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Abstract 

Heavy equipment represents a major cost element and a critical resource in large infrastructure 

projects. Automating the measurement of their productivity is important to remove the 

inaccuracies and inefficiencies of current manual measurement processes and to improve the 

performance of projects. Existing studies have prevalently focused on equipment activity 

recognition using mainly vision based systems which require intrusive field installation and the 

application of more computationally demanding methods. This study aims to automate the 

measurement of equipment productivity using a combination of smartphone sensors to collect 

kinematic and noise data and deep learning algorithms. Different combination inputs and deep 

learning methods were implemented and tested in a real-world case study of a demolition 

activity. The results demonstrated very high accuracy (99.78%) in measuring the productivity 

of the excavator. Construction projects can benefit from the proposed method to automate 

productivity measurement, identify equipment inefficiencies in near real-time, and inform 

corrective actions. 
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Notation 

Z is the downtime ratio 

D is the number of hours a particular equipment unit is broken down in a month 

W is the total number of hours worked by the equipment in the month 

 is equipment downtime 

 is the utilization ratio 
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1. Introduction  

Equipment productivity is critical to the success of construction projects, particularly in 

equipment-intensive projects such as earth-moving, pavement and tunnel projects. 

Construction equipment productivity has been studied by many researchers (Ok and Sinha, 

2006; Gurmu and Aibinu, 2017; Gerami Seresht and Fayek, 2018) to improve the overall 

construction productivity and reduce project time and cost. To improve productivity, it must be 

measured and monitored throughout the project execution phase to identify equipment 

inefficiencies and their root causes. However, collecting the required data for equipment 

performance monitoring is time and resource consuming (Chen et al., 2020). Manual data 

collection particularly, is error prone and impracticable in large projects (Kim et al., 2018). 

This demonstrates the need for automating the process of data collection about equipment 

operation, measuring and analysing their productivity, and monitoring their performance in 

large construction projects. 

Data is key to enable these capabilities. Three main approaches for data collection about 

equipment exist. The first approach is enabled by Original Equipment Manufacturer (OEM) 

through on-board integrated telematics. However, a review of such systems reveals 

inconsistencies among OEMs in terms of type of data collected, their definition (e.g. idle time) 

and reporting intervals (Jagushte, 2017; Kassem et al., 2019). These inconsistencies affect the 

usability of telematics data especially in the case of mixed equipment fleet. An alternative 

approach is to use vision-based systems (Chen et al. 2020)). However, vision-based approaches 

focus mainly on equipment activity recognition, do not offer a productivity measurement 
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approach, require a laborious field installation, and entails computationally demanding 

methods. A third approach is to use sensors such as smartphone phone sensors and apps (e.g. 

gyroscope, accelerometer, noise). Compared to the vision-based approach, this approach 

requires less intrusive installation and lower computational resources. However, there are only 

a few studies analysing its performance in terms of measuring the productivity of site 

equipment.  The aim of this paper is to automate the measurement of equipment productivity 

by combining smartphone sensors and deep learning techniques in order to collect the required 

data, automate feature extraction in complex activity recognition, and perform the productivity 

measurement. 

This remainder of the paper is structured as follows. Section 2 summarises existing 

studies on automation of equipment activity recognition and productivity measurement. 

Section 3 introduces some of the key equipment productivity metrics.  Section 4 explains the 

proposed approach by this study. Section 5 demonstrates its testing in a real case study. Section 

6 discusses the findings and states the limitations. Section 7 presents the limitations and future 

work. Finally, Section 7 Concludes. 

 

2. Related Studies 

The traditional approaches for measuring equipment productivity are time consuming and error 

prone as they are based on manual data collection, direct observation of activities using 

sampling or survey (Akhavian and Behzadan, 2015). Therefore, automating equipment 

productivity measurement is an essential need to monitor and enhance equipment performance, 

particularly in large-scale projects. Several studies have been carried out to recognize 
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equipment activities, determine their activity duration, and identify their operation cycle time 

through automated data capture. They used different technologies for data collection including 

sensors, computer vision and audio signals. These approaches are reviewed in this section. 

