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ABSTRACT: Piezoelectric cantilever resonator is one of the most promising platforms for real-time sensing of volatile organic compounds 
(VOCs). However, it has been a great challenge to eliminate the cross-sensitivity of various VOCs for these cantilever-based VOC sensors. 
Herein, a virtual sensor array (VSA) is proposed based on a sensing layer of GO film deposited onto an AlN piezoelectric cantilever with 
five groups of top electrodes for identification of various VOCs. Different groups of top electrodes are applied to obtain high amplitudes of 
multiple resonance peaks for the cantilever, thus achieving low limit of detections (LODs) to VOCs. Frequency shifts of multiple resonant 
modes and changes of impedance values are taken as the responses of the proposed VSA to VOCs, and these multi-dimensional responses 
generate a unique fingerprint for each VOC. Based on machine learning algorithms, the proposed VSA can accurately identify different 
types of VOCs and mixtures with accuracies of 95.8% and 87.5%, respectively. Furthermore, the VSA has successfully been applied to 
identify the emissions from healthy plants and “plants with late blight” with an accuracy of 89%. The high levels of identifications show 
great potentials of the VSA for diagnosis of infectious plant diseases by detecting VOC biomarkers. 

Volatile organic compound (VOC) sensors play important roles 
in many fields such as medical diagnosis, explosive detection, 
agricultural planting, and pollution monitoring.1-3 Recently, 
detecting VOCs of biomarkers for diagnosis of infectious plant 
diseases at their early stages has attracted widespread attention 
because of its advantages such as non-invasive operation, 
simplicity, and cost-effectiveness.4-6 For example, Li et al. proposed 
a smartphone-based VOC fingerprinting platform for diagnosis of 
late blight caused by Phytophthora infestans.7 As the plant’s 
emission usually consists of multiple gases, the VOC sensors need 
not only to precisely detect the characteristic VOCs, but also to be 
able to operate in the presence of various interferences. 

VOC sensors developed so far are based on different principles, 
e.g., semiconductor sensors, optical sensors, field effect transistor 
devices, and piezoelectric devices.8-10 Among them, the 
piezoelectric cantilever is one of the most prominent real-time 
VOC detection platforms because of its advantages of fast 
response, small size and low power consumption, large dynamic 
range, and quasi-digital output signals.11 Piezoelectric cantilever-
based sensors commonly rely on detecting the resonant frequency 
shifts of a single mode to monitor the VOC concentration, mostly 
caused by the mass loading effects of the sensing film due to the 
adsorption of VOCs.12 This often leads to the poor selectivity of the 
VOC sensors. Electronic nose (e-nose) system has become a 
common compromise to enhance the selectivity of VOC sensors,13-

15 and is usually composed of a sensor array and pattern recognition 
algorithms such as artificial neural network (ANN) and 
hierarchical cluster analysis (HCA).16-18 However, e-nose system 
has many critical issues such as large volume, high power 
consumption, and high failure rate, since the breakdown of any 
component sensor will cause the failure of the whole system.19 

To mitigate the poor selectivity of individual VOC sensor and 
eliminate these drawbacks of e-noses, virtual sensor array (VSA) 
has been proposed recently. It is based on the principle that one 
individual sensor produces multidimensional output vectors 
similar to those generated from an e-nose.20-22 Pattern recognition 
algorithms are then adopted to process the output vectors for 
accurate identifications of different VOCs. Recently multiple 
resonant modes of a single piezoelectric resonator have also been 
explored to develop VSAs.23, 24 However, it is quite commonly 
reported that some resonant modes of piezoelectric cantilever 
resonator show low amplitudes of resonance peaks, which leads to 
a low signal-to-noise ratio (SNR) of the cantilever-based sensors 
and thus a poor limit of detection (LOD).25 The VOC sensors based 
on piezoelectric resonators often did not consider the changes of 
electrical parameters of the sensing film after adsorption of the 
VOCs, leading to a waste of critical information.26 

Typically, a sensing film is deposited on the surface of a VOC 
sensor, and the properties of this sensing layer greatly affect its 
responses to VOCs.27 Two-dimensional (2D) materials have 
attracted extensive research interest for VOCs sensing applications 
because of their versatile surface chemistry, large specific surface 
area, and capability of sensitive detection at room temperature.28, 

