t). The field ρ(y, t) for y ∈ (x−L, x+L) (and L� 1)

can be approximated by a N -soliton solution of the dNLSE with N � 1. Using the conservation

in time of the quantity
∫
ρdx, we show that the integral I can be approximated by the sum:

I ∼
∑

i

(∫ +∞

−∞
(ρs(y;λi)− 1)dy

)
=
∑

i

−2
√

1− λ2
i , (4.10)

where λi are the spectral parameters of the N -soliton solution and ρs the single-soliton solution;

the second equality is obtained by substituting the expression of the dark soliton solution in the

integral. In other words, the integral of the N -soliton over the interval (x − L, x + L) is equal

to the sum of the integral of its constituent
∫
ρs(y;λ)dy. By definition the spectral parameters

λi are distributed by the density 2Lf(λ). Taking the continuous limit
∑

i →
∫ +1
−1 2Lf(λ)dλ we

obtain:

〈ρ(x, t)〉 = 1−
∫ +1

−1
2
√

1− λ2f−(λ)dλ. (4.11)

98



CHAPTER 4. BIDIRECTIONAL SOLITON GAS IN DISPERSIVE HYDRODYNAMICS

The heuristic method presented here easily generalises to other conserved quantities of the dNLSE

and the rNLSE, as shown in the paper. This method only requires to integrate the single-soliton

solution and thus can be readily applied to any integrable dispersive hydrodynamics systems sup-

porting the soliton resolution scenario. The formula (4.11) is then used to track the dynamics of

the DOS numerically.

Our ability to solve the integral equation of state in (4.4) or (4.7) is very limited, and strongly de-

pends on the particular form of the phase-shift integral kernel. We show in Section 1.5.3 that the

integral equation of state can be solved by discretising the DOS f(λ, x, t) or f±(λ, x, t) with re-

spect to the soliton spectral parameter λ. Let’s consider for instance the simpler case of the dNLSE

soliton gas, and suppose that it is composed of M distinct spectral components of parameter ζi:

f(λ, x, t) =

M∑

i=1

wi(x, t)δ(λ− ζi), (4.12)

where δ is the delta-function distribution. The ansatz (4.12) transforms f(λ, x, t) into a M -

dimensional vector w = (w1, . . . , wn). As described in Section 1.5.3, (4.4) for the dNLSE soliton

gas reduces to M hydrodynamic (quasi-linear) conservation laws. The expression of the moment

〈ρ〉 also simplifies and reads:

〈ρ(x, t)〉 = 1−
M∑

i=1

2
√

1− ζ2
i wi(x, t). (4.13)

If similar expressions are known for M − 1 other conserved quantities qi (using the heuristic

approach presented above) one can write:

〈q〉 = K(ζi)w, q = (q1 = ρ, q2 = u, . . . , qM ), (4.14)

where K is a M × M matrix that only depends on ζi’s. Ensemble-averages q can be easily

computed numerically, and such a method is used in our work to determine the numerical DOS

for dNLSE soliton gases w = K(ζi)
−1q.

The validity of the kinetic description has been tested by solving, numerically and analytically,
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the Riemann problem for the kinetic equation (4.4) or (4.6),(4.7). The problem describes the

interaction dynamics of two soliton gases prepared in the respective uniform states wL ∈ RM and

wR ∈ RM and initially separated:

w(x, 0) =





wL, x < 0,

wR, x ≥ 0.

(4.15)

The spectral distribution (4.15) corresponds to the soliton gas “shock tube” problem, an analogue

of the standard shock tube problem of classical gas dynamics. We show that the solution of the

Riemann problem is composed of M + 1 constant states, separated by M contact discontinuities,

satisfying appropriate Rankine-Hugoniot conditions, and propagating at the transport velocities si.

The determination of the plateaus’ value is detailed in the paper. The numerical solution of the

Riemann problem is obtained by direct simulation of the dNLSE (4.3) (a = 1). We implement

the soliton gas using the superposition method developed in [7] and summarised in Section 1.5.3.

The coefficients wL,Ri are chosen such that the soliton gas is initially in a rarefied regime. The

soliton density drastically increases in the region where the two soliton gases collide: as depicted

in Figure 4 of the paper, solitons are no longer isolated in the “colliding region” (denoted region II

in figure 4). Thus the theory developed in this work could be tested in the dense regime of soliton

gases.

Note that we generalise the results presented in this section to the anisotropic case of the rNLSE.

The analytical predictions are in very good agreement with the numerical solution of the soliton

shock tube problem, as depicted in Figures 5-9 of the paper. Although the derivation of the kinetic

equation (4.6),(4.7) for a dense bidirectional soliton gas is based on the phenomenological method

of [49], it could be formally justified using the thermodynamic limit of the modulation equations

that has been developed for the KdV and fNLSE in [48, 53]. Besides this work highlights the im-

portance of the anisotropic nature of a bidirectional system in the gas dynamics. This is illustrated

by the Figure 6 displaying the ensemble averages 〈ρ〉 for the following rNLSE two-component gas

shock tube problem: in the case (a) the soliton gas is only composed of right-propagating solitons

and only overtaking collisions occur, while in the case (b) one component is right-propagating and
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the other is left-propagating and only head-on collisions occur. The numerical results (solid black

line) and analytical results (dash-dotted red line) are compared to a non-interacting hypothetical

case (dashed blue line) where ∆±± = ∆±∓ ≡ 0: the effects of the head-on and overtaking inter-

actions on the gas dynamics drastically differ due to the violation of the isotropy condition (4.5).

Note that contact discontinuities have a finite slope in the plot of 〈ρ〉 due to the method for averag-

ing ρ that combines both ensemble- and spatial-averaging. Besides, as noticed in the bidirectional

shallow water experiment [51, 143], the impact of overtaking interactions on the gas dynamics is

much stronger than the impact of head-on interactions which could be neglected in a first approx-

imation.

This work notably proposes new extensions of the kinetic theory and averaging methods to:

• a large class of bidirectional integrable systems,

• non-integrable systems supporting solitary wave solutions that exhibit nearly elastic colli-

sions, such as the viscous fluid conduit equation describing the dynamics of the interface

between two immiscible viscous fluids with high density and viscosity contrast ratios [146].

Another important new direction of research is the description of soliton gases in a quasi-1D

repulsive Bose-Einstein condensate (BEC) in a trapping potential, whose dynamics is governed

by the celebrated Gross-Pitaevskii equation. The Gross-Pitaevskii equation corresponds to the

dNLSE supplemented by an external potential term, and the investigation of soliton gas in BECs

could shed new light on turbulence in superfluids also called “quantum turbulence”.
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The theory of soliton gas had been previously developed for unidirectional integrable dispersive hydrodynam-
ics in which the soliton gas properties are determined by the overtaking elastic pairwise interactions between
solitons. In this paper, we extend this theory to soliton gases in bidirectional integrable Eulerian systems where
both head-on and overtaking collisions of solitons take place. We distinguish between two qualitatively different
types of bidirectional soliton gases: isotropic gases, in which the position shifts accompanying the head-on and
overtaking soliton collisions have the same sign, and anisotropic gases, in which the position shifts for head-on
and overtaking collisions have opposite signs. We construct kinetic equations for both types of bidirectional
soliton gases and solve the respective shock-tube problems for the collision of two “monochromatic” soliton
beams consisting of solitons of approximately the same amplitude and velocity. The corresponding weak
solutions of the kinetic equations consisting of differing uniform states separated by contact discontinuities
for the mean flow are constructed. Concrete examples of bidirectional Eulerian soliton gases for the defocusing
nonlinear Schrödinger (NLS) equation and the resonant NLS equation are considered. The kinetic equation
of the resonant NLS soliton gas is shown to be equivalent to that of the shallow-water bidirectional soliton
gas described by the Kaup-Boussinesq equations. The analytical results for shock-tube Riemann problems for
bidirectional soliton gases are shown to be in excellent agreement with direct numerical simulations.

DOI: 10.1103/PhysRevE.103.042201

I. INTRODUCTION

Dispersive hydrodynamics modeled by hyperbolic conser-
vation laws regularized by conservative, dispersive correc-
tions describe various nonlinear wave structures that include
solitary waves (solitons), dispersive shock waves (DSWs), rar-
efaction waves, and their interactions [1]. A particular feature
of dispersive hydrodynamics is the intrinsic scale separa-
tion, often providing a qualitatively new perspective on some
classical mathematical and fluid dynamical settings (such as
Riemann problems or flows past topography), but also reveal-
ing novel phenomena such as hydrodynamic soliton tunneling
[2,3] and expansion shocks [4].

On a small-scale, microscopic level, dispersive hydrody-
namics typically involve coherent nonlinear wave structures
such as solitons and rapidly oscillating periodic waves, while
the large-scale, macroscopic coherent features are represented
by slow modulations of these periodic waves or soliton trains.
The prominent example of a dispersive hydrodynamic struc-
ture exhibiting such two-scale coherence and persisting in
integrable and nonintegrable systems is DSW, the dispersive
analog of a classical, viscous shock wave [5].

There is another class of problems in dispersive hy-
drodynamics, which involve the wave structures exhibiting
coherence at a microscopic scale, while being macroscopi-
cally incoherent, in the sense that the values of the wave field
at two points separated by a distance much larger than the
intrinsic dispersive length of the system (the soliton width),

*Corresponding author: thibault.congy@northumbria.ac.uk

are not dynamically related. These structures can be broadly
viewed as dispersive-hydrodynamic analogs of turbulence,
and the qualitative and quantitative properties of such a
conservative turbulence strongly depend on the integrability
properties of the underlying microscopic dynamics. In [6]
Zakharov introduced the notion of “integrable turbulence”
for random nonlinear wave fields governed by integrable
equations such as the Korteweg–de Vries (KdV) or nonlin-
ear Schrödinger (NLS) equations. The source of randomness
in integrable turbulence is typically related to some sort of
stochastic initial or boundary conditions, although one can en-
visage dynamical mechanisms of the effective randomization
of the wave field [7,8]. The theoretical perspective of inte-
grable turbulence has turned out to be very fruitful, providing
new insights into some long-standing problems of nonlinear
physics related, e.g., to modulational instability and the for-
mation of rogue waves [9–11]. Indeed, integrable turbulence
proved a promising theoretical framework for the interpreta-
tion of experimental and observational data in fiber optics and
fluid dynamics [12].

Solitons, viewed as stable “wave particles” of macro-
scopic dispersive-hydrodynamic structures, can form large
disordered, statistical ensembles, strikingly different from the
macroscopically coherent DSWs, and calling for the analogy
with gases of classical or quantum particles. Such statistical
soliton ensembles, or “soliton gases,” can be naturally gen-
erated from both nonvanishing deterministic (e.g., periodic
or quasiperiodic) and random initial conditions due to the
processes of soliton fissioning [13,14] or modulation insta-
bility [15]. The ubiquity of solitons in applications and the
integrable nature of the underlying wave dynamics makes
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soliton gases a particularly attractive object for modeling the
complex nonlinear wave phenomena occurring in the ocean
and in high-intensity incoherent light propagation through op-
tical materials (see [16], and references therein). The random
nonlinear wave field in a soliton gas represents a particular
case of integrable turbulence [6].

Within the inverse scattering transform (IST) formalism,
each soliton is characterized by a discrete eigenvalue λ j of the
spectrum of the linear operator associated with the integrable
nonlinear evolution equation. There are two basic aspects of
the microscopic, soliton dynamics that determine the macro-
scopic, statistical properties of integrable soliton gases and
turbulence: (i) isospectrality of integrable evolution resulting
in the preservation of soliton eigenvalues; and (ii) pairwise
elastic collisions accompanied by phase shifts (or position
shifts) expressed in terms of the respective spectral parameters
of the interacting solitons.

The macroscopic properties of a soliton gas are determined
by the spectral characteristics called the density of states
(DOS) f (λ) > 0, defined such that the number of solitons
found at the moment of time t in the element [λ, λ + dλ] ×
[x, x + dx] of the phase space is f (λ)dλ dx (assuming λ ∈ R,
the generalization to complex spectrum being straightforward
[17]). DOS represents the definitive statistical characteristics
of soliton gas distinguishing it from an arbitrary random col-
lection of solitons. The first controlled generation of soliton
gas characterized by a measurable DOS has been recently
reported in [18].

For uniform, statistically homogeneous soliton gases the
DOS depends on the spectral parameter only. For spatially
nonhomogeneous soliton gases one has f ≡ f (λ, x, t ), and
the isospectrality of integrable evolution implies the conser-
vation equation

ft + (s f )x = 0, (1)

where the transport velocity (the mean velocity of a “tracer”
soliton in a gas) s(λ, x, t ) is found from the integral equation
of state [17]

s(λ, x, t ) = c(λ) +
∫

�

�(λ,μ) f (μ, x, t )

× |s(λ, x, t ) − s(μ, x, t )|dμ. (2)

Here c(λ) is the velocity of an isolated single soliton with
the spectral parameter λ ∈ �, and the integral term describes
its modification due to collisions with other “μ solitons” in
a gas, each collision being accompanied by the position shift
�(λ,μ), often called the phase shift. The integration in (2)
is performed over the spectral support � ⊂ R of the DOS
f (λ, x, t ). If one assumes that (i) sgn[�(λ,μ)] = ±sgn(λ −
μ) and (ii) s′(λ) �= 0, the modulus sign in (2) can be removed
by introducing �(λ,μ) = sgn(λ − μ)G(λ,μ) so that one ar-
rives at the conventional form of the equation of state as in
[17,19], involving G(λ,μ) rather than �(λ,μ) as the integral
kernel. For example, for the KdV solitons one has c(λ) =
4λ2, sgn[�(λ,μ)] = +sgn(λ − μ), s′(λ) > 0, and G(λ,μ) =
λ−1 ln |(λ + μ)/(λ − μ)| (see, e.g., [20]).

The transport equation (1) for the DOS complemented by
the integral equation of state (2) comprise the kinetic equation
for soliton gas. A kinetic equation of the type (1), (2) was first

introduced in [21] for the case of rarefied, or dilute, gas of
KdV solitons, when the interaction term in the equation state
(2) represents a small correction and the soliton velocity in a
gas is found from the expression s ≈ 4λ2 + λ−1

∫ λmax

0 ln |(λ +
μ)/(λ − μ)| f (λ, x, t )[4λ2 − 4μ2]dμ, which is an approxi-
mate solution of the equation of state (2) for the KdV soliton
gas. The full kinetic equation (1), (2) for a dense soliton gas
was derived and analyzed in the context of the KdV equation
in [22,23] and the focusing NLS equation in [16,17] (in the
latter case λ ∈ C). A general mathematical analysis of the
kinetic equation (1), (2) has been undertaken in [19], which
showed that it possesses an infinite series of integrable linearly
degenerate hyperbolic reductions. Very recently the kinetic
equation (1), (2) has attracted much attention in the con-
text of generalized hydrodynamics, a hydrodynamic theory
of quantum many-body integrable systems (see [24–26], and
references therein).

In the context of dispersive hydrodynamics the kinetic
equation (1), (2) describes “unidirectional” soliton gases sup-
ported by scalar integrable equations of the form

ut + F (u)x = (D[u])x, (3)

where F (u) is the nonlinear hyperbolic flux and D[u] is a
differential (generally integrodifferential) operator, possibly
nonlinear, that gives rise to a real-valued linear dispersion
relation. The spectral single-soliton solutions to Eq. (3) are
characterized by the soliton velocity c(λ) and the phase-shift
kernel �(λ,μ) characterizing the “overtaking” two-soliton
interactions. However, the scalar integrable dispersive hydro-
dynamics of the form (3), such as the KdV, modified KdV,
Camassa-Holm, or Benjamin-Ono equations typically arise
as small-amplitude, “unidirectional” approximations of more
general Eulerian bidirectional systems (see [27])

ρt + (ρu)x = (D1[ρ, u])x,
(4)

(ρu)t + [ρu2 + P(ρ)]x = (D2[ρ, u])x,

where D1,2[ρ, u] are conservative, dispersive operators,
P(ρ) > 0 is the monotonically increasing pressure law, and
ρ and u are interpreted as a mass density and fluid ve-
locity, respectively. This class of equations generalizes the
shallow-water and isentropic gas dynamics equations while
encompassing many of the integrable dispersive hydrody-
namic models such as the Kaup-Boussinesq (KB) system [28],
the hydrodynamic form of the defocusing NLS equation [29],
or the Calogero-Sutherland system describing the dispersive
hydrodynamics of quantum many-body systems [30]. Due to
the bidirectional nature, the Eulerian dispersive hydrodynam-
ics (4) supports solitons that experience both overtaking and
head-on elastic collisions which are generally characterized
by two different phase-shift kernels �1(λ,μ) �= �2(λ,μ).
Indeed, the rarefied bidirectional shallow-water soliton gas
realized in the water tank experiments [31,32] was modeled
by the KB system [28], which exhibits qualitatively differ-
ent properties for head-on and overtaking position shifts in
the pairwise soliton collisions [33] so that the overtaking
interactions can be characterized as “strong” and the head-on
interactions as “weak.” We shall term such collisions and
the associated soliton gases “anisotropic.” On the other hand,
some bidirectional dispersive hydrodynamic systems support
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soliton solutions that exhibit “isotropic” collisions character-
ized by the same phase-shift kernel �(η,μ) for the head-on
and overtaking interactions (e.g., the defocusing NLS equa-
tion [34]).

Despite the significant recent advances of the kinetic theory
of unidirectional soliton gases, a consistent general extension
of this theory to the physically important bidirectional case
has not been available so far, and this paper is devoted to the
development of such an extension. The paper is organized as
follows. In Sec. II we present the general construction of the
kinetic equation for bidirectional soliton gas and realize it for
the cases of the defocusing nonlinear Schrödinger (DNLS)
equation and its “stable” negative dispersion counterpart, the
so-called resonant NLS (RNLS) equation, having applications
in magnetohydrodynamics of cold collisionless plasma [35],
and reducible to the KB system for shallow-water waves by
a simple change of variables. It turns out that, due to the
pairwise collisions of dark DNLS solitons being isotropic, the
bidirectional kinetic equation for the dark (gray) solitons of
the DNLS equation reduces to the unidirectional kinetic equa-
tion of the form (1), (2). Contrastingly, the soliton collisions
of antidark RNLS solitons are anisotropic, and the kinetic
equation for this case represents a pair of the kinetic equations
of the type (1), (2) with some nonlinear coupling through the
equation of state. In Sec. III we derive expressions for the
mean field in both soliton gases in terms of the spectral DOS.
To demonstrate the efficacy of the developed theory we con-
sider in Sec. IV the “shock-tube” Riemann problem describing
the collision of “monochromatic” soliton beams for both types
of bidirectional gases. The collisions are described by weak
solutions to the bidirectional kinetic equations, consisting of
a number differing constant states for the DOS, separated by
contact discontinuities for the component densities, satisfy-
ing appropriate Rankine-Hugoniot conditions. The analytical
results are shown to be in excellent agreement with direct
numerical simulations of the soliton gas shock-tube problem
for DNLS and RNLS equations.

II. KINETIC EQUATION FOR BIDIRECTIONAL
SOLITON GAS

In this section we derive the kinetic equation for in-
tegrable Eulerian dispersive hydrodynamics (4) using the
general physical construction proposed in [17] for a unidirec-
tional case. The construction uses an extension of the original
Zakharov’s phase-shift reasoning [21], which, strictly speak-
ing, is applicable only in a rarefied gas case. However, the
resulting kinetic equation (1), (2) turns out to provide the
correct description for a dense gas, which has been mathemat-
ically justified by the thermodynamic limit of the finite-gap
Whitham modulation systems for the cases of the KdV [22]
and the focusing NLS [16] equations. Our results for bidirec-
tional gas will be later supported by comparisons with direct
numerical simulations of the relevant soliton gases, justifying
the validity of the phenomenological derivation.

A. Isotropic and anisotropic bidirectional soliton gases

Suppose that the system (4) supports a family of bidirec-
tional soliton solutions that bifurcate from the two branches of

the linear wave spectrum ω = ω±(k) of (4) so that ω−(k)/k <

ω+(k)/k in the long-wavelength limit k → 0. We denote the
corresponding soliton families (ρ−

s , u−
s ) and (ρ+

s , u+
s ). Let

these soliton solutions be parametrized by a real-valued spec-
tral (IST) parameter λ so that λ ∈ �+ for the “fast” branch
and λ ∈ �− for the “slow” branch, where �± are simply con-
nected subsets of R with one intersection point at most. Let
the respective soliton velocities be c±(λ). For convenience we
assume that c′

±(λ) > 0, and c−(λ1) < c+(λ2) if λ1 ∈ �− and
λ2 ∈ �+, λ1 �= λ2. If �− ∩ �+ = {λ∗} we assume c−(λ∗) =
c+(λ∗). The above assumptions are consistent with all con-
crete examples of integrable dispersive hydrodynamics we
consider in this paper.

One can distinguish between two types of the pairwise
collisions in a bidirectional soliton gas: the overtaking colli-
sions between solitons belonging to the same spectral branch
and characterized by the position shifts �++ and �−−, re-
spectively, and the “head-on” collisions between solitons of
different branches, characterized by the position shifts �+−
and �−+. Let λ �= μ, and �±±(λ,μ) and �±∓(λ,μ) denote
the position shifts of a λ soliton due to its collision with a
μ soliton, with the first and second signs ± in the subscript
indicating the branch correspondence of the λ soliton and the
μ soliton, respectively, e.g., �−+(λ,μ) is the position shift of
a λ soliton with λ ∈ �− in a collision with a μ soliton with
μ ∈ �+.

We call the bidirectional soliton gas “isotropic” if the posi-
tion shifts for the overtaking and head-on collisions between
λ and μ solitons satisfy the following sign conditions:

sgn[�++] = sgn[�+−], sgn[�−−] = sgn[�−+], (5)

i.e., the λ soliton experiences a shift of a certain sign, say
shift forward (and the μ soliton—the shift of an opposite
sign), irrespectively of the type of the collision—overtaking or
head-on. If conditions (5) are not satisfied, i.e., the sign of the
phase shift depends on the type of the collision, we shall call
the corresponding soliton gas “anisotropic.” The difference
between isotropic and anisotropic collisions is illustrated in
Fig. 1 using concrete examples.

