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A B S T R A C T
This paper proposes effective communication strategies for Wireless Body Area Networks (WBANs)
that consist of wearable or implantable sensor nodes placed in, on/around the human body to send
body vitals to a sink. The main research challenges for communication strategy formulation include
limited energy resources and varying link conditions. Though energy harvested sensor nodes partially
address the problem of energy efficiency, finding an optimal balance between the energy constraint
of the nodes and communication reliability is still challenging. Since data loss in such networks may
prove to be fatal, it is important to investigate the problem prior to deployment and come up with ef-
fective communication strategies for initiating post-deployment operations. Hence, in this paper, the
nodes are stochastically modeled as a Markov Decision Process. There is a need to adapt to the chang-
ing ambient conditions through exploration and exploitation. So, a modified Q-learning technique is
proposed for post-deployment decision-making by the WBAN nodes subject to the dynamic ambient
conditions. The effectiveness of the proposed strategy is validated through extensive simulation and
compared with state-of-the-art works. The performance of the proposed approach is also verified with
a real-life dataset. The results demonstrate that around 90% successful data delivery to sink could be
made with the proposed scheme in the real-life scenario.

1. Introduction

INTEGRATION of Internet of Things (IoT) in the healthcare
sector initiates the era of Medicine 4.0 or Health 2.0 that
marks a transition towards ubiquitous monitoring of the pa-
tients through early detection of disorders and the imple-
mentation of a proactive treatment plan [1]. Thus, wearable
health monitoring systems have garnered significant atten-
tion nowadays to become an integral part of the medical IoT
that aims to enhance the quality of life [2][3][4]. The ad-
vancements in sensors and wireless technology result in a
revolutionary new paradigm in healthcare popularly known
as Wireless Body Area Network (WBAN) that is an integral
part of medical IoT [1][2]. Such a system involves small and
intelligent, invasive, or non-invasive body sensor nodes to
be deployed at vital positions of the human body to measure
several essential health parameters. The nodes transmit col-
lected data to a gateway device or sink acting as the network
coordinator (could be a smart handheld) via which these are
communicated to a remote medical server for effective anal-
ysis by professionals.

The key challenge for this network is the scarcity of re-
sources [2]. The limited lifetime of battery powered body
sensor nodes have motivated the researchers to develop var-
ious energy efficient approaches [4][5] for WBAN. Energy
efficient routing approaches are also developed as in [6][7][8]
including transmission power control mechanisms. In this
context, energy harvesting is becoming a likable solution
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[9][10][11]. Generally, energy can be harvested from hu-
man body by converting the electrochemical substances into
electrical power or from the movement of human body [12].
However, harvesting sufficient energy for all node operations
is very difficult and often not feasible [10].

Research says that a body sensor node depletes most of
its energy during transmission. Hence, designing energy-
efficient transmission strategies has great significance to WBANs
[13][14]. Optimal transmission power is essential to guaran-
tee communication reliability (better signal-to-noise ratio)
as well as to regulate energy drainage. However, the se-
lection of an appropriate power level necessitates dynamic
decisions depending on various ambient conditions. This
could incur significant computation overhead for a resource
constraint node. Hence, a few research [14][15] in literature
could be found that focus on designing strategies prior to the
deployment of the network. In reality, the network parame-
ters vary dynamically, and thus, any policy found to be suit-
able for certain operating conditions may not remain optimal
for other scenarios as well. This motivates towards updating
strategies through learning the ambience. In this regard, Re-
inforcement Learning (RL) could be exploited that enables
the WBAN devices to make autonomous decisions through
exploring the environment and exploiting the knowledge gained
[16].

In literature, few works could be found on WBAN that
employ RL to address the problem of sensor access control
[17], transmit power control [16], resource allocation [10],
security against attack [18] to enhance the network perfor-
mance as well as utility of the network in an optimized way.
These works model their respective RL problem from the
perspective of the coordinator where the task of decision
making for WBAN nodes lies on the coordinator. Further, to
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address the high dimensionality problem few works [19][20]
could even be found to combine deep learning and reinforce-
ment learning techniques to shrink the learning state space
observed by the coordinator [17].