29 For example, MXene-based VOCs sensors were often reported to 
have ultrahigh signal-to-noise ratios and low limit of detections.19 
However, most 2D materials, such as graphene, MoS2, and MXene, 
have good electrical conductivity, which can cause short circuits in 
micro devices. Among them, graphene oxide (GO) possesses rich 
surface functional groups, high resistance and good stability, 
which makes it one of the most promising materials for VOC 
sensing applications.28-30 

In this work, as schematically illustrated in Figure 1, we propose 
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Figure 1. Schematic illustrations of the proposed VSA based on piezoelectric cantilever for plant diseases diagnosis.

a VSA based on an aluminum nitride (AlN) piezoelectric cantilever 
with five groups of top electrodes for identification of VOCs. 
Different groups of top electrodes were applied to increase the 
amplitudes of resonance peaks for multiple modes of the 
cantilever. The GO film was deposited on the surface of this 
cantilever to form a VOC sensor, which was then exposed to 
various VOC concentrations. We applied the frequency shifts of six 
resonant modes and changes of impedance values at three 
frequencies between two electrodes as the responses of the 
proposed VSA to various VOCs. The principal component analysis 
(PCA), HCA, and ANN were adopted to systematically analyze the 
VSA’s responses for identification of different VOCs. Finally, we 
successfully demonstrated the identifications of the emissions 
from healthy plants and “plants with late blight” using the 
proposed VSA. 

EXPERIMENTAL SECTION 

Design, Fabrication, and Characterization of the 
Cantilever-Based VSA. As schematically shown in Figures 1 and 
S1, the proposed VOC sensor is composed of an AlN piezoelectric 
cantilever and a sensing layer of GO. The area of the cantilever is 
300×1000 μm2. The top electrode is divided into five groups of 
electrodes. Different groups of top electrodes are used to increase 
the amplitude of resonance peaks of multiple modes. The 
cantilever is composed of an AlN layer on top of a silicon (Si) with 
their thicknesses of 0.5 μm and 10 μm, respectively. The silicon 
layer is highly doped and used as bottom electrode. The top 
electrode consists of 20 nm chrome and 1000 nm aluminum. A 
thermal oxide layer with a thickness of 0.2 μm is used as insulating 
layer which is between the top and bottom electrodes.  

Figure S2 shows the fabrication process of the piezoelectric 
cantilever. The fabrication process began with a SOI wafer with a 
highly doped top layer. A thermal oxide layer was firstly grown and 
patterned using reactive ion etching. AlN layer was sputtering-
deposited and patterned by wet etching. Then the top electrodes 
were deposited and patterned through a lift-off process. The device 
and handle layers of SOI were patterned by deep reactive ion 
etching (DRIE) in sequence. GO dispersion was prepared using the 
modified Hummers’ method, as detailed in the literature.25, 31 A 
suspension of GO with a concentration of 0.4 mg ml-1 was dropped 
on the surface of the cantilever to form a sensing layer for VOCs. 
The cantilever was then dried in a vacuum chamber for 10 mins. 
Characterization methods of the cantilever-based sensor are 
detailed in Supporting Information (S1). 

Process of Finite Element Analysis (FEA) and VOCs 
Exposure. In order to verify the working principle of the VSA, the 
FEA simulation was conducted to investigate shifts of multiple 
resonant frequencies after exposure to two types of VOCs. A three-
dimensional (3D) model used in the simulation is shown in Figure 
S3. In the simulation, the density, Young's modulus, and Poisson's 
ratio of the GO film were set to be 2200 kg m-3, 9 GPa, 0.28, 
respectively.32, 33 We simulated the changes of the mass and Young's 
modulus of the sensing film after VOC absorption by changing the 
density and Young's modulus of the film. 