Montaser and Moselhi (2012) proposed an approach for tracking earthmoving operations 

using Radio Frequency Identification (RFID). Their approach could automatically recognize 

four states of the trucks including loading, travelling, dumping and returning.  As this approach 

uses fixed RFID readers for gate systems at the loading and dumping areas, it would be more 

relevant to projects with fixed loading and dumping areas. Moreover, this approach cannot 

identify the waiting time of the trucks in the loading/dumping areas. In another study, Montaser 

and Moselhi (2014) developed an automated system integrating Global Positioning System 

(GPS) and Geographical Information System (GIS). This system tracks the location of the 

trucks using GPS units mounted on the trucks and identifies the spatial boundaries of loading 

and dumping areas using GIS. Similar to their previous approach, they recognized the same 

four states for the trucks, but this system also lacked the capability of capturing waiting times 

in the loading/dumping areas. To address this drawback and to improve accuracy of measuring 

excavated soil volume, Ibrahim and Moselhi (2014) developed an automated productivity 

assessment method for earthmoving operations. They adopted mobile sensors including GPS 

mounted on trucks to track their locations, accelerometers mounted on the bed of the trucks for 

tilt sensing of the truck bed, strain gauges mounted on truck leaf springs to measure soil 

weight, barometric pressure sensors attached to the bucket of loaders to measure elevation of 

the buckets, and Bluetooth-based RF module for data transfer and proximity detection between 
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equipment. They developed an algorithm to use the collected data from these sensors for the 

truck activity recognition including load queue, load, travel, dump queue, dump, return and 

service. The developed method measured productivity with only 2.2% error. Despite its high 

accuracy and the simplicity of their data processing algorithm, the implementation of this 

method requires extensive installation of several sensors on the trucks and loaders, which are 

not often possible in construction projects due to accessibility and availability issues and the 

ownership models of heavy equipment. 

Ahn et al. (2012) utilised an accelerometer mounted inside the cabin of a medium-sized 

excavator collecting the data with a frequency of 100 Hz. They presented the relationship 

between operational efficiency and environmental performance using vibration signals. A 

further study by Ahn et al. (2015) explored capturing acceleration signals from four types of 

excavators using an accelerometer mounted inside the cabin and conducted the experiment 

�X�Q�G�H�U���D�Q���L�Q�V�W�U�X�F�W�H�G���H�Q�Y�L�U�R�Q�P�H�Q�W�����7�K�H���H�[�S�H�U�L�P�H�Q�W���L�Q�Y�R�O�Y�H�G��the operation of an excavator that 

was strictly instructed to capture the required data in order to analyse patterns of accelerometer 

data. They used different supervised classifiers including Naïve Bayes, Instance-based 

learning, K-nearest neighbour (KNN) and Decision tree (J48) and achieved over 93% accuracy 

for classification of excavators' operation. 

One study explored approaches to detecting loading and unloading of a dumper truck 

with a remote tracking technique using 3-axis magnetic field sensing and 3-axis tilt sensing for 

a loader and a truck in an indoor laboratory (Akhavian and Behzadan, 2012). Akhavian and 

Behzadan (2015) also developed an automated method to detect equipment activities and their 
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durations for simulation input modelling of a front-end loader using GPS sensor, 3-axis 

accelerometer, and 3-axis gyroscope with frequency of 100 Hz. This technique applied several 

supervised learning methods including logistic regression, K-NN, decision tree, neural 

network, support vector machine (SVM), and achieved an overall accuracy of 86%. 

Some studies used Inertial Measurement Unit (IMU) data from the sensors embedded in 

smartphones including accelerometers and gyroscopes for equipment activity recognition. For 

instance, Kim et al. (2018) measured an excavator operation cycle time using IMU data with 

the frequency of 128 Hz. They applied Random Forest, Naïve Bayes, J48 and Sequential 

Minimal Optimization (SMO) for the cycle time prediction and achieved 91.83% accuracy. In 

another study Rashid and Louis (2019) used time-series data augmentation on 3-axis 

accelerometer, and 3-axis gyroscope data collected with the frequency of 80 Hz to generate 

synthetic training data for four types of excavators and front-end loaders. This technique 

applied recurrent neural network (RNN) and achieved over 96% accuracy for fourfold 

augmentation. 

