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Abstract:  1 

Spatial patterns of precipitation in the southwestern United States result in a complex gradient 2 

from winter to summer moisture dominance that influences tree growth. In response, tree growth 3 

exhibits seasonal-to-annual variability that is evident in the growth of whole tree rings, or sub-4 

annual sections such as earlywood and latewood. We evaluated the influence of precipitation and 5 

temperature on the growth of Pinus ponderosa trees in 11 sites in the southwestern US. 6 

Precipitation during the year of growth and the prior year accounted for about half of the climate 7 

influence on annual growth, with the other half reflecting conditions 2-4 years prior to growth, 8 

indicating that individual trees do indeed exhibit multi-year “memory” of climate. Trees in 9 

wetter sites exhibited weaker influence of past precipitation inputs, but longer memory of 10 

climatic variability. Conversely, trees in dry sites exhibited shorter memory of long-term climatic 11 

variability, but greater sensitivity to past precipitation effects. These results are consistent with 12 

the existence of complex interactions between endogenous (phenotype) effects and exogenous 13 

(climate) effects in controlling climate memory in trees. After accounting for climate, residual 14 

variability in latewood growth was negatively correlated with earlywood growth, indicating a 15 

potential trade-off between latewood versus earlywood growth. This study provides new insights 16 

that will assist the accurate prediction of woody biomass growth and forest carbon sequestration 17 

across a southwestern US precipitation gradient.  18 

 19 

Key words: Bayesian, dendrochronology, memory, monsoon, Pinus ponderosa  20 
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Introduction 21 

Annual tree-ring growth integrates the interactions of numerous physiological processes 22 

with climate variability at subannual to multi-year time scales (Fritts 1976, Salzer and 23 

Kipfmueller 2005, Stahle et al. 2009, Griffin et al. 2013, Peltier et al. 2016, 2018). The 24 

responsiveness of tree-ring widths to climate during the year of ring formation, and often during 25 

the prior year, has enabled their use in reconstructing past patterns of climate variables, such as 26 

precipitation and temperature (e.g., Salzer et al. 2005, Stahle et al. 2009, Griffin et al. 2011, 27 

2013, Esper et al. 2018). However, annual ring widths are also influenced by climate over 28 

multiple years, whereby climate signals from several seasons prior to ring formation are 29 

detectable (Ogle et al. 2015, Peltier et al. 2016, 2018, Marqués et al. 2021).  30 

Within individual annual rings in trees from temperate ecosystems, particularly conifers, 31 

there is variation in wood cell structure that reflects seasonal climate variations. Light-colored 32 

earlywood consists of large, thin-walled cells formed early in the growing season. Darker-33 

colored latewood is formed later in the growing season and is characterized by smaller lumen 34 

area with thicker cell walls. Sub-annual patterns of earlywood and latewood can be used to 35 

inform intra-annual climate-growth relationships, particularly in regions with strong seasonal 36 

climatic patterns (Griffin et al. 2013, Babst et al. 2016, Monson et al. 2018, Szejner et al. 2016). 37 

Earlywood growth can be related to temperature (e.g., Zhang et al. 2021) but is often correlated 38 

with the amount of winter and spring precipitation received (for example, November through 39 

May; [Stahle et al. 2009]). Latewood width has been found to record a summer precipitation 40 

signal, especially if its dependence on earlywood growth is statistically removed (Stahle et al. 41 

2009, Griffin et al. 2013, Szejner et al. 2018). It has been thought that earlywood and latewood 42 

are dependent on different sources of water because ring widths and seasonally-recorded oxygen 43 
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isotopes in the two types of wood have been found to correlate with precipitation in different 44 

seasons: winter precipitation for earlywood, and summer rainfall for latewood (Belmecheri et al. 45 

2018, Ziaco et al. 2018, Szejner et al. 2018). However, there has been little research on the extent 46 

to which the growth of earlywood and latewood in the current year integrates climate over 47 

multiple prior years, or potential carbon allocation trade-offs between tree investment in 48 

earlywood versus latewood growth once climate-specific effects have been reconciled. 49 

Summer rains in the southwestern United States (hereafter, “Southwest”) are delivered by 50 

the North American Monsoon (NAM) climate system (Fig. 1). The NAM is characterized by 51 

frequent convective rain events that generally begin in early July in the Southwest and continue 52 

through September, following very dry conditions in May and June (Adams and Comrie 1997, 53 

Higgins et al. 1997). There is high variability in NAM precipitation at seasonal, annual, and 54 

decadal timescales (Higgins et al. 2003, Adams et al. 2014), and in the annual timing of NAM 55 

onset (Higgins et al. 1999). Geographically, there is a northwest-to-southeast gradient from 56 

winter-to-summer moisture dominance in the Southwest, with summer rainfall dominant in the 57 

southeast and winter precipitation dominant in the northwest (Fig. 1a). At the extreme of the 58 

gradient, >70% of annual rainfall is contributed by the NAM in parts of southern Arizona and 59 

New Mexico (Douglas et al. 1993, Szejner et al. 2016). Thus, depending on location, the NAM 60 

provides a significant moisture resource that potentially influences the growth, structure, and 61 

community composition of vegetation in the Southwest (Neilson 1987).  62 

However, there are other patterns in precipitation across the region as well. There is a 63 

gradient in total annual precipitation from east-to-west, with greater precipitation in eastern New 64 

Mexico, grading to less precipitation in western Arizona. Within these regional patterns, 65 

precipitation increases with elevation (Fig. 1b). Variability of annual precipitation amount is 66 
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highly correlated with total annual precipitation amount – i.e., there is generally a higher 67 

standard deviation in precipitation among years in areas with higher mean annual precipitation 68 

(Fig. 1c). Because of the strong gradients in summer and annual precipitation across the region 69 

and the variability in precipitation inherent in the regional climate system, the Southwest 70 

represents an excellent location to test the influence of seasonal precipitation as well as its 71 

variability on tree growth, including in the sub-annual components of tree rings.  72 