B. Kinetic equation for bidirectional soliton gas:
General construction

Following the construction of kinetic equation for unidi-
rectional soliton gas outlined in the Introduction, we now
consider bidirectional soliton gases for integrable Eulerian
equations (4). We introduce two separate DOSs f−(λ, x, t )
and f+(λ, x, t ) for the populations of solitons whose spectral
parameters belong to the slow (�−) and fast (�+) branches
of the spectral set �, respectively. The isospectrality of inte-
grable evolution implies now two separate conservation laws:

( f−)t + (s− f−)x = 0, ( f+)t + (s+ f+)x = 0, (6)

where s−(λ, x, t ) and s+(λ, x, t ) are the transport velocities
associated with the motion of slow solitons and fast solitons
associated with �− and �+ branches, respectively. We derive
the equations of state for s± using the direct phenomenolog-
ical approach proposed [17]: we identify s±(λ, x, t ) as the
velocity of a tracer λ soliton in the gas. Consider, for instance,
a tracer λ soliton from the slow branch, λ ∈ �−, and compute
its displacement in a gas over the “mesoscopic” time interval
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FIG. 1. Variation of the phase shifts in the isotropic (a) and
anisotropic (b) interactions of solitons with spectral parameters λ and
μ. The λ soliton belongs to the “+” branch with λ = 1/2 (a) and
λ = 3/2 (b). Solid lines represent the variation of �++ and dashed
lines the variation of �+−.

dt , sufficiently large to incorporate a large number of colli-
sions, but sufficiently small to ensure that the spatiotemporal
field f±(λ, x, t ) is stationary over dt and homogeneous on a
typical spatial scale c±(λ)dt . Having this in mind, we drop
the (x, t ) dependence for convenience. Each overtaking col-
lision with a soliton of the same branch μ ∈ �− shifts the
λ soliton by the distance �−−(λ,μ). Thus the displacement
of the λ soliton over the time dt due to the overtaking colli-
sions is given by

∫
�−

�−−(λ,μ) f−(μ)|s−(λ) − s−(μ)|dt dμ

where f−(μ)|s−(λ) − s−(μ)|dt is the average number of col-
lisions with encountered μ solitons (cf. [17]). Additionally,
each head-on collision with a fast soliton μ ∈ �+ shifts the
slow λ soliton with λ ∈ �− by �−+(λ,μ), and the resulting
displacement after a time dt is

∫
�+

�−+(λ,μ) f+(μ)|s+(λ) −
s−(μ)|dt dμ. A similar consideration is applied to the fast
soliton branch, λ ∈ �+, in the gas. Equating the total displace-
ments of the slow and fast λ solitons to s−(λ)dt and s+(λ)dt ,
respectively, we obtain the equation of state of a bidirectional
gas in the form of two coupled linear integral equations:

s−(λ) = c−(λ) +
∫

�−
�−−(λ,μ) f−(μ)|s−(λ) − s−(μ)|dμ

+
∫

�+
�−+(λ,μ) f+(μ)|s−(λ) − s+(μ)|dμ,

s+(λ) = c+(λ) +
∫

�+
�++(λ,μ) f+(μ)|s+(λ) − s+(μ)|dμ

+
∫

�−
�+−(λ,μ) f−(μ)|s+(λ) − s−(μ)|dμ, (7)

where λ ∈ �− for the first equation and λ ∈ �+ for the sec-
ond equation. If the spectral support � = �− ∪ �+ ⊂ R is a
simply connected set and the gas is isotropic, the distinction
between the fast and slow branches becomes unnecessary and
the kinetic equation (6), (7) for bidirectional soliton gas is
naturally reduced to the unidirectional gas equation (1), (2)
for a single DOS f (λ) defined on the entire set �. We will
show in Sec. IV, using concrete examples, that the dynamics
governed by the kinetic equations (1), (2) and (6), (7) is
in very good agreement with the results of direct numerical
simulations of isotropic and anisotropic bidirectional soliton
gases, respectively.

C. Kinetic equation for bidirectional soliton gas: Examples

As a representative (and physically relevant) example, we
consider the integrable Eulerian dispersive hydrodynamics

ρt + (ρu)x = 0,

(ρu)t +
(

ρu2 + ρ2

2

)
x

= σ

4
[ρ(ln ρ)xx]x,

σ = ±1. (8)

For σ = 1, system (8) is equivalent to the DNLS equation:

iψt + 1

2
ψxx − |ψ |2ψ = 0, ψ = √

ρ exp

(
i
∫

u dx

)
. (9)

The DNLS equation has a number of physical applications. In
particular, it describes the propagation of light beams through
optical fibers in the regime of normal dispersion, as well
as nonlinear matter waves in quasi-one-dimensional (quasi-
1D) repulsive Bose-Einstein condensates (BECs) (see, for
instance, [36]). Pertinent to the present context, rarefied gas
of dark solitons in quasi-1D BEC has been investigated in
[37,38].

The DNLS equation has a family of dark (or gray) spectral
soliton solutions [34]

ρ±
s = 1 − (1 − λ2)sech2[

√
1 − λ2(x − c±t )],

(10)
u±

s = λ

(
1 − 1

ρ±
s (x, t )

)
, c± = λ ∈ �±,

where �− = (−1, 0] for the slow solitons branch and �+ =
[0,+1) for the fast solitons branch; note that solutions
(ρ+

s , u+
s ) and (ρ−

s , u−
s ) have the same analytical expression.

Without loss of generality we assumed in (10) the unit den-
sity background. Typical dark soliton solutions are displayed
in Fig. 2. The position shifts in the DNLS overtaking and
head-on soliton collisions are given by the same analytical
expression �±±(λ,μ) = �±∓(λ,μ) ≡ �(λ,μ), where

�(λ,μ) = sgn(λ − μ) G1(λ,μ),

G1(λ,μ) ≡ 1

2
√

1−λ2
ln

(λ−μ)2+(
√

1−λ2+
√

1−μ2)2

(λ−μ)2+(
√

1−λ2−
√

1−μ2)2
,

(11)

for all λ,μ ∈ (−1, 1). One can verify that the soliton position
shifts given by (11) satisfy the isotropy conditions (5). The
variation of �(λ,μ) with respect to μ for a fixed λ is dis-
played in Fig. 1. One can see that the position shifts for the
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FIG. 2. Soliton solutions: solid lines represent fast branch so-
lutions (ρ+

s , u+
s ) and dashed lines slow branch solutions (ρ−

s , u−
s ).

(a) Dark soliton solutions of the DNLS equation (10) with λ =
+0.5, −0.2. (b) Antidark soliton solutions of the RNLS equation
(16) with λ = +1.3, −1.2. (c) Antidark soliton solutions of the KB
system (A3) with λ = +1.3, −1.2.

head-on and overtaking collisions lie on the same curve with
�(λ,μ) being continuous at λ = 0, the point of intersection
of �− and �+. Due to the isotropic nature of the DNLS soli-
ton interactions the coupled kinetic equation (6), (7) for the
bidirectional DNLS gas reduces to the single kinetic equation
(1) with the equation of state

s(λ, x, t ) = λ +
∫ +1

−1
G1(λ,μ) f (μ, x, t )

× [s(λ, x, t ) − s(μ, x, t )]dμ, (12)

where λ ∈ (−1, 1) and with the assumption that s′(λ) > 0;
the latter assumption is verified by comparison to numerics in
Sec. IV B. This reduction to the unidirectional case is similar

to the kinetic equation derived in [16] for the bidirectional
soliton and breather gases of the focusing NLS equation which
also exhibits isotropic soliton and breather collisions, with the
essential difference that the integration in the focusing NLS
case occurs over a compact domain in a complex plane of the
spectral parameter.

For σ = −1 the system (8) is equivalent to the so-called
RNLS equation (see, e.g., [39])

iψt + 1

2
ψxx − |ψ |2ψ = |ψ |xx

|ψ | ψ,

ψ = √
ρ exp

(
i
∫

u dx

)
. (13)

This equation, in particular, describes long magnetoacoustic
waves in a cold plasma propagating across the magnetic field
[40]. The change of variables

ρ̃ = ρ + 1

2

(
u + ρx

2ρ

)
x

, ũ = u + ρx

2ρ
,

(14)
x̃ = 2√

3
x, t̃ = 2√

3
t,

transforms the RNLS equation into the KB system [28]:

ρ̃t̃ + (ρ̃ũ)x̃ = − 1
3 ũx̃x̃x̃, ũt̃ + ũũx̃ + ρ̃x̃ = 0, (15)

describing bidirectional shallow-water waves. The KB system
has a family of antidark spectral soliton solutions, cf. [63],
which transforms into a family of antidark spectral soliton
solutions for the RNLS equation:

ρ±
s = 1 + (λ2 − 1)sech2[

√
λ2 − 1(x − c±t )],

u±
s = λ

(
1 − 1

ρ±
s (x, t )

)
, c± = λ ∈ �±. (16)

using the change of variables (14) (cf. Appendix A). Solutions
(ρ+

s , u+
s ) and (ρ−

s , u−
s ) have the same analytical expression.

These solutions have also been obtained in [39]. Typical anti-
dark soliton solutions are displayed in Fig. 2. One can notice
in Fig. 2 that the bimodal soliton of the KB system transforms
into a unimodal soliton of the RNLS equation with the change
of variables (14).

In contrast with the DNLS system, the spectral set of the
RNLS soliton is spanned by two disconnected subsets: �− =
(−∞,−1) for slow solitons and �+ = (+1,+∞). Similar to
the DNLS equation, the position shifts in head-on and over-
taking collisions are given by the same analytical expression
�±±(λ,μ) = �±∓(λ,μ) ≡ �(λ,μ), where

�(λ,μ) = sgn(λ − μ) G2(λ,μ),

G2(λ,μ) ≡ 1

2
√

λ2− 1
ln

(λ− μ)2− (
√

λ2− 1+
√

μ2− 1)2

(λ− μ)2− (
√

λ2− 1−
√

μ2− 1)2
.

(17)

which is derived from the phase shift formula for KB solitons
using the change of variables (14). However, one can verify
that, unlike in the DNLS case, the isotropy condition (5) is not
satisfied. Indeed, it follows from (17) that sgn[�±±(λ,μ)] =
sgn(λ − μ), whereas sgn[�±∓(λ,μ)] = −sgn(λ − μ), that is
in a head-on collision between a λ soliton and a μ soliton with
λ > μ, the λ soliton’s position is now shifted backward. The
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variation of �±±(λ,μ) for the RNLS equation is shown in
Fig. 1. One can see that it is qualitatively different from the
variation of �±∓(λ,μ) for the DNLS equation.

The kinetic equation for the anisotropic RNLS soliton gas
has then the form of two continuity equations (6) comple-
mented by the coupled equations of state

s−(λ) = λ +
∫ −1

−∞
G2(λ,μ) f−(μ)[s−(λ) − s−(μ)]dμ

+
∫ ∞

+1
G2(λ,μ) f+(μ)[s−(λ) − s+(μ)]dμ,

s+(λ) = λ +
∫ +∞

+1
G2(λ,μ) f+(μ)[s+(λ) − s+(μ)]dμ

+
∫ −1

−∞
G2(λ,μ) f−(μ)[s+(λ) − s−(μ)]dμ, (18)

with the assumptions that s′
±(λ) > 0 and s+ > s−; the latter

assumption is verified by direct comparison with numerics in
Sec. IV B.

Note that for the KB system, the phase of a λ soliton after
colliding with a μ soliton is: 2/

√
3 × sgn(λ − μ)G2(λ,μ).

Thus the RNLS and the KB soliton gas share the same
anisotropic kinetic description. In the numerical examples
presented in the next section we will mostly focus on the
anisotropic RNLS soliton gas for a direct comparison with the
isotropic DNLS soliton gas.

III. ENSEMBLE AVERAGES OF THE WAVE FIELD
IN BIDIRECTIONAL SOLITON GASES

The DOS f (λ) [ f±(λ) in the anisotropic case] represents a
comprehensive spectral characteristic, that, in principle, deter-
mines all statistical parameters of the nonlinear random wave
field [ρ(x, t ), u(x, t )] in a soliton gas. The most obvious set
of such statistical parameters are the ensemble averages of
the conserved quantities. We note that for the KdV soliton
gas the averages 〈u〉, 〈u2〉 were determined in terms of the
DOS in [23,41] using the machinery of the finite-gap inte-
gration method. In this section we propose a simple heuristic
approach that enables one to link the spectral DOS f (λ)
[or f±(λ)] of a soliton gas with the ensemble averages of
conserved quantities of the integrable system (4). As an illus-
tration we consider the three first conserved densities of the
Euler system (4): ρ, u, and ρu.

We first consider a homogeneous soliton gas, i.e., a gas
whose statistical properties, particularly the DOS, do not de-
pend on x, t . The proposed approach is based on the natural
assumption that the nonlinear wave field in a homogeneous
soliton gas represents an ergodic random process, both in
x and t (we note in passing that ergodicity is inherent in
the model of soliton gas based on the finite-gap theory; see,
e.g., [42–44]). The ergodicity property implies that ensemble
averages 〈ρ(x, t )〉, 〈u(x, t )〉, and 〈ρ(x, t )u(x, t )〉 in the soliton
gas can be replaced by the corresponding spatial averages.
Generally, for any functional H[ρ(x, t ), u(x, t )] we have

〈H[ρ, u]〉 = lim
L→∞

1

2L

∫ x+L

x−L
H[ρ(y, t ), u(y, t )]dy, (19)

for a single representative realization of soliton gas. We detail
below the derivation of 〈ρ〉, the generalization to 〈u〉, and 〈ρu〉
being straightforward.

Let the soliton gas propagate on a constant background
(ρ, u) = (ρ0, u0) [without loss generality one can assume
(ρ0, u0) = (1, 0)]. Let 〈ρ〉 = ρ0 + 〈η〉 where η = ρ − ρ0. We
consider the general, anisotropic case for which the soliton
gas is characterized by two DOSs f−(λ) and f+(λ). Define

I =
∫ x+L

x−L
η(y, t )dy, (20)

where L � 1. Then 〈ρ〉 = ρ0 + I/(2L) + O(L−1).
Let [ρ(y, t ), u(y, t )] be a realization of a soliton gas

solution to the dispersive hydrodynamics (4) and let
[ρ̃(y, t ), ũ(y, t )] be defined in such a way that for some
t = t∗ one has [ρ̃(y, t∗), ũ(y, t∗)] = [ρ(y, t∗), u(y, t∗)] for y ∈
(x − L, x + L) and [ρ̃(y, t∗), ũ(y, t∗)] = [ρ0, 0] outside of this
interval. To avoid complications we assume that the transition
between the two behaviors is smooth but sufficiently rapid so
that such a “windowed” portion of a soliton gas (see Fig. 3)
can be approximated by the N-soliton solution of (4) for some
N � 1, with the discrete IST spectrum being distributed on
�− and �+ with densities 2L f−(λ) and 2L f+(λ), respectively
(recall the definition of DOS in Sec. I). Equation (20) rewrites

I =
∫ +∞

−∞
η̃(y, t )dy, η̃(y, t ) = ρ̃(y, t ) − ρ0. (21)

We note the integral (21) does not depend on time because I is
a conserved quantity, in particular, for t = τ � t∗ where the
solution [ρ̃(y, τ ), ũ(y, τ )] asymptotically represents the train
of spatially well-separated solitons ρ±

s , u±
s propagating on the

background (ρ0, 0) (see Fig. 3). In this case, I can be evaluated
as

I =
∑

i

∫ +∞

−∞
[ρ−

s (y − λiτ − yi; λi ) − ρ0]dy

+
∑

j

∫ +∞

−∞
[ρ+

s (y − λ jτ − y j ; λ j ) − ρ0]dy, (22)

where λi, j are the spectral parameters and yi, j the initial phases
of the ± solitons. Since the spectrum is preserved by the
integrable dynamics (4), λi, j remain to be distributed on �±
with the respective densities 2L f±(λ) for all t . Let η± be the
“mass” of the spectral soliton solution ρ±

s (x − λt ; λ) − ρ0,

η±(λ) =
∫ +∞

−∞
[ρ±

s (y; λ) − ρ0]dy, (23)

which only depends on λ. Note that the integral in (23) con-
verges for the example considered in Sec. II C since ρ±

s decays
exponentially to ρ0. We have with this new notation, I =∑

i η−(λi ) + ∑
j η+(λ j ). Taking the continuous limit,

∑
i →∫

�−
dλ 2L f−(λ) and

∑
j → ∫

�+
dλ 2L f+(λ), we obtain

I

2L
=

∫
�−

η−(λ) f−(λ)dλ +
∫

�+
η+(λ) f+(λ)dλ, (24)
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FIG. 3. Schematic for the evaluation of the integral (20) in
soliton gas using the truncation procedure. (a) Typical distribu-
tion ρ(y, t∗) for a DNLS dark soliton gas. (b) Truncation of the
distribution ρ(y, t∗) for y ∈ (−L, L). (c) Variation of the truncated
distribution ρ̃(y, τ ) at time τ � t∗.

yielding the expression for the moment 〈ρ〉:

〈ρ(x, t )〉 = ρ0 +
∫

�−
η−(λ) f−(λ)dλ +

∫
�+

η+(λ) f+(λ)dλ.

(25)

Similarly, we obtain for the two other moments (recall that we
assume u → 0 as x ± ∞)

〈u(x, t )〉 =
∫

�−
u−(λ) f−(λ)dλ

+
∫

�+
u+(λ) f+(λ)dλ, (26)

〈ρ(x, t )u(x, t )〉 =
∫

�−
ρu−(λ) f−(λ)dλ

+
∫

�+
ρu+(λ) f+(λ)dλ, (27)

where u±(λ) = ∫
u±

s (y; λ)dy and ρu±(λ) = ∫
ρ±

s (y; λ)
u±

s (y; λ)dy. The expressions (25), (26), and (27) rewrite in the
isotropic case

〈ρ(x, t )〉 = ρ0 +
∫

�

η(λ) f (λ)dλ,

〈u(x, t )〉 =
∫

�

u(λ) f (λ)dλ,

〈ρ(x, t )u(x, t )〉 =
∫

�

ρu(λ) f (λ)dλ. (28)

We present in Table I the expressions of η±(λ), u±(λ), and
η±(λ) for the examples introduced in Sec. II C.

The method presented here only requires one to integrate
the single-soliton solution and thus can be readily applied
to any integrable dispersive hydrodynamic system supporting
the soliton resolution scenario. Formulas (25)–(28) will be
used in the next section to track the evolution of the DOS
numerically. In conclusion we note that the above simple
method, applied to the KdV equation, gives exactly the same
results for the mean and mean square of the random field as
the finite-gap theory consideration of [22,23]. It also explains
why the corresponding analytical expressions for the moments
in a dense gas of KdV solitons derived in [23] coincide with
the corresponding expressions obtained in [45] for a rarefied
gas (see also [44] for the similar modified KdV equation
result).

In the above consideration of homogeneous soliton gases
the ensemble averages (19) are constant. For a nonhomo-
geneous gas the DOS is a slowly varying function of x, t
and so are the ensemble averages that now need to be inter-
preted as “local averages” in the spirit of modulation theory
[27]. Essentially, one introduces a mesoscopic scale �, much
larger than the typical soliton width and much smaller than
the spatial scale of the DOS variations so that the DOS is
approximately constant on any interval (x − �, x + �). Then
the constant ensemble averages (19) are replaced by slowly
varying quantities:

〈H[ρ, u]〉�(x, t ) = 1

2�

∫ x+�

x−�

H[ρ(y, t ), u(y, t )]dy. (29)

The local averages 〈H[ρ, u]〉� do not depend on � at leading
order, and their spatiotemporal variations occur on x and t
scales that correspond to the scales associated with variations
of f (λ) and are much larger than those of ρ, u. The modu-
lations of 〈ρ〉, 〈u〉, and 〈u〉 in a nonhomogeneous soliton gas
are then defined by Eqs. (25), (26), and (27), respectively, in
which the DOS f±(λ) is replaced by the solution f±(λ, x, t )
of the kinetic equation (6), (7). This strategy will be used in
the next section where we study the dynamics of nonhomo-
geneous soliton gases generated in the solutions of Riemann
problems for kinetic equations.
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TABLE I. Expressions of the integral η±(λ), u±(λ), and η±(λ) for NLS solitons (ρ0 = 1). For both examples we have ρ−
s = ρ+

s and
u−

s = u+
s such that η− = η+, u− = u+, and ρu− = ρu+.

Equations η(λ) u(λ) ρu(λ)

DNLS (σ = +1) −2
√

1 − λ2 2 sin−1(λ) − π sgn(λ) −2λ
√

1 − λ2

RNLS (σ = −1) +2
√

λ2 − 1 2 sgn(λ) cosh−1 |λ| +2λ
√

λ2 − 1

IV. MULTICOMPONENT BIDIRECTIONAL SOLITON
GASES: RIEMANN PROBLEM

A. Hydrodynamics reductions

Generally, our ability to solve the integral equation of state
(2) is very limited, and strongly depends on the particular form
of the interaction kernel. Some particular analytical solutions
have been found [16] for special cases of soliton gases for
the focusing NLS equation. At the same time, it was shown in
[17,19,46] that this problem greatly simplifies if discretization
of the DOS f (λ, x, t ) or f±(λ, x, t ) with respect to the soliton
spectral parameter λ is admissible. We adopt this simplifica-
tion in the following, and we consider the soliton gases that are
composed of a finite number of distinct spectral components,
termed monochromatic, or cold, components. We consider in
the following the general anisotropic description; the deriva-
tion also readily applies to the isotropic case. Suppose that
the bidirectional soliton gas is spectrally composed of n−
distinct components of the “−” soliton branch, and n+ distinct
components of the “+” soliton branch:

f−(λ, x, t ) =
n−∑
i=1

Fi(x, t )δ(λ − �i ),

(30)

f+(λ, x, t ) =
n−+n+∑
i=n−+1

Fi(x, t )δ(λ − �i ),

with c±(�i ) < c±(�i+1) and where �i are the soliton pa-
rameters of the different components and δ the Dirac delta
distribution. We do not indicate in the following the branch-
belonging of the component Fi for readability reasons.
Additionally, we do not indicate explicitly the (x, t ) depen-
dence of the fields Fi when it is clear. As pointed out in
[16,47], the multicomponent ansatz (30) is a mathematical
idealization; physically one would replace the δ functions by
narrow distributions around the spectral points �i.

The ansatz (30) transforms the pair of distributions
[ f−(λ), f+(λ)] into a n = (n− + n+)-dimensional vector F =
(F1, . . . , Fn). Thus (6) reduces to n hydrodynamic (quasilin-
ear) conservation laws:

(Fi )t + (SiFi )x = 0, i = 1 . . . n, (31)

where Si(x, t ) = s±i (�i, x, t ) with ±i indicating the branch-
belonging of the soliton �i. The coupled equations of states
(7) simplify into an nth-order linear algebraic system for the
Si’s:

Si = Ci +
∑
j �=i

�(�i,� j )Fj |Si − S j |, Ci = c±i (�i ). (32)

The system (32) simplifies for the examples considered in
Sec. II C, where we assumed that Si < Si+1 and where the
phase-shift formula has the form �±±(λ,μ) = �±∓(λ,μ) =

sgn(λ − μ)G(λ,μ); the expression of G is given by (11) for
the DNLS and (17) for the RNLS equation. For the NLS
examples we obtain the linear system:

Si = Ci +
∑
j �=i

Gi jFj (Si − S j ), Gi j = G(�i,� j ). (33)

In order to simplify the discussion, we will focus on the
latter system. Both anisotropic and isotropic soliton gases are
described by the same system (31), (33): for the isotropic
DNLS-soliton gas we have Gi j = G1(�i,� j ) > 0, and for the
anisotropic RNLS-soliton gas Gi j = G2(�i,� j ) ∈ R.

The resolution of the linear system (33) yields a solution
Si(F ) such that the system (31) becomes quasilinear:

(Fi )t + [Si(F )Fi]x = 0. (34)

It was shown in [19,46] that the system (34) is a linearly
degenerate integrable system [48] and its general solutions can
be obtained using the generalized hodograph method [49]. In
particular, the characteristic velocities of this hydrodynamic
system coincide with the mean velocities Si.