Figure S4 shows the schematic diagram of the experimental 
setup and details of the chemicals for VOCs sensing, which was 
detailed in the previous publications.26, 27 All the experiments were 

carried out at 24℃. The VOC sensor was firstly exposed to ethanol 

(EtOH) with different concentrations from 100 ppm to 800 ppm. 
The sensitivity, LOD, response and recovery time of the sensor 
were obtained. In order to investigate the capability of the 
proposed VSA to identify different VOCs, the sensor was exposed 
to 100 ppm to 800 ppm of four types of VOCs, i.e., EtOH, methanol 
(MeOH), acetone, and isopropanol (IPA). In order to test the 
identification capacity of the proposed VSA to VOC mixtures, the 
VSA was then exposed to four types of VOC mixtures, i.e., mixtures 
of EtOH and Acetone (A), EtOH and IPA (B), MeOH and Acetone 
(C), as well as MeOH and IPA (D), whose concentrations are 
detailed in Table S1. 

Furthermore, the VSA was used to identify the emissions from 
healthy plants and “plants with late blight”. We collected 30 
emission samples from healthy tomato leaves and 10 emission 
samples from healthy potato tubers, for a total of 40 samples. 
Certain amounts of (E)-2-hexenal were added to 20 of these 
samples to ensure that the concentrations of (E)-2-hexenal in the 
samples are from 10 ppm to 20 ppm.7 These samples were used to 
simulate the emissions from “plants with late blight”. Then the 
blind analysis was used to test the identification capability of the 
VSA for the emissions from healthy plants and “plants with late 
blight”. 

Data Analysis Based on Machine Learning Algorithms. 
Three identical sensors were tested under the same conditions and 
the results were expressed as the average of the results ± their 
standard deviations. In the process of testing the traditional 
parameters of the VOC sensor, such as sensitivity, LOD, and 
response time, the frequency shifts of the second-order mode were 
taken as the responses of the VOC sensor to EtOH, which was 
centered at 74.8 kHz without the VOC exposure. The LOD of the  
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Figure 2. Characterizations of the piezoelectric cantilever-based VOC sensor. Optical and SEM images of the piezoelectric cantilever (a) before 
and (b) after GO deposition. (c) Surface morphology of the GO film on the cantilever. (d) EDS analysis for elements of C and O. (e) Raman spectrum 
of the GO film. (f) XRD analysis of the GO film. (g) XPS spectra for C 1s of the GO. (h) Gain curves of the cantilever before and after GO deposition. 

sensor to VOCs was calculated by the ratio of three times the 
standard deviation of the frequency response (3σ) to the sensitivity 
(S) when the VOCs concentration is zero, i.e., 3σ/S.34 Response 
time and recovery time were defined as the time to reach 90% of 
the maximum response and decrease to 10% of the maximum 
response, respectively.35 

The frequency shifts of six resonant modes (△fn) and relative 
changes of the impedance values at three frequencies between the 
two electrodes (△Zn/Zn) of the cantilever-based sensor were 
applied as the responses of VSA to VOCs. Table S2 shows the 
details of the nine selected parameters. The six adopted resonant 
modes are centered at 74.8 kHz (Mode 2, i.e., second-order mode), 
211 kHz (Mode 3), 414.9 kHz (Mode 4), 990 kHz (Mode 6), 1.036 
MHz (Mode 6’), 1.465 MHz (Mode 7), respectively. Among them, 
the resonant mode centered at 1.036 MHz is the torsional mode of 
the cantilever. Because the vibration shape and frequency of the 
mode are close to the sixth-order mode, as shown in Table S2, it is 
called “Mode 6’”. The adopted frequencies of the impedance 
between the two electrodes marked by the red circle shown in 
Figure 2a are 1 kHz, 100 kHz, and 1.1 MHz, respectively, which are 
away from the resonant frequencies of the sensor.  

Firstly, PCA was performed on the responses of the VSA to 
evaluate the dimension of the responses to multiple VOCs and 
identify different VOCs qualitatively. Then the obtained principal 
components (PCs) were input to HCA, one of the unsupervised 
machine learning methods, to identify different VOCs 
quantitatively. The VSA’s responses to the VOCs were input to an 

ANN model for the supervised classification. To avoid the error of 
the training model caused by a small amount of the data set, the 
Synthetic Minority Over-sampling TEchnique (SMOTE) method 
was employed to amplify the data set. Both the hold-out method 
and leave-one-out cross validation (LOOCV) method were used to 
evaluate the performance of the trained model. Details of these 
machine learning algorithms are shown in S2 in the Supporting 
Information. 