The stochastic antecedent modeling (SAM) framework was developed to evaluate 73 

antecedent factors (e.g., climate drivers) and their influence on physiological processes such as 74 

tree growth (Ogle et al. 2015, Peltier et al. 2018). The SAM framework provides a quantitative 75 

method of analyzing the importance of “ecological memory”—that is, the influence of 76 

antecedent conditions on current processes (Ogle et al. 2015). An advantage of the SAM 77 

approach is that the strength and temporal lags of each variable driving growth can be evaluated 78 

simultaneously. Thus, we can reconstruct the roles of multiple exogenous and endogenous 79 

processes in the ecophysiological memory of trees. In the current study, we applied this approach 80 

to annual and intra-annual tree growth increments using Pinus ponderosa trees distributed across 81 

a broad geographic precipitation gradient selected specifically to study variation in tree growth 82 

processes across varied precipitation conditions. In doing so, we addressed three primary 83 

questions: 1) Over what time scales (e.g., past monthly, seasonal, or annual periods) are climate 84 

influences on tree growth evident? 2) Do tree growth sensitivity to climate and ecological 85 

memory vary across the precipitation gradient? 3) Do earlywood and latewood growth differ in 86 

their sensitivities to climate and climatic memory? Addressing these questions will provide 87 

insight into the complexities of the responses of earlywood, latewood, and whole rings to 88 

antecedent climate, helping us to disentangle the endogenous and exogenous mechanisms 89 
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underlying tree growth responses to variation in climate. Our study has implications for 90 

understanding drought impacts and forest functioning, in general, given current and future 91 

climatic variation, and within the more specific context of regional climate attributes. 92 

Methods 93 

Data description 94 

To answer our questions, we used a set of tree cores previously collected for a related 95 

tree-ring isotope study (Szejner et al. 2016). Tree cores with at least five decades of growth were 96 

collected from ponderosa pine trees (Pinus ponderosa Dougl. ex Laws.) in 11 sites, with five 97 

sites in AZ, four in NM, and two in UT (Fig. 1; Szejner et al. 2016). Sites were located in 98 

ponderosa pine-dominated landscapes with low tree-to-tree canopy competition. Healthy, 99 

medium-sized trees were selected at each site (Szejner et al. 2016). Using a 5 mm increment 100 

borer, 2-3 cores were taken from each of 128 selected trees for a total of 266 cores (Table S1). In 101 

the laboratory, cores were crossdated using standard dendrochronology techniques (Stokes and 102 

Smiley 1968), and total ring, earlywood, and latewood widths of each ring were measured 103 

(Szejner et al. 2016).  104 

Monthly precipitation and mean maximum monthly temperature data from 1895 to 2014 105 

for each site were extracted from the PRISM gridded climate dataset (PRISM 2018) at the 30-m 106 

pixel resolution representing each site location. We considered using other climate indices (e.g., 107 

Palmer Drought Severity Index, vapor pressure deficit, minimum monthly temperature), but 108 

exploratory analyses of relationships between ring widths and these alternative indices led us to 109 

focus on simple precipitation and temperature variables. Precipitation and temperature, while not 110 

wholly representative of drought stress, are consistently and reliably measured and widely 111 

interpreted, and they include no built-in time-lags (such as those within PDSI). 112 
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Statistical model description 113 

We used the stochastic antecedent modeling (SAM) approach developed by Ogle et al. 114 

(2015), which has been used in multiple applications (e.g., Liu et al. 2019, Guo et al. 2020), 115 

including several applications to estimate the effects that climatic variables have on tree growth 116 

as well as the time scales over which such variables influence growth (Peltier et al. 2018, 2019, 117 

2021, Marqués et al. 2021). This model regresses ring widths (growth) on antecedent climate 118 

variables, while simultaneously estimating the time-scales over which the antecedent variables 119 

are defined, thus providing insight into lags and memory effects. That is, climatic variables 120 

affecting growth, as well as previous ring-width values, are used to construct antecedent 121 

variables, which themselves are defined as weighted averages of past observed values. The 122 

antecedent variables serve as covariates in the regression model, where each antecedent variable 123 

has its own effect parameter. 124 

We assumed that observed, log-transformed ring widths, r = log(ring width + 1), for each 125 

core, c, and year, y, were normally distributed around the mean, µy,c, with variance, σ2: 126 

   (1) 127 

Note that 1 was added to each ring width before log transforming to account for zero values due 128 

to missing rings (0.4% of rings were missing). We modeled µ as a function of ring age (A), 129 

antecedent precipitation (Pant; see Eqn 5), antecedent maximum temperature (Tant; see Eqn 5), the 130 

Pant × Tant two-way interaction, and log-scale prior ring width (rwant): 131 

 𝜇!,# =	𝜀# + 𝛼$(#),'	𝐴!,# + 𝛼$(#),(	𝑃!,)(#)*+$ + 𝛼$(#),,	𝑇!,)(#)*+$ + 𝛼$(#),-	𝑃!,)(#)*+$ ´𝑇!,)(#)*+$ + 𝛼$(#),.	𝑟𝑤!,#*+$ (2) 132 

The nested notation t(c) and s(c) denote the tree, t, and site, s, corresponding to core c, 133 

respectively. Again, the model for µ in Eqn (2) is essentially a linear regression, conditional on 134 

the antecedent covariates and ring age (hence, detrending for age is accomplished simultaneously 135 

2
, ,~ ( , )y c y cr Normal µ s
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within the model). Because µ represents log-transformed ring widths, the “linear age” effect on 136 

the log scale actually represents an exponential age function. The model includes a core-level 137 

intercept, or random effect (ec), that is modeled hierarchically around a tree-level intercept term, 138 

at,1: 139 

   (3) 140 

See Table 1 for a summary of the parameters (coefficients) in Eqns (2) and (3). 141 