Kassem et al. (2021) developed a DNN model for measuring the volume of earth 

excavated from a mixed fleet of excavators (e.g. different sizes, weights, models) and 

benchmarked the performances of excavation work using telematics data from 21 days of 

operation. They achieved an accuracy of 69.64% which was deemed acceptable due to 

the involvement of the manual work (i.e. archaeologists) alongside the equipment in the 

selected central London case study. 

Bae et al. (2019) developed a dynamic time warping algorithm for activity identification 
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and automatic classification of excavator activities (i.e., digging, levelling, lifting, trenching, 

traveling, and idling) using joysticks signals. The correct-recognition rate of their model was 

between 91% and 97%. 

Despite the contributions these studies bring to monitoring construction equipment 

activity, very few studies have attempted to automate equipment productivity measurement. 

One recent study by Chen et al. (2020), developed a vision-based method for measuring 

excavator productivity. However, this method revealed computationally expensive and had 

some limitations such as dependency of the results on the light conditions, viewpoints of 

cameras, number of equipment in the scene and background movements. In addition, their 

achieved accuracy was 83% for productivity measurement, and 94% for idle time 

measurement. 

In (Bügler et al., 2017), photogrammetry was combined with video analysis for 

measuring the volume of the excavated soil and computing soil removal productivity. Kim et 

al. (2019) developed a model adopting computer vision and simulation for the analysis of 

earthmoving productivity. They used videos from surveillance cameras at the entrance and exit 

of a construction site for license plate detection of dump trucks, which could produce the site 

access log, then analysed the truck productivity through a simulation model. Torres Calderon et 

al., (2021) could improve the capabilities of vision-based activity analysis methods by 

developing a new approach using the data synthesized from 3D kinematically configurable 

models for training the computer vision algorithms. 

The main advantage of using computer vision for equipment productivity is that visual 
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data can provide information about the physical movements of equipment and their visual 

features and spatial contextual natures (Kim and Chi, 2020). However, from practicality 

perspectives, this method has some limitations and challenges including: 

�x sensitivity to environmental factors such as occlusions, lighting, and illumination 

conditions (Cheng et al., 2017); 

�x Shaking of cameras caused by wind, and blur of images caused by rain, snow, and fog 

(Gong and Caldas, 2011); and 

�x The need for installing multiple cameras for covering a large job (Cheng et al., 2017). 

Audio has been another source of data for equipment activity recognition as heavy 

equipment generally generates distinct acoustic patterns while performing routine tasks (Cheng 

et al., 2019). Cheng et al. (2017) classified the equipment activities into two states, productive 

or major activities and non-productive or minor activity, to recognise the equipment states 

using the sound generated by construction equipment. (Sabillon et al., 2020) developed a 

model to use audio data for estimating the cycle time of equipment. 

Audio signals are easier to use comparing to sensors and computer vision methods 

because their capturing technologies such as microphone, can cover a large area. In addition, 

processing audio files is computationally less expensive (Sabillon et al., 2020). However, 

background noise can impact the accuracy of the models, and some equipment does not 

generate distinct sound patterns during operation, which makes it difficult to recognise their 

activity (Cheng et al., 2017). 

This study contributes to this research domain by developing and testing a new method 
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based on smartphone sensors and deep learning to predict equipment productivity with high 

accuracy through a low cost and easy-to-install system on equipment. 

 

3. Equipment productivity metrics  

Productivity is generally defined as the ratio of output over input. Different metrics have been 

proposed to measure equipment productivity and evaluate efficiency of equipment usage. For 

instance, some metrics have accounted for downtime for evaluating equipment productivity. 

Vorster and De La Garza (1990) defined the downtime ratio (Z) for equipment over a month, as 

shown in Equation 1: 

(%) 100
D

Z
D W

�  � u
��

               (1) 

where D is the number of hours a particular equipment unit is broken down in a month, and W 

is the total number of hours worked by the equipment in the month.  

Nepal and Park (2004) defined equipment downtime (DT) ratio as shown in Equation 2: 

Total DT hours
(%) 100

Total planned working hours
DT �  � u          (2) 

Utilisation Ratio (UR) is another productivity metric which accounts for the percentage 

of time that an equipment is available for operation. It is expressed as the ratio between the 

total working time of an equipment and the total time available for an equipment (e.g. 24 hours 

or shift time) as expressed in Equation (3) (Ibbs Jr and Terveer, 1984): 

Total working time
(%) 100

Total available time
UR �  � u            (3) 

if the data to support these metrics can be automatically collected and deep learning is used to 

produce reliable predictions, these metrics can be used to measure the productivity of different 
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types of equipment, hence; enabling monitoring and benchmarking of their performance and 

identification of underperforming equipment. 