Finally, the expressions of the moments 〈ρ〉, 〈u〉, and 〈ρu〉
are given by

〈ρ(x, t )〉 = ρ0 +
n∑

i=1

η(�i )Fi(x, t ),

〈u(x, t )〉 =
n∑

i=1

u(�i )Fi(x, t ), (35)

〈ρ(x, t )u(x, t )〉 =
n∑

i=1

ρu(�i)Fi(x, t ),

with the coefficients η, u, and ρu given in Table I for the NLS
equation (8). The relations in (35) can be used to obtain the
DOS components Fi from the moments 〈ρ〉, 〈u〉, and 〈ρu〉 if
n � 3.

B. Shock-tube problem

We now focus on the physically relevant Riemann problem
for the hydrodynamic system (33), (34) describing the interac-
tion dynamics of two soliton gases prepared in the respective
uniform states FL ∈ Rn and FR ∈ Rn, that are initially
separated:

F(x, 0) =
{

FL, if x < 0
FR, if x � 0.

(36)

The spectral distribution (36) corresponds to the soliton gas
shock-tube problem, an analog of the standard shock-tube
problem of classical gas dynamics. The shock-tube problem
represents a good benchmark for our kinetic theory where
we can investigate both overtaking and head-on collisions by
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choosing the appropriate number of components. We empha-
size here that the initial condition (36) constitutes a Riemann
problem for the kinetic equation (34) but not for the original
dispersive hydrodynamics system (4), similar to the so-called
generalized Riemann problems recently introduced in [50,51].
We shall sometimes refer to the problem (34), (36) as a
“spectral Riemann problem” as it essentially describes the
spatiotemporal evolution of the spectral components of the
soliton gas.

The soliton gas shock-tube problem has been investigated
for the KdV and focusing NLS two-component soliton gases
(n = 2) in [16,17,47], and for n components in the context
of generalized hydrodynamics [52–56]. Here we present the
problem for the n-component bidirectional anisotropic soliton
gases. An important difference of our consideration from the
generalized hydrodynamics setting is that we are interested
not only in the spectral characterization of soliton gases via
solutions of the kinetic equations but also (and ultimately)
in the description of the classical nonlinear wave fields as-
sociated with these solutions. The latter is achieved by the
evaluation of the ensemble averages as described in Sec. III.

Due to the scaling invariance of the problem [the kinetic
equation (34) and the initial condition (36) are both invariant
with respect to the transformation x → Cx, t → Ct], the solu-
tion is a self-similar distribution F(x/t ). Because of the linear
degeneracy of the quasilinear system (34) the only admissible
solutions are constant separated by contact discontinuities
(cf., for instance, [57]). Discontinuous, weak solutions are
physically acceptable here since the kinetic equation describes
the conservation of the number of solitons within any given
spectral interval, and Rankine-Hugoniot type conditions can
be imposed to ensure the conservation of the number of
solitons across discontinuities. The solution of the Riemann
problem is composed of n + 1 constant states, or plateaus,
separated by n discontinuities (see, e.g., [58]):

Fi(x, t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F 1
i = F L

i , x/t < Z1

. . .

F j
i , Zj−1 � x/t < Zj

. . .

F n+1
i = F R

i , Zn � x/t,

(37)

where the index i indicates the ith component of the vector
F, and the exponent j the index of the plateau. For clar-
ity we labeled the superscripts j = 1 as “L” (left boundary
condition) and j = n + 1 as “R” (right boundary condition).
Additionally the index j of the plateau’s value F j

i will be
written as a Roman numeral in the examples considered later
on. The contact discontinuities propagate at the characteristic
velocities [58]:

Zj = S j
(
F j

1 , . . . , F j
n

) = S j
(
F j+1

1 , . . . , F j+1
n

)
, (38)

where the plateaus’ values F j
i are given by Rankine-Hugoniot

jump conditions:

−Zj
[
F j+1

i − F j
i

] + [
Si

(
F j+1

1 , . . . , F j+1
n

)
F j+1

i

− Si
(
F j

1 , . . . , F j
n

)
F j

i

] = 0, (39)

where i, j = 1 . . . n. The Rankine-Hugoniot conditions with
i = j are trivially satisfied by the definition of contact discon-

tinuity (38). Recalling the effective derivation of the equation
of state in Sec. II B, the velocity of the contact discontinuity Zj

can be identified as the velocity of a trial soliton with parame-
ter � j propagating in a soliton gas of density F = (F j

1 , . . . F j
n )

or equivalently F = (F j+1
1 , . . . , F j+1

n ).
Note that, if the solitons were not interacting, the initial

step distribution Fi(x, 0) for the component λ = �i would
have propagated at the free soliton velocity Ci:

F free
i (x, t ) =

{
F L

i , x/t < Ci

F R
i , Ci � x/t,

i = 1 . . . n, (40)

which dramatically differs from the solution (37). In order to
demonstrate the validity of the solution (37), (38), (39) the
Riemann problem is investigated numerically for the DNLS
and RNLS equations for two- and three-component soliton
gases in the next sections.

1. Two-component soliton gas

We consider in this section the interaction between two
components of soliton gas with respective parameters �1 and
�2 (recall that S1 < S2). The solution of the equation of state
(33) reads for n = 2:

S1(F1, F2) = (1 − G21F1)C1 − G12F2 C2

1 − G21F1 − G12F2
,

S2(F1, F2) = (1 − G12F2)C2 − G21F1 C1

1 − G21F1 − G12F2
. (41)

As noted in [17], the densities F1 and F2 must satisfy the
inequality:

G21F1 + G12F2 < 1, (42)

for the expressions (41) to remain valid; we suppose that this
condition is always verified, constraining the DOS in the fol-
lowing. We suppose that F L

1 = F R
2 = 0 and F R

1 = F L
2 = ζ0:

the region x < 0 is initially only populated with �2 solitons
and the region x > 0 of slower �1 solitons. Since S1 < S2 the
two “species” of soliton are interacting. Note that (42) implies
G12ζ0, G21ζ0 < 1. The solution (37) has three plateaus:

Fi(x, t ) =
⎧⎨
⎩

F I
i = δi,2ζ0, x/t < Z1

F II
i , Z1 � x/t < Z2

F III
i = δi,1ζ0, Z2 � x/t,

(43)

where i ∈ {1, 2}, with the value at the intermediate plateau:

F II
1 = [1 − G12ζ0]ζ0

1 − G12G21ζ
2
0

, F II
2 = [1 − G21ζ0]ζ0

1 − G12G21ζ
2
0

, (44)

and the velocities of the discontinuities:

Z1 = S1(0, ζ0) = C1 − G12ζ0 C2

1 − G12ζ0
,

Z2 = S2(ζ0, 0) = C2 − G21ζ0 C1

1 − G21ζ0
. (45)

Both kinds of solitons propagate in the region delimited by
x = Z1t and x = Z2t (since F II

1 �= 0, F II
2 �= 0), and we refer

to this region as the interaction region in the following. The
discontinuity’s velocity Zi corresponds to the effective veloc-
ity of solitons �i in this region. The total density of solitons
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TABLE II. Initial conditions for the spectral Riemann problem (34), (36) considered in Sec. IV B. The constraint on the spectral parameters
|�i| � 1.1 in (i), (ii), and (iv) is due to the limits of the numerical scheme used to solve the RNLS equation (cf. Appendix B).

Soliton parameter Left boundary condition Right boundary condition

(i) (�1 = 1.05, �2 ∈ [1.06, 1.10]) FL = (0, 6.6) × 10−2 FR = (6.6, 0) × 10−2

(ii) (�1 = −1.05, �2 ∈ [1.06, 1.1]) FL = (0, 6.6) × 10−2 FR = (6.6, 0) × 10−2

(iii) (�1, �2, �3) = (−0.2, 0.1, 0.4) FL = (2.5, 0, 7.5) × 10−2 FR = (5, 5, 0) × 10−2

(iv) (�1, �2, �3) = (−1.1, 1.05, 1.1) FL = (1.6, 0, 5) × 10−2 FR = (3.3, 3.3, 0) × 10−2

∑
i Fi in the interaction region is given by

F II
1 + F II

2 = 2 − (G12 + G21)ζ0

1 − G12G21ζ
2
0

ζ0. (46)

If sgn(G12) = sgn(G21) > 0 (<0), then the total density F II
1 +

F II
2 is smaller (larger) than the sum of the initial soliton den-

sities 2ζ0, and Z1 < C1 < C2 < Z2 (C1 < Z1 < Z2 < C2) (cf.,
for instance, [17]).

The two-component shock-tube problem (n = 2) has been
investigated numerically in [47] for KdV soliton gases. We
have shown in Sec. II C that the kinetic dynamics of the
KdV soliton and the isotropic DNLS soliton gas are both
governed by Eqs. (1), (12) with G1(λ,μ) > 0. Thus solu-
tions of the DNLS spectral Riemann problem and the KdV
spectral Riemann problem are expected to describe very sim-
ilar dynamics, and we rather focus on the anisotropic RNLS
soliton gas exhibiting two distinct kinds of interaction. The
solution of the RNLS spectral Riemann problem is given
by (43), (44), (45) where Gi j = G2(�i,� j ) with G2 defined
in (17).

To verify the validity of our spectral solutions in the
context of the original nonlinear wave problem of the in-
teraction of soliton gases, we solve numerically the RNLS
equation (13) with initial conditions corresponding to the
spectral Riemann data (36) for two different RNLS soli-
ton gases with (i) overtaking collisions Gi j > 0 (�1 =
1.05,�2 ∈ [1.06, 1.1]), and (ii) head-on collisions Gi j < 0
(�1 = −1.05,�2 ∈ [1.06, 1.1]). The boundary values FL and
FR for cases (i) and (ii) are indicated in Table II. Fifty initial
conditions ρ(x, 0), u(x, 0) are realized according to the initial
step distribution (36) and evolved through a direct numerical
simulation of the NLS equation (8) with σ = −1. The details
of the numerical implementation of the initial condition (36)
and the direct numerical resolution of (8) are given in Ap-
pendix B.

A typical RNLS soliton gas distribution ρ(x, 0) and its cor-
responding numerical evolution ρ(x, t ) are displayed in Fig. 4
for the spectral Riemann problem (i); soliton gas realizations
for the spectral Riemann problem (ii) have a similar variation
with different velocities Z1 and Z2. We emphasize that, al-
though the soliton gas is initially prepared in a rarefied regime
where solitons are spatially well separated (cf. Appendix B),
the total density of solitons increases in the interaction region,
and a dense soliton gas can be observed in Fig. 4 for which
solitons exhibit significant overlap.

Spatiotemporal evolution of one soliton gas realization is
displayed in Fig. 5, with overtaking collisions (i) and head-
on collisions (ii). To enhance the discrepancy between free
soliton velocities Ci and contact discontinuities velocity Zi the

trajectories of the solitons are followed in the frames (x − t, t )
for overtaking collisions where Zi ∼ Ci ∼ 1, and (x ± t, t )
for head-on collisions where Z1 ∼ C1 ∼ −1 and Z2 ∼ C2 ∼ 1.
One can notice that the interaction time between two soli-
tons is very short for a head-on collision, which explains
the weakness of head-on interactions compared to overtaking
interactions.

The averaging of the 50 numerical solutions yields the
statistical moments of the nonlinear wave fields of the RNLS
dispersive hydrodynamics. Figure 6 displays the comparison
between 〈ρ(x, t )〉 obtained numerically and the analytical so-
lution (35), (43) for (i) and (ii). Note that the discontinuities in
〈ρ(x, t )〉 have a finite slope in Fig. 6, which is an artifact of the
averaging procedure detailed in Appendix B. The comparison
between the numerical values of 〈ρ〉, Z1, Z2 fitted from the nu-
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FIG. 4. Example of one realization of the soliton gas shock-
tube problem (i) at t = 0 (a) and t = 5000 (b) with (�1, �2) =
(1.05, 1.10). The two regions I and III correspond, respectively, to
the left and right boundary conditions prescribed in the initial condi-
tion [cf. (36)]. The variation of ρ(x, t ) clearly displays the formation
of an intermediate interaction region, denoted region II, between the
two positions x = Z1t and x = Z2t , cf. (45), highlighted by vertical
dash-dotted lines.
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FIG. 5. Spatiotemporal plots of the field ρ(x, t ) for one realiza-
tion of the soliton gas. Trajectories of the solitons appear in solid
lines. Dash-dotted lines correspond to the trajectories of the con-
tact discontinuities: x = Z1t , x = Z2t [cf. (45)], and dashed lines to
the free soliton trajectories: x = C1t , x = C2t . (a) Overtaking colli-
sions (�1, �2) = (1.05, 1.10) [cf. initial condition (i) in Table II].
(b) Head-on collisions (�1,�2) = (−1.05, 1.10) [cf. initial condi-
tion (ii) in Table II].

merical solution 〈ρ(x, t = 5000)〉, and the analytical solutions
(44), (45) for different values of �2 is displayed in Fig. 7.
The comparison shows good agreement between analytical
and numerical solutions and highlights the contrasting effects
of (i) overtaking and (ii) head-on collisions. As predicted
Z1 < C1 < C2 < Z2 in case (i), whereas C1 < Z1 < Z2 < C2

in case (ii). In case (ii) 〈ρ〉 in the region of interaction is almost
equal to the average value of ρ for a noninteracting soliton gas
[cf. solution (40)]. This is due to the weakness of the head-on
interaction, clearly displayed in the comparison between �+−
and �++ in Fig. 1.

The discrepancy between the analytical and numerical so-
lutions can be associated to the numerical implementation and
the time evolution of the soliton gas. The construction of the
soliton gas at t = 0, detailed in Appendix B 1, is only valid if
the overlap between solitons is negligible, which is not exactly
the case for the parameters considered in Table II. Since√

�2
2 − 1 is the typical width of the �2 soliton, the overlap

between solitons becomes more important as �2 decreases
for a fixed initial density ζ0. Besides, the numerical scheme
utilized to solve the RNLS equation is only valid for small

5000 5200 5400 5600 5800

x

1.04

1.06

1.08

1.10

〈ρ
〉

I

II

III

(a)

−5500 −5000

1.04

1.06

1.08

1.10

〈ρ
〉

I

5000 5500

III

x

II

(b)

FIG. 6. Comparison between the ensemble average 〈ρ(x, t =
5000)〉 of 50 direct numerical solutions of the RNLS soliton gas
shock-tube problem (solid line) and the analytical solution (35),
(43) obtained via the spectral kinetic theory (dash-dotted line). The
dashed lines correspond to the respective spectral solutions (35), (40)
for a noninteracting soliton gas. (a) Overtaking collisions (�1,�2) =
(1.05, 1.10). (b) Head-on collisions (�1, �2) = (−1.05, 1.10).

amplitude solitons (cf. Appendix B 2), and the discrepancy
also increases as �2 increases.

Additionally, we can compute the variation of the compo-
nents F1(x, t ) and F2(x, t ) of the DOS using the expression
(35):(

F1(x, t )
F2(x, t )

)
=

(
η(�1) η(�2)
u(�1) u(�2)

)−1(〈ρ(x, t ) − 1〉
〈u(x, t )〉

)
, (47)

providing that the determinant η(�1)u(�2) − η(�2)u(�1)
does not vanish. In particular, we can evaluate numerically
the total density F1(x, t ) + F2(x, t ) from the numerical solu-
tions. Figure 8 displays the comparison of the total density
corresponding to the examples presented in Fig. 6. Notice
that, since 〈ρ〉 = η(�1)F1 + η(�2)F2 with η > 0, the varia-
tion of the moment 〈ρ〉 and the variation of the total density
F1 + F2 are qualitatively similar. As expected the RNLS
soliton gas rarefies when solitons interact with overtaking
collisions (F II

1 + F II
2 < 2ζ0), and condenses with head-on col-

lisions (F II
1 + F II

2 > 2ζ0). As pointed out previously, the total
density in the example (ii) is very close to the total density
of the noninteracting gas 2ζ0 because of the weakness of the
phase shift induced by head-on collisions.

2. Three-component gas

We consider now the case of three-component gases with
one component belonging to the slow spectral branch and two
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FIG. 7. Comparison between the parameters of the analytical solutions (35), (43) (dash-dotted line) and the corresponding fitted parameters
of the numerical solution (crosses) with different spectral parameters �2; numerical averages are obtained over 50 realizations. For comparison,
the dashed lines correspond to the parameters of the noninteracting solitons solution (35), (40). 〈ρ〉 is evaluated in region II [cf. (35), (44)]. Z1

is the velocity of the discontinuity separating regions I and II, and Z2 the velocity of the discontinuity separating regions II and III [cf. (45)].
(a) Overtaking collisions (�1, �2) = (1.05, 1.10). (b) Head-on collisions (�1, �2) = (−1.05, 1.10).

components belonging to the fast branch for (iii) the DNLS
equation and (iv) the RNLS equation. Note that in the latter
case the anisotropic soliton gas features both overtaking colli-
sions and head-on collisions. Although one can formally solve
the equation of state (33) to obtain the expression of Si(F )
and solve the Rankine-Hugoniot condition (39), the analytical
expressions do not read as easily as the expressions obtained
in the two-component case. We choose here to solve (33),
(39) numerically. The values FL and FR of the initial soliton
densities considered numerically are indicated in Table II.

One-hundred initial conditions ρ(x, 0), u(x, 0) are realized
according to the initial spectral step distribution (36) and
evolved through a direct numerical simulation of the NLS
equation (8). The statistics of the soliton gas is then obtained
by computing the average 〈ρ(x, t )〉 from the evolution of the
100 realizations. Figure 9 displays the variation of the statis-
tical moment 〈ρ(x, t )〉. As expected, the solution is composed
of four plateaus, where regions II and III contain at least two
distinct soliton components and are regions of interaction.
The comparison in Fig. 9 shows good agreement between the
analytical solution (35), (37) and the statistical averages of the
numerical solutions.

V. CONCLUSIONS AND OUTLOOK

In this work we have developed the spectral kinetic theory
of soliton gases in bidirectional integrable dispersive hydrody-
namic systems. Previously, such theory had been developed
for (effectively) unidirectional soliton gases, in which all
pairwise soliton collisions are characterized by a single ex-
pression for the phase shift. Generally, however, the phase

shifts in the overtaking and head-on collisions of solitons are
essentially different, which necessitates the extension of the
existing theory to the bidirectional case. This extension is also
motivated by the recent experimental results on the generation
of bidirectional shallow-water soliton gases [31,32].

The definitive quantitative characteristics of an integrable
soliton gas is the DOS, which is the density function f (λ, x, t )
in the spectral (IST) (x, λ)-phase space. The DOS evolution
in a unidirectional nonuniform soliton gas is governed by
the kinetic equation consisting of the continuity equation (1)
complemented by the integral equation of state (2) relating
the soliton gas velocity and the DOS. The presence of two
distinct species of solitons corresponding to the slow and fast
branches of the dispersion relation in bidirectional systems
naturally calls for the introduction of two respective DOSs.
As a result, one arrives at a system of two coupled kinetic
equations, which is the subject of the present work.

We introduced the notion of isotropic and anisotropic bidi-
rectional soliton gases based on the sign properties of the
phase shifts in overtaking and head-on soliton collisions in a
bidirectional gas. In the anisotropic case, where the distinction
between overtaking and head-on soliton collisions is genuine,
the kinetic of the gas is governed by two coupled equations
(6), (7) which we obtained using an extension of the direct
physical approach proposed in [17]. The approach of [17]
combines the qualitative ideas of the original Zakharov paper
[21] with the mathematical developments of [22] based on the
spectral finite-gap theory. In the isotropic case, the coupled
system (6), (7) reduces to a single kinetic equation (1), (2)
making a bidirectional isotropic gas effectively equivalent to
a unidirectional gas.
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FIG. 8. Comparison between the total density of the soliton
gas obtained by direct numerical solution of the RNLS soliton
gas shock-tube problem (black solid line) and the corresponding
spectral analytical solution F1(x, t ) + F2(x, t ) where Fi is given by
(43) (dash-dotted line); the total density in the region of interaction
F II

1 + F II
2 is given by (46). The dashed line corresponds to the total

density F free
1 + F free

2 [cf. (40)]. (a) Overtaking collisions (�1, �2) =
(1.05, 1.10). (b) Head-on collisions (�1, �2) = (−1.05, 1.10).

To highlight the principal differences between isotropic
and anisotropic soliton gases, we have considered two pro-
totypical physically relevant examples: the (isotropic) soliton
gas of the classical defocusing NLS (DNLS) equation (9)
and the (anisotropic) soliton gas of the so-called resonant
NLS (RNLS) equation (13) having applications in dispersive
magnetohydrodynamics [35,40]. The results for the RNLS
equation are also extended to the KB system (15) describing
bidirectional shallow-water waves.

To provide a connection between the spectral kinetics of
soliton gases and the dynamics of the physical parameters
of the associated nonlinear wave fields, we have developed a
general simple procedure enabling the evaluation of the basic
ensemble averages of the soliton gas wave field in terms of the
appropriate moments of the spectral DOS.

As an application of the developed kinetic theory we have
considered the generalized Riemann (shock-tube) problem
describing the collision of several monochromatic soliton
beams, each consisting of solitons with nearly identical spec-
tral parameters. The interaction dynamics of such beams is
described by certain exact hydrodynamic reductions of the
spectral kinetic equations. We constructed the weak solutions
of these hydrodynamic reductions in the form of a system of
constant states separated by propagating contact discontinu-
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FIG. 9. Comparison between the ensemble average 〈ρ(x, t )〉 ob-
tained by direct numerical solution of the soliton gas shock-tube
problem (solid line) and the analytical solution (35), (37) (dash-
dotted line). The dashed line corresponds to the average in the soliton
gas composed of noninteracting solitons with the spectral distribution
given by (35), (40). (a) DNLS soliton gas at t = 2000, case (iii).
(b) RNLS soliton gas at t = 5000, case (iv).

ities satisfying appropriate Rankine-Hugoniot conditions. The
obtained general solutions were then applied to the description
of collisions of DNLS and RNLS soliton gases, and the com-
parison with direct numerical simulations of the DNLS and
RNLS equation was made.

We stress that, although our derivation of the kinetic equa-
tion (6), (7) for a dense bidirectional soliton gas is based on the
phenomenological method of [17], it can be formally justified
using the thermodynamic limit of the modulation equations,
that has been developed for the KdV and focusing NLS
equations in [16,22] and can be readily generalized to other
integrable systems supporting finite-gap solutions associated
with hyperelliptic spectral Riemann surfaces. Such a mathe-
matical justification will be the subject of a separate work.
Meanwhile, the excellent agreement of the exact solutions of
the Riemann problems for bidirectional kinetic equations with
appropriate direct numerical simulations for the DNLS and
RNLS equations provides a convincing confirmation of the
validity of our results.

Despite the consideration of this work being formally re-
liant on the integrability of the nonlinear wave dynamics
(4), the developed kinetic theory can be extended to non-
integrable systems supporting solitary wave solutions that
exhibit nearly elastic collisions. An experimentally accessible
example of such physical system (albeit for a unidirectional
case) is the so-called viscous fluid conduit equation describ-
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ing the dynamics of the interface between two immiscible
viscous fluids with high density and viscosity contrast ra-
tios, the lighter fluid being buoyantly ascending through
the heavier fluid forming a liquid “pipe,” a conduit [59].
This system supports solitary wave solutions that exhibit
nearly elastic collisions as demonstrated numerically and con-
firmed experimentally [60]. Constructing kinetic theory of
soliton gases for nonintegrable Eulerian dispersive hydrody-
namic systems of this type represents a challenging open
problem.