To account for the field sampling scheme, where trees were sampled in 11 sites, we 142 

specified hierarchical priors for the tree-level α parameters, which varied around site-level means 143 

(a); site-level means were modeled as varying around a population- or species-level mean (a*). 144 

Thus, for parameter k = 1, 2, …, 6, tree t, and site s: 145 

   (4) 146 

Where s(t) denotes site s associated with tree t. The variance terms sa2 and sa2 describe how 147 

parameter k varies among trees within each site and among sites, respectively. Finally, we 148 

assigned relatively non-informative priors to the population-level means and all standard 149 

deviation terms (s in Eqn (1), se in Eqn (3), and sa and sa in Eqn (4)). That is, each ak* was 150 

assigned a wide, normally-distributed prior with mean 0 and standard deviation 10,000; each 151 

standard deviation term was assigned a wide, uniform prior between 0 and 100. 152 

Defining the model covariates 153 

The age of each tree t at the time of coring (i.e., the “final age”) was not always known 154 

given that many cores did not include the pith. Thus, we treated the final age, Afinal, of each tree 155 

as unknown, resulting in unknown age for each ring (A) such that: 156 

   (5) 157 

2
( ),1~ ( , )c t cNormal ee a s

2
, ( ),

2*
,

~ ( , )

~ ( , )
k

k

t k s t k

s k k a
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s

, ( )
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y c t c yA A d= -
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where dy is the number of rings produced after year y; e.g., if the most recent ring is 2012, then dy 158 

= 0, 1, 2, …, when y corresponds to 2012, 2011, 2010, …, respectively. Again, Afinal is treated as 159 

an unknown quantity that is estimated for each tree (d is known data). Thus, we assigned a vague 160 

(wide) uniform prior to each with the lower limit set equal to the number of rings measured 161 

in tree t and the upper limit set to 1000. 162 

We centered covariates to improve parameter interpretation and model convergence. 163 

Ring age, A, was centered about the estimated average ring age,  (~120 years), in all cores 164 

across all 11 sites; the antecedent climate variables were centered about the mean monthly values 165 

for each site (  and ); and the antecedent ring widths, rwant, were centered about the average 166 

ring width recorded for each tree ( ). Thus, the intercept (e.g., at,1 in Eqn (3)) is the predicted, 167 

log-scale growth of tree t at an age of 120 years under average climatic and growth conditions 168 

(Table 1). 169 

Furthermore, the antecedent variables (Pant, Tant, and rwant) are defined as weighted 170 

averages of past monthly (Pant and Tant) and yearly (rwant) values. For X = P or T, the antecedent 171 

climate variables are defined as: 172 

   (6) 173 

The antecedent importance weights, w, are unknown and determined by fitting the model to the 174 

tree-ring and climate data. The importance weights can reveal time scales in the influences of 175 

past climate. Each climate variable at each site gets its own set of importance weights, as 176 

indicated by the s (site) and X subscripts on w. The term Xy-j,m,s is the precipitation total or 177 

maximum temperature for month m (m = 1, 2, …, 12 for Jan., Feb., …, Dec.), j years prior to the 178 

current year y, in site s. The weighted monthly climate values are summed over all months (m = 179 

final
tA

A

P T

rw

4 12

, , , , , ,
0 1

ant
y s j m s X y j m s

j m
X Xw -

= =
å å=
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1, 2, …., 12), from j = 0 (year of ring formation) to j = 4 (4 years prior). The weights for current-180 

year October through December (m = 10, 11, 12; j = 0) were set to 0 since we assumed the 181 

climate in these months occurred after growth ended and had no effect on current-year ring 182 

widths (McDowell et al. 2010). Monthly importance weights were estimated individually for the 183 

year of ring formation and one year prior (j = 0 and 1), but estimated in blocks of 2 months for 184 

two years prior to growth (j = 2) and in blocks of 3 months for three and four years prior to 185 

growth (j = 3 and 4; see Fig. 2 in Peltier et al. 2018). This results in a total of 35 importance 186 

weights, which were constrained to sum to 1 for each climate variable within each site; hence, 187 

each ωj,m,s,X indicates the relative importance of climate variable X at site s in a particular time 188 

period (j and m).  189 

Antecedent ring width, rwant in Eqn (2), was calculated similarly to the antecedent 190 

climate variables, but since ring widths are only reported at an annual scale, rwant is given by: 191 

  (7) 192 

The rwy-j,c term denotes the annual ring width (not log transformed) grown j years (j = 1, 2, 3, 4) 193 

prior to the current year’s growth in year y. Here, wj,s denotes the relative importance of growth 194 

(ring width) j years prior to the current year at site s. Again, these antecedent weights were 195 

constrained to sum to 1 for each site s. 196 

We assigned each group of antecedent importance weights—for precipitation, 197 

temperature, and past ring widths—a vague Dirichlet prior, Dirichlet(1,1,…,1), resulting in the 198 

prior expectation that all weights were the same (Ogle et al. 2015, Peltier et al. 2018). This prior 199 

also ensures that the weights sum to 1 and are each between 0 and 1. 200 

Model implementation and further analyses 201 

We implemented the above model, Eqns (1)-(7), separately for whole-ring, earlywood, 202 

4

, , ,
1

ant
y c j s y j c

j
rw w rw -

=
å=
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and latewood ring widths. The model structure was the same for the whole-ring and earlywood 203 

analyses, but it was modified for the latewood model by incorporating the earlywood ring width 204 

of the same year as a predictor in Eqn (2), with its corresponding effect parameter, at(c),7 (e.g., 205 