RESULTS AND DISSCUSSION 

Characterization of the Fabricated Cantilever-Based 
Sensor. The proposed VOC sensor is composed of an AlN 
piezoelectric cantilever and a sensing layer of GO. Figures 2a, 2b, 
and S5 show the optical and scanning electron microscope (SEM) 
images of the piezoelectric cantilever before and after GO 
deposition. As shown in Figures 2b and S5c, a uniform GO layer is 
formed on the surface of the cantilever. Surface morphology of the 
GO film on the cantilever is shown in Figures S6 and 2c, which 
reveal a uniform GO film with some folds. Energy dispersive X-ray 
spectroscope (EDS) analysis of the GO film is shown in Figure 2d. 
The elements of C and O are evenly distributed across the entire 
film. As shown in Figure 2e, two main peaks corresponding to the 
first-order D peak (1340 cm-1) and G peak (1590 cm-1) appear in the 
Raman spectrum of GO, indicating the existence of numerous 
structural defects because of the rich chemical functionalization of 
GO.36 As shown in Figure 2f, X-ray diffraction (XRD) curve of the 
GO film reveals a sharp peak at 2θ = 10.5°, indicating the interlayer 
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Figure 3. Gain and phase curves of the piezoelectric cantilever activated by different methods. (a) Gain and phase curves of the piezoelectric 
cantilever activated by all top electrodes (i.e., conventional design for piezoelectric cantilever). (b) Comparison for gain curves of the cantilever 
activated by different methods. (c-e) Gain and phase curves of the cantilever operated at various modes activated by specific groups of top 
electrodes. 

spacing of the GO film is 8.8 Å.37 Figure 2g shows the C 1s spectrum 
of X-ray photoelectron spectroscopy (XPS) for the GO film. The C 
1s spectrum can be deconvoluted into three peaks centered at 
284.8, 287.1, and 287.8 eV. They are corresponding to chemical 
bonds of C-C, C-O, and C=O on the surface,38 respectively, 
indicating the existence of rich surface functional groups. Figures 
S7a, 2h, and S7b show the gain and phase curves of the 
piezoelectric cantilever operated at the second-order, fourth-
order, and seventh-order modes before and after GO deposition, 
respectively. The resonant frequencies of the cantilever are 
reduced due to the mass loading effect caused by the deposition of 
GO film. 

Working Principle of the VSA Based on Piezoelectric 
Cantilever. Typically, the cantilever is excited by one single top 
electrode and the piezoelectric stress produced by this method 
effectively matches the vibration shape of the first-order mode. In 
this case, the piezoelectric stress does positive work on the 
cantilever. However, when the cantilever works in higher-order 
modes, the piezoelectric stress generated by a single top electrode 
no longer matches the vibration pattern. Part of the piezoelectric 
stress will impede the vibration of the cantilever, which leads to an 
inefficient electromechanical transduction and thus a low 
amplitude of the resonance peak.39, 40 In this study, the top 
electrode was divided into five groups and different groups of top 
electrodes were adopted for matching the vibration shapes of 
multiple modes. In this way, the amplitudes of resonance peaks for 
the multiple modes were all increased. 

Figure 3a shows the gain and phase curves of the fabricated 
cantilever activated by all top electrodes (i.e., conventional design 
for piezoelectric cantilever) within a frequency range from 0 to 1.5 
MHz. Some modes of the piezoelectric cantilever resonator show 
low amplitudes of resonance peaks. Figures 3b and S8a show the 
comparisons for gain and phase curves of the cantilever activated 
by specific groups of top electrodes and all top electrodes within a 
frequency range from 1.02 MHz to 1.05 MHz, respectively. The 
excitation electrodes and corresponding vibration pattern are 
shown in the corners of Figure 3b. The amplitude of the resonant 
peak of the cantilever operated at around 1.036 MHz is improved 
by applying specific groups of top electrodes. Figures 3c-e and 
S8b&c show the gain and phase curves of the cantilever operated 
at various modes activated by specific groups of top electrodes. 