Another important direction of further research is the ex-
tension of the developed kinetic theory to perturbed integrable
systems. In particular, kinetic theory of soliton gas for the
perturbed DNLS equation could be used to describe soliton
gas in a quasi-1D repulsive BEC in a trapping potential,
which has been observed experimentally in [61]. The dynam-
ics of the trapped condensate is governed by the celebrated
Gross-Pitaevskii equation, which is the DNLS equation sup-
plemented by an external potential term, which could be
treated as a perturbation in certain configurations. Although
some properties of a rarefied soliton gas in a trapped BEC
have been studied in the previous works [37,38], the descrip-
tion of a dense gas is not available at present. The investigation
of dense soliton gas dynamics in BECs can shed new light on
turbulence in superfluids, or “quantum turbulence,” which has
been the subject of intense research in recent decades (see,
e.g., [62], and references therein).

The direct experimental verification of the developed the-
ory could be made possible by the recent advances in the
spectral synthesis of soliton gases with a prescribed DOS
[18]. While the method of [18] was developed for deep wa-
ter waves, its extension to other types of wave propagation
well described by integrable or nearly integrable systems
looks to be a very promising direction since the kinetic de-
scription of soliton gases is achieved essentially in spectral
terms.

Concluding, we hope that our work will provide further
motivation for the theoretical and experimental study of soli-
ton gases.
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APPENDIX A: SOLITON SOLUTION OF THE KB SYSTEM

The soliton solution (16) of the RNLS equation reads after
substitution in (14) as

ρ̃±
s = 1 + λũs − ũ2

s

2
,

ũ±
s = 2(λ2 − 1)[λ − √

λ2 − 1 tanh(α/2)]

2λ2 − 1 + cosh(α)
, (A1)

α =
√

3(λ2 − 1)(x̃ − λt̃ ),

where λ2 > 1. Note that the solution (A3) is not centered at
x = 0 but x = φ(λ) with

φ(λ) = sgn(λ)√
3(λ2 − 1)

ln(|λ| −
√

λ2 − 1). (A2)

The centered soliton solution reads

ρ̃±
s [x̃ + φ(λ), t̃] = 1 + 2(λ2 − 1)[1 + |λ| cosh(α)]

[|λ| + cosh(α)]2
,

ũ±
s [x̃ + φ(λ), t̃] = 2 sgn(λ)(λ2 − 1)

|λ| + cosh(α)
, (A3)

α =
√

3(λ2 − 1)(x̃ − λt̃ ),

which coincides with the solution derived in [63].

APPENDIX B: NUMERICAL IMPLEMENTATION
OF SOLITON GASES FOR THE NLS EQUATION

1. Implementation of the step distribution

We implement the soliton gas using the method developed
in [47]. The initial step distribution of the spectral Riemann
problem (36) with values given in Table II describes a rarefied
gas where solitons do not overlap. Such a distribution is im-
plemented by the superposition of solitons

ρ(x, t = 0) =
∑

i

ρs(x − ξi; �i ),

(B1)
u(x, t = 0) =

∑
i

us(x − ξi; �i ),

where the �i’s are the spectral parameters of the solitons and
the ξi’s their initial position. Although the particles’ position
ξi of an “ideal” soliton gas should be distributed according to a
Poisson process [41], this cannot be implemented numerically
since the solitons are not allowed to overlap. In our numerics,
the distance between two solitons ξi+1 − ξi is uniformly dis-
tributed in the interval [d1, d2] with 0 < d1 < d2 such that the
solitons do not overlap; the total density of solitons is given
by 2/(d1 + d2). We choose (d1, d2) = (10, 20) for the RNLS-
Riemann problems (i), (ii), and (iv) and (d1, d2) = (8, 12) for
the DNLS-Riemann problem (cf. Sec. IV B).

2. Numerical scheme

The DNLS equation iψt + 1
2ψxx − |ψ |2ψ = 0, ψ =√

ρ exp(i
∫

u dx) is solved with periodic boundary conditions
ψ (x = L, t ) = ψ (x = 0, t ) using a Fourier spectral method.
The linear part of the DNLS equation is resolved with an
integrating factor and the problem is integrated in time using
the fourth-order Runge-Kutta method.

Since the dispersive term in the RNLS equation (13) is a
nonlinear term in ψ , the RNLS equation is first transformed
into the KB equation (15) using the change of variables (14).
The KB system is then solved with periodic boundary con-
ditions ψ (x = L, t ) = ψ (x = 0, t ) using a Fourier spectral
method (with a fourth-order Runge-Kutta method for the time
integration). Equation (15) displays a short-wavelength insta-
bility: the amplitude of modes ρ̃ − 1 ∝ ũ ∝ cos(kix̃) grows
exponentially with time for ki >

√
3. We thus filter out Fourier

modes ki >
√

3 after each time step. This imposes a constraint
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on the type of solitons that can be implemented numerically.
Indeed, large amplitude solitons |λ| � 1 populate the short-
wavelength Fourier modes ki >

√
3, which are not taken into

account in the numerical scheme. We thus consider in the
numerical simulations the solitons for which |λ| ∈ (1, 1.1).

3. Spatial and ensemble averages

The statistical moment 〈ρ〉 determined numerically in
Sec. IV B is obtained with (1) the average over ensembles of
50 or 100 realizations and (2) a local spatial average over the

mesoscopic space interval � [cf. (29)]:

� = 10

max
[ ∑

i Fi(x, t = 0)
] . (B2)

As pointed out in Sec. III, both averaging procedures are
equivalent providing that the soliton gas is locally ergodic.
The choice of the value for � ensures that the space interval
contains at least ten solitons. Note that the transitions of
the numerically evaluated mean field 〈ρ(x, t )〉 correspond-
ing to contact discontinuities in the analytical solution have
a finite slope proportional to 1/� because of the spatial
averaging.
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Chapter 5

Numerical synthesis of breather gas

5.1 Outline of the Problem

The work reviewed in this Chapter was motivated by the recent theoretical and experimental results

in soliton gas theory. The kinetic spectral theory for soliton for the fNLSE has been recently

developed by El and Tovbis in [53], and the controlled realisation of deep-water soliton gas in

a water tank experiment has been reported in [52]. Moreover, it has been recently demonstrated

numerically that the soliton gas dynamics of the fNLSE for the special case of the “bound state

soliton condensate” gas provides a remarkably good description of the statistical properties of the

nonlinear stage of MI [109].

The spectral kinetic theory [53] also covers breather gases, i.e. the random ensembles of interact-

ing fNLSE solitons in the presence of finite background. Observation of deep water breather gas

in the ocean have been reported in [123]. At the same time, numerical realisation of a breather

gas for the fNLSE is a nontrivial task due to severe accuracy problems (this already proves a se-

rious obstacle for the numerical construction of N -breather solution with N & 5 [147, 148]).

In fact a similar problem arises already at the level of numerical realisation of conventional soli-

ton gases. An effective IST-based numerical algorithm to create N -soliton solution of the fNLSE

withN large has been recently proposed in [149] by implementing high-precision arithmetics rou-

tines proposed. Here we take advantage of this algorithm to build random ensembles of N ∼ 50

breathers via the Darboux transform recursive scheme.
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The purpose of the work reported in this Chapter is twofold: (i) effective numerical realisation of

a breather gas; (ii) verification of the spectral theory of breather gas developed in [53].

For clarity of the exposition we summarise here some of the results on breather gas spectral theory

developed in [53] and discussed in Section 1.5.3.

As described in Section 1.5.3 the central concept of the soliton and breather gas (BG) theory

is the density of state (DOS), or spectral distribution function, f(λ, x, t). In the context of the

fNLSE, where the spectral parameter is λ = ξ + iζ ∈ C , the DOS f(λ, x, t) is defined such

that at any time t, fdξdζdx determines the number of soliton/breather states in the element λ ∈

[ξ, ξ + dξ] × [ζ, ζ + dζ] of the spectral phase space and contained in a portion of the gas within

[x, x + dx]. For the purpose of this work we assume the DOS to be a multicomponent (M -

component) delta-function distribution:

f(λ, x, t) =
M∑

j=1

wj(x, t)δ(λ− λj) (5.1)

where ωj(x, t) are the components’ weight and {λj}Mj=1 ⊂ Γ (ζj 6= ζk ⇐⇒ j 6= k) the discrete

point of the spectrum. The breather gas is then characterised, in the spectral plane, by a vertical

branch cut λ ∈ [−iq, iq], q > 0 corresponding to the plane wave background of amplitude q and

by the set of discrete spectral point λi, see Fig. 20. In this context, the breather gas can be viewed

as an N -order breather solution of the fNLSE, i.e. the reflectionless soliton solutions on non-zero

background. Physically it can be viewed as a random ensemble of interacting Tajiri-Watanabe

(TW) breathers (see Section 1.1.7 for the description of a TW breather). Since the TW breather

has three distinguished limits: the Akhmediev breather (AB), the Kuznetsov-Ma (KM) breather

and the Peregrine soliton (PS) — the rogue wave prototypes, it is also natural to consider these

limiting objects at the level of the respective “rogue wave gases”.

The analytical theory of spatially nonhomogeneous BGs was introduced and developed in [53].

This description consists of the kinetic equation formed by a transport equation for the slowly

varying DOS f(λ, x, t)

ft + (fs)x = 0, (5.2)

and the integral equation of state that describes the modification on a tracer or trial breather (gen-
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Figure 20: Spectral representation of a generic breather (TW) gas characterised by the branch cut
(black vertical line) and a collection of points of discrete spectrum (red dots). The corresponding
multicomponent DOS (5.1) has weights ωj = 1 ∀j.

erally a TW breather) velocity due to its interaction with the gas:

s(λ, x, t) = s0(λ)λ+

∫∫

Γ+

∆(λ, µ)[s(λ, x, t)− s(µ, x, t)]f(µ, x, t)dξdζ, (5.3)

where µ = ξ + iζ, Γ+ is the two-dimensional compact support of the DOS in C+, and s0 is the

velocity of a “free” TW breather given by

s0(λ) = −2
Im[λR0(λ)]

Im[R0(λ)]
, (5.4)

where R0(λ) =
√
λ2 − δ2

0 with δ0 = iq, the endpoint of the branch cut. The interaction kernel

∆(λ, µ):

∆(λ, µ) =
1

Im[R0(λ)]

[
ln

∣∣∣∣
µ− λ̄
µ− λ

∣∣∣∣+ ln

∣∣∣∣
R0(λ)R0(µ) + λµ+ q2

R0(λ̄)R0(µ) + λ̄µ+ q2

∣∣∣∣
]
, (5.5)

describes the position shift arising in a breather-breather interaction as reported in [53]. However,

different forms of ∆(λ, µ) have been derived in [131, 132]. The equivalence of the position shift

(5.5) to the expressions obtained in [131, 132] is demonstrated in the Appendix A, where the

detailed calculations are reported.
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Considering a two-component breather gas with DOS:

f(λ) =
2∑

j=1

wjδ(λ− λj), (5.6)

an explicit solution of (5.3) can be obtained. As was explained in Section 1.5.3 a delta-function

distribution function δ(λ − λj) is a mathematical idealisation of a physical spectral distribution

concentrated in a narrow vicinity of λj .

Under the ansatz (5.6) the integral equation (5.6) reduces to a system of two algebraic equations

for s(λ1), s(λ2) which are readily resolved to give

s(λ1) = s0(λ1) +
∆1,2w

[2](s0(λ1)− s0(λ1))

1− (∆1,2w[2] + ∆2,1w[1])
,

s(λ2) = s0(λ2)− ∆2,1w
[1](s0(λ1)− s0(λ2))

1− (∆1,2w[2] + ∆2,1w[1])
,

(5.7)

where ∆j,k = ∆(λj , λk). In particular, we are interested in an even simpler setting, where a

single “test” breather with parameter λ = λ1 interacts with a one-component breather described

by a DOS centred at λ = λ2. Such a configuration is achieved by considering the limit w1 → 0 in

(5.6), which that leads to

s(λ1) =
s0(λ1)−∆1,2w2s0(λ2)

1−∆1,2w2
,

s(λ2) = s0(λ2) .

(5.8)

The work presented in this Chapter aims to numerically verify the analytical result (5.8) for three

different families of one-component breather gases: the Kuznetsov-Ma BG (KMBGs) charac-

terised by λ2 = iα with α > q, the Akhmediev BG (ABGs) characterised by λ2 = iα with

α < q, and the Peregrine BG (PBGs) characterised by λ2 = iq (without loss of generality the

amplitude q of the plane wave background can be set equal to unity). The elementary components

of the considered gases correspond, respectively, to KM, AB and PS breather solutions of the

fNLSE.

The numerical verification of these results has required the implementation of a special algorithm

to generate a random N -breather breather solution with N large. The algorithm employs the

Darboux transform that has been extensively used as an effective method to generate high-order

breather solutions of the fNLSE [28, 61, 147, 150, 151]. This method relies on a recursive scheme
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where a known “seed solution” of the fNLSE is adopted as building block to generate higher-

order solutions. The seeding solution for the generation of higher-order breather solutions is the

plane wave with unitary amplitude, i.e. u0(x, t) = e2it. Then, given the set scattering data

σj = {λj , cj(xj , tj)} with the norming constant cj depending on the real tj and xj , the n-order

solution un(x, t) can be recursively generated using:

un+1 = un +
2(λ∗n − λn)snrn
|rn|2 + |sn|2

, (5.9)

where rn and sn are obtain by a recursive formula with r1(σ) and s1(σ) defined by the seed

solution.

The practical numerical implementation of the Darboux algorithm can suffer from accuracy lim-

itations. Standard computer simulations (double precision, 16 digit) fail to correctly generate

higher-order (N & 5) breather solution. To overcome this limitation we implemented a mul-

tiple precision library that allows to preform high-precision arithmetic. This strategy is analo-

gous to the one implemented in [149] to realise strongly interacting soliton gas solution of the

fNLSE. The implementation of this library enables the synthesis of N -breather solution up to

order N ∼ 50.

In practice, the spectral portrait used to generate the BGs consist of the branch cut and a set of

N = 50 discrete spectral points randomly positioned in a small square area of width δ = 10−4

centred around λ2. The randomness of the gas is then achieved by uniformly distributing xj

in some in interval centred at x0. An additional spectral point λ = λ1 corresponding to the

test TW breather propagating through the gas is add to the spectral portrait. It is important to

remark that the algorithm is adopted also to generate the time evolution of the breather gas. The

solutions generated are unstable and the direct numerical solution of the fNLSE would lead to the

development of the MI. For this reason, the spatio-temporal dynamics of the solution is obtained

by generating the BG at different times tj .

With this configuration, to verify the analytical predictions from the spectral theory (5.8), a series

of numerical simulation have been performed for the different families of breather gases and dif-

ferent values of the spectral parameters λ1 and λ2 for the trial breather and the one-component

breather gas respectively.
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5.2 Summary of Results and Outlook

Employing a Darboux transform scheme we have implemented a numerical algorithm for the

spectral synthesis of breather gas solution of the fNLSE. Adopting an high-precision library we

overcome the limitations on the number of component of the gas reaching and we were able to

generate higher-order breather solution with order up to N ∼ 50. The numerical algorithm has

been used to synthesise three different families of one-component breather gas and furthermore,

to verify some of the analytical predictions of spectral kinetic theory [53].

In this work, using the algorithm developed, we investigate the propagation of a generic test TW

breather through the different type of gases: AB, KM and PS. In particular, we test the theoretical

prediction (5.8) for the effective velocity of the trial breather propagation through a BG. In all

cases considered the results of the numerical simulations demonstrated an excellent agreement

with the predicted effective mean velocity providing a convincing evidence of the efficacy of the

spectral kinetic theory.

The quantitative verification of the spectral kinetic theory of breather gases realised in this work

represents an important step in the effort to better understand properties of integrable turbu-

lence.

The results of the project appear in:

• G. Roberti, G. El, A. Tovbis, F. Copie, P. Suret and S. Randoux “Numerical spectral syn-

thesis of breather gas for the focusing nonlinear Schrödinger equation”, Phys. Rev. E,

103:042205, Apr 2021

Suggested by the results reported in this work we identify two major direction of future re-

search:

(i) Application of the numerical synthesis algorithm developed as a central tool for the controlled

experimental generation of BGs. The possibility of this future development is suggested by the

recently reported realisation of fNLSE soliton gas in the hydrodynamics setting [52].

(ii) Verification of other results of the spectral theory of BGs and the study of the properties of

localisation in space and time of fNLSE breather solutions of very high order.
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We numerically realize a breather gas for the focusing nonlinear Schrödinger equation. This is done by
building a random ensemble of N ∼ 50 breathers via the Darboux transform recursive scheme in high-precision
arithmetics. Three types of breather gases are synthesized according to the three prototypical spectral configu-
rations corresponding the Akhmediev, Kuznetsov-Ma, and Peregrine breathers as elementary quasiparticles of
the respective gases. The interaction properties of the constructed breather gases are investigated by propagating
through them a “trial” generic (Tajiri-Watanabe) breather and comparing the mean propagation velocity with the
predictions of the recently developed spectral kinetic theory [El and Tovbis, Phys. Rev. E 101, 052207 (2020)].
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I. INTRODUCTION

The study of nonlinear random waves in physical systems
well described at leading order by the so-called integrable
equations, such as the Korteweg–de Vries (KdV) or nonlin-
ear Schrödinger (NLS) equations, has recently become the
topic of intense research in several areas of nonlinear physics,
notably in oceanography and nonlinear optics. This interest
is motivated by the complexity of many natural or experi-
mentally observed nonlinear wave phenomena often requiring
a statistical description even though the underlying physi-
cal model is in principle amenable to the well-established
mathematical techniques of integrable system theory such as
the inverse scattering transform (IST) or finite-gap theory
[1]. An intriguing interplay between integrability and ran-
domness in such systems is nowadays associated with the
concept of integrable turbulence introduced by Zakharov in
[2]. The integrable turbulence framework is particularly per-
tinent to the description of modulationally unstable systems
whose solutions, under the effect of random noise, can exhibit
highly complex spatiotemporal dynamics that is adequately
described in terms of turbulence theory concepts, such as the
distribution functions, ensemble averages, and correlations.

Solitons and breathers are the elementary quasiparticles of
nonlinear wave fields in integrable systems which can form
ordered coherent structures such as modulated soliton trains
and dispersive shock waves [3,4], superregular breathers [5,6],
or breather molecules [7]. Furthermore, solitons and breathers
can form irregular structures or statistical ensembles that
can be viewed as soliton and breather gases. The nonlinear
wave field in such integrable gases represents a particu-
lar case of integrable turbulence [2,8–13]. The observations
of soliton and breather gases in the ocean have been re-
ported in Refs. [14–17]. Recent laboratory experiments on

*stephane.randoux@univ-lille.fr

the generation of shallow-water and deep-water soliton gases
were reported in Refs. [18,19], respectively. It has also been
demonstrated that the soliton gas dynamics in the focusing
NLS equation provides a remarkably good description of the
statistical properties of the nonlinear stage of spontaneous
modulational instability [20].

An analytical description of soliton gases was initiated by
Zakharov in Ref. [21], where a spectral kinetic equation for
KdV solitons was derived using an IST-based phenomeno-
logical procedure of computing an effective adjustment to
a soliton’s velocity in a rarefied gas due to its collisions
with other solitons, accompanied by appropriate phase shifts.
Zakharov’s kinetic equation for KdV soliton has been gen-
eralized to the case of a dense gas in Ref. [22] using the
spectral finite-gap theory. Within this theory, a uniform (equi-
librium) soliton gas is modeled by a special infinite-phase
thermodynamic-type limit of finite-gap KdV solutions. The
kinetic description of the nonequilibrium soliton gas is then
enabled by considering the same thermodynamic limit for
the associated modulation (Whitham) equations. The resulting
kinetic equation describes the evolution of the density of states
defined as the density function in the spectral (IST) phase
plane of soliton gas. The spectral construction of the KdV
soliton gas in Ref. [22] was generalized to the soliton gas of
the focusing NLS equation (NLSE) in Refs. [23,24]. The latter
work [24] provides also the spectral kinetic description of a
breather gas (BG), which is the main subject of the present
work.

An isolated generic breather can be broadly viewed as a
soliton on the plane-wave (or finite) background. The one-
dimensional (1D) NLSE supports a large family of breather
solutions that have attracted particular interest due to their
explicit analytic nature and the potential for modeling the
rogue wave events in the ocean and in nonlinear optical
fibers [25–29]. Three types of breathers, namely, the Akhme-
diev breather (AB), the Kuznetsov-Ma (KM) breather, and
the Peregrine soliton (PS) have aroused significant research
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interest (see [30–35] and references therein). The AB, KM
breather, and PS represent special cases of a generic breather
called the Tajiri-Watanabe (TW) breather [36]. The simplest
example of a breather gas can be viewed as an infinite ran-
dom ensemble of TW breathers [24]. By manipulating the
spectral parameters, the TW breather gas can be reduced to
the AB, KM, and PS gases as well as to the fundamental
soliton gas. The latter is achieved by vanishing the plane-wave
background of the TW breather gas [24].

The present paper has two goals: (i) numerical realiza-
tion of a breather gas and (ii) verification of the spectral
theory of a breather gas developed in Ref. [24]. Numerical
realization of a breather gas as a large ensemble of TW
breathers with prescribed parameters represents a challenging
problem. Numerical methods for the construction of breather
solutions of the 1D NLSE suffer from accuracy problems that
prevent the numerical synthesis of breathers of order N � 5
[37,38]. In the context of soliton gases, this latter difficulty
has been resolved recently by Gelash and Agafontsev [39]
via the application of the so-called dressing method com-
bined with high-precision numerical computations. In this
paper we extend the algorithm of [39] to numerically realize
various breather gases and verify some predictions of the
spectral kinetic theory of [24]. In particular, we demonstrate
that random ensembles of N ∼ 50 breathers can be built via
the Darboux transform recursive scheme in high-precision
arithmetics. This represents an improvement of an order of
magnitude compared to the results reported in previous nu-
merical works. In addition, we show that the construction
method can be used to provide evidence of the space-time
evolution of the generated breather gases. This feature cannot
be achieved by using direct numerical simulations of the 1D
NLSE due to the inevitable presence of modulational instabil-
ity that quickly disintegrates the plane-wave background.

The paper is organized as follows. In Sec. II we present
the algorithm of the spectral synthesis of a breather gas us-
ing the Darboux transform. This algorithm is then realized
numerically using the high-precision arithmetics. In Sec. III
we numerically study the interactions in breather gases and
compare the results of the numerical simulations with the
theoretical predictions of the breather gas kinetic theory of
Ref. [24]. Specifically, we consider the propagation of the
“trial” breather through a homogeneous breather gas for three
prototypical configurations: Akhmediev, Kuznetsov-Ma, and
Peregrine gases. The study of interaction in the gas of Akhme-
diev breathers has revealed some special features that have
required further development of the theory of Ref. [24]. The
Appendix provides the identification of the interaction kernel
in the breather gas with the position shift formula in two-
breather collisions, obtained in earlier works.