Griffin et al. 2011), which was also assigned a hierarchical prior following Eqn (4). This was 206 

done so that we could estimate the conditional effect of earlywood growth given that climate, 207 

ring age, and past ring width effects are simultaneously accounted for. We centered earlywood 208 

ring widths about the average value reported for each tree t. 209 

For the climate variables, we performed several calculations with the importance weights 210 

to provide greater insight into time-scales and influence and memory. For example, we computed 211 

annual importance weights by summing monthly importance weights, ωj,m,s,X in Eqn (6), over all 212 

months m within each year j. For each climate variable, we also determined the number of 213 

months it took for each site to reach 50% of its cumulative monthly importance weight, which 214 

we refer to as M50, following the definition in Ogle et al. (2015). M50 provides an index of the 215 

length of the climate memory (Ogle et al. 2015). Since months 10-12 (Oct-Dec) of the current 216 

year are assigned importance weight values of zero, this restricts M50 to be greater than 3 217 

months. These quantities are computed within the model code (see below), enabling posterior 218 

estimates of each. 219 

Using a high-performance computing cluster, we ran the model via the Bayesian software 220 

JAGS 4.2.0 (Plummer 2003) in R (R Core Team 2018) with the packages ‘rjags’ (Plummer 221 

2013) and ‘coda’ (Plummer et al. 2006). Following standard practice to use multiple chains, we 222 

assigned different initial values to three parallel Markov chain Monte Carlo (MCMC) sequences 223 

and ran the sequences until they converged (>100,000 iterations). After convergence, we used a 224 

posterior sample size of ≥3000 relatively independent posterior samples after thinning to obtain 225 



12 
 

parameter estimates, including the posterior mean, standard deviation, and 95% credible interval 226 

(CI), defined by the 2.5th and 97.5th percentiles of the posterior samples. 227 

Post-analysis growth responses across climatic gradients 228 

We used the posterior parameter estimates to explore relationships between parameters 229 

describing the sensitivity of growth to climate (i.e., the site-level as,3, as,4, and as,5 effects; Table 230 

1) and factors related to the variability in precipitation across the Southwest such as average 231 

precipitation, % of precipitation that falls in the summer, and annual, summer, and winter 232 

precipitation variability. For seasonal climate variables, we defined winter as December through 233 

March, and summer as July through September (Higgins et al. 1997). We performed a simple 234 

model comparison among these post-hoc models with single variables, which were linear 235 

regressions of the site-specific posterior parameter means versus site-level covariates. 236 

Results 237 

Model fit 238 

A regression of observed versus mean predicted values of r = log(ring width + 1) resulted 239 

in coefficients of determination (R2) of 0.86, 0.84, and 0.74 for the whole ring, earlywood, and 240 

latewood models, respectively (Fig. S1). A regression of observed versus predicted values of raw 241 

ring widths resulted in R2 values of 0.84, 0.82, and 0.70, respectively (Fig. S1). Site-level R2 242 

ranged from 0.40 to 0.92 (Table S2), with the best model fits occurring for sites in the northern 243 

portion of the study area (sites 1, 2, 3, and 4, but also site 9; Table S2 and Fig. 1). 244 

Parameter estimates 245 

Based on the population of sites studied here, overall, tree growth was positively 246 

associated with precipitation (Fig. S2c), the precipitation × temperature interaction (Fig. S2e), 247 

and prior growth (Fig. S2f). Conversely, overall tree growth was negatively associated with age 248 
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(Fig. S2b) and earlywood growth (for the latewood model; Fig. S2g). Given the large variation in 249 

site-specific responses to temperature (Fig. 2d), the overall temperature effect tended towards 250 

negative, but was non-significant (Fig. S2d). 251 

Focusing on the site-specific parameter estimates (e.g., Fig. 2), baseline annual growth 252 

(as,1, back-transformed to mm) under average climate conditions varied by a factor of 2.4, 253 

ranging from 1.68 mm ± 0.08 (posterior mean ± SD; site 4, northern Arizona [AZ]) to 4.00 mm ± 254 

0.22 (site 7, southern AZ) for the whole ring (Fig. 2a). Baseline earlywood growth was slightly 255 

less than whole-ring growth, and varied by a factor of 1.9 (range 1.53 mm ± 0.08 [site 4] to 2.91 256 

mm ± 0.14 [site 8, southern New Mexico (NM)]), but baseline latewood growth was more 257 

consistent across sites with a mean of 0.37 mm (range 0.32 ± 0.03 [site 1, northern Utah (UT)] to 258 

0.47 ± 0.03 [site 8]) (Fig. 2a). As expected, ring widths decreased with age for whole rings and 259 

earlywood (as,2 < 0 in 9 sites in each model), but a smaller age effect was obvious in latewood 260 

widths (as,2 < 0 for 5 sites and no significant relationship, as,2 @ 0, for 6 sites; Fig. 2b). Prior 261 

growth had a significant positive effect (as,6 > 0) on ring width in all sites for all ring types (Fig. 262 

2f). While earlywood and latewood widths were positively correlated with each other on initial 263 

study (Fig. S3), once the effects of climate, ring age, and prior ring width were accounted for, 264 

latewood width was significantly and negatively related to earlywood width (as,7 < 0) of the same 265 

year in every site (Fig. 2g). Although sites were modeled hierarchically, which allows for sites 266 

with small sample sizes to be informed by other sites, those sites with fewer trees sampled were 267 

typically associated with more uncertain parameter estimates (wider CIs). This illustrates that the 268 

model is accounting for the unbalanced sample design. 269 

Antecedent precipitation (Pant) had a significant positive effect (at,3 > 0) on whole-ring 270 

growth at eight sites and a significant negative effect (at,3 < 0) in site 6, the most southern site 271 
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(Fig. 2c). Conversely, the direction of the antecedent temperature (Tant) effects varied, with a 272 

significant positive effect (at,4 > 0) occurring in three sites and a significant negative effect (at,4 < 273 