The concept of implementing the RL algorithms in co-
ordinator lies from the fact that unlike the coordinator, the
small size body sensor nodes have limited energy, comput-
ing power and storage buffer etc. Hence, incorporation of
this kind of complex mathematical model could incur sig-
nificant overhead for such a resource constraint node. How-
ever, when a coordinator node makes decision for the sensor
nodes, additional control messages would be required to ex-
change node information and dissemination of the resultant
strategy. Hence, this would consume some extra amount of
resources in terms of energy and bandwidth. Moreover, this
kind of centralized approach would mainly be suitable for
the single hop star topology when all nodes are directly con-
nected to the sink. But in practice, there may be the need for
multi-hop communication particularly when the sink node
does not remain within vicinity of a sensor node.

This motivated us to develop a distributed decision mak-
ing scheme where each node would decide the suitable trans-
mission strategy depending on its working conditions. Here,
the entire work is carried out in two phases. In pre-deployment
phase, each energy harvesting WBAN node is modeled stochas-
tically using Markov Decision Process (MDP) so that it gets
a semi-image of the WBAN they are part of. In the post-
deployment phase, a modified Q-learning algorithm is de-
signed for each WBAN node that utilizes the proposed MDP
framework to adapt the transmission power based on ambi-
ent conditions. The irrelevant exploration in the Q table has
been removed by modifying the state-action space. In addi-
tion, the algorithm has been initialized with a partially pre-
computed policy using value iteration method to avoid ran-
dom exploration at the beginning. Thus, less complex but
effective transmission decisions could be made at runtime.
Hence, in this paper our contributions are as follows:

• Energy harvesting body sensor nodes are stochasti-
cally modeled applying MDP prior to deployment of
the network in order to find a balance between energy
depletion and packet success rate.

• A modified Q-learning algorithm is designed for the
post-deployment decision-making by the WBAN nodes.
The algorithm is initialized with the representative pre-
computed solution using the value iteration technique
to enhance the convergence speed. It operates based
on the pre-deployment MDP formulation. State-action
space is modified to eliminate irrelevant exploration
space.

The rest of the paper is organized as follows: The fol-
lowing section discusses some of the relevant state-of-the-
art research in detail. Section 3 reviews some preliminaries
of the proposed work. Next, Section 4 illustrates the design
of the proposed communication strategies in detail. This is

followed by Section 5 which presents the performance anal-
ysis and the discussion. Finally, Section 6 concludes.

2. Related Work
Efficient management of critical energy resources to cope

with varying link conditions in Wireless Sensor Network
(WSN) as well as WBAN has always been the point of con-
cern for researchers. In [21] Fu et al. proposed a robust
and energy-efficient scalefree double stage topology evolu-
tion model for WSN. A trade-off among latency, energy ef-
ficiency, and routing survivability is made by Fu et al. in
[22] while making routing decisions in WSN. Further, en-
ergy exhaustion, hardware/software malfunctions, and im-
paired connectivity-based failure model have been designed
for WSNs based on cellular automata by Fu et al. in [23].
Chen et al. in [6] proposed an energy-efficient routing pro-
tocol based on a fuzzy inference system that reduces power
consumption. Another transmission power control protocol
was developed by Kim et al. in [7] to address the problem
of the lifetime and link reliability in WBANs based on both
short and long-term link-state estimations.

Further, the authors in [14][9] address the problem of
energy efficiency through designing transmission strategies
so that Quality of Service (QoS) is maintained. Seyedi et
al. in [9] developed decision policies of the energy harvest-
ing WBAN nodes to determine the transmission mode to use
at a given instant of time to maximize the quality of cover-
age. Roy et al. in [15] proposed an optimal transmission
policy for WBAN using MDP subject to various input con-
ditions such as battery level, event occurrence, packet trans-
mission rate, and link quality. However, with this approach,
only policies for representative input conditions could be
found. Next, the authors in [14] optimize policies subject to
the target ambience using a Genetic Algorithm (GA). This
approach is worthy for designing strategies prior to the de-
ployment of the network to find optimal solutions (i.e. poli-
cies) for a range of ambient conditions. However, decision-
making at runtime requires adaptation of the pre-computed
strategy through learning the environment.