II. NONLINEAR SPECTRAL SYNTHESIS
OF BREATHER GASES

A. Overview of soliton and breather ensembles in the 1D NLSE

We consider the integrable 1D NLSE in the form

iψt + ψxx + 2|ψ |2ψ = 0, (1)

where ψ (x, t ) represents the complex envelope of the wave
field that evolves in space x and time t . In the IST method,

the 1D NLSE (1) is represented as a compatibility condition
of two linear equations [1,40]

�x =
( −iλ ψ

−ψ∗ iλ

)
�, (2)

�t =
(−2iλ2 + i|ψ |2 iψx + 2λψ

iψ∗
x − 2λψ∗ 2iλ2 − i|ψ |2

)
�, (3)

where λ is a (time-independent) complex spectral parameter
and �(x, t, λ) = [r(x, t, λ), s(x, t, λ)]T is a column vector.
The spatial linear operator (2) and the temporal linear oper-
ator (3) form the Lax pair of Eq. (1). For a given potential
ψ (x, t ) the problem of finding the scattering data σ [ψ] (also
sometimes called the IST spectrum) and the corresponding
scattering solution � specified by the spatial equation (2) is
called the Zakharov-Shabat (ZS) scattering problem [41]. The
ZS scattering problem is formally analogous to calculating the
Fourier coefficients in the Fourier theory of linear systems;
hence the term nonlinear Fourier transform is often used in the
context of telecommunication system research, particularly in
the context of periodic boundary conditions [42–44].

For spatially localized potentials ψ such that ψ (x, t ) → 0
as |x| → ∞, the complex eigenvalues λ are generally pre-
sented by a finite number of discrete points with Im(λ) �= 0
(discrete spectrum) and the real line λ ∈ R (continuous spec-
trum). The scattering data σ (ψ ) consist of a set of N discrete
eigenvalues λn (n = 1, . . . , N), a set of N norming constants
Cn for each λn, and the so-called reflection coefficient ρ(ξ ),

σ (ψ ) = {ρ(ξ ); λn,Cn}, (4)

where ξ ∈ R denotes the continuous spectrum component. In
this setting where the wave field ψ exists on a zero back-
ground, the discrete part of the IST spectrum is related to
the soliton content of the wave field whereas the continuous
part of the IST spectrum is related to the nonlinear dispersive
radiation [41].

A special class of (reflectionless) solutions of Eq. (1), the
N-soliton solutions (NSSs), exhibits only a discrete spec-
trum [ρ(ξ ) = 0] consisting of N complex-valued eigenvalues
λn, n = 1, . . . , N , and N associated complex-valued norming
constants. The IST formalism has been extensively applied
to examine the processes of interaction, collision, and syn-
chronization in NSSs (see, e.g., Refs. [41,45]). The numerical
synthesis of NSSs can be achieved in standard computer
simulations (double precision, 16 digits) up to N ∼ 10 [39].
On the other hand, the numerical synthesis of NSSs with N
large represents a challenging problem that has been resolved
only recently [39]. Combining the so-called dressing method
and numerical calculations made using high numerical pre-
cision (a 100-digit precision is typically necessary for the
synthesis of NSSs with N ∼ 100), the numerical synthesis of
soliton gases (SGs), i.e., large ensembles of NSSs character-
ized by a given spectral distribution, has been demonstrated
in Ref. [39]. The opportunity to synthesize numerically large
soliton ensembles has opened the way to the experimental
generation of strongly nonlinear wave fields with a pure soli-
tonic content. In particular, recent experiments made in a
one-dimensional water tank with deep-water surface gravity
waves have revealed that the controlled synthesis of dense
SGs can be achieved in hydrodynamics [19]. Moreover, it also
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has been recently shown that the so-called bound-state SGs
provide a model that describes well the nonlinear stage of the
noise-induced modulation instability [20].

In addition to the soliton solutions existing on a zero back-
ground, the focusing NLS equation (1) admits a large variety
of solutions existing on a nonzero (plane-wave) background.
The IST theory for the focusing nonlinear Schrödinger equa-
tion with nonzero boundary conditions (NZBCs) at infinity
has been reported in Refs. [46–48]. As in the IST with zero
boundary conditions, the scattering data σ [ψ] in the IST with
NZBCs consist of a set of N discrete complex-valued eigen-
values λn, a set of N associated norming constants Cn, and
the reflection coefficient ρ(λ). In the IST with NZBCs, the
continuous spectrum does not exist on the real axis R but on
R ∪ [−iq0, iq0], where q0 > 0 represents the amplitude of the
plane-wave background [46,47].

The focusing NLS equation with NZBCs possesses a rich
family of purely solitonic solutions [reflectionless potentials,
ρ(λ) = 0] named breathers or sometimes solitons on a finite
background. The generic “elementary” breather parametrized
by one single complex-valued eigenvalue (N = 1) in the
framework of the IST with NZBCs is the so-called Tajiri-
Watanabe breather [36]. This elementary solution reduces
under certain limits to the solutions found over the years
by Kuznetsov [30], Ma [48], Peregrine [31], and Akhme-
diev [32]. Using the dressing method, Zakharov and Gelash
constructed a class of two-soliton solutions on a finite back-
ground, termed superregular breathers and corresponding to
small initial perturbations of a constant background [49]. This
was generalized to several pairs of breathers in Refs. [5,50].
Note that most of these breather solutions of Eq. (1) have
been experimentally realized in hydrodynamics and in optics
[6,7,33,34,51–56] but also recently with matter waves [57].

B. Darboux transform-based synthesis of breather gases

The recent interest in studying the breather solutions of var-
ious kinds has been fueled by rogue-wave research (see, e.g.,
[58] and references therein). The prototypical rogue-wave
solutions represent coherent structures of large amplitude,
strongly localized in both space and time, on an otherwise
quiescent background [25,27,38,59–65]. In this context the
Darboux transform has been extensively used as a reliable
method to generate higher-order breather solutions of Eq. (1),
i.e., reflectionless solutions of the focusing 1D NLSE with
NZBCs [37,66–69]. Note that the Darboux transform is now
also used in the context of nonlinear eigenvalue communi-
cation to build ordered soliton ensembles used to carry out
the transmission of information in fiber optic communication
links [43,44,70].

The Darboux method is a recursive transformation scheme
where a “seeding solution” of the focusing 1D NLSE is used
as a building block for the construction of a higher-order
solution through the addition of one discrete eigenvalue. Here
we give a brief review of the Darboux transform method
used for the generation of higher-order breathers. We largely
follow the exposition given in Refs. [38,71], but other impor-
tant references where this method is described and used are
Refs. [37,66–69].

In the IST for the 1D NLSE with NZBCs, the seeding
solution commonly used at the first step of the recursive
process of constructing a higher-order breather solution is
the plane-wave solution of Eq. (1) with unit amplitude,
i.e., ψ0(x, t ) = e2it . The first-order (Tajiri-Watanabe) breather
ψ1(x, t ) parametrized by the complex eigenvalue λ1 is ob-
tained by

ψ1(x, t ) = ψ0(x, t ) + 2(λ∗
1 − λ1)s1,1r∗

11

|r1,1|2 + |s1,1|2 . (5)

The functions r1,1(x, t ) and s1,1(x, t ) in Eq. (5) are obtained
by setting j = 1 in the expressions

r1, j (x, t ) = 2ie−it sin(Aj ),

s1, j (x, t ) = 2eit cos(Bj ), (6)

where Aj and Bj are given by

Aj = 1

2

[
arccos

(
κ j

2

)
+ (x − x j )κ j − π

2

]
+ (t − t j )κ jλ j,

Bj = 1

2

[
− arccos

(
κ j

2

)
+ (x − x j )κ j − π

2

]
+ (t − t j )κ jλ j,

(7)

with κ j = 2
√

1 + λ2
j . The parameters (x j, t j ) are connected

with the complex norming constants Cj in the IST with
NZBCs [37]. The first-order breather ψ1(x, t ) is parametrized
by the complex eigenvalue λ1 and by the two real parameters
x1 and t1. Once the first-order breather ψ1 is constructed
using Eqs. (5)–(7), breather solutions of order n � 2 can be
recursively generated by using

ψn(x, t ) = ψn−1(x, t ) + 2(λ∗
n − λn)sn,1r∗

n,1

|rn,1|2 + |sn,1|2 , (8)

with

rn,p = [(λ∗
n−1 − λn−1)s∗

n−1,1rn−1,1sn−1,p+1

+ (λp+n−1 − λn−1)|rn−1,1|2rn−1,p+1

+ (λp+n−1 − λ∗
n−1)|sn−1,1|2rn−1,p+1]

× (|rn−1,1|2 + |sn−1,1|2)−1, (9)

sn,p = [(λ∗
n−1 − λn−1)sn−1,1r∗

n−1,1rn−1,p+1

+ (λp+n−1 − λn−1)|sn−1,1|2sn−1,p+1

+ (λp+n−1 − λ∗
n−1)|rn−1,1|2sn−1,p+1]

× (|rn−1,1|2 + |sn−1,1|2)−1. (10)

Despite the efficiency of the Darboux method for the
construction of high-order breather solutions of Eq. (1),
its practical implementation in numerics suffers from the
same type of issues as those previously mentioned for the
numerical construction of NSSs. As noted in Refs. [37,38],
problems of numerical accuracy may prevent the numerical
synthesis of breathers of order N � 5. In this paper we show
that this limit can be overcome by the implementation of
the same strategy as the one used to build NSSs with N
large [39]. Implementing the Darboux recursive scheme in
high-precision arithmetics using the BOOST C++ multiple
precision library, we show that breather solutions of Eq. (1)

042205-3



GIACOMO ROBERTI et al. PHYSICAL REVIEW E 103, 042205 (2021)

FIG. 1. Numerical synthesis of (a), (e), and (i) a generic BG (column 1) and of three single-component BGs (columns 2–4): (b), (f), and
(j) a KMBG; (c), (g), and (k) an ABG; and (d), (h), and (i) a PS BG. The four BGs are parametrized by N = 50 complex eigenvalues λn [see
(i)–(l)]. (a)–(d) Space-time evolution of the BGs. (e)–(h) Enlarged view of some restricted region of the (x, t ) plane. (i)–(l) Spectral portraits
of each BG with the vertical line between 0 and +i being the branch cut associated with the plane-wave background. Each point in the upper
complex plane in (i)–(l) represents a discrete eigenvalue in the IST problem with NZBCs. The eigenvalues parametrizing the single-component
BGs are densely placed in a small square region which is centered around a point λ0 of the imaginary vertical axis and which is greatly enlarged
in the insets shown in (j)–(l). The x j are uniformly distributed in the range [−1, 1] for (a) the generic gas and (d) the Peregrine gas, while they
are uniformly distributed in the range [−32, 32] for (b) the KM gas and (c) the AB gas.

can be synthesized up to order N ∼ 50. As will be shown in
detail in Sec. III, this provides a numerical tool that enables
one to verify the results of the spectral theory of breather
gases recently developed in Ref. [24].

Figure 1(a) shows the space-time evolution of a generic
BG, i.e., a breather solution of Eq. (1) of order N = 50
with random spectral characteristics. The amplitude of the
plane-wave background is unity (q0 = |ψ0| = 1) and the 50
complex-valued eigenvalues λ j ( j = 1–50) parametrizing the
BG are randomly distributed within some rectangular region
of the upper complex plane [see Fig. 1(i)]. The parameters
t j are set equal to zero (t j = 0 ∀ j) and the randomness of
the gas is achieved by uniformly distributing the x j in some
interval centered around x0 = 0. Note that the vertical line
between 0 and +i in Fig. 1(i) represents the so-called branch
cut associated with the plane-wave background in the IST for-
malism of the 1D NLSE with a nonzero background (see, e.g.,
[24,35,46,47]). Figure 1(a) reveals that the space-time dynam-
ics of the generic BG synthesized in numerical simulations
is highly complicated. In particular, breathers cannot be in-
dividualized due to their strong overlap and interaction. Note
also that the maximum amplitude reached locally in space and
time by the incoherent breather ensemble of Fig. 1(a) does not
exceed ∼5.5, which demonstrates that the multiple breathers
are far from a synchronization state that would eventually
produce isolated rogue waves of large amplitude [72,73].

We emphasize that BGs shown in the space-time plots
of Fig. 1 are not obtained from a numerical simulation of
Eq. (1). Taking a BG generated at a given time t0 using
the Darboux method and using this wave field as the initial
condition in a numerical simulation of Eq. (1), we observe that
modulation instability quickly disintegrates the plane-wave
background by amplifying the numerical noise inherent to any
pseudospectral (split-step-like) method commonly used for
the numerical integration of the 1D NLSE. On the other hand,
space-time plots reported in Fig. 1 are obtained from a pure
spectral (IST) construction based on the Darboux recursive
method which has been implemented in computer simula-
tions made with high numerical precision. Starting from an
ensemble of N complex eigenvalues λ j and N coordinates
(x j, t j ), the BG is synthesized at time t using the Darboux
machinery [Eqs. (5)–(10)]. A 100-digit precision is typically
necessary to synthesize a BG parametrized by an ensem-
ble of N ∼ 50 eigenvalues. The space-time plots shown in
Fig. 1 are obtained by reiterating the same synthesis at dif-
ferent values of time t . Our numerically synthesized solutions
can be validated by computing the discrete Zakharov-
Shabat spectrum (using, for instance, the Fourier collocation
method [35,41]) at different moments of time to verify that
the obtained discrete eigenvalues are indeed the same as
the ones specified for the construction of the BG under
consideration.
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The central concept in the theory of SGs and BGs is the
density of states (DOS) [74] which represents the distribution
function u(λ, x, t ) in the spectral phase space. In the context
of the 1D NLSE (1), the DOS u(λ, x, t ), where λ = β + iγ ,
is defined such that udβdγ dx is the number of breather states
with complex spectral parameter λ ∈ [β, β + dβ] × [γ , γ +
dγ ] contained in a portion of the BG within a spatial interval
[x, x + dx] at time t .

One-component BGs have been defined in Ref. [24] as
being characterized by a DOS in the form of the Dirac δ

distribution, i.e., u(λ) = wδ(λ − λ0), where w > 0 represents
the mass of the δ distribution which is centered around one
specific point λ0 in the complex spectral plane. Figures 1(b)–
1(d) and 1(f)–1(h) display the space-time evolutions together
with the spectral portraits [Figs. 1(j)–1(l)] typifying some
one-component BGs of particular interest.

For the Kuznetsov-Ma BG (KMBG), the spectral portrait
consists of the branch cut (associated with the plane-wave
background of unity amplitude) and a dense set of N = 50
spectral points randomly placed in a small square region
of width δ = 10−3 centered around λ0 = 1.3i, as shown in
Fig. 1(j). Figure 1(b) shows that the KMBG is a dense en-
semble of individual KM breathers, all having a zero velocity
in the (x, t ) plane. In contrast to Fig. 1(a), each KM breather
inside the BG can be individualized and the BG follows the
same periodic time evolution where the time period is fully
determined by Im(λ0). The randomness in the one-component
KMBG can be seen from the random distance between in-
dividual KM breathers and their random initial phase [see
Fig. 1(f)].

The Akhmediev BG (ABG) is characterized by the same
distribution of the spectrum λ as the KMBG except that the
point λ0 around which the multiple discrete eigenvalues are
accumulated is now placed inside the branch cut associated
with the plane-wave background [see Fig. 1(k)], where λ0 =
+0.8i. As a result, the ABG is more naturally characterized
by the spectral flux density, the temporal counterpart of the
DOS. As shown in Fig. 1(c), the ABG consists of a random
series of individual ABs having identical spatial period, which
is fully determined by Im(λ0). Similarly to the KMBG, the
randomness in the one-component ABG can be seen from
the random time separation between individual Akhmediev
breathers and their random relative phases [see Fig. 1(g)].

It must be mentioned that the density (spatial or temporal)
of the AB or KM breather gases cannot be made arbitrarily
large: There is a configuration termed breather condensate
[24] corresponding to a critically dense breather gas, similar
to a soliton condensate numerically realized in Ref. [20].

It is well known that the Peregrine breather can be obtained
as the spatial and temporal infinite-period limits of Akhme-
diev and Kuznetsov-Ma breathers, respectively [68,71]. In
the spectral (IST) domain, the Peregrine breather is obtained
by placing the eigenvalue parametrizing a first-order breather
solution of Eq. (1) exactly at the end point +i of the branch cut
associated with the plane-wave background of unit amplitude
[35]. Following the same approach, the one-component Pere-
grine BG (PBG) is obtained by accumulating a large number
of discrete eigenvalues in a small area surrounding the end
point of the branch cut [see Fig. 1(l)]. As shown in Figs. 1(d)
and 1(h), the PBG represents a collection of individual and

identical Peregrine breathers that are randomly positioned in
space and time.

While the PG synthesized in our work represents a high-
order breather solution of Eq. (1), this solution contrasts with
the high-order breather solutions considered previously be-
cause it is intrinsically of a random nature. The localized
breather solutions of high order that have been considered
in previous works (see, e.g., Refs. [38,62,64,71]) have been
arranged in regular patterns with well-organized geometrical
shapes because they represented synchronized states having
no degree of randomness. In contrast, in the construction
plotted in Figs. 1(d) and 1(h), the parameters x j are randomly
and uniformly distributed over [−1,+1], which implies that
each individual Peregrine breather in the PG has a random
position in the (x, t ) plane. We also mention that the solitonic
eigenvalues in our numerical construction are clustered (also
randomly) in close proximity to the end points of the spectral
branch cut, so the individual Peregrine solitons in the PG are
realized in our synthesis approximately, with the accuracy
determined by the closeness of the solitonic eigenvalues to
the end points of the branch cut.

III. INTERACTIONS IN BREATHER GASES:
COMPARISON BETWEEN NUMERICAL EXPERIMENTS

AND SPECTRAL THEORY

The analytical theory of BGs was introduced and devel-
oped in Ref. [24]. It was shown that spatially nonhomoge-
neous BGs are described by a kinetic equation formed by a
transport equation for the slowly varying DOS u(λ, x, t ) and
the integral equation of state relating the gas velocity to the
DOS. In this section we show that some predictions of the
spectral theory of BGs can be verified in simulations involv-
ing BGs that have been numerically synthesized using the
methodology described in Sec. II B. In Sec. III A we provide
the key elements of spectral theory of BGs that are relevant for
the comparison between theoretical and numerical results. In
Sec. III B we examine the collision between one trial soliton
and various single-component BGs.

A. Analytical results from the spectral theory of breather gases

The nonlinear spectral theory of SGs and BGs for the fo-
cusing 1D NLSE developed in Ref. [24] provides a full set of
equations characterizing the macroscopic spectral dynamics
in a spatially nonhomogeneous BG. An important result of
the theory is the so-called equation of state which provides
the mathematical expression of the modification of the mean
velocity of a “tracer” breather due to its interaction with other
breathers in the gas.

The group velocity [in the (x, t ) plane] of a first-order (TW)
breather parametrized by the complex eigenvalue λ ≡ η (we
will use in this section the latter notation for the spectral
parameter to be consistent with notation of Ref. [24] and
previous works on the spectral kinetic theory) is given by

s0(η) = −2
Im[ηR0(η)]

Im[R0(η)]
, (11)

where R0(z) =
√

z2 − δ2
0 , with δ0 the end point of the branch

cut corresponding to the plane wave (δ0 = i for the plane
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wave of unit amplitude considered in all the numerical sim-
ulations reported in this paper). It is not difficult to see that,
if η ∈ iR \ [−i, i] (KM breather), then s0(η) = 0, while if
η ∈ (−i, i) (AB), then s0(η) = ±∞ depending on the way the
limit Re(η) → 0 in Eq. (11) is taken (either from the left or
right side of the branch cut).

As shown in Ref. [24], the equation of state of a BG reads

s(η) = s0(η) +
∫

�+
�(η,μ)[s(η) − s(μ)]u(μ)|dμ|, (12)

where �+ is the two-dimensional compact support of the DOS
u(η) (defined earlier in Sec. II B) located in the upper half
plane C+ of the complex spectral plane

�(η,μ) = 1

Im[R0(η)]

[
ln

∣∣∣∣∣μ − η̄

μ − η

∣∣∣∣∣
+ ln

∣∣∣∣∣R0(η)R0(μ) + ημ − δ2
0

R0(η̄)R0(μ) + η̄μ − δ2
0

∣∣∣∣∣
]
. (13)

The integral term in Eq. (12) describes the modification of the
tracer breather mean velocity in a gas due to its interaction
with other breathers in the gas having a DOS specified by u.
The spectral value η in Eq. (12) can be taken outside �+;
in that case formula (12) describes the mean velocity of a
trial TW breather with the eigenvalue η propagating through
a breather gas with the DOS supported �+.

The interaction kernel �(η,μ) given by Eq. (13) describes
the position shift arising in a two-breather interaction. We
note that the two-breather interactions have been studied in
Refs. [50,75] using the IST, where different forms of the ex-
pressions for the position shift were obtained. In the Appendix
we demonstrate the equivalence of the kernel �(η,μ) given
by (13) to the position shift formula obtained for two-breather
collisions in previous works.

For a two-component breather gas, the DOS is a superposi-
tion of two Dirac δ functions centered at the complex spectral
points η[ j] ( j = 1, 2),

u(η) =
2∑

j=1

w[ j]δ(η − η[ j] ), (14)

where w[ j] are the weights of the components. For the DOS
specified by Eq. (14), Eq. (12) yields the linear system for the
gas component velocities s[ j] ≡ s(η[ j] ) ( j = 1, 2),

s[1] = s[1]
0 + �1,2w

[2]
(
s[1]

0 − s[2]
0

)
1 − (�1,2w[2] + �2,1w[1] )

,

s[2] = s[2]
0 − �2,1w

[1]
(
s[1]

0 − s[2]
0

)
1 − (�1,2w[2] + �2,1w[1] )

, (15)

where s[ j]
0 ≡ s0(η[ j] ) ( j = 1, 2) and � j,k = �(η[ j], η[k] ).

In the numerical simulations presented in Sec. III B, we
will consider an even simpler situation where a single trial
breather parametrized by the eigenvalue η[1] interacts with a
one-component breather gas having its spectral distribution
centered in η[2]. In such a limit w[1] → 0 and Eqs. (15) reduce

to

s[1] = s[1]
0 − �1,2w

[2]s[2]
0

1 − �1,2w[2]
,

s[2] = s[2]
0 . (16)

The validity of Eqs. (16) in the context of the 1D NLSE
dynamics (1) will be verified for the PBG, the KMBG, and
the ABG in numerical simulations presented in Sec. III B.
As a matter of fact, formula (16) can be obtained directly
from Eq. (12) by setting η = η[1] /∈ �+ (the trial breather
eigenvalue), and using u(μ) = w[2]δ(μ − η[2] ), s(η2) = s[2]

0 ,
where η[2] ∈ �+.

B. Interactions in one-component breather gases: Comparison
between spectral theory and numerical simulations

In the numerical simulations presented in this section, a
trial TW breather with the spectral parameter η = η[1] is
propagated through various single-component BGs having
their DOS defined by u(η) = w[2]δ(η − η[2] ). We define the
spectral parameter η[2] as η[2] = αi, with α = 1 for the PBG,
α > 1 for the KMBG, and α < 1 for the ABG. Similar to
Fig. 1, the spectral portrait of the considered BGs consists of
the branch cut (associated with the plane-wave background
of unity amplitude) and a cluster of N = 50 spectral points
randomly placed in a small square region of width δ = 10−4

centered around η[2]. The spectral parameter η[1] is chosen in
such a way that Re(η[1] ) > 0, which implies that the free trial
TW breather has a negative group velocity in the (x, t ) plane
[see Eq. (11)].