0) in six sites (Fig. 2d). While some sites were associated with non-significant Pant (sites 4 and 5) 274 

or Tant (sites 2 and 11) main effects, the Pant ´Tant interaction effect (at,5) was significant across 275 

all sites (Fig. 2e), indicating that Pant and Tant are significant predictors of growth, either via their 276 

direct (main) effects and/or via their interaction with each other. In particular, the Pant ´Tant 277 

interaction effect for whole rings was significantly different from zero for all sites; in all sites 278 

except one, the effect was positive, and in site 6 (southern AZ), it was negative. The generally 279 

positive Pant ´ Tant effect indicates that warmer conditions (higher Tant) increase the (positive) 280 

sensitivity of growth to Pant, or, alternatively, drier conditions (lower Pant) enhance the negative 281 

effect of Tant on growth. Effects of Pant, Tant, and Pant ´Tant on earlywood growth were similar to 282 

the whole-ring effects in sign, magnitude, and significance, but they were generally of lower 283 

magnitude for latewood growth (Fig. 2c,d,e).  284 

Antecedent importance weights 285 

For most sites, the year of ring formation and the prior year had the highest annual 286 

precipitation weights for all three models (whole ring, earlywood, and latewood), indicating that 287 

growth is primarily governed by fairly recent precipitation inputs (Fig. S4). However, there were 288 

some exceptions; precipitation two years prior to growth was most important for whole-ring 289 

widths in sites 6 and 7 (southern AZ) (Fig. S4a) and for earlywood at those two sites as well as 290 

site 4 (northern AZ) (Fig. S4b). In site 5 (central AZ), precipitation received in all 5 years had 291 

nearly equal influence (weights) on whole ring and earlywood growth. Precipitation received in 292 

the year prior to growth was more important than the year of growth for predicting latewood 293 

width in 10 sites; only in site 2 (central Colorado [CO]) was the annual weight highest in the year 294 
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of growth (Fig. S4c). Temperature weights were also generally highest for the year of growth in 295 

all three models, with some exceptions (Fig. S4d,e,f). It is worth noting that if we had defined the 296 

annual period as October through September, annual weights would have been even higher for 297 

the current year. 298 

Consistent with the annual importance weights, individual monthly weights were also 299 

generally highest in the year of and the year prior to ring formation, but variation in the monthly 300 

weights points to specific periods that are most important for predicting growth (Figs. S5a, S5b, 301 

S5c). In sites 1, 2, 3, and 4 (UT and northern AZ), which are among the coolest sites with the 302 

lowest annual precipitation, winter precipitation in the year of growth was important for whole 303 

ring (Fig. S5a) and earlywood growth (Fig. S5b), while in sites 5 and 6 (southern AZ), which are 304 

among the warmest sites, with most annual precipitation, winter precipitation two years prior to 305 

growth was more important than winter precipitation in the year of growth. For whole-ring and 306 

earlywood widths, temperature in the spring months during the year of ring formation was 307 

influential in most sites (Figs. S5a, S5b). For latewood widths (Fig. S5c), precipitation in the 308 

winter prior to ring formation was often as or more important than summer precipitation during 309 

the current growing season. Temperature during the spring and summer of the current growing 310 

season was influential in most sites. 311 

At the sites with the highest precipitation and variability in precipitation (sites 5, 6, and 7 312 

in southern AZ; Table S1), whole-ring widths had the longest climatic memory as measured by 313 

the M50 index for Pant (Fig. 3a, Fig. S6a). Climatic memory of earlywood growth was similar to 314 

that of the whole-ring, although site 4 (northern AZ), which is characterized by moderate 315 

precipitation variability, had the longest M50 (31 months) for Pant (Fig. 3b, Fig. S6b). There was 316 

less variation among sites in the latewood M50 values, which were generally unrelated to site-317 
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level precipitation variability (Fig. 3c, Fig. S6c). 318 

Sites with short climatic memory tended to have a positive, strong sensitivity to 319 

precipitation, but a negative sensitivity to temperature (Fig. S7). With increasing M50 for Pant, the 320 

precipitation effects (Pant; as,3) took on smaller, less positive values or even negative values. 321 

However, with increasing M50 for Tant, the Tant effects (as,4) took on less negative values or even 322 

positive values. In summary, the magnitudes of the Pant and Tant main effects, which are indices 323 

of the climate sensitivities of growth, tended to be larger (more sensitive) for sites characterized 324 

by shorter memory (lower M50) (Fig. S7). 325 

Evaluation of site-level responses across climatic gradient 326 

Site-level sensitivity of growth to antecedent precipitation (i.e., as quantified by as,3; 327 

Table 1) varied in relation to site-level climate characteristics (Fig. 4). Notably, the sensitivity of 328 

whole-ring growth to antecedent precipitation at average temperature conditions, as described by 329 

the site-level Pant main effect (as,3), was not related to the proportion of precipitation falling in 330 

the summer months (Table S3). However, the antecedent precipitation (as,3) effect for whole-ring 331 

widths was negatively correlated with annual (Fig. 4a), winter (Fig. 4b), and summer (Fig. 4c) 332 

precipitation totals (R2 = 0.60, 0.69, and 0.27, respectively). The site-level earlywood and 333 

latewood precipitation (as,3) effects were also negatively correlated with annual, summer, and 334 

winter precipitation (earlywood R2 = 0.48, 0.15, and 0.70, respectively; latewood R2 = 0.72, 335 

0.54, and 0.46, respectively).  336 

Sites with higher annual and winter precipitation also had higher variability in annual and 337 

winter precipitation (Fig. S8), and the antecedent precipitation (Pant) main effect (as,3) was 338 

strongly and negatively correlated with this variability (measured as standard deviation) in all 339 

three ring type models. That is, the higher the standard deviation in annual and winter 340 
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precipitation, the less important antecedent precipitation was for growth (Table S3, Fig. 4d,e). 341 