 

4. Methodology 

As shown in Section 3, a range of metrics for measuring equipment productivity exist. This 

paper adopts the utilization ratio metric (Equation 3) for measuring productivity by identifying 

active and non-active states of an equipment during its available time for use (e.g. day shift). 

Active state relates to the time that the equipment is actively working. Inactive state relates to 

the time that the equipment is not working including the idle time and the time the equipment 

engine is off.  Figure 1 illustrates how these data are used to identify equipment states. 

The first step is to capture data. Built-in smartphones sensors are used to capture IMU 

data (i.e., tri-axial accelerometer, gyroscope and linear acceleration data) and noise level data 

from inside the equipment operator cabins. Videos to identify when the equipment is active or 

inactive are captured using a camera and are used for labelling the time-stamped sensor data 

and developing and validating machine learning models. 

The second step is data preprocessing, in which sliding windows to divide input signal 

data into windows of signals are identified. Each window has a few seconds of observation 

data. The size of each sliding window, which depends on the model specifications such as the 

data type and nature of the activities to be classified, affects the model size and training speed: 

the smaller the window size, the smaller the model and the faster the training speed (Banos et 

al., 2014). That is, reducing the window size enables faster activity recognition and less 

computational burdens. Large windows are generally used for identifying complex activities 
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(Banos et al., 2014). After selecting a suitable sliding window size, the data is labelled with the 

equipment states (i.e., either active or inactive) using the observations from the captured videos. 

One window would represent one sample. In this study 5 seconds of data was chosen for the 

window size as it had the appropriate fit to the model in terms of performance and prevented 

overfitting. Some applications tolerate having adjacent windows overlap, but this approach is 

less commonly used (Banos et al., 2014). Additionally, the overlap window can lead to an 

increased training dataset and overfitting. As the frequency of data capturing was 8 Hz, one 

sample data would represent 40 sensor datapoints. A label was generated for each window by 

finding the most frequently used label among the set of datapoints within each window. 

The pre-processed data are then fed to the deep learning model for classification. Deep 

learning algorithms are more suitable for complex activity recognition because they automate 

feature engineering and extraction (as one of the most important and challenging tasks in 

machine learning) and extract high-level representation in deep layers (Wang et al., 2019). 

In this study three deep learning algorithms, namely, Deep Neural Network (DNN), 

Convolutional Neural Network-Long Short-Term memory network (CNN-LSTM) (Mutegeki 

and Han, 2020, Donahue et al., 2015) and Convolutional Long Short-Term Memory (Conv-

LSTM) (Xingjian et al., 2015) were tested. These algorithms are commonly used for activity 

recognition due to their deep structures for automated feature extractions from raw sensor data 

with random noises (Mahmud et al., 2020). These algorithms are applied to a various 

combination of data collected in a case study to compare their performance in predicting 

equipment states and measuring equipment productivity. The description of these algorithms 

Downloaded by [] on [13/04/22]. Copyright © ICE Publishing, all rights reserved.

https://doi.org/10.1680/jsmic.21.00031?ref=PDF&jav=AM&rel=cite-as


Accepted manuscript 
doi: 10.1680/jsmic.21.00031 

15 
 

and their configuration for this study is summarized below. 

 

4.1 Deep neural network (DNN) 

DNN is an extension of the multilayer perceptron (MLP) neural network, that has more than 

one hidden layer. DNN map inputs to outputs through a sequence of data transformations 

(layers). In the learning process of DNN, the values of the parameters (weights) of the layers 

are identified in such a way that the network correctly maps the input data to output data (i.e., 

minimizing the error) (Chollet, 2017). DNN is computationally complex because many 

parameters exist for each layer and a change in one parameter will impact other parameter 

behaviours (Chollet, 2017).  More (deep) layers in DNN comparing to the traditional neural 

networks, make it more suitable for building learning models from a large amount of data, 

where manually extracting features is too complex or time consuming for building a successful 

model. 