Table S3 shows peak-to-peak values of the resonance peaks for 
multiple modes in the gain curves of the cantilever activated by 
specific electrodes and all top electrodes. The amplitudes of these 
resonant peaks are significantly increased by applying specific 
groups of top electrodes. 

The VOC adsorption mechanism of the GO film is relevant to 
both the functional groups and defects of the GO layer.41, 42 Some 
VOCs are adsorbed by the defects of the GO nanosheets, while 
some VOCs interact with surface functional groups of GO, e. g., –
OH and –O. Moreover, VOC molecules can intercalate into GO 
interlayers and thus increase the spacing among layers of the GO 
film, causing the changes of elastic modulus of the GO film.43 
Changes in both the mass and elastic modulus of the GO film will 
lead to frequency shifts of the cantilever resonator-based sensor. 
The change ratios for the mass and elastic modulus of the GO film 
caused by various VOCs are quite different.44 Ratios of resonant 
frequency shifts of multiple resonant modes caused by the changes 
in mass and elastic modulus of the film are also different. 
Therefore, each VOC leads to a unique ratio of frequency shifts of 
multiple resonant modes, which can be applied as the fundamental 
principle of the VSA. 

FEA simulation was performed to prove the above assumptions. 
In the simulation, two types of VOCs lead to different ratios of 
changes in mass and elastic modulus of the GO film. VOC 1 causes 
only a one tenth change in the mass of the film, while VOC 2 causes 
a one tenth change in both the mass and modulus of elasticity. 
Table S4 shows the resonant frequencies of multiple modes after 
exposure to two types of VOCs. Figures 4a and 4b show the ratios 
of the relative frequency shifts of multiple modes to that of the 
first-order mode for the cantilever, i.e., △fn/fn/(△f1/f1). Two types of 
VOCs lead to different ratios of frequency shifts of multiple 
resonant modes. Therefore, frequency shifts of multiple resonant 
modes can be applied for identification of multiple VOCs using the 
cantilever-based sensor. Furthermore, the adsorption of VOCs also 
causes impedance changes of the sensing film, which is often 
applied for VOC identifications.27 To avoid the waste of 
information, changes of the impedance values at multiple 
frequencies were also used for VOC identifications. 

Sensing Parameters of the VOC Sensor to Ethanol. The 
VOC sensor was firstly exposed to ethanol with different 
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concentrations from 100 ppm to 800 ppm. The frequency shifts of 
the second-order mode were taken as the responses of the VOC 

 
Figure 4. Simulation and experimental fingerprints for multiple VOCs. Ratios of the relative frequency shift of multiple modes to that of 
the first-order mode after exposure to (a) VOC 1 and (b) VOC 2 by simulation. (c) Experimental VOC fingerprint for four types of VOCs. 

sensor to ethanol. Figure S9 shows responses of the cantilever-
based sensor to ethanol. The frequency shift of the sensor vs. the 
change of ethanol concentration is not linear and the sensitivity is 
much higher when the ethanol concentration is low. The average 
sensitivity in the range of ethanol concentration from 0 to 100 ppm 
was taken as the sensitivity when the ethanol concentration was 
near zero. Figures S10a and S10b show the fluctuations of the 
second-order resonant frequency of the sensor activated by 
specific groups of top electrodes and all top electrodes when the 
ethanol concentration is 0, respectively. The noise level has been 
significantly reduced by applying specific electrodes. The LODs of 
the sensor to ethanol activated by the two methods are 25.1 ppm 
and 111.4 ppm respectively. The LOD of the sensor is improved with 
the enhancement of SNR because of the improvement of the 
amplitude of the resonant peak. 

As shown in Figure S11a, the frequency shifts of the proposed 
VOC sensor were recorded with a time interval of 1 s when the 
ethanol concentration was changed between 0 and 100 ppm for 
three cycles. A good repeatability was obtained. Figures S11b and 
S11c show that the response and recovery times of the VOC sensor 
to ethanol are 27 s and 23 s, respectively, indicating its fast 
responses and great potentials for high-speed VOC detections. 