The precipitation effect (as,3) for latewood growth was negatively correlated with the standard 342 

deviation of summer precipitation (Table S3, Fig. 4f). The antecedent temperature (Tant) main 343 

effect (as,4) and the Pant ´Tant interaction effect (as,5) generally did not correlate with indices of 344 

annual and seasonal precipitation amount or variation (Table S3), except for that the temperature 345 

effect (as,4) for whole ring and earlywood growth was negatively correlated with summer 346 

temperature (p < 0.1, Table S3). 347 

Discussion 348 

Over what time scales are climate influences on tree growth evident? 349 

The trees in this study were sampled “ecologically” rather than for climate 350 

reconstruction, which means they were not in particularly harsh conditions or near the edge of 351 

their range (Nehrbass-Ahles et al. 2014), although they still occurred in semi-arid sites in the 352 

southwestern US. Across all sites, the climate memory of tree growth was relatively long; while 353 

climate conditions in the year of ring formation and one year prior were generally most 354 

important for annual and sub-annual growth, climate conditions two, three, and four years prior 355 

to ring formation were also influential. These results are consistent with other studies in the 356 

Southwest that used International Tree-Ring Data Bank (ITRDB) records, from trees often 357 

collected for climate reconstruction purposes, to examine relationships between tree growth and 358 

climate at comparable time scales (Peltier et al. 2018). Using conifer tree-ring records from the 359 

ITRDB in the Southwest, Peltier et al. (2018) employed the SAM approach and also found that 360 

precipitation and temperature importance weights were highest in the year of growth (accounting 361 

for nearly half the total weight) and the year prior to growth, but conditions 2-4 years prior to 362 

growth still continued to influence growth. It is significant that we found similar evidence for 363 
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long climatic memory in trees using a different dataset collected for a different purpose, 364 

suggesting that long climatic memory in trees is a widespread phenomenon not limited to highly 365 

“sensitive” trees often chosen for paleo-climate reconstructions (Esper et al. 2015). We note 366 

evidence for long memory of past climate in tree growth has been found worldwide, with 367 

examples including Pinus brutia in the eastern Mediterranean, P. pinea in Italy, and multiple 368 

species in the Spanish Pyrenees (Mazza and Manetti 2013, Marqués et al. 2021).  369 

It is also worth pointing out that Szejner et al. (2020) found shorter legacies in carbon 370 

isotope ratios and ring-width index in these same sites, using Superposed Epoch Analysis (SEA) 371 

and detrended chronologies. There are several aspects that could explain these differences. First, 372 

our analytical model focused on individual core and tree-level patterns rather than within-site 373 

integration of individual chronologies, as used in Szejner et al. (2020). This difference likely 374 

rendered our analysis more sensitive to the responses of individual tree phenotypes (i.e., 375 

endogenous factors), whereas the Szejner et al. (2020) analysis was more sensitive to site-to-site 376 

and year-to-year climate variability (i.e., exogenous factors). Second, Szejner et al. (2020) found 377 

that current year conditions were most important for tree growth, which our analysis also 378 

generally shows (Fig. S4), but we also find that conditions during previous years are important. 379 

In our study, the high importance of prior year’s climate also captured the influence of the winter 380 

months just preceding ring formation, which have been found to be important predictors of tree 381 

growth in other studies (e.g., Martin et al. 2018). Finally, we did not focus on the most extreme 382 

droughts as “key events” in this study, which is required in SEA. Rather, we analyzed the 383 

influence of climate on tree growth across the entire period of the record, including all drought 384 

events. It is possible that evidence of memory in drought sensitivity is most likely to be detected 385 

when assessed across many droughts of variable intensity, rather than when focused on the most 386 
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extreme droughts. In analyses relying on the most extreme droughts, exogenous (climate-387 

determined) lags might be so dominant as to obscure endogenous (phenotype-determined) lags. 388 

The latter might only emerge in analyses that include a broad range of climate system states 389 

assessed across many years.  390 

The long climatic memory reported here and elsewhere likely reflects an indirect effect of 391 

past climate, mediated through various physical and physiological mechanisms. Possible 392 

mechanisms for such lagged effects of climate on tree growth include retention of canopy 393 

needles for several years, storage of non-structural carbohydrates (NSC) over multiple years, 394 

hydraulic damage from prior drought, and pest or pathogen associations with drought-stressed 395 

trees, among others (Peltier et al. 2018). P. ponderosa needles are usually retained for 3 to 4 396 

years (Fritts 1976), meaning that an abundant or poor needle crop in a particular year could 397 

positively or negatively impact growth for several years. The role of NSC in lagged growth 398 

responses to climate is not fully understood. However, as average NSC pool ages can be nine or 399 

more years old in conifer species in temperate forests (Richardson et al. 2012), and old NSC 400 

(>15 yr) can be accessible (Carbone 2013), such old NSC could represent a functional link 401 

between antecedent climate and current growth. Persistent hydraulic damage could also result in 402 

long-lasting effects from water stress, particularly if functional sapwood area is significantly 403 

reduced (Anderegg et al. 2015, Trugman et al. 2018, Peltier and Ogle 2019), or significant 404 

changes in functional canopy area occur (Jump et al. 2017). Finally, pests and pathogens are 405 

typically more successful in water-stressed trees (Jactel et al. 2012), providing another way that 406 

climate variability, coupled with insect outbreaks, can have long lasting consequences for tree 407 

vitality and growth (Peters et al. 2017). Physical effects may also be important; trees have access 408 

to deep soil water resources, which integrate precipitation inputs over multiple seasons, but 409 
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which may also be depleted after severe drought events (Kerhoulas and Kane 2012, Rempe and 410 

Dietrich 2018). Lagged effects of climate on tree growth are increasingly recognized as 411 

important (e.g., Jiang et al. 2019), but focused experimental work is needed to understand the 412 

mechanisms by which tree rings integrate climate over multiple years.  413 

Varying climate responses at different sites across a precipitation gradient illustrate the 414 

diversity of conditions experienced by P. ponderosa across the study region. A significant 415 

growth versus antecedent precipitation relationship, which we expected, was observed in eight of 416 

the 11 study sites (Fig. 2c). The lack of a direct effect of precipitation in two sites and a negative 417 

effect in one site could be due to a precipitation x temperature interaction (see discussion below), 418 

or unique precipitation distributions in the interannual sequence of the time series. These are 419 

both examples of possible exogenous influences on climate memory effects. The direct effect of 420 

temperature was more variable (Fig. 2d). Typically, temperature has a negative effect on tree 421 

growth in the Southwest because of its link to increased drought stress (Williams et al. 2013, 422 