1. Interactions in the Peregrine breather gas

Figure 2 shows a trial Tajiri-Watanabe breather propagat-
ing through a PBG. We observe that the trial breather passes
through the PBG without change in its group velocity. This
confirms the theoretical result established in Ref. [24] that the
propagation of a trial TW breather through a PBG is ballistic.
This result can be understood at the qualitative level by the
fact that the interaction cross section between the trial breather
and the individual Peregrine breathers composing the gas is so
weak that the propagation of the trial breather is unaffected by
the PBG.

2. Interactions in the Kuznetsov-Ma breather gas

Figure 3 shows a trial TW breather propagating through
a KMBG. In contrast to Fig. 2, the multiple interactions be-
tween the trial breather and the KM breathers composing the
KMBG now significantly influence the propagation of the trial
breather; see Figs. 3(a) and 3(b) for a comparison between the
trajectory of the free Tajiri-Watanabe breather (white dashed
lines) and the trajectory followed by the trial breather in the
KMBG. As shown in Fig. 3(b), the trial breather acquires a
significant space shift each time its trajectory intersects the
trajectory of an individual KM breather composing the BG.
At the macroscopic scale, this produces a velocity change of
the trial breather inside the KMBG. This leads to a spatial
shift �X in the position of the trial breather which is mea-
surable when the trial breather emerges from the KMBG [see
Fig. 3(a)].
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FIG. 2. (a) and (b) Propagation of a Tajiri-Watanabe breather with the spectral parameter η[1] = 0.05 + 1.1i inside a Peregrine BG. The
space-time evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in (a) and (b) represents the
trajectory of the “free” Tajiri-Watanabe breather propagating on a plane-wave background with a group velocity given by Eq. (11). (c) Spectral
portrait associated with the numerical results shown in (a) and (b). The vertical line between 0 and +i represents the branch cut associated
with the plane-wave background and the blue point is the discrete eigenvalue η[1] associated with the Tajiri-Watanabe breather propagating in
the PBG. The 50 spectral points characterizing the PBG are densely placed around +i and they are shown in the inset plotted in (c).

For the KMBG, Eq. (16) simplifies to

s[1] = s[1]
0

1 − �1,2w[2]
, (17)

given that s[2]
0 = 0. Equation (17) clearly shows that the group

velocity of the trial Tajiri-Watanabe breather is increased
by a factor 1/(1 − �1,2w

[2] ) due to the interaction with the
KMBG.

Note that the space shift �X acquired by the trial breather
as a result of propagation inside the KMBG simply represents
the product of the number N of iterations (equivalently the
number of breathers in the KMBG) and the elementary space
shift �1,2 induced by each interaction: �X = N�1,2. This
provides an alternative and straightforward way to check the

validity of Eq. (17) which gives the group velocity of the trial
breather inside the KMBG.

A set of numerical simulations with different values of the
spectral parameters η[1] and η[2] has been made to check the
validity of the spectral theory. Different realizations of the
KMBG have been made and the value of w[2] is determined
from numerical simulations as the ratio between the selected
number N of breathers in the gas over the spatial extension L
of the gas: w[2] = N/L. As shown in Fig. 4, we observe full
quantitative agreement between the numerical experiment and
the predictions of the spectral theory.

3. Interactions in the Akhmediev breather gas

The case of the ABG is special and requires separate con-
sideration, particularly because it was not considered in any

FIG. 3. (a) and (b) Propagation of a TW breather with the spectral parameter η[1] = 0.05 + 1.1i inside a Kuznetsov-Ma BG. The space-time
evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in (a) and (b) represents the trajectory of
the free TW breather propagating on a plane-wave background with a group velocity given by Eq. (11). (c) Spectral portrait associated with
the numerical results shown in (a) and (b). The vertical line between 0 and +i represents the branch cut associated with the plane-wave
background and the blue point is the discrete eigenvalue η[1] associated with the TW breather propagating in the KMBG. The 50 spectral
points characterizing the KMBG are densely placed around η[2] = 1.3i and they are shown in the inset plotted in (c).
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FIG. 4. Quantitative verification of the spectral theory of BGs
introduced in Ref. [24]. A comparison is shown between numerics
(red dots) and theory (dashed lines) for the effective velocity s[1] of a
trial breather η[1] propagating in a KMBG η[2].

detail in Ref. [24]. The AB is a static object, not localized in
space, so it is not immediately obvious how to identify the
key quantities u(η) and s(η) for the ABG. A single AB is a
limiting case of the TW breather where the soliton eigenvalue
η[2] is placed within the branch cut [0, i] in the upper half
plane. The ABG is generally characterized by some distribu-
tion of soliton eigenvalues along the branch cut. Similar to the
above consideration of the KMBG, we consider the ABG with
soliton eigenvalues clustered around a given spectral point η[2]

(and complex conjugate) to mimic a one-component gas.
As we have already mentioned in Sec. III A, the for-

mula (11) for the group velocity of the TW breather implies
|s(η)| → ∞ as η → η[2], which is consistent with the delo-
calized nature of the AB. On the other hand, it can be shown
using the results of Ref. [24] that in the ABG limit the DOS

FIG. 5. (a) and (b) Propagation of a TW breather with the spectral parameter η1 = 0.06 + 1.01i inside an Akhmediev BG. The space-time
evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in (a) and (b) represents the trajectory of the
free TW breather propagating on a plane-wave background with a group velocity given by Eq. (11). (c) Spectral portrait associated with the
numerical results shown in (a) and (b). The vertical line between 0 and +i represents the branch cut associated with the plane-wave background
and the blue point is the discrete eigenvalue η1 associated with the TW breather propagating in the ABG. The 50 spectral points characterizing
the KMBG are densely placed around η[2] = 0.8i and they are shown in the inset plotted in (c).

u(η) → 0 while the spectral flux density function v(η) =
s(η)u(η) = O(1). This leads to the alternative form of the
equation of state (12),

s(η) = s0(η) +
∫

�+
�(η,μ)

[
s(η)

s(μ)
− 1

]
v(μ)|dμ|, (18)

which is more suitable for the characterization of the ABG
interactions. Equation (18) was obtained from (12) by sub-
stituting u(η) = v(η)

s(η) . Assuming �+ to be a narrow region
surrounding the branch cut [0, i] and using |s(μ)| � 1 for
μ ∈ �+, Eq. (18) to leading order becomes

s(η) = s0(η) −
∫

�+
�(η,μ)v(μ)|dμ|. (19)

Equation (19) describes the modification of the velocity of the
TW breather with eigenvalue η propagating through the ABG
characterized by the spectral flux density v(μ).

An important property of �(η,μ) given by (13) is that

�(η,μ) + �(η,−μ̄) = 0 when μ ∈ [0, i], (20)

that is, when μ is on the branch cut [0, i]. The second variable
η can take any value in the upper half plane. Equation (20)
implies that �(η,μ) takes opposite values on the opposite
sides of the branch cut.

It can further be shown that in the case of a breather gas,
whose spectral support �+ is symmetric with respect to the
branch cut [0, i], the function v(η) also takes opposite values
on the opposite sides of [0, i]. Thus the speed of the ABG s(η)
from (18) does not depend on which side of the upper part of
the branch cut [0, i] the domain �+ or its parts are situated.

Let us now consider a one-component ABG with the spec-
tral flux density v(η) = wtδ(η − η[2] ), where η[2] ∈ [0, i] and
wt is a real constant weight. As a result, Eq. (19) assumes a
simple form

s(η) = s0(η) − wt�(η, η[2] ). (21)
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FIG. 6. Comparison between numerics (red dots) and theory
(dashed lines) for the effective velocity s[1] of a trial TW breather
η[1] propagating in an ABG η[2].

We note that the sign of wt , as was explained above, depends
on the side of [0, i] but the sign of the product wt� does
not. Hence we have the general result s(η) − s0(η) < 0 for
the propagation of a trial breather through an ABG.

We note that formula (21) can be obtained directly from the
basic result (16) by using w[2] → 0 and introducing w[2]s[2]

0 ≡
wt . This simple formal consideration, however, does not pro-
vide the important information about the sign of wt�.

Figure 5 shows a trial TW breather propagating through an
ABG. Similar to Fig. 3, the propagation of the trial breather
is significantly influenced by the the multiple interactions
with the ABs composing the ABG [see Figs. 5(a) and 5(b)].
One can see that, in contrast to the interaction of the trial
TW breather with the KMBG, the group velocity of the trial
TW breather is reduced in the interaction with the ABG, in
agreement with Eq. (21). Indeed, the space shifts observed in
Figs. 3(a) and 5(a) have opposite signs.

Similar to the KMBG interactions, a set of numerical sim-
ulations with different values of the spectral parameters η[1]

and η[2] has been made to check the validity of Eq. (21).
Different realizations of the ABG have been produced and the
value of wt was determined from numerical simulations as the
ratio between the selected number N of ABs in the gas over
the temporal extension T of the gas: wt = N/T . As shown
in Fig. 6, we observe full quantitative agreement between
the numerical experiment and the predictions of the spectral
theory.

IV. CONCLUSION

We have developed a numerical algorithm of the IST
spectral synthesis of breather gases for the focusing 1D
NLS equation. The algorithm is based on the recursive Dar-
boux transform scheme realized in high-precision arithmetics.
Using this algorithm, we have synthesized numerically
three types of prototypical breather gases: the Akhmediev,
Kuznetsov-Ma, and Peregrine gases.

Using the spectral algorithm developed, the interaction
properties of breather gases, predicted by the kinetic theory
of Ref. [24], have been tested by propagating through them a
trial generic TW breather whose effective velocity is strongly

affected by the interaction with the gas. In all cases the theo-
retically predicted effective mean velocity of the trial breather
propagating through a breather gas demonstrates excellent
agreement with the results of the numerical simulations. The
verification of the theory, despite the inevitable effects of
modulational instability present in the 1D NLSE dynamics,
has been made possible due to the whole numerical algorithm
being based on the spectral construction rather than direct
simulations of the 1D NLSE.

The quantitative verification of the kinetic theory of
breather gases undertaken in this paper is an important step
towards a better understanding of this type of turbulent mo-
tion in integrable systems. We also believe that the ability
to synthesize numerically BGs represents an important step
towards the controlled laboratory generation of BGs, possibly
following an approach similar to the one recently reported for
hydrodynamic SGs [19]. Finally, the possibility to generate
numerically breather solutions of order N � 10 paves the way
for further works devoted to the investigation of the properties
of localization in space and time of breather solutions of the
1D NLSE of very high order [38,50,73].
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APPENDIX: POSITION SHIFT IN TWO-BREATHER
INTERACTIONS

Two-breather interactions have been studied in
Refs. [50,75], where the expressions for the phase and
position shifts in the interaction of two Tajiri-Watanabe
breathers have been derived using the IST analysis. In
Sec. III A the interaction kernel in the equation of state (12)
for the breather gas was obtained in the form (13). The natural
interpretation of this interaction kernel, consistent with the
previously studied cases of KdV and NLS soliton gases,
is the position shift in a two-breather collision. However,
the equivalence between formula (13) and the expressions
from [50,75] is far from obvious. Here we establish this
equivalence, enabling one to extend the phenomenological
interpretation of soliton gas kinetics [23] to breather gases.

We consider the position shift expression from [75],

�ξ̄2 = − ln(ξ0)/c−,2 cos α2 = �(λ2, λ1), (A1)

where

ξ0 = d+ − 2[cos(α1 − α2) + c−,1c−,2] cos(α1 − α2)

d+ − 2[cos(α1 + α2) − c−,1c−,2] cos(α1 + α2)
, (A2)
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with

c±, j = z j ± q2
0/z j, λ j = (

ζ j − q2
0/ζ j

)
/2,

d±, j = z2
j ± q4

0/z2
j , q0 = −iδ0,

d+ = d+,1 + d+,2, R0(λ j ) = (
ζ j + q2

0/ζ j
)
/2,

ζ j = R0(λ j ) + λ j = iz je
iα j . (A3)

One can verify that substituting (A3) in Eq. (13) and invoking
the identities

|λi|2 = (
d+,i + 2q2

0 cos αi
)
/4,

d+ =
(

z1z2 + q4
0

z1z2

)(
z1

z2
+ z2

z1

)
, (A4)

(cos 2α1 + cos 2α2)/2 = cos α1 + α2 cos α1 − α2

yields the position shift expression (A1).
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Chapter 6

Extreme compression of optical pulses

in highly nonlinear regimes

The material of this Chapter is motivated by the satellite project “Pulse compression in extremely

nonlinear regimes” undertaken under the Research Contract with R&D company LumOptica Ltd,

https://lumoptica.com/ (PI Prof. G. El). While the LumOptica project was concerned with the

applied aspects of the pulse compression within a specific range of input/output parameters, the

scientific objective of this chapter is the theoretical study of the higher order effects (Raman scat-

tering, third-order dispersion and self-steepening) on the pulse compression and the rogue wave

formation within the semi-classical regime of propagation. We have already considered a similar

issue in Chapter 3, where the effect of the higher order fNLSE corrections on the Bertola-Tovbis

scenario of the Peregrine soliton (PS) emergence were considered in the physical context of deep-

water waves. Here a counterpart problem will be considered for the nonlinear pulse compression

in fibre optics described by the generalised NLS equation (gNLSE) (6.2) which is an appropri-

ate model for the high intensity pulse propagation. The focus will be on the determination and

manipulation of the rogue wave compression point along the fibre.

We stress that this Chapter does not aim at a comprehensive investigation of the optical pulse

compression, which is a vast topic on its own, rather it considers the rogue wave emergence within

the asymptotic setting of the semi-classical gNLSE as one of the physically relevant scenarios

of the self-compression. Along with the theoretical/numerical results we present some realistic
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characteristic physical parameters of the optical pulse compression corresponding to the employed

mathematical approximations.

6.1 Introduction

Optical pulse compression is a long-standing and fundamental problem in laser physics motivated

by various applications spanning from fusion plasma generation to supercontinuum generation

and telecommunications (see e.g. [9, 18] and references therein). Generally pulse compression

allows one to generate low power pulses of long duration (minimising damage problems), and

subsequently compress optical pulses to achieve the short pulse duration and high peak powers

required for a specific application. One can generally distinguish between two general types of

optical pulse compression: linear and nonlinear.

• Linear compression.

When pulses are chirped, their duration can be reduced by reducing the chirp, i.e. by flat-

tening the spectral phase. De-chirping can be achieved by sending the pulses through an

optical element with a suitable amount of chromatic dispersion such as a pair of diffraction

gratings, an optical fibre, a chirped mirror, etc. [9].

• Nonlinear compression can be achieved with different methods, techniques and configura-

tions of optical elements. In particular, the process of nonlinear pulse self-compression has

been widely investigated in the framework of supercontinuum generation [152]. It provides

the access to ultra-short pulses having a broad spectrum and has been conventionally seen

as a coherent nonlinear interaction of solitons constituting a wave packet, often called the

higher-order soliton compression

While the higher-order soliton compression has been the dominating paradigm for the nonlinear

self-compression for decades, the semi-classical analysis of Bertola and Tovbis [46] (see Sec-

tion 1.4.4) has revealed some universal features of self-compression related to the PS emergence,

suggesting a radical reconsideration of the widely-accepted concept of the solitonic nature of self-

compression. In Chapter 3 we have already investigated the effect of the chirp on the pulse com-

pression within the semi-classical fNLSE model modified by the higher order terms arising in
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the deep-water wave theory (the Dysthe equation). Now we look at the nonlinear optics counter-

part of this model which describes a very different physics that results in the different structure

of the higher order corrections describing the Raman scattering, third order dispersion and self-

steepening.

As was outlined in Section 1.4.4, within the semi-classical integrable fNLSE framework the non-

linear pulse compression process can be split into two qualitatively different stages: (i) the initial,

nonlinearity dominated, stage of the geometric optics self-focusing, resulting in the formation of

the gradient catastrophe; and (ii) the secondary, “rogue wave compression” stage of the dispersive

regularisation of the gradient catastrophe via the generation of a narrow, large amplitude spike,

locally approximated by the PS solution of the fNLSE.

We explore the effect of the higher order corrections on both stages of the pulse-compression.

The content of this Chapter has been adapted from the reports presented as part of the LumOptica

project. Thus, the notation adopted slightly differs from the one used in the other parts of this

Thesis.

6.2 Mathematical model

6.2.1 Model equations and characteristic parameters

In Section 1.1 the standard cubic nonlinear Schrödinger (NLS) equation has been derived as model

to describe the light propagation through a fibre. However, this derivation relies on the specific

approximations and assumptions considered. The high intensity light pulse propagation can be

modelled, depending on the parameters of the pulse (the peak power and the pulse duration), by

one of the three versions of the NLS equation presented below.

We will first present the NLS models in dimensional variables to elucidate the physical parameters

and their typical values involved.

In the most general setting the pulse propagation along the fibre described by the non-local NLS
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equation:

∂A

∂z
+ iβ2

1

2

∂2A

∂t2
+
α

2
A− β3

1

6

∂3A

∂t3
=

iγ

(
1 +

i

ω0

∂

∂t

)(
A

∫ +∞

−∞
R(t′)|A(z, t− t′)|2dt′

)
,

(6.1)

where z is the propagation distance along the fibre, t is time, A(z, t) is the slowly varying electric

field envelope, α is the dissipation coefficient, β2 and β3 are the second- and third-order dispersion

coefficients, and R(t) is the nonlinear response function (the Fourier transform of the nonlinear

susceptibility of the fibre). See Section 1.1 for a more detailed description of the physics of the

NLS equation. For soliton pulses longer than 100fs Eq. (6.1) can be approximated by the so-called

generalised NLS equation:

∂A

∂z
+ iβ2

1

2

∂2A

∂t2
− iγ|A|2A =

−α
2
A+β3

1

6

∂3A

∂t3
− 2

γ

ω0

∂(|A|2A)

∂t
− iγTRA

∂|A|2
∂t

,

(6.2)

where the left-hand part terms describe the leading-order, cubic fNLSE behaviour and the right-

hand side contains perturbative terms: losses (α), third-order dispersion (β3), self-steepening

(2γ/ω0) and Raman scattering (γTR).

If the width of the soliton pulse is indicatively larger than 5ps the governing equation can be

even more simplified, and it is possible to neglect the terms related to self-steepening and Raman

scattering. In this case, the contribution of the higher-order dispersion term can be neglected too

and the standard cubic fNLSE is obtained,

∂A

∂z
+ iβ2

1

2

∂2A

∂t2
− iγ|A|2A = 0. (6.3)

We stress that equation (6.1) is the most general and includes the propagation regimes described

by equations (6.2) and (6.3). At the same time, it is more complicated to analyse so it is desirable

to use (6.2) and (6.3) when possible.

The typical values of the physical parameters in Equation (6.2) for λ ≈ 1.55µm (corresponding to

the minimal losses in the anomalous dispersion regime for the standard telecommunications fibre)

[9] are:
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• ω0 = 2πc/λ ≈ 1.2× 1016s−1,

• β2 ≈ −20ps2/km,

• β3 ≈ 0.1ps3/km,

• γ ≈ 1W−1/km,

• TR = 3× 10−3ps at λ ≈ 1.55µm for pulses shorter than 1ps,

• α ≈ 0.05km−1 corresponding to 0.2dB/km.

The characteristic duration of a typical soliton pulse (the coherence length of the system) is given

by

tS =

(
γP0

|β2|

)− 1
2

. (6.4)

Given the above physical parameter values, we identify the characteristic value of the input power

P0 that would imply the gNLSE description (6.2) of the pulse compression. Using tS ∼ 100 fs we

obtain from (6.4)

P0 =
|β2|
γt2S
≈ 2kW. (6.5)

For the purposes of numerical simulations it is beneficial to non-dimensionalise the NLS equation

(6.2) using the following rescaling:

ψ =
A√
P0
, T = t

√
γP0

|β2|
, Z = zγP0. (6.6)

Note that the duration of the input pulse rescales to τ0 = t0

√
γP0

|β2| . Under these transformations,

equation (6.2) takes the form of the (nondimensionalised) standard cubic NLS equation (6.3) mod-

ified by the higher order terms in the RHS:

∂ψ

∂Z
− i

2

∂2ψ

∂T 2
− i|ψ|2ψ = −CLψ + CTOD

∂3ψ

∂T 3
− CS

∂(|ψ|2ψ)

∂T
− iCRψ

∂|ψ|2
∂T

, (6.7)

where for the suggested propagation parameters of P0 ≈ 2kW:

• CL = α
2γP0

≈ 1.25× 10−5 ⇒ losses;

• CTOD = β3

6|β2|

√
γP0

|β2| ≈ 0.8× 10−2 ⇒ third-order dispersion;
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• CS = 2
ω0

√
γP0

|β2| ≈ 0.02⇒ self-steepening;

• CR = TR

√
γP0

|β2| ≈ 0.03⇒ intrapulse Raman scattering.

The soliton width in the rescaled variable T is τs = 1.

6.2.2 Chirped initial pulse

We are interested in the propagation of a chirped initial pulse. As described in [9] the chirp-

ing is achieved by propagating the pulse through a dispersive medium described by the linear

Schrödinger equation, here in the non-dimensional form:

i
∂ψ(z, t)

∂z
− β′2

2

∂2ψ(z, t)

∂t2
= 0, (6.8)

where we have introduced the notation β′2 for the dispersion coefficient not to mix it with the

coefficient β2 in the NLS equation. To solve equation (6.8) we proceed in the Fourier space,

writing the field ψ(z, t) as inverse Fourier transform:

ψ(z, t) =
1√
2π

∫ +∞

−∞
eiωtψ(z, ω)dω . (6.9)

Then we can rewrite Eq. (6.8) as:

∂ψ(z, ω)

∂z
− iβ

′
2

2
ω2ψ(z, ω) = 0, (6.10)

which can be readily solved to give

ψ(z, ω) = ψ(0, ω)ei
β′2
2
ω2z. (6.11)

Now, applying the inverse transform ψ(z, ω) we obtain the evolved field:

ψ(z, t) =
1√
2π

∫ +∞

−∞
eiωtei

β′2
2
ω2zψ(ω, 0)dω. (6.12)

For a Gaussian initial pulse

ψ(0, t) = Ae−
t2

2τ2 , (6.13)
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we obtain after the propagation in the linear medium [9]:

ψ(z, t) =
Aτ√

τ2 − iβ′2z
e

−t2
2(τ2−iβ′2z) =

Aτ√
τ2 − iβ′2z

e
−t2(1+iC1)

2τ2
0 , (6.14)

where C1 =
β′2z
τ2 is the chirp parameter and τ2

0 =
τ4+β′22 z

2

τ2 . Depending on the sign of dispersion

β′2 one can have a positive chirp C1 > 0 or a negative chirp C1 < 0.

From Eq. (6.14) we can identify the chirp (the instantaneous frequency) u by isolating the phase φ

of the field and differentiating it by t. After a simple manipulation we identify the phase:

φ(z, t) = − β′2t
2z

2(τ4 + β′22 z
2)
⇒ u =

∂φ

∂t
= − β′2zt

τ4 + β′22 z
2
. (6.15)

After the propagation in the linear medium we can define a broadening (stretching) factor that

relates the width of the initial pulse (τi = τ ) and the final one (τ0 =

√
τ4+β′22 z

2

τ2 ):

τ0

τi
=

√
1 +

(
β′2z

τ2

)2

=
√

1 + C2
1 . (6.16)

Note that the chirp factor C1 enters the stretching factor (6.16) as C2
1 so that the same stretching

can be achieved via both positive (focusing) and negative (defocusing) chirp. Importantly, the sign

of the chirp has a strong effect on the subsequent propagation in a nonlinear fibre, see below. Note

that for |C1| � 1 one obtain τ0
τi
≈ |C1|.