In DNN, different types of layers such as dense, flatten, dropout and sigmoid and softmax 

functions can be used. Dense layers are a regular neuron layer, which are densely connected 

and receive input from the previous layer and send output to the next layer. The input and 

output are also connected by the weights. Flatten layers are used to make multidimensional 

output linear to pass it to the dense layer when required. Dropout is a regularization method, 

which randomly (at a probability) drops some neurons to prevent overfitting the model. 

Sigmoid or softmax can be used before the output layer to output a probability distribution over 

the different output classes, which identifies the probability that the sample belongs to a 

specific class (Chollet, 2017).  Figure 2 (a) depicts the architecture of the DNN model created 
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in this study. It shows that it consists of three hidden dense layers or fully connected layers, 

which was found in our experiments sufficient to make the model deep enough to achieve the 

high-accuracy results. The detail of the model architecture is presented in Figure 3. In this 

model, Rectified Linear Unit (ReLU) is used as the activation function for the hidden layers 

which is a widely used activation function in deep learning. ReLU will return the input value if 

it is positive, and it will return 0 if the input value is negative. For the output layer, the sigmoid 

activation function is used. Sigmoid is mostly used for the binary classification and maps the 

input into a value ranging from 0 to 1. 

 

4.2 Convolutional Neural Network-Long Short-Term memory network (CNN-LSTM) 

In the CNN-LSTM method, Convolutional Neural Network (CNN) is created and followed by 

long short-term memory network (LSTM), and a dense layer on the output. 

CNNs are characterized by the ability of easy training, knowledge extraction and feature 

extraction on input data (Huang and Kuo, 2018). CNNs are mostly adopted for image 

processing. LSTM is a type of Recurrent neural networks (RNNs), which are used to learn 

from sequence data (i.e., sequences of observations over time) and can address some 

difficulties of RNN in training a stable model (Brownlee, 2016). LSTM develops internal 

representation of the input while reading input observations in sequence and focusing on model 

prediction errors in the input sequence in each defined window, which is called 

backpropagation over time (Brownlee, 2016). 

In the CNN-LSMT architecture, 1) CNN performs feature extraction on input data 

through convolutional layers (e.g. Conv1D), which performs convolution operations to learn 
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local patterns (while dense layers learn global patterns) (Chollet, 2017), and pooling layers, 

which performs a down sampling operation to produce the most significant features (Swapna et 

al., 2018), and LSTM supports sequence prediction, 2) data are read sequentially in blocks and 

features are extracted from each block, and 3) the extracted features are fed into LSTM for 

interpretations and predictions (Brownlee, 2018). CNN-LSTM is more efficient for recognition 

of activities with differing time spans such as visual time series prediction problems. As CNN 

is a specific type of DNN, DNN layers can also be used in CNN-LSTM models. The CNN-

LSTM model used in this study is illustrated in Figure 2 (b) and detailed in Figure 4. The 

proposed CNN-LSTM model consists of two consecutive blocks of 1D convolutional layer 

with 64 filters. The rectified linear function (ReLU) is used as the activation function. After the 

second 1D-CNN layer is processed, the dropout technique is applied. Next, a pooling layer is 

applied to reduce the number of parameters and computation in the network and to avoid 

overfitting.  A LSTM layer with 128 units is then applied before a dropout layer for extracting 

temporal features. The LSTM layer is followed by a dense layer with 128 neurons and ReLU 

activation function. At the final step, another dense layer with a sigmoid function is added. 

 

4.3 Convolutional Long Short-Term Memory (Conv-LSTM) 

Conv-LSTM is an extension of fully connected LSTM (FC-LSTM) by having convolutional 

structures for LSTM gating in both the input-to-state and state-to-state transitions (Xingjian et 

al., 2015).  In Conv-LSTM, an extra connection with the previous memory cells is established 

to account for the effect of the previous input in the current timestamp (Xingjian et al., 2015). 

In the training process, the memory cell can consider the effect of the earliest stages 
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(Rahman and Adjeroh, 2019). The main difference between CNN-LSTM and Conv-LSTM is 

that in CNN-LSTM, LSTM interprets the output from CNN model but in Conv-LSTM, the 

convolutions are used directly as part of reading input into LSTM (Brownlee, 2018). Conv-

LSTM is suitable for predictions on 3-dimensional data such as spatiotemporal data. 