In order to explore the influence of humidity and temperature 
on the sensor performance, the sensor was firstly exposed to 
different humidity from 0.1%RH to 90%RH. Figure S12a shows the 
frequency shifts of the sensor vs. the changes of relative humidity. 
Since the GO film has the capability to adsorb water molecules, 
changes in humidity cause frequency shifts of the sensor.25 Then 
we tested the response of the sensor to 100 ppm ethanol in 10%RH, 
30%RH and 50%RH, respectively, as shown in Figure S12b. 
Changes in humidity do not greatly affect the response of the 
sensor to ethanol, i.e., the sensitivity of the sensor. However, the 
noise level of the sensor increases with the increase of humidity. 
Figures S12c and S12d show the fluctuations of the second-order 
resonant frequency of the sensor in 10%RH and 50%RH when the 
ethanol concentration is zero, respectively. The LODs of the sensor 
to ethanol in 10%RH, 30%RH, and 50%RH are 30 ppm, 35.2 ppm, 
and 39 ppm, respectively. The temperature coefficient of frequency 
(TCF) is usually used to characterize the influence of temperature 
on resonator-based sensors.10 TCF is defined as the ratio of relative 
frequency shift to temperature change, i.e., △f/f0△T. Figure S12e 

shows the relationship between resonant frequency of the sensor 
and temperature, revealing a linear relationship (R2>0.99). The 

TCF of the sensor is -20.4 ppm/℃, which is smaller than other 

devices as listed in Table S5. 

Identification of Multiple VOCs. In order to investigate the 
capability of the proposed VSA to identify different VOCs, the 
sensor was exposed to 100 ppm to 800 ppm of four types of VOCs. 
We applied the frequency shifts of six resonant modes (△fn) and 
relative changes of the impedances at three frequencies (△Zn/Zn) 
of the cantilever-based sensor as the responses of the VSA, as 
detailed in the experimental section. Figure S13 shows the 
absolute values of the responses of the VSA (△f2-△f7 and △Z1/Z1-
△Z3/Z3) to the four VOCs. The resonant frequencies and 
impedances decrease with the increase of the VOCs’ 
concentration. The VSA’s responses are not linear to the changes 
of the VOCs’ concentration. For a better visualization, the 
responses of the VSA were plotted as heatmaps as the fingerprint 
of the four VOCs, as shown in Figure 4c, in which the units of 
△f2&△f3, △f4-△f7, and △Z1/Z1-△Z3/Z3 were Hz, 10 Hz, and 0.1%, 
respectively. Apparently, various VOCs have distinct fingerprints, 
which can be used for direct identification of the VOCs.  

In order to evaluate the dimension of the responses to VOCs and 
identify different VOCs qualitatively, PCA was then performed on 
the responses of the VSA. Figure 5a shows the 3D plots of PCA 
results for PC1-PC3. The variance shares of the first three PCs are 
71.4%, 20.5%, and 6.88%, respectively, accounting for 99% of the 
total variance. This result confirms that the response of the VSA is 
a multidimensional output. In Figure 5a, different concentrations 
of the same VOC are represented by points of the same color. 
Different colored points representing different VOCs are spread 
out in a 3D space. We performed multivariate linear fitting for PC1- 
PC3 versus VOCs’ concentration using a least square method. The 
multivariate fitting results are listed as Equation 1-4,  

     𝜑𝑀 = 1575.3 + 792.6 ∗ 𝑃𝐶1 − 717.3 ∗ 𝑃𝐶2 + 118 ∗ 𝑃𝐶3   (𝟏) 

     𝜑𝐸 = 544.5 + 129.9 ∗ 𝑃𝐶1 + 306.1 ∗ 𝑃𝐶2 + 226 ∗ 𝑃𝐶3      (𝟐) 

     𝜑𝑎 = 683.6 + 591.7 ∗ 𝑃𝐶1 − 1000.4 ∗ 𝑃𝐶2 − 51.1 ∗ 𝑃𝐶3   (𝟑) 