Thus, given the characteristic of the linear medium, one can design as initial condition of the NLS

equation the chirped Gaussian profile [9]

ψ(0, T ) = e
− T2

2τ2
0

(1+iC1)
. (6.17)

We stress that the initial condition (6.17) is written in normalised variables; the physical pulse

profile A(z, t) is recovered by applying the inverse of the transformation (6.6).
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6.2.3 Numerical method and computational resources

We employ a step-adaptive pseudo-spectral method to numerically determine the signal propaga-

tion along the fibre. While the time derivatives are evaluated using Fast Fourier Transform routines

(FFTW, http://www.fftw.org/), the spatial evolution is performed with a numerical solver included

in the code (’ROCK4’ [153]); the code relies on a Runge-Kutta fourth-order method suitable for

large stiff problems. Moreover, the solver adapts each propagation spatial step to minimise the

numerical error and control the scheme stability.

The core of the code, first tested to solve the standard NLS equation (6.3), has been extended to

include the extra terms of the extended NLS equation (6.7). The developed code has been tested

against several known particular solutions of Eq.(6.7) available in the literature [9]. The testing

has been performed by retaining the necessary term(s) in the NLS equation while “switching off”

all other terms. The computations corresponding to a physically reasonable range of parameters

have been performed on a cluster at Lille University, France.

The computations are quite resource consuming: e.g. the numerical simulation of the nondi-

mensionalised gNLSE with initial data corresponding to the Gaussian pulse with τ0 = 20 (i.e.

P0 = 2kW, t0 = 2 ps) and C1 ∈ [0, 60], discretised on a temporal grid of N = 216 points,

takes about 15 hours of computer time on cluster. This is why using an appropriate mathematical

approximation is essential for the pulse compression modelling in strongly nonlinear propagation

regimes.

6.3 Semi-classical approximation

The semi-classical approximation is a powerful tool to investigate the system in exam when there

exists a scale separation in the problem. The scale separation is determined by the small parameter

ε � 1, defined by the ratio of the typical soliton pulse duration tS to the typical input pulse

duration t0. As we mentioned, direct numerical solution of the NLS equation with sufficiently

small values of ε (i.e. τ0 � 1) requires significant computational resources. However, the semi-

classical analysis enables one to predict some of the compression parameters analytically using a

reduced, nonlinear geometric optics type model, which is valid for the initial compression stage
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leading to gradient catastrophe.

6.3.1 Semi-classical generalised NLS model and the initial data

For the typical physical propagation parameters used in our modelling (see Section 6.2.1) the

dimensionless duration of the initial pulse τ0 ' 20 is much greater than the typical soliton width

τs = 1. This suggests the possibility to introduce a small parameter

ε = τs/τ0 =
1

t0

√
|β2|
P0γ

� 1. (6.18)

We re-normalise the independent Z- and T - variables as

T ′ = εT, Z ′ = εZ. (6.19)

Then, dropping primes for Z and T , we obtain the “semi-classical” form of the gNLSE Eq. (6.7):

ε
∂ψ

∂Z
− iε

2

2

∂2ψ

∂T 2
−i|ψ|2ψ =

−CLψ+ε3CTOD
∂3ψ

∂T 3
− εCS

∂(|ψ|2ψ)

∂T
− iεCRψ

∂|ψ|2
∂T

,

(6.20)

which will be used for the analytical and numerical developments. The numerical values of the

non-dimensional coefficients in (6.20) are the same as in Eq. (6.7).

In our analysis we consider two types of initial conditions for the semi-classical gNLSE (6.20).

The first one, the chirped Gaussian pulse, is the most relevant in terms of the fibre optics propa-

gation while the second one, the chirped “sech” profile enables explicit analytical results via the

IST approach. Our strategy here will be to use the analytical insights from the “sech” pulse prop-

agation and apply them to the Gaussian pulse propagation. The applicability of the “sech” profile

results to the propagation of a Gaussian pulse will be verified numerically.

The chirped Gaussian pulse (6.17) yields the initial condition for the gNLSE (6.20):

ψ(T, 0) = exp

(
−T

2

2

)
exp

(
− iT

2µ

2ε

)
≡ ψ1(T ), (6.21)

where µ is the normalised chirp factor. Indeed, it follows from (6.16) that for C1 � 1 one has
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C1 ∼ τ0 = ε−1, and thus we have an important relation between the physical chirp factor C1 and

µ:

C1 = µ/ε. (6.22)

Say, for the pulse with t0 = 2ps, P0 = 2kW, and µ = 1 one has C1 = 20.

The chirped “sech” initial pulse corresponds to the initial condition for (6.20):

ψ(T, 0) = sech (T ) eiφ/ε ≡ ψ2(T ), φ = −µ log(cosh(T )). (6.23)

One can see from the comparison presented in Fig. 21 that the sech profile (6.23) provides a good

approximation of a Gaussian pulse (6.21). Note that the chirp defined as u = ∂φ/∂T for the

sech pulse (6.23) has the form u = −C1 tanh(T ) providing, at the centre of the structure, a good

approximation to the linear chirp of the Gaussian pulse, u = −C1T . We will further verify the

Figure 21: Comparison of the chirped Gaussian (blue) and “sech” (orange) initial profiles.

validity of the “sech-approximation” for the Gaussian pulse compression via comparison of some

benchmark analytical results for the sech profile with numerical simulations of the Gaussian pulse

self-compression.

Given the several transformations performed of the initial system, it is instructive to present the

expressions for the physical (dimensional) variables A, z and t in terms of the non-dimensional

variables ψ, Z and T of Eq. (6.20). Using (6.6), (6.19) we obtain

A =
√
P0ψ, z =

t0√
γ|β2|P0

Z, t = t0T. (6.24)

Considering the small parameter ε define in Eq. (6.18) the physical chirp factor C1 takes the form:
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C1 =
µ

ε
= µt0

√
γP0

|β2|
. (6.25)

6.3.2 Validity of semi-classical approximation

As already mentioned, in our modelling we assume that the chirped input pulse peak power P0 '

2kW, corresponding to a typical soliton duration of tS = 100fs. We also assume a fixed duration

of t0 = 2ps for the initial chirped pulse. Fixing the input chirped pulse duration t0 rather than

the initial (unchirped) pulse width ti is essential for our semi-classical mathematical modelling,

so that the small parameter ε = 1
t0

√
|β2|
P0γ

is fully determined by the input peak power P0, while

the normalised chirp factor µ is determined by ti and P0 via

µ = C1ε =
1

ti

√
|β2|
P0γ

.

The characteristic value of ε involved is then found to be ε ∼ 10−2, which justifies the applica-

bility of the semi-classical approach in the propagation regimes of our interest. The value of µ

considered in the simulations is of O(1).

6.4 Gradient catastrophe analysis

As we have already discussed in Section 1.4.4, the availability of the small parameter ε in the

semi-classical NLS model (6.20) enables one to split the evolution of a broad initial pulse along

the fibre into two qualitatively and quantitatively different stages: (i) initial nonlinear compression

leading to a gradient catastrophe (the nonlinear self-focusing point where the gradient of the

intensity profile becomes infinite); (ii) dispersive regularisation of a gradient catastrophe via the

emergence of a narrow high amplitude spike— the rogue wave. The first stage of the compression

is characterised by the slow, large-scale, dynamics, while at the second stage the variations of the

wave field are rapid.
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6.4.1 The nonlinear geometric optics approximation

We take advantage of the small parameter ε in the gNLSE (6.20) to analyse the propagation of a

broad pulse with high peak power. To this end we introduce the Madelung transformation for the

wave field:

ψ =
√
ρe

iφ
ε ,

∂φ

∂T
= u, (6.26)

where ρ(T,Z) is the (normalised) power and u(T,Z) is the chirp. Substituting (6.26) in Eq. (6.20)

and separating the real and imaginary parts we obtain:





ρZ + (ρu)T =− 2
1

ε
CLρ− 3CSρρT − 3CTOD

(
u2ρ
)
T

+ CTODε
2

(
3ρ3

T

4ρ2
− 3ρT

2ρ
ρTT + ρTTT

)
,

uZ + uuT − ρT −
ε2

8

[
ρTT
ρ

+

(
ρT
ρ

)

T

]

T

= −CS (ρu)T − 3CTODu
2uT

+ εCRρTT + CTODε
2

[
3

4

[
ρTT
ρ

+

(
ρT
ρ

)

T

]
u+

3ρT
2ρ

uT + uTT

]

T

.

(6.27)

Using the numerical values of the coefficients and typical values of ε for the pulse propagation

of interest, one can see that the term ∼ CL/ε � 1, describing the fibre losses, can be neglected.

Further, assuming finite values of all Z- and T -derivative for the initial condition, we can neglect

the terms proportional to ε and ε2 to obtain at leading order the following reduced, hydrodynamic

type model: 



ρZ + (ρu)T = −3CSρρT − 3CTOD
(
ρu2
)
T
,

uZ + uuT − ρT = −CS (ρu)T − 3CTODu
2uT .

(6.28)

The system (6.28), describing the initial compression stage, represents the long-wave limit of the

gNLSE (6.27). Traditionally such systems arise as a dispersionless limit of the full, dispersive

equation. Note that the system (6.28) contains the terms coming from the third-order dispersive

corrections in the gNLSE. It is interesting to note that system (6.28) contains the terms coming

from the third-order dispersive corrections in the gNLSE.

The system (6.28) can be re-written in matrix form:



ρ

u



Z

+




3CSρ+ u+ 3CTODu
2 ρ+ 6CTODρu

CS − 1 CSρ+ u+ 3CTODu
2






ρ

u



T

= 0. (6.29)
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The hydrodynamic model (6.28) has a number of important advantages, both analytical and com-

putational, over the full gNLSE (6.20). We argue that it accurately describes the initial compres-

sion of the pulse and enables one to predict the point of the gradient catastrophe occurrence along

the fibre (i.e. the point of the maximum nonlinear self-compression at the stage (i)). This point

can then be manipulated by choosing an appropriate chirp profile.

To verify the validity of the modelling of the initial pulse compression with the hydrodynamic

system (6.29) we compare the results of numerical simulations of the full gNLSE (6.20) with the

simulations of the hydrodynamic system (6.29). This comparison is shown in Fig. 23. One can see

that the hydrodynamic system (6.29) accurately captures the initial stage of the pulse compression

up to the gradient catastrophe point.

Stability analysis

To analyse the linear stability of solutions to the dispersionless limit of the hydrodynamic system

(6.29) we compute the eigenvalues of the coefficient matrix:

λ± = u+ 3CTODu
2 + 2CSρ±

√
∆, (6.30)

where

∆ = ρ
[
C2
Sρ+ (1 + 6CTODu) (CSu− 1)

]
. (6.31)

The sign of ∆ defines the stability condition of the system, with ∆ > 0 corresponding to stable

solutions and ∆ < 0 to unstable ones (hyperbolicity vs. ellipticity of the hydrodynamic type

system (6.29)). This analysis is important as the condition ∆ < 0 ensures nonlinear self-focusing

(self-compression) of the pulse. Note that for the standard case of the fNLSE (6.3), when CS =

CTOD = 0, one has ∆ = −ρ, i.e. this case is always unstable and subject to self-focusing process.

One can see that the general propagation regime is more complicated, with the higher order effects

capable, in principle, of suppressing the pulse self-focusing.

To identify the possible transition between stable (defocusing) and unstable (focusing) propagation

regimes we evaluate the roots of ∆ = 0. Given convexity of the function ∆(ρ), the solution will
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be unstable for ρ lying between the two roots of ∆(ρ) = 0 given by

ρ1 = 0, ρ2 =
1

C2
S

(1 + 6CTODu) (1− CSu) . (6.32)

Figure 22: Schematic for the stability criterion ∆ < 0. Left: ∆ as function of ρ; Right: The root
ρ2 as function of the chirp u

Thus for the self-compression regime the pulse intensity ρ should be less than the second root ρ2.

The value of ρ2 can be manipulated by choosing a suitable chirp u. The reduced model (6.28),

which essentially represents the nonlinear geometric optics approximation, is much simpler than

the original gNLSE (6.20), while providing an accurate description of the initial stage of nonlinear

self-compression of a broad pulse. The comparison between the numerical solutions of the full

gNLSE (6.20) with ε = 0.05 and the reduced model (6.28) for the propagation of an unchirped

Gaussian pulse is shown in Fig. 23. One can see excellent agreement, confirming the efficacy of

the reduced hydrodynamic model (6.28).

It follows from (6.28) that at the initial stage of self-compression the second-order dispersive

effects are less important, and the nonlinear evolution is dominated by Kerr nonlinearity (self-

phase modulation), self-steepening and, somewhat paradoxically, the third-order dispersion. It

also turns out that, for the propagation regimes of our interest, the intrapulse Raman scattering can

also be neglected at this compression stage.

The instability growth rate ,
√
−∆, along with the initial chirp, determines the propagation length

Z∗ at which the gradient catastrophe occurs. We note that, in the absence of the higher order

effects, i.e. when CS = CTOD = 0 one has ∆ = −ρ, which is consistent with the known

results for the cubic fNLSE (6.3). Furthermore, given the typical propagation regimes used in our

modelling one can verify that the condition ∆ < 0 is always valid, i.e. the higher order effects do
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Figure 23: Comparison between the numerical solutions of the gNLSE (6.20) with ε = 0.05 (red
dots) and of the reduced model (6.28) (solid line) at Z = 0, Z = 0.3 and Z = 0.39. The initial
pulse is ψ(T, 0) = exp (−T 2/2). Upper row: the evolution of the intensity (power) ρ = |ψ|2
profile. The error (the absolute value of the difference between the two solutions) is shown in the
bottom row.

not change the self-focusing character of the initial pulse propagation.

6.4.2 Gradient catastrophe and rogue wave compression distance

In the vicinity of the gradient catastrophe point Z = Zc, the reduced model fails to describe

the evolution of the system and the full gNLSE (6.20) has to be considered. The dispersive effects

(possibly modified by the higher order effects) lead to the regularisation of the gradient catastrophe

via the local emergence of a coherent structure. Here we focus on two features of the regularisation

process: (i) the propagation distance Z = Z∗ along the fibre, where the maximum compression

occurs via the emergence of a rogue wave; and (ii) the characterisation of the rogue wave in terms

of its local background value, the peak power, the width, the waveform etc.

To determine the gradient catastrophe position Zc and the rogue wave compression distance Z∗

for the gNLSE case we first invoke the available results for the integrable, cubic fNLSE.

For the chirped initial “sech” pulse (6.23) the analysis of the dispersionless limit of the fNLSE (the

reduced system (6.28) with CS = CTOD = 0) yields the exact result for the gradient catastrophe

distance [154]

Zc =
1

µ+ 2
, (6.33)
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where µ, we recall, is the normalised chirp factor. A more refined analysis for Z > Zc, using

the semi-classical limit of the IST and the Riemann-Hilbert problem approach [46], yields the

correction to (6.33) due to finite value of ε:

Z∗ ≈ 1

2 + µ
+ ε4/5h

(
2

3

1

(µ+ 2)6

)1/5

, (6.34)

where h ≈ 2.38. Formula (6.34) for the (non-dimensional) distance of the rogue wave compres-

sion translates into the physical distance (metres) along the fibre as

z∗ ≈ t0

(2 + µ)
√
γ|β2|P0

+
h

γP0

(
t0

√
γP0

|β2|
2

3

1

(µ+ 2)6

)1/5

. (6.35)

We recall that the normalised chirp factor µ is related to the physical chirp C1 by the formula

(6.25).

It is remarkable that the formula (6.34) obtained in [46] by a rigorous asymptotic analysis for ε�

1 exhibits a very good agreement with the numerical simulations performed for rather moderate

values of ε. Moreover, as we will see, it gives a very reasonable approximation of the rogue wave

compression distance for chirped Gaussian pulses and is even quite robust with respect to small

perturbations due to the higher order terms included in the gNLSE (6.20). This is an important

result in the context of fibre optics applications as it provides, with the manipulation of the chirp,

the practical tool to control the distance of maximum compression of the rogue wave. We have

already discussed this effect in Chapter 3 in the framework of the deep-water wave system.

A number of numerical simulations of the unperturbed fNLSE (6.41) was first performed to com-

pare the analytical result (6.34) with the values of the rogue wave compression distance obtained

numerically for the chirped sech (6.23) and chirped Gaussian (6.21) pulses. As shown in Fig. 24

the agreement with the theoretical prediction is excellent for the “sech” pulse as expected. For

chirped Gaussian pulses, the introduction of an extra delay, obtained numerically (Fig. 24, right

panel) is required to obtain an accurate estimation of the maximum compression distance. It is

expected that the delay would decrease with the increase of the peak power P0 so formula (6.34)

should be quite accurate for Gaussian pulses in the high power propagation regime.

The next step was to see whether the analytical formula (6.34) derived by neglecting the higher

151



CHAPTER 6. EXTREME COMPRESSION OF OPTICAL PULSES IN HIGHLY
NONLINEAR REGIMES

Figure 24: Left: the rogue wave compression distance Z∗. Solid line: formula (6.34). Orange
dots: numerical simulations of the fNLSE (6.41) for “sech” pulses; blue dots: numerical simula-
tions for Gaussian pulses. Right: the Gaussian pulse delay function (the difference between the
rogue wave compression distances for the Gaussian and sech pulses

order terms in the gNLSE (6.20) is still valid in practical terms when the higher order terms

in (6.20) are taken into account. Our numerical simulations of the gNLSE for moderate to high

powers P0 showed that the effect of the higher order terms on the rogue wave compression distance

is insignificant, which is the evidence of practical applicability of the approximate formula (6.34)

to the gNLSE.

6.5 Rogue wave compression

Having discussed the validity of equation (6.34) to estimate the rogue wave compression for a

Gaussian profile, here we focus on the rogue wave formation in terms of its peak power, width,

local background etc.

6.5.1 Primary rogue wave compression: peak power

As discussed in Section 1.4.4, one of the fundamental result found in [46] and experimentally

confirmed in [4] is the local formation of the PS (cf. Eq. (6.36)) as regularisation process of

the gradient catastrophe in the fNLSE (6.41). This result has been exploited in Chapter 3 in the

analysis of deep water rogue wave emergence. Here this analysis is developed in the nonlinear
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optics context. The profile of the PS in terms of the “optical” variables takes the form

|ψPS(T,Z∗)| ≈ a0

[
1− 4

1 + 4a2
0 (T/ε)2

]
, (6.36)

where a0(µ) is the local rogue wave background determined by the value of |ψ| at the gradient

catastrophe point T = 0, Z = 1/(µ + 2) while the rogue wave distance Z∗ is given by (6.34).

As shown in [154] the local rogue wave background a0 correspond to the filed amplitude |ψ| at

the gradient catastrophe point. For the chirped sech initial profile (6.23) it can be determined

analytically:

a0 =
√

2 + µ. (6.37)

The numerical simulations of the Gaussian pulse propagation show that formula (6.37) provides a

good approximation of the rogue wave background, see Fig 25.

Figure 25: The local rogue wave background a0 as function of the normalised chirp factor µ. The
curve is given by the analytical expression a0 =

√
2 + µ obtained for sech pulses; the dots show

a0(µ) obtained numerically for Gaussian pulses.

Assuming (6.37) the peak power in the PS (6.36) is given by the formula

Pmax = 9 (µ+ 2)P0 [W], (6.38)

where µ is the normalised chirp factor (6.25) of the input pulse. Moreover, the temporal width of
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the PS (the duration between the two points where |ψPS | = 0) is given by

∆PS =

√
3

(µ+ 2)

√
|β2|
γP0

[s]. (6.39)

Combining (6.38), and (6.39) a universal relation describing the rogue wave pulse compression is

derived:

Pmax∆2
PS = 18

|β2|
γ
. (6.40)

6.5.2 Secondary rogue wave compression at high propagation powers

The importance and the qualitative effects of the higher order corrections (particularly Raman

scattering) in the rogue wave compression process can be observed at the relatively modest input

power P0 = 2kW. Numerical results showing the comparison of a Gaussian pulse compression in

the standard NLS propagation and the gNLSE propagation at P0 = 2 kW, and t0 = 2ps are shown

in Figs. 26-28.

Figure 26: Gradient catastrophe in the Gaussian pulse compression. Left: fNLSE propagation;
Right: gNLSE

Note that the pulse compression within fNLSE and the gNLSE models is very similar up to the

point of the gradient catastrophe (Fig. 26). As expected, the distance of the first rogue wave

compression is virtually the same for the cubic NLS and gNLSE although the peak powers of the
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Figure 27: Primary rogue compression due to the PS emergence. Left: fNLSE propagation; Right:
gNLSE

rogue wave slightly differ (Fig. 27) (one may expect a more significant peak power difference at

higher input powers). However, one can see the drastic difference between the two evolutions at

a later stage (Fig.28) when the gNLSE exhibits the secondary rogue wave compression, which is

completely absent in the “pure” cubic fNLSE equation. Our analysis shows that the secondary

rogue wave compression is mainly due to the Raman scattering.

6.5.3 Energy analysis of the rogue wave pulse compression

In the last step of our analysis we investigate the energy re-distribution during the rogue wave

compression process. Specifically, we evaluate the proportion of energy of the initial pulse that is

transferred into the rogue wave.

First, we consider the energy transfer in the case of the cubic fNLSE, here in the semi-classical

formulation:

ε
∂ψ

∂Z
− iε

2

2

∂2ψ

∂T 2
− i|ψ|2ψ = 0, (6.41)

where the explicit relation between the non-dimensional variables in (6.41) and the physical quan-
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Figure 28: Secondary compression in the propagation of a Gaussian pulse. Left: cubic fNLSE (no
secondary compression); Right: gNLSE—secondary compression due to the Raman effect.

tities A, z, t by (cf. Eqs. (6.24)) are

ψ =
A√
P0
, T = t

√
γP0

|β2|
ε, Z = zγP0ε, ε =

1

t0

√
|β2|
P0γ

, (6.42)

with P0 input peak power, t0 input pulse width, and tS =
√
|β2|/(P0γ) the characteristic size of

the soliton in the system.

As discussed in Section 6.3.1, the study of Eq. (6.41) with the “sech” initial profile:

ψ(T, 0) = sech (T ) eiφ/ε ≡ ψ2(T ), φ = −µ log(cosh(T )),

has a number of advantages due to the availability of explicit analytical results [46, 154], giving

at the same time a good approximation of the evolution of a less treatable analytically Gaussian

pulse evolution.

Considering the PS (6.36), the non-dimensional energy “stored” in the rogue wave at the maximum

compression point is given by the integral

ẼPS =

∫ T+
z

T−z
|ψPS(T,Z∗)|2dT = 3

√
3a0(µ)ε, (6.43)
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where |ψPS |2 is the power profile of the PS and T±z = ± ε
√

3
2a0

are the points where |ψPS | = 0, see

Fig. 29. Rescaling to dimensional units the PS energy (6.43), the energy confined in the core part

of the rogue wave results

EPS =
√

3 (µ+ 2)

√
P0|β2|
γ

. [J] (6.44)

Figure 29: Schematic of the energy “stored” in the Peregrine soliton

The relative amount of the energy transferred to the rogue wave from the initial pulse (6.23) with

total energy Ẽ0 =
∫ +∞
−∞ sech2 (T ) dT = 2 is

α =
ẼPS

Ẽ0

=
3
√

3

2
a0(µ)ε ≈ 3

√
3(2 + µ)

2t0

√
|β2|
P0γ

. (6.45)

From equation (6.45) one can note that by tweaking the chirp µ one can increases/decrease the

energy transfer rate to the rogue wave.