The overall architecture of the model used in this study is presented in Figure 2 (c), and 

its detail is presented in Figure 5. In this study, a special form of Conv-LSTM, so called Conv-

LSTM 2D provided by Keras library (a free open source library in Python), which combines 

gating of LSTM with 2D convolutions, was used. The functionality of Dropout and Dense 

layers is similar to what was described for the DNN and CNN-LSTM models. 

 

5. Testing and demonstration 

The proposed method was implemented on a live demolition project where a Komatsu 

PC220LC Hydraulic Excavator was in use. A commercial mobile app was used to collect noise 

level and IMU data including accelerometer, gyroscope and linear acceleration data in three-

dimensional axes. Two android smartphones were mounted inside the cabin of the excavator on 

the window to mitigate the risk of losing data due to the risk of the app crashing on one phone 

or other incidents. The frequency of data capturing was 8 Hz, which was the highest frequency 

while the commercial app could run and capture data without crashing. Three hours of the 

excavator operation were monitored using the camera, IMU and noise sensors. Figure 6 shows 

a snapshot of the site and equipment involved. 

Google Colab was used to train the models. Google Colab provides different computing 

resources, including Central processing units (CPU) and Graphics processing unit (GPU), 
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which is faster than CPU. The computational time for the highest number of features (i.e. 10 

features) was measured using both CPU and GPU. The results in Table 1 shows CPU-based 

training is slower than GPU-based training, but the maximum run time is less than 5 minutes. 

As mentioned in the methodology section, this study intends to automatically measure the 

utilization ratio by recognizing two states of the equipment: active and inactive. During the 

monitored time, the excavator was mostly active working on demolishing a building. There 

were some occasions that the excavator operator stopped working for a short period of time, 

which was considered inactive time. Figures 7 to 10 show a sample of accelerometer, 

gyroscope, linear acceleration and noise level data when the excavator was active and inactive. 

The collected data were then pre-processed. The sliding window size for activity recognition 

was five seconds and was adequate because only two states (i.e active and inactive), not of 

complex nature, are involved. Since the frequency of data was 8 Hz, 40 data sets were 

available for each window. These data sets were labelled using the captured video. 

Three deep learning models including DNN, CNN-LSTM and Conv-LSTM algorithms 

were created using Keras deep learning package with TensorFlow as a backend engine. The 

models were created for three combinations of data: 

�x Accelerometer and gyroscope data 

�x Accelerometer, gyroscope and linear acceleration data 

�x Accelerometer, gyroscope data, linear acceleration and noise level data 

The train/test ratio of 75/25 was used for splitting the dataset into train and test sets in a 

stratified sampling fashion. Then, 80% of the train dataset was used as the actual train set and 
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the remaining 20% was used as the validation set. Stratified sampling is based on splitting a 

data set in a way that each train and test subset has the same percentage of the samples 

from the complete target class. Therefore, this method can result in the training and test subsets 

with the input dataset that has the same ratio of the class labels. Thereafter, the model is 

iteratively trained and validated on these different sets. 

The accuracy of the models was calculated based on the number of correct predictions 

and the total number of predictions as shown in Equation 4. 

TP TN
Accuracy

TP TN FP FN
��

� 
� � � � � �

             (4) 

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative. 

Table 1 shows the accuracy of experimented models for activity recognition. Figures 11, 

12 and 13 display the validation loss and validation accuracy of the models containing the three 

combination inputs, (i.e., 6, 9 and 10 features), respectively. 

The actual utilization ratio was measured manually as 89.85% using the captured video. 

Using the result of the models, the utilization ratio can be automatically calculated as shown in 

Table 3, and accuracy of the models was calculated by comparing it with the actual utilization 

ratio as shown in Table 4. As seen in Table 4, the accuracy of these combinations is very high 

(more than 97%) and the changes in absence of one input type (e.g. noise) are insignificant. 

Therefore, in the absence of some input data, the proposed approach is still applicable and 

provides a high accuracy. 