     𝜑𝐼 = 1024.5 + 461.6 ∗ 𝑃𝐶1 + 523 ∗ 𝑃𝐶2 − 142 ∗ 𝑃𝐶3        (𝟒) 

in which 𝜑𝑀 , 𝜑𝐸 , 𝜑𝑎 , and 𝜑𝐼  are the predicted concentrations of 
MeOH, EtOH, acetone, and IPA (ppm), respectively. Figures 5b&c 
and S14a&b show the fitting results for EtOH, MeOH, acetone, and 
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IPA, respectively. The predicted concentrations are very close to 
the actual concentrations. The adjusted R2 (adj. R2) of the fittings 

for the four VOCs are 0.999, 0.988, 0.986, 0.998, respectively, 
indicating a good linearity of the VSA’s response to VOCs in a 

 
Figure 5. Detection and identification of multiple VOCs. (a) 3D plot for the first three PCs of PCA results. Concentration predictions for (b) EtOH 
and (c) MeOH by multivariate linear fitting. (d) HCA results for the responses to the four VOCs. (e) Schematic diagram of the adopted ANN model. 
(f) Learning curve of the ANN model for the amplified data set. LOOCV results of the identifications by the ANN model for the (g) raw data set 
and (h) amplified data set. 

multidimensional space. 

The data of PC1- PC3 were then input to HCA for quantitative 
and unsupervised classifications of various VOCs. Figure 5d shows 
the HCA results for the responses of four VOCs, indicating an 
accuracy of 87.5% for identification of the four VOCs. An ANN 
model composed of two linear layers was adopted for supervised 
classifications. As shown in Figure 5e, the first linear layer consists 
of 50 nodes, while the other layer consists of 30 nodes. These layers 
are fully connected. To avoid the accidental errors caused by a 
small amount of the data set, we amplified the data 5 times from 
24 (four types of VOCs with six concentrations) to 120 data points 
using the SMOTE method. Figures S15 and 5f show the learning 
curves of the ANN model using the raw data set and the amplified 
data set, respectively. After 100 learning epochs, the accuracy of the 
model does not apparently increase with the increase of learning 
epochs. We then randomly divided the amplified data set into a 
training set and a test set, containing 90 and 30 data, respectively. 
After 100 times of training based on the training set, the 
classification accuracy using the ANN model for the test set is 90%. 
Figures 5h and 5g show the LOOCV results of the VOCs 
identifications using the ANN model for the raw data set and the 
amplified data set, indicating their validation accuracies of 91.6% 
and 95.8%, respectively. Therefore, different VOCs can be 
accurately identified using the piezoelectric cantilever-based 
sensor and ANN model. Figures S16a-e show the cross validation 
results for VOCs identifications based on other machine learning 
algorithms, i.e., support vector machine, naive Bayes, Markov 
chain, decision tree, and gradient-boosted trees, respectively. The 
corresponding validation accuracies are 70.8%, 16.7%, 4.2%, 20.8%, 
and 20.8%, respectively. Among these methods, the ANN model is 
the most suitable one for VOCs identification using the proposed 
VSA. 

Identifications of VOC Mixtures for Diagnosis of Plant 
Diseases. The plant emission generally consists of multiple VOCs. 
In order to test the identification capacity of the proposed VSA to 

VOC mixtures, the VSA was exposed to four types of VOC 
mixtures. Figure S17 shows the 3D plot of PCA results for 
responses to VOCs mixtures. Points with different colors represent 
different VOC mixtures and they are spread out in a 3D space. The 
data of PC1- PC3 were then input to the HCA for quantitative 
identifications of VOC mixtures. Figure S18 shows the 
identification results for the responses to various VOC mixtures, 
revealing an accuracy of 79.2% using the HCA method. The ANN 
model was further adopted for supervised classifications of VOC 
mixtures and the raw data set was amplified by 5 times from 24 
(four types × six concentrations) to 120 data points using the 
SMOTE method. Figures 6a and 6b show the cross validation 
results of the mixtures identifications based on the ANN model for 
the raw data set and amplified data set using the LOOCV method, 
showing the validation accuracies of 83.3% and 87.5%, respectively. 
Figures S19a-e show the LOOCV results for the identifications 
using other machine learning algorithms, i.e., support vector 
machine, naive Bayes, Markov chain, decision tree, and gradient-
boosted trees, respectively. The corresponding validation 
accuracies are 25%, 4.2%, 12.5%, 5%, and 25%, respectively. Among 
these methods, the ANN model is the most suitable one for 
identifications of VOCs mixtures. 