Adams and Kolb 2005), which appears to occur in six sites. However, warmer temperatures were 423 

positively correlated with tree growth in two sites (sites 7 and 8), both of which are in the 424 

southern portion of the study area (Fig. 1) and are associated with comparatively high rainfall 425 

(Table S1) and high baseline growth (Fig. 2a). This suggests that when trees have access to 426 

greater soil moisture, higher antecedent temperatures lead to greater productivity, potentially due 427 

to the effect of warm, but not extreme, temperatures on physiological processes involved in 428 

carbon gain, allocation, and biomass production (Way and Oren 2010).  429 

It is not surprising that antecedent temperature and precipitation interact to govern tree 430 

growth across the precipitation gradient in the Southwest. However, the net effect of this 431 

interaction indicates the existence of a synergistic impact leading to increased sensitivity of tree 432 
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growth to the combination of hotter and drier conditions, or what might be referred to as hot 433 

drought (Overpeck 2013). This has been documented on a temporal scale where drier sites 434 

showed increasing growth sensitivity to PDSI over the last century, paralleled by higher 435 

mortality following the ongoing drought in California (Keen et al. 2021). Similar changes in 436 

growth sensitivity to climate have been reported across precipitation gradients in different 437 

functional types (Kannenberg et al. 2022) and between different biomes (Hsu et al. 2012, 438 

Gherardi and Sala 2019, Maurer et al. 2020, O'Donnell et al. 2021). We would expect these 439 

trends to continue given projections of rising temperatures (Zobel et al. 2017). 440 

Do tree growth sensitivity to climate and ecological memory vary across the precipitation 441 

gradient?  442 

 Relationships between tree growth and climate did vary across the precipitation gradient, 443 

but percent summer (monsoon) precipitation provided little insight into spatial variation in 444 

climate-growth relationships. We suggest that the NAM gradient is only one gradient among 445 

several in this complex region that governs tree and forest productivity (Gutzler 2004). We did 446 

find that the total amount of precipitation and associated monthly variation were important in 447 

influencing tree growth. Sites 5, 6, and 7 in central and southern Arizona (AZ) stood out in 448 

several analyses: they had the highest standard deviations in monthly precipitation (Table S1), 449 

they are 3 of the 4 wettest sites (Table S1), and they had 3 of the 4 lowest precipitation main 450 

effect sizes (Fig. 2c). The finding that these wet sites supported P. ponderosa trees with lower 451 

precipitation sensitivity, under average temperature conditions, is consistent with past studies 452 

and was expected. For example, Adams and Kolb (2005) found that tree growth of several 453 

conifer species in higher, wetter sites in AZ was less sensitive to drought than in lower, drier 454 

sites. The lower precipitation sensitivity of tree growth under average temperature conditions in 455 
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these sites suggests that trees are following a conservative strategy, in which they are not capable 456 

of physiological plasticity that would permit increased or decreased growth to track shifting 457 

conditions. It is also possible that in these wetter sites something besides moisture (e.g. nutrient 458 

limitations or cloud cover) is limiting tree growth during wet periods such that additional 459 

precipitation does not result in high growth in very wet years (Chapin et al. 1987). Trees in drier 460 

sites are generally more sensitive to precipitation, indicating that they may be most affected by 461 

changes to the total amount or timing of precipitation (Anderegg et al. 2019).  462 

In our study, lower climate sensitivity was associated with longer climatic memory (Fig. 463 

S7). This combination of low effect size and long memory implies a muted response to climate; 464 

trees in these variable sites are not responsive to every pulse of rain but integrate climate (e.g., 465 

precipitation pulses) over many seasons and years. In these sites, if a tree allocates additional 466 

carbon resources to roots, canopy expansion, or wider than average rings in a wet year, the wet 467 

year could have a long-lasting influence on tree growth. Alternately, when a dry year occurs, a 468 

poor needle crop (Fritts 1976) or a loss of roots (Brunner et al. 2015) may necessitate a longer 469 

recovery time; effects may be long-lasting even if subsequent years have abundant rainfall (e.g., 470 

Anderegg et al. 2015). Trees that receive less summer precipitation might have the ability to 471 

“immediately” take advantage of rain events, making their growth more sensitive to recent 472 

conditions (shorter memory, lower M50). We might hypothesize that trees at these sites would 473 

have faster carbon cycling rates and younger NSC. The finding that higher climatic sensitivity is 474 

associated with shorter climatic memory is interesting in the context of the ongoing discussions 475 

about biases in the ITRDB (Klesse et al. 2018). First, any bias in ITRDB is likely in the 476 

magnitude of the climate-growth responses, and not in the direction or character of the 477 

relationships. In addition, short climatic memory of sensitive trees is a positive attribute for 478 



23 
 

climate or disturbance reconstructions, since multi-year memory in tree rings can bias or 479 

contaminate climatic or disturbance signals (Esper et al. 2015, Esper et al. 2018). 480 

Do earlywood and latewood growth differ in their sensitivities to climate and climatic memory? 481 

For both climatic sensitivity and memory, site differences were readily apparent in 482 

earlywood growth attributes. However, latewood growth was fairly invariant across sites in terms 483 

of baseline growth under average conditions. This may be due to little variation in the onset of 484 

latewood formation in P. ponderosa, even in years with very different precipitation patterns 485 