 

6. Discussion 

The developed model resulted in high accuracy for both activity recognition and productivity 
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measurement. This accuracy can be attributed to capabilities of deep learning algorithms in 

feature engineering when a large amount of data is available. Another contributor to this high 

accuracy comparing to similar studies (e.g., Ahn et al. (2015) with 93% accuracy and Kim et 

al. (2018) with 91.83% accuracy), is the lower level of detail required for productivity 

measurement as this study considered two states (active and inactive) for the activity 

recognition. Although the accuracy levels are very high, they can be improved further with a 

larger amount of training data by increasing the frequency and/or duration of data collection. In 

this case study, DNN model using accelerometer and gyroscope data led to the highest 

accuracy (97.25%) for activity recognition. For productivity measurement, DNN using 

accelerometer, gyroscope data, linear acceleration and noise level data achieved the highest 

accuracy (99.78%). However, the variations of the achieved accuracies are insignificant among 

the models and the input combinations (less than 1% for activity recognition and less than 3% 

for productivity measurement), which could be explained by the low level of detail required for 

predictions. In addition, the results show that if some input data such as noise level is not 

available, the proposed approach can still provide a high accuracy with the other input features. 

If a higher level of details is considered, more variation could be observed to be able to 

compare capabilities of different algorithms and the impact of input data. In this case study, the 

excavator was doing only one type of activity (i.e., building demolition). However, for an 

excavator performing most or all of the steps involved in a round trip or cycle (i.e. pre-

excavate, excavate, lift, unload, swing), the same approach proposed in this paper could be 

applied to recognise each step within the round trip provided that sufficient data is capture 
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about each of the steps. In such cases, the combination inputs and the different algorithms are 

likely to perform differently. Therefore, to enhance the application of the model, other types of 

activities such as excavation and loading can be studied to make the model more generic for 

excavator operations. 

A direct comparison between the proposed approach and other relevant methods available 

in the literature is shown in Table 5. It shows that the accuracy achieved by this method is 

higher than that of other studies using data from either smartphone sensors, accelerometers, or 

video surveillance. For instance, the study by Chen et al. (2020) used a vision-based method 

and could achieve 93.8% accuracy for measuring idle time, which is comparable with the 

accuracy achieved for the prediction of the inactive state in this study. Moreover, the main 

advantage of this method over other methods (e.g., vision-based and sensor-based methods) is 

in its low computational cost and scalability for large infrastructure sites due to its ability to 

cover a wide range of equipment and its portability, which are two main features that are not 

possible with fixed location sensors such as video surveillance. 

 

7. Limitations and Future work  

This study has some limitations that can be addressed in future. In the case study, the excavator 

activities were limited to demolition tasks. The proposed method can be experimented for other 

types of excavator activities such as excavation and loading to further substantiate its 

capabilities. As such, more complex activity recognition with more states may be required to 

study more detailed equipment operation efficiency. 

The study measured the Utilisation Ratio which is a time-based productivity metric. 
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Productivity can be also expressed as a production rate (e.g. measured as output of soil 

excavated). This has not been considered in this study as it would require data about the full 

operating cycle of an excavator (i.e. load, swing, dump, return). Other studies (i.e. Kassem et 

al., 2020) have measured this metric using telematics data but it revealed challenging to 

achieve high level of accuracy. 

In this study, a commercial mobile application was used to capture the data. The 

application had limitations on the frequency for data capture. The highest frequency rate to 

avoid crashing was 8 Hz while in similar studies higher rates were used. Despite this limitation, 

the accuracy of the model in the case study was very high. In future studies, the impact of data 

capture frequency on the accuracy of the model can also be explored. In addition, performance 

and efficiency of this method can be further explored by experimenting other types of 

equipment such as loaders and cranes. 

 

8. Conclusion 

In this paper, a deep learning method was proposed for automating equipment productivity 

measurement. This method uses kinematic and noise level data captured by smartphone 

sensors. Three deep learning algorithms including DNN, CNN-LSTM, and Conv-LSTM were 

investigated for activity recognition of an excavator and productivity measurement. 