Then the proposed VSA was applied to distinguish the “plants 
with late blight” from the healthy plants by detecting the 
biomarkers in their emissions. The VSA was firstly exposed to (E)-
2-hexenal from 10 ppm to 80 ppm, which is one of the biomarkers 
of VOCs for late blight.7 Figures S20 and 6c show the absolute 
values of responses of the VSA to (E)-2-hexenal, in which the units 
of △f2-△f4, △f6-△f7, and △Z1/Z1-△Z3/Z3 are Hz, 10 Hz, and 0.1%, 
respectively. The resonant frequencies and impedances decrease 
with the increase of the (E)-2-hexenal concentration. The 
responses are not linear as a function of (E)-2-hexenal 
concentration. Then the average sensitivity in the range of (E)-2-
hexenal concentration from 0 to 10 ppm was taken as the sensitivity 
when the (E)-2-hexenal concentration is near zero. Figure S21 
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shows fluctuations of the resonant frequencies of the sensor 
operated at the third-order and seventh-order modes activated by 
specific groups of top electrodes. The LOD of the VSA to (E)-2-

hexenal was determined using the value of 3σ/S. Table S6 lists the 
LODs of the VSA to (E)-2-hexenal based on multiple parameters.  

 
Figure 6. Identifications of VOC mixtures for diagnosis of plant diseases. LOOCV results of the identifications by the ANN model for the (a) raw 
data set and (b) amplified data set of the VOC mixtures. (c) Responses of the proposed VSA to (E)-2-hexenal. (d) Photograph of collecting emission 
samples from tomato leaves. 3D plot for PCA scores of the (e) first three PCs as well as (f) PC1, PC4, and PC5 from responses to two types of 
emissions. LOOCV results of the identifications by the ANN model for the (g) raw data set and (h) amplified data set of the responses to the plant 
emissions. 

As shown in Table S6, the LOD of the VSA to (E)-2-hexenal is lower 
than 7.4 ppm, which is lower than the threshold value of the 
biomarker for late blight.7 

Gaseous emissions of tomato leaves and potato tubers were 
collected, as illustrated in Figures 6d and S22. Then the VSA was 
used to identify the emissions from healthy plants and “plants with 
late blight”, which are detailed in the experimental section. The 
responses of the VSA to the two types of emissions were firstly 
analyzed by PCA. Figures 6e and 6f show the 3D plots of PCA 
results for PC1-PC3 and PC1, PC4&5, respectively.  The orange 
points denote the results for emissions from “plants with late 
blight”. Some emissions from “plants with late blight” cannot be 
distinguished from those of healthy plants. The ANN model was 
then trained for 100 times to identify the different emissions and 
the raw data set was amplified by 5 times from 40 to 200 data 
points. The amplified data set was randomly divided into a training 
set and a test set, containing 150 and 50 data, respectively. After 
training using the training set, the identification accuracy of the 
ANN for the test set is 78%. Figures 6g and 6h show the LOOCV 
results for the identification of the two types of emissions using the 
ANN model for the raw data set and amplified data set, 
respectively. The results show validation accuracies of 87.5% and 
89%, respectively, revealing that the piezoelectric cantilever-based 
VSA has great potentials for diagnosis of infectious plant diseases. 

CONCLUSIONS 

In conclusion, we proposed a VSA based on an AlN piezoelectric 
cantilever resonator with five groups of top electrodes for 
identification of VOCs. The amplitudes of the resonance peaks for 
multiple modes were enhanced by applying different groups of top 
electrodes for the cantilever resonator, thus achieving improved 
LODs of the sensor to VOCs. The multidimensional responses of 
the VSA to VOCs generate a unique fingerprint for each VOC and 

have shown a good linearity in multidimensional space. Based on 
machine learning algorithms, the identification accuracies for 
VOCs and VOCs mixtures are 95.8% and 87.5%, respectively. 
Furthermore, the proposed VSA has the capacity to identify the 
emissions from healthy plants and “plants with late blight” with an 
accuracy of 89%. The high-level identifications illustrate the great 
potentials of the proposed VSA for diagnosis of infectious plant 
diseases at early stages. 
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