In recent years, the RL technique [10][19] has been adopted
extensively in the literature that facilitates learning through
exploration and exploitation. Table 1 represents some of the
relevant works on RL reported since the last decade. Most
of these works are designed for WSN and thus can not be
directly implemented on WBAN due to the inherent limi-
tations [2]. In [24] Zheng et al. studied the sensor activa-
tion control for the optimization of green energy utilization
in an energy harvesting WSN. Here, both energy generation
and target distribution exhibit temporal and spatial diversi-
ties, and the temporal modes are adapted using RL. In ad-
dition, the authors in [25] proposed an energy management
scheme based on RL that dynamically adapts its policy to a
time-varying environment to improve the quality of service.
Since, WSN nodes are less resource constraint than WBAN
nodes, the works in [24][25][26][27] implement RL algo-
rithm at node level.
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Table 1
Some of the relevant research on application of RL in solving network issues in WBAN and
WSN

Year Existing
work

Description Issues handled Network Target
application

Computation
implemented

Topology
considered

2012 [28] Decentralised RL for energy-e�cient schedul-
ing in WSN

Energy e�ciency, la-
tency, interference

WSN Sensor
node

At node level Single hop,
multi hop

2014 [26] Energy-aware task scheduling in WSNs based
on Cooperative RL

Energy e�ciency WSN Sensor
node

At node level Multi hop

2015 [24] Sensor activation control for the optimization
of green energy utilization in an energy har-
vesting WSN

Energy harvesting, en-
ergy balancing

WSN Energy
harvesting
node

At node level -

2016 [27] RL-based sleep scheduling algorithm for de-
sired area coverage in solar-powered WSN

Energy harvesting, en-
ergy balancing, lifetime

WSN Sensor
node

At node level Multi hop

2017 [25] Achieving energy neutrality in WSN Using RL Energy harvesting, en-
ergy e�ciency, quality
of service

WSN Sensor
node

At node level -

2018 [18] RL-based power control for in body sensors in
WBANs against jamming

Power control, reduce
transmission energy,
resist jamming attack

WBAN Sensor
node

At WBAN coor-
dinator

Single hop

2018 [17] RL-based sensor access control for WBANs Quality of Service,
energy consumption,
transmission reliability

WBAN Sensor
node

At WBAN coor-
dinator

Single hop

2019 [29] Cooperative communications with relay selec-
tion based on deep RL in WSNs

Energy e�ciency, out-
age probability

WSN Sensor
node

At node level Multi hop

2020 [10] RL-based energy e�cient resource allocation
for energy harvesting powered WBAN

Energy e�ciency, en-
ergy harvesting

WBAN Energy
harvesting
sensor
node

At hub Single hop

2020 [19] Joint optimization of power control and time
slot allocation for WBANs via deep RL

Energy e�ciency,
power control, quality
of service

WBAN Sensor
node

At WBAN coor-
dinator

Single hop

2020 [20] Deep RL-based resource scheduling strategy
for reliability-oriented WBANs

Resource scheduling,
reliable transmission

WBAN Sensor
node

At node level Single hop
and two hop

2021 [30] Deep RL-based on demand charging algorithm
for rechargeable WSN

Lifetime, energy re-
plenishment

WSN Mobile
charger
(MC)

At base station Multi hop
but base
station-MC
(Single hop)

However, the authors in [10][17][18][19] focus on im-
plementing the computationally complex RL algorithms at
WBAN coordinator which contains more resource as com-
pared to the node.An RL-based power control scheme was
proposed by Chen et al. in [18] where the coordinator eval-
uates the optimal strategy for in-body sensors to resist jam-
ming attacks. A resource allocation problem was investi-
gated by Xu et al. in [10] for energy harvesting powered
WBANs (EH-WBANs) where the decisions are made by a
hub with partial network information. A sensor access con-
trol scheme based on reinforcement learning was proposed
by Chen et al. in [17] that enables the coordinator to choose
the access time and transmit power of the sensors based on
the state of the sensors. These approaches are worthy partic-
ularly for star topology WBAN where the coordinator evalu-
ates the strategy for the nodes. Besides, control packet over-
head is associated with these approaches to transmit node in-
formation to the coordinator at regular intervals. Hence, in
[20] Xu et al. developed a resource scheduling strategy that
maximizes the reliability of the transmission of emergency-
critical sensory data. Here to reduce complexity, the authors
employed deep RL to solve the optimization problem at the
node level.