The results of the experiment showed high accuracy of the models (over 96.70% for 

activity recognition and over 97.22% for productivity measurement). Equipment-intensive 

construction projects can benefit from the proposed method to automate productivity 

measurement, identify equipment inefficiencies in near real-time, and inform corrective actions 
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in lagging-behind performance of certain site zones. The findings can also inform the 

establishment of performance benchmarks for earthwork equipment. Such benchmarks can be 

built over time from several projects and can inform project budgeting and allocation of 

equipment, hence contributing to the resolution of the equipment redundancy problem faced in 

many large construction projects (Kassem et al., 2021). 
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Table 1. Comparative analysis between CPU and GPU performance 

 

Computing 

resource in Colab 

DNN CNN-LSTM CONV-LSTM 

CPU ���¶�������¶�¶ ���¶�������¶�¶ ���¶�������¶�¶ 

GPU �����¶�¶ ���¶�������¶�¶ ���¶�����¶�¶ 
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Table 2. Accuracy for activity recognition 

 

Input Data 
Model Accuracy (%) 

DNN CNN-LSTM Conv-LSTM  

Accelerometer and gyroscope data  97.25% 96.93% 96.85% 

Accelerometer, gyroscope and 
linear acceleration data 

 97.17% 96.77% 97.01% 

Accelerometer, gyroscope data, 
linear acceleration and noise level 
data 

 97.01% 96.70% 97.01% 
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Table 3. Predicted utilization ratio 

 

Input Data 
Predicted Utilization Ratio (%) 

DNN CNN-LSTM Conv-LSTM  

Accelerometer and gyroscope data 91.08% 91.36% 90.13% 

Accelerometer, gyroscope and linear 
acceleration data 

91.26% 92.34% 90.17% 

Accelerometer, gyroscope data, linear 
acceleration and noise level data 

90.04% 91.37% 91.45% 
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Table 4. Accuracy for measuring utilization ratio 

 

Input Data 
Utilization Ratio Accuracy (%) 

DNN CNN-LSTM Conv-LSTM 

Accelerometer and gyroscope data 98.63% 98.31% 99.68% 

Accelerometer, gyroscope and linear 
acceleration data 

98.43% 97.22% 98.53% 

Accelerometer, gyroscope data, linear 
acceleration and noise level data 

99.78% 99.42% 98.21% 
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Table 5. comparison between the results of this study and some other studies. 

 
Reference Used Data 

Type 

Used Algorithms Main 

Parameters 

Accuracy Number of 

states 

Ahn et al. 

(2015) 

Accelerometer 

data 

Naïve Bayes, 

Instance-based learning, 

K-nearest neighbor (KNN) 

and Decision tree (J48) 

Frequency: 100 

Hz 

Sliding window 

size: 128-sample 

windows 

93% for the 

activity 

classification 

3 

Kim et al. 

(2018) 

Smartphone 

sensors (IMU) 

Random Forest, Naïve 

Bayes, J48, and SMO 

Frequency: 128 

Hz 

Sliding window 

size: 1 second 

91.83% accuracy 

for cycle time 

measurement 

3 

Cheng et 

al. (2020) 

Surveillance 

video data 

Faster R-CNN for 

excavator detection and 

deep Simple Online and 

Real-Time (SORT) for 

excavator tracking 

Frequency: 25 

frames per 

second (FPS), 

Sliding window 

size: 4 seconds. 

 

93.8% for idle 

time measurement 

2 

This 

study 

Smartphone 

sensor data 
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Figure 1. Modelling process 
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Figure 2. (a) DNN model architecture; (b) CNN-LSTM model architecture; (c) Conv-LSTM 

model architecture 
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Figure 3. Detail architecture of DNN model for 9 features 
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Figure 4. Detail architecture of CNN_LSTM model for 9 features 
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Figure 5. Detail architecture of CONV_LSTM model for 9 features 
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Figure 6. A snapshot of the captured video 
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Figure 7. Sample of accelerometer data in x, y and z axis for active and inactive states 
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Figure 8. Sample of linear accelerometer data in x, y and z axis for active and inactive states 
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Figure 9. Sample of gyroscope data in x, y and z axis for active and inactive states 
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Figure 10. Sample of noise level data for active and inactive states 
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Figure 11. validation loss and validation accuracy of models with 6 features as input data 

(Accelerometer and gyroscope data) 
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Figure 12. validation loss and validation accuracy of models with 9 features as input data 

(Accelerometer, gyroscope and linear acceleration data) 
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Figure 13. validation loss and validation accuracy of models with 9 features as input data 

(Accelerometer, gyroscope data, linear acceleration and noise level data) 

 

 