(Ziaco et al. 2018). However, the finding of greater variability in earlywood widths may be 486 

species-specific; in some species, latewood widths vary more than earlywood widths, but in 487 

other species the opposite occurs (e.g., Miina 2000). Climatic memory was quite different 488 

between earlywood and latewood as well (Fig. S6); latewood memory was shorter and less 489 

variable between sites, but climate in years prior to growth was still important.   490 

While climate influenced latewood growth, the strongest factor associated with low 491 

latewood growth was simply high earlywood growth (negative effect across all 11 sites). This 492 

should not be confused with positive correlations between raw earlywood and latewood widths, 493 

which are observed in simple bivariate plots or correlation analyses (Fig. S3, Meko and Baisan 494 

2001, Griffin et al. 2011). Instead, this earlywood effect should be thought of as the conditional 495 

effect of earlywood growth given that climate, ring age, and past ring width effects are accounted 496 

for. This suggests that after accounting for the effects of climate, age, and past widths, which 497 

tend to have the same directional effects on earlywood and latewood growth, the conditional 498 

effect of earlywood on latewood growth is actually negative, pointing to a tradeoff between these 499 

two modes of radial growth. This tradeoff could be related to carbon resources; if a tree invests a 500 

great deal of carbon in earlywood (or earlywood formation runs longer), there may be less 501 
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carbon (or time) to invest in latewood growth. This idea is supported by isotopic analysis of the 502 

same trees used in this study; isotope signals in earlywood and latewood were generally 503 

positively correlated (Szejner et al. 2018), suggesting that trees use the same resources to 504 

produce earlywood and latewood. Alternatively, the tradeoff could be related to xylogenesis and 505 

phenology mechanisms (Ziaco et al. 2018). It is thought that earlywood is important for water 506 

transport and latewood is important for tree structure; each year’s growth represents a balance 507 

between a tree’s maintenance of these two functions of xylem (Björklund et al. 2017). Future 508 

research might explore whether allocation between these competing functions may be altered by 509 

recent climate conditions, particularly drought. For example, an adaptive strategy would be to 510 

invest relatively more carbon towards earlywood growth following severe cavitation events to 511 

efficiently regain pre-drought sapwood area (Trugman et al. 2018). Finally, the possibility of a 512 

carbon allocation tradeoff between earlywood and latewood has implications for climate 513 

reconstructions when using any type of tree ring data: whole ring, earlywood, or latewood. 514 

Conclusions 515 

Our study of Pinus ponderosa in the Southwest showed that tree growth responses to 516 

climate and the timescales over which growth responds to climate varied across the regional 517 

precipitation gradient. Severe summer drought has been observed over the period 2000-2018 518 

(Williams et al. 2020) due to anthropogenic warming, and the North American Monsoon may 519 

experience changes such as a delayed onset and shifts in precipitation distribution to later in the 520 

season (Cook and Seager 2013). Our results suggest that such future changes to precipitation 521 

patterns will have unequal effects on tree growth across the regional precipitation gradient, with 522 

potential implications for tree growth and mortality, carbon storage, and regional species 523 

migrations. 524 
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Figure Legends 755 

Figure 1. Eleven sites where Pinus ponderosa trees were sampled in the southwestern USA (UT: 756 

Utah, AZ: Arizona, NM: New Mexico, CO: Colorado). Color gradient represents a) % 757 

precipitation that falls in summer (July, August, and September), b) mean total annual 758 

precipitation, and c) standard deviation of precipitation. See Table S1 for details on each site. 759 

Figure 2. Posterior means (symbols) and 95% Bayesian credible intervals (whiskers) for study-760 

level parameters, including a) baseline growth (intercept; as,1) and the effects of b) age (A; as,2), 761 

c) antecedent precipitation (Pant; as,3), d) antecedent temperature (Tant; as,4), e) the Pant ´Tant 762 

interaction (as,5), f) prior ring-width (as,6), and g) earlywood width for latewood (as,7); see Eqn 763 

(2) and Table 1. Parameters with CIs not crossing zero are interpreted as reflecting important 764 

(“significant”) effects. Sites are ordered by mean annual precipitation (low to high).  765 

Figure 3.  Linear regressions between site-level precipitation memory (M50; the month prior to 766 

December of the current year at which the cumulative weights first exceed 0.5) and a) winter 767 

precipitation, b) summer precipitation, c) elevation, d) yearly precipitation standard deviation 768 

(SD), e) winter precipitation SD, f) summer precipitation SD, g) annual temperature, and h) 769 

winter temperature. Only significant relationships are shown: symbols indicate p < 0.01, and 770 

regression lines indicate p < 0.05 (Table S4). Black circles/lines represent whole-ring widths 771 

(RW), white squares/dashed lines represent earlywood (EW), and gray triangles/lines represent 772 

latewood (LW). 773 

Figure 4. Linear regressions between site-level antecedent precipitation (Pant) main effects (as,3) 774 

and a) annual, b) winter, c) summer precipitation, d) annual, e) winter, and f) summer 775 

precipitation stand deviation. All relationships with regression lines are significant (p < 0.05; 776 

Table S3). Black circles/lines represent whole-ring widths, white squares/dashed lines represent 777 
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earlywood, and gray triangles/lines represent latewood. Blue lines cross the y-axis at 0. Whiskers 778 

depict 95% Bayesian credible intervals.   779 
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Tables 

Table 1. Summary of coefficients in the stochastic antecedent modeling (SAM) regression model 

(Eqn 2). The subscripts t and s denote tree t and site s. 

   Symbol  Definition 

Tree-level Site-level 

at,1  as,1  Intercept; predicted growth at average age and climate 

at,2  as,2  Age effect 

at,3  as,3  Antecedent precipitation effect 

at,4  as,4  Antecedent temperature effect 

at,5  as,5  Antecedent precipitation × antecedent temperature effect 

at,6  as,6  Prior ring width effect 

at,7   as,7  Effect of earlywood on latewood growth (only in latewood model)  
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Fig. 2 
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Fig. 4 

 