Herewith, in this paper, we aim at analyzing the prob-
lem prior to the deployment of the network so that the nodes
could be deployed with effective strategies right from the be-
ginning. Next, we develop a less complex modified Q learn-
ing algorithm for the nodes so as to update the pre-calculated

strategies through exploiting and exploring the ambience.
3. Preliminaries
3.1. Markov Decision Process

MDP is a discrete-time state transition stochastic pro-
cess that provides a mathematical model for sequential de-
cision making when outcomes are uncertain [31, 32]. An
MDP is represented as a five-tuple: (𝑆𝑡, 𝐴𝑡, 𝑃 , 𝑅, 𝛾). The
notations are explained in Table 2. Here, optimization is
made either through minimizing the expected cost to reach
the goal or by maximizing the expected reward. Performing
an action 𝑎𝑡 ∈ 𝐴𝑡 in a state 𝑠𝑡 results in a reward 𝑟(𝑠𝑡, 𝑎𝑡)and determines the state 𝑠𝑡+1 (where 𝑠𝑡, 𝑠𝑡+1 ∈ 𝑆𝑡) at the
next decision epoch (𝑡 + 1) through a transition probabil-
ity function. However, the decision is made based on the
present state and the action performed. It does not depend on
the previous states (Markov property [32]). Sequence of re-
wards obtained by performing a sequence of actions give the
utility that exhibit simple one-step look ahead relationships.
Utility value is quantified in two ways. (i) The rewards at
each predicted state starting from the current state are simply
added to determine the additive utility (𝑈𝑎([𝑟0, 𝑟1, 𝑟2...]) =
𝑟0 + 𝑟1 + 𝑟2 + ...). (ii) A discount factor (𝛾 < 1) is in-
troduced to evaluate discounted utility (𝑈𝑑([𝑟0, 𝑟1, 𝑟2...], 𝛾)
= 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + ...) where sooner rewards are more sig-
nificant than later rewards. Hence, discounted utility is more
worthy for convergence of optimization algorithms in order
to get the series of actions such that the expected discounted
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Table 2
Description of frequently used terms

Terms Description

𝑆𝑡 A �nite set of system states 𝑠𝑡
𝐴𝑡 A �nite set of actions 𝑎𝑡
𝑃 Transition probability matrix indexed in both di-

mensions by states. Here 𝑝(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡) =
𝑝(𝑠𝑡+1|𝑠0...𝑠𝑡, 𝑎0...𝑎𝑡) describes the state transitions.

𝑅 Reward matrix where the immediate reward (or
expected immediate reward) gained for state tran-
sition from 𝑠𝑡 to 𝑠𝑡+1 for carrying out action 𝑎𝑡 is
evaluated following reward function 𝑟(𝑠𝑡, 𝑎𝑡).

𝛾 [0,1] Discount factor that gives the importance of
future reward in present reward.

Π(𝑠) A policy Π gives an action for each state 𝑠 , Π∗(𝑠) is
optimal policy that results in maximum expected
utility if followed.

𝜖′ Exploration rate

utility gets maximized.
MDP formulation is commonly solved using value iter-

ation technique [31]. Value iteration is a dynamic program-
ming approach [33] that works in iterative fashion. The pro-
cess is repeated for all system states i.e. ∀𝑠 ∈ 𝑆. For given
state transitions (as in matrix 𝑃 ) and corresponding rewards
(as in matrix 𝑅), value iteration gives the discounted utility
𝑈𝑑 together with the number of iterations to converge. The
corresponding non stationary policies (𝜋) could be obtained
through backward induction using finite horizon method [31].
Solution of MDP can be found by applying reinforcement
learning technique [17][10] as well.
3.2. Q-learning

Q-learning is an off-policy reinforcement learning algo-
rithm that attempts to find the best action 𝑎𝑡 for the given
present state 𝑠𝑡 [34]. The environment parameters in terms
of state transition probability distribution (as in 𝑃 matrix)
and expected reward (as in 𝑅 matrix) are given as input to
the algorithm. The solution is found through (i) a technique
of discovering the environment called exploration and (ii)
utilizing the knowledge and experience termed as exploita-
tion. Here, a trade-off can be made with the 𝜖′ greedy search.
In each decision epoch, either an action 𝑎𝑡 is chosen in a uni-
form random fashion among all possible actions with proba-
bility 𝜖′ (also known as exploration rate) or with probability
(1 − 𝜖′) the best action learned so far is selected. A look-
up table termed a Q-table is maintained here that records the
maximum expected future rewards for an action at each state
in terms of Q value (Quality value). 𝑄(𝑠, 𝑎) value for each
state-action pair is initialized as [0,0] and computed itera-
tively following Temporal Difference update rule [34][16].
The algorithm terminates when either all Q-values are ob-
tained or a certain number of iterations is reached.

4. Design of the proposed RL-based
communication strategies

4.1. System model
An energy harvesting WBAN comprising of 𝜅 sensor

nodes has been taken into account in this work. Here, each
node periodically sends its sensed data to a remote medi-
cal server via network coordinator or sink. Time is con-
sidered to be slotted with intervals of unit length follow-
ing TDMA based schemes [2]. Since, the scheduled-based
schemes like TDMA minimize energy depletion for over-
hearing, contention, or idle listening and thus reduce duty
cycle than the contention-based MAC schemes (such as CS-
MA/CA) [2], we model our system with this assumption. At
each time interval 𝑡, the system is described by the following
parameters.
4.1.1. Energy level

The remaining energy 𝐸𝑟𝑒𝑚(𝑡) of a node at time 𝑡 can be
divided into (𝑁+1) discrete levels i.e. 𝐵𝐿𝑡 ∈ {0, 1, 2, ..., 𝑁}
(following most of the WBAN transceivers). The energy
level of a node is measured based on the residual energy
at a time instant. Here, 𝐵𝐿𝑡 = 0 represents the situation
when a node can only run its circuitry with 𝛿0 amount of
energy. No data transmission or reception could be made
at this level. However, some local computations could be
performed though at this level. Energy level 𝐵𝐿𝑡 = 𝑖 for
1 ≤ 𝑖 ≤ 𝑁 permits reception of beacon packets from sink as
well as data transmission with transmission power 𝑡𝑥 = 𝑡𝑥𝑖where 𝑡𝑥 ∈ {𝑡𝑥1, 𝑡𝑥2, ..., 𝑡𝑥𝑁} such that 𝑡𝑥1 < 𝑡𝑥2 < ... <
𝑡𝑥𝑁 . Thus, a node must have at least (𝛿0+𝛿𝑟𝑥+𝛿𝑡𝑥𝑖 ) amount
of 𝐸𝑟𝑒𝑚 in order to be at 𝐵𝐿𝑡 = 𝑖. Here, 𝛿𝑟𝑥 and 𝛿𝑡𝑥𝑖 indicate
the amount of energy required to receive beacon from sink
and transmit data packets with transmission power 𝑡𝑥 = 𝑡𝑥𝑖respectively. However, the next energy level allows data
transmission with 𝑡𝑥 = 𝑡𝑥𝑖+1, and thus requiring 𝛿𝑡𝑥𝑖+1 (i.e.
> 𝛿𝑡𝑥𝑖 ) amount of energy for transmission as well. Hence,
at any time slot 𝑡, the remaining energy of a node 𝐸𝑟𝑒𝑚(𝑡)occupies one of these defined levels 𝐵𝐿𝑡 as follows:

𝐵𝐿𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖 if (𝛿0 + 𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑖 ) ≤ 𝐸𝑟𝑒𝑚(𝑡) < (𝛿0+
𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑖+1 ) for 𝑖 ∈ [1, 𝑁 − 1]

𝑁 if 𝐸𝑟𝑒𝑚(𝑡) ≥ (𝛿0 + 𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑁 )
0 otherwise

(1)

4.1.2. Event occurrence
Each node generates and/or transmits a single data packet

per time slot. Data transmission between a node and the sink
can be taken into account as a two-state process where the
action of data transmission is subject to event occurrence. A
sensing event (𝐸𝑂𝑡) describes the generation of a data packet
for transmission. 𝐸𝑂𝑡 is 1 when there is a data packet in
the queue ready to be transmitted and 0 otherwise (i.e. no
event). Further, if an event is generated at any time slot 𝑡 (i.e.
𝐸𝑂𝑡 = 1), the probability of generation of another event in
the next time slot is given by 𝑒𝑜𝑛. Conversely, the probability
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of generating no events at both present and next time slots is
denoted by 𝑒𝑜𝑓𝑓 .
4.1.3. Link quality

The channel conditions at each time slot 𝑡 can be mea-
sured in terms of link quality 𝐿𝑄𝑡 ∈ {0, 1} and described as
a two-state process as well. 𝐿𝑄𝑡 is 1 (when Link Quality In-
dicator 𝐿𝑄𝐼 > 𝐿𝑄𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) for stable channel conditions
whereas 𝐿𝑄