Using (6.39) for the PS duration and (6.44) for the energy stored in the PS we obtain the universal

energy relation for the rogue wave compression:

EPS∆PS = 3
√

6
|β2|
γ
, (6.46)

which complements the universal rogue wave power relation (6.40).

We note that the universal relations (6.40) and (6.46), actually represent general properties of

the PS solution (6.36). The novelty here is the application to the rogue wave compression by

taking advantage of the fundamental nature of the PS as universal regularising process of gradient
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catastrophe. Importantly, these relations do not depend on the input pulse parameters (provided ε

is sufficiently small to guarantee the Bertola-Tovbis scenario).

6.6 Summary

The main findings of this Chapter can be summarised as follows.

• The compression of broad light pulses in optical fibres in highly nonlinear propagation

regimes is a complex multi-scale problem with two distinct stages of the evolution: (i) the

initial “slow” compression leading to the formation of the gradient catastrophe, a point with

infinite derivative at the pulse centre; followed by (ii) the “fast” rogue wave compression

accompanied by the generation of a narrow high-amplitude peak.

• We have identified the semi-classical NLS approximation as an appropriate mathematical

framework to model the evolution of light pulses in highly nonlinear propagation regimes.

Within this modelling, the rogue wave compression has previously been shown to be uni-

versally described by the so-called Peregrine Soliton solution of the fNLSE.

• The higher order effects (the intrapulse Raman scattering, the third order dispersion and

the self-steepening) are accounted for by using the generalised and non-local NLS equa-

tions. These effects, in particular, lead to the secondary rogue wave compression, which can

exceed in the peak power the primary rogue wave.

• The semi-classical analysis yields an accurate formula (6.35) for the distance at which the

rogue wave compression occurs along the fibre; it also gives an accurate prediction for

the rogue wave peak power (6.38). These results are numerically verified to hold well for

Gaussian pulses in the highly nonlinear regimes of propagation governed by the gNLSE.

The rogue wave compression distance, as well as the peak power, can be manipulated by

varying the chirp of the input pulse.
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Appendix 1 : Numerical Code Testing

To verify quantitative validity and accuracy of our numerical code for the pulse propagation, we

have performed a number of tests by applying the code to several reduced versions of the gNLSE

for which particular analytical solutions are known and can be found in the literature [9]. The

testing has been performed by retaining the necessary term(s) in the gNLSE while “switching off”

all other terms. Some results are presented in Fig. 1.

Figure 30: Comparison of numerical solutions of the gNLSE (6.7) with known particular solutions
[9] for pulse propagation. Left: Third-order dispersion: (dashed) Gaussian shape initial pulse
with T 2

0 = 1/2, (red dots) output of the numerical simulation for the third dispersion coefficient
β′3 = 0.01 and the propagation length Z = 10, (solid line) analytical expression of the evolved
signal. Middle: Self-steepening: (dashed) Gaussian shape initial condition, (red dots) output of
the numerical simulation for Cs = 0.01 (self-steepening coefficient) and Z = 15, (solid line)
analytical expression of the signal at Z = 15. Right: Intrapulse Raman scattering: soliton fission
of the two-soliton initial condition (dotted line). The evolution is shown at Z = 6 (dashed line)
and Z = 16 (solid line). The results fully agree with those available in [9].
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Chapter 7

Conclusion and Outlook

7.1 Conclusions

In this PhD project we have investigated several problems related to the emergence, control and

manipulation of rogue waves (RWs)—large-amplitude localised coherent structures spontaneously

generated in the evolution of nonlinear random wave fields. The original motivation for the project

comes from the fibre optics applications, where RWs represent high-power fluctuations of an in-

coherent optical wave field that can, in principle, lead to a damage of the fibre. In a different

context, RWs can have a detrimental effect on the signal propagation in optical telecommunica-

tion systems. The basic model for the optical signal propagation through a fibre is the nonlinear

Schrödinger (NLS) equation, which is an integrable equation amenable to exact analytical meth-

ods such as the Inverse Scattering Transform and Finite-Gap Integration. RWs occur in the self-

focusing regime of propagation, corresponding to the anomalous dispersion case in the fibre optics

context and described by the version of NLS called the focusing NLS equation (fNLSE), which is

also a standard model for propagation of quasi-monochromatic weakly nonlinear wave packets on

deep water.

The particular emphasis in the Thesis has been on the study of RWs emerging in the propaga-

tion of the so-called partially coherent waves that can be viewed as random infinite sequences of

broad pulses. The natural scale separation between the coherence scale of the system (the typi-

cal width/duration of a soliton) and the typical scale/duration of the input pulses suggests the use
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of asymptotic methods such as semi-classical analysis or modulation theory. The fundamental

proposition of the Thesis is that the RW emergence in the evolution of partially coherent waves

in optical fibres and in deep-water gravity waves (e.g. in a 1D water tank) can be effectively de-

scribed within the framework of the semi-classical fNLSE. The study of random wave solution to

the fNLSE falls into the general area of integrable turbulence, and it has been shown in the Thesis

that the semi-classical approximation in integrable turbulence enables explicit analytical results in

the problems that, until recently, had only been amenable to numerical methods.

The study of the RW formation in this project has also prompted the analytical and numerical

investigation of soliton and breather gases representing particular, yet very important, classes of

integrable turbulence that can be realised in nonlinear optics and water wave systems. The main

contributions of the Thesis in this direction are the construction of analytical kinetic theory of

soliton gases in bidirectional systems (e.g. dispersive shallow water equations) and the numerical

synthesis of breather gases for the focusing NLS equation.

The results reported in this Thesis have been obtained in collaboration with my supervisors, Prof.

Gennady El (Northumbria University) and Prof. Stéphane Randoux (Lille University, France)

and members of their research teams. The water tank experiment has been performed at École

Centrale de Nantes in collaboration with several research teams from France and USA. The part

of the project related to the RW compression of optical pulses in highly nonlinear regimes of

propagation has been performed under the Research Contract with LumOptica Ltd.

The main results of the project can be summarised as follows

(i) The short-time evolution of partially coherent waves within the mathematical framework of

the semi-classical NLS equation in the focusing and defocusing regimes of propagation has been

studied. It has been shown that the initial stage of evolution of partially coherent waves is described

by the dispersionless (nonlinear geometric optics) approximation of the NLS equation and derived

a simple analytic formula for the normalised fourth moment κ4 (the kurtosis) of the corresponding

random wave field. This approximate formula, applied to the problem of the NLS evolution of

random waves initially having Gaussian statistics, has been shown to describe the formation of

heavy tails of the probability density function of the random field amplitude in the focusing case

and the formation of low tails in the defocusing case. The analytical results have been shown
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to be in excellent agreement with direct numerical simulations of the partially coherent wave

propagation in the full dispersive NLS dynamics.

(ii) We have realised the mathematically predicted universal mechanism of the local emergence

of a Peregrine Soliton (PS) in the semi-classical fNLSE dynamics (Bertola and Tovbis [46]) in

a water tank experiment. By employing the inverse scattering transform (ISTs) for the synthesis

of the initial data, we have produced a localised wave packet with a prescribed solitonic content.

In accordance with the theory, the local PS emergence was observed irrespectively of the amount

of discrete spectrum in the input signal, the latter only affected the position of the PS emergence

following the gradient catastrophe. This has enabled us to manipulate the RW generation by

adjusting the inverse scattering spectrum of the input pulse. The proposed method of nonlinear

spectral engineering was found to be robust to higher-order nonlinear effects inevitable in realistic

wave propagation conditions.

(iii) The spectral kinetic theory theory of soliton gases in bidirectional integrable Eulerian systems

has been developed. We identified two qualitatively different types of bidirectional soliton gases:

isotropic gases, in which the position shifts accompanying the head-on and overtaking soliton

collisions have the same sign, and anisotropic gases, in which the position shifts for head-on

and overtaking collisions have opposite signs. Kinetic equations describing the evolution of the

spectral distribution function for both types of bidirectional soliton gases have been constructed.

The Riemann (shock tube) problem for the collision “monochromatic” soliton beams has been

solved. Concrete examples of bidirectional Eulerian soliton gases for the defocusing NLS equation

and the resonant NLS equation have been considered and the Riemann problem solutions have

been shown to be in excellent agreement with direct numerical simulations.

(iv) An effective numerical algorithm of the ISTs spectral synthesis of breather gases (BGs) for the

fNLSE has been developed. The algorithm is based on the recursive Darboux transform scheme

realised in high-precision arithmetics. Using this algorithm, we have synthesised numerically three

types of BGs consisting of standard breathers: the gases of Akhmediev breathers, Kuznetsov-

Ma breathers, and Peregrine solitons. The propagation of a generic (Tajiri-Watanabe) breather

through the three model BGs has been considered and the results of the numerical simulations

have been compared with the analytical predictions following from the spectral theory of breather
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gases recently developed in [53]. The comparison showed an excellent agreement confirming the

validity of the spectral theory of BGs. As a by-product of this research the new expression for the

position shift in two-breather collisions obtained in [53] has been identified with the expressions

derived in previous works [131, 132].

(v) Rogue Wave compression of broad optical pulses in fibres has been studied for the highly

nonlinear regimes of propagation when the “nonintegrable” corrections to the fNLSE describing

the effects of intrapulse Raman scattering, self-steepening and the third order dispersion become

important. By applying the semi-classical approximation to the generalised fNLSE we have stud-

ied the process of the gradient catastrophe formation and have shown numerically that, while the

higher order effects significantly modify the parameters of the RWs emerging after gradient catas-

trophe, the point of their emergence can be rather accurately estimated using the Bertola-Tovbis

results for the “core” integrable fNLSE dynamics. This, in particular, enables the application of the

methods of nonlinear spectral engineering developed in Chapter 3 for the effective manipulation

of RWs in strongly nonlinear regimes of propagation in optical fibres.

7.2 Future research

The research presented in this Thesis suggests a number of interesting and important problems for

future research. Some of these problems are already under active investigation.

One of the major problems inspired by this project is a comprehensive analytical description of

the “semi-classical” integrable turbulence. In the context of fNLSE this would include the de-

termination of the evolution of the kurtosis κ4(t) for partially coherent waves. In this Thesis we

have only produced the asymptotic formula for κ4(t) for t � 1. At the same time, the numerical

results of [6] strongly suggest that the fNLSE evolution of partially coherent waves with initially

Gaussian statistics with κ4(0) = 2 exhibits the following properties: (i) κ4(t) = 4 as t→∞; (ii)

the position in time of the overshoot in the graph of κ4 (see Fig. 16) correlates with the time inter-

val of the most probable emergence of the Peregrine Solitons due to the Bertola-Tovbis scenario

[46]. The analytical interpretation of these properties would require incorporating the determin-

istic Bertola-Tovbis semi-classical results into the statistical setting of integrable turbulence. The
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understanding of the kurtosis evolution in the course of the random wave propagation will enable

the analytical description of the heavy tail effect, which is the well-established statistical signature

of the RW presence in the nonlinear wave field.

The nonlinear spectral engineering method for the prediction and manipulation of the RW emer-

gence developed in this Thesis the context of deep-water waves can be applied to fibre optics pulse

compression. The next step in the development of the method would involve its application to par-

tially coherent waves. One can expect that this would allow one to control the RW overshoot in the

kurtosis curve κ4(t) by applying an appropriately chosen chirp to an input signal. This research,

in fact, was one of the original objectives of the project but the planned fibre optics experiments

in Lille have been interrupted by the Covid pandemic. It is expected that these experiments will

resume in 2021/22

The kinetic theory for bidirectional soliton gases constructed in the Thesis is based on the soliton

collision rate ansatz proposed in [49]. A rigorous justification of the developed theory via the

thermodynamic limit of multiphase Whitham equations [48, 53] represents an outstanding prob-

lem. Another direction of research suggested by the developed kinetic theory is the experimental

realisation of soliton gases in bidirectional systems (e.g. shallow water waves) and comparison

of the experimental results with the theoretical predictions, particularly for the Riemann prob-

lems.

The numerical algorithm for the spectral synthesis of breather gases developed in the Thesis for

the fNLSE can be applied to other integrable equations exhibiting breather solutions, in particular,

the focusing modified KdV equation and vector NLS equation.
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Appendix A

Position shift in two breather

interactions

In the literature, the position shift characterising the two-breather interaction has been studied and

derived with different techniques [53, 131, 132]. However, the equivalence between the expres-

sions derived in these works is far from obvious. Here we want to demonstrate the equivalence

between the formula derived in [53], and used in Chapter 5:

∆(λ, µ) =
1

2Im [R0(λ)]

T1


ln

∣∣∣µ− λ̄
µ− λ

∣∣∣
2

T2

+ ln
∣∣∣R0(λ)R0(µ) + λµ− δ2

0

R0(λ̄)R0(µ) + λ̄µ− δ2
0

∣∣∣
2

T3


 , (A.1)

where R0(z) =
√
z2 − δ2

0 (δ0 = iq0 being the endpoint of the branch cut corresponding to the

plane wave), and the expression obtained in [131]:

∆ξ̄2 = − ln(ξ0)/(c−,2 cosα2), (A.2)

where

ξ0 =
d+ − 2 (cos(α1 − α2) + c−,1c−,2) cos(α1 − α2)

d+ − 2 (cos(α1 + α2)− c−,1c−,2) cos(α1 + α2)
, (A.3)
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with

c±,j = zj ± q2
0/zj , λj = (ζj − q2

0/ζj)/2,

d±,j = z2
j ± q4

0/z
2
j , d+ = d+,1 + d+,2,

R0(λj) = (ζj + q2
0/ζj)/2, ζj = R0(λj) + λj = izje

iαj .

(A.4)

Note that λ(k) in [131] corresponds to R0(k) in our notation, whereas in this thesis λ has been

chosen to represent the points of the IST discrete spectrum . To map expression (A.1) into (A.2)

-(A.4) (i.e to verify the identity ∆ξ̄2 = ∆(λ2, λ1)), one can substitute (A.4) in (A.1) and invoke

the identities:

• |λi|2 =
(
|ζi|2 + q4

0/|ζi|2 − q2
0ζi/ζ

∗
i − q2

0ζ
∗
i /ζi

)
/4 =

(
d+,i + 2q2

0 cosαi
)
/4,

• (cos 2α1 + cos 2α2) /2 = cos(α1 + α2) cos(α1 − α2),

• d+ = z2
1 + z2

2 +
q4
0

z2
1

+
q4
0

z2
2

=
(
z1z2 +

q4
0

z1z2

)(
z1
z2

+ z2
z1

)
.

To better handle the computation we consider separately the three different terms T1, T2 and T3

from (A.1).

First we consider the term T1 in (A.1)

T1 : 2Im[R0(λ2)] = −i([(ζ2 + q2
0/ζ2)/2]− [(ζ2 + q2

0/ζ2)/2]∗)

= −i
(
ζ2 − ζ∗2 + q2

0/ζ2 − q2
0/ζ
∗
2

)

= −i(iz2 cosα2 − q2
0i/z2 cosα2)

= (z2 − q2
0/z2) cosα2 = c−,2 cosα2.

(A.5)

Then, computing the term T2, we obtain:

T2 :
∣∣∣λ1 − λ∗2
λ1 − λ2

∣∣∣
2

=
|λ1|2 + |λ2|2 − λ1λ2 − λ∗1λ∗2
|λ1|2 + |λ2|2 − λ1λ∗2 − λ∗1λ2

=
d+ + 2q2

0 (cosα1 + cosα1)−
(
ζ1 − q2

0
ζ1

)(
ζ2 − q2

0
ζ2

)
−
(
ζ∗1 −

q2
0
ζ∗1

)(
ζ∗2 −

q2
0
ζ∗2

)

d+ + 2q2
0 (cosα1 + cosα1)−

(
ζ1 − q2

0
ζ1

)(
ζ∗2 −

q2
0
ζ∗2

)
−
(
ζ∗1 −

q2
0
ζ∗1

)(
ζ2 − q2

0
ζ2

)

=
d+ + 4q2

0cos(α1 + α2) cos(α1 − α2) + 2
(
z1z2 +

q4
0

z1z2

)
cos (α1 + α2) + 2q2

0

(
z1
z2

+ z2
z1

)
cos (α1 − α2)

d+ + 4q2
0cos(α1 + α2) cos(α1 − α2)− 2

(
z1z2 +

q4
0

z1z2

)
cos (α1 − α2)− 2q2

0

(
z1
z2

+ z2
z1

)
cos (α1 + α2)

=




(
z1
z2

+ z2
z1

)
+ 2 cos(α1 + α2)

(
z1
z2

+ z2
z1

)
− 2 cos(α1 − α2)






(
z1z2 +

q4
0

z1z2

)
+ 2q2

0 cos(α1 − α2)
(
z1z2 +

q4
0

z1z2

)
− 2q2

0 cos(α1 + α2)


 .
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(A.6)

And lastly we compute the term T3:

T3 :
∣∣∣R0(λ2)R0(λ1) + λ2λ1 + q2

0

R0(λ∗2)R0(λ1) + λ∗2λ1 + q2
0

∣∣∣
2

=

∣∣∣∣∣

(
ζ2 + q2

0/ζ2

) (
ζ1 + q2

0/ζ1

)
+
(
ζ2 − q2

0/ζ2

) (
ζ1 − q2

0/ζ1

)
+ 4q2

0(
ζ∗2 + q2

0/ζ
∗
2

) (
ζ1 + q2

0/ζ1

)
+
(
ζ∗2 − q2

0/ζ
∗
2

) (
ζ1 − q2

0/ζ1

)
+ 4q2

0

∣∣∣∣∣

2

=

∣∣∣∣∣∣

2
(
ζ2ζ1 +

q4
0

ζ2ζ1

)
+ 4q2

0

2
(
ζ∗2ζ1 +

q4
0

ζ∗2 ζ1

)
+ 4q2

0

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

−2
[
z2z1e

i(α1+α2) +
q4
0

z2z1
e−i(α1+α2)

]
+ 4q2

0

2
[
z2z1ei(α1−α2) +

q4
0

z2z1
e−i(α1−α2)

]
+ 4q2

0

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

−2
[
z2z1e

i(α1+α2) +
q4
0

z2z1
e−i(α1+α2)

]
+ 4q2

0

2
[
z2z1ei(α1−α2) +

q4
0

z2z1
e−i(α1−α2)

]
+ 4q2

0

∣∣∣∣∣∣

2

=
16q4

0 − 16q2
0

(
z1z2 +

q4
0

z1z2

)
cos(α1 + α2) + 4

(
z2

1z
2
2 +

q8
0

z2
1z

2
2

)
+ 8q4

0 cos (2 (α1 + α2))

16q4
0 + 16q2

0

(
z1z2 +

q4
0

z1z2

)
cos(α1 − α2) + 4

(
z2

1z
2
2 +

q8
0

z2
1z

2
2

)
+ 8q4

0 cos (2 (α1 − α2))

=
−16q2

0

(
z1z2 +

q4
0

z1z2

)
cos(α1 + α2) + 4

(
z1z2 +

q4
0

z1z2

)2
+ 16q4

0 cos2 (α1 + α2)

16q2
0

(
z1z2 +

q4
0

z1z2

)
cos(α1 − α2) + 4

(
z1z2 +

q4
0

z1z2

)2
+ 16q4

0 cos2 (α1 − α2)

=

[(
z1z2 +

q4
0

z1z2

)
− 2q2

0 cos (α1 + α2)
]2

[(
z1z2 +

q4
0

z1z2

)
+ 2q2

0 cos (α1 − α2)
]2 .

(A.7)

Combining the terms T2 and T3 to obtain the argument of the logarithm in (A.1), we can write:

T2× T3 :
∣∣∣λ1 − λ∗2
λ1 − λ2

∣∣∣
2∣∣∣R0(λ2)R0(λ1) + λ2λ1 + q2

0

R0(λ∗2)R0(λ1) + λ∗2λ1 + q2
0

∣∣∣
2

=




(
z1
z2

+ z2
z1

)
+ 2 cos(α1 + α2)

(
z1
z2

+ z2
z1

)
− 2 cos(α1 − α2)




×




(
z1z2 +

q4
0

z1z2

)
+ 2q2

0 cos(α1 − α2)
(
z1z2 +

q4
0

z1z2

)
− 2q2

0 cos(α1 + α2)




[(
z1z2 +

q4
0

z1z2

)
− 2q2

0 cos (α1 + α2)
]2

[(
z1z2 +

q4
0

z1z2

)
+ 2q2

0 cos (α1 − α2)
]2

=

[(
z1
z2

+ z2
z1

)
+ 2 cos(α1 + α2)

]

[(
z1
z2

+ z2
z1

)
− 2 cos(α1 − α2)

]

[(
z1z2 +

q4
0

z1z2

)
− 2q2

0 cos (α1 + α2)
]

[(
z1z2 +

q4
0

z1z2

)
+ 2q2

0 cos (α1 − α2)
]

=

(
z1z2 +

q4
0

z1z2

)(
z1
z2

+ z2
z1

)
− 2q2

0 cos (α1 + α2)
[
2 cos (α1 + α2) +

(
z1
z2

+ z2
z1

)
−
(
z1z2 +

q4
0

z1z2

)]

(
z1z2 +

q4
0

z1z2

)(
z1
z2

+ z2
z1

)
− 2q2

0 cos (α1 − α2)
[
2 cos (α1 − α2)−

(
z1
z2

+ z2
z1

)
+
(
z1z2 +

q4
0

z1z2

)]

=
d+ − 2q2

0 cos (α1 + α2) [2 cos (α1 + α2)− c−,1c−,2]

d+ − 2q2
0 cos (α1 − α2) [2 cos (α1 − α2) + c−,1c−,2]

= ξ−1
0 .
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(A.8)

Finally combining all the terms from equation (A.1), we obtain:

∆(λ2, λ1) = ln(ξ−1
0 )/(c−,2 cosα2) = −1 ln(ξ0)/(c−,2 cosα2) ≡ ∆ξ̄2, (A.9)

i.e. we verify the equivalence of the expression (A.2) with the expression (A.1).
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Acronyms

AB Akhmediev breather

ABG Akhmediev Breather Gas

BG Breather Gas

dNLSE Defocusing Nonlinear Schrödinger Equation

DOS Density of States

DSW Dispersive Shock Waves

FGT Finite Gap Theory

fNLSE Focusing Nonlinear Schrödinger Equation

gNLSE Generalised Nonlinear Schrödinger Equation

IST Inverse Scattering Transform

KB Kaup-Boussinesq

KdV Korteweg-de Vries

KM Kuznetsov-Ma breather

KMBG Kuznetsov-Ma Breather Gas

MI Modulational Instability
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Acronyms

NLS Nonlinear Schrödinger

PBG Peregrine Breather Gas

PCW Partially Coherent Waves

PDE Partially Differential Equation

PDF Probability Density Function

PS Peregrine soliton

rNLSE Resonant Nonlinear Schrödinger Equation

RW Rogue Wave

SFB Soliton on a Finite Background

TOD Third-Order-Dispersion

TW Tajiri-Watanabe
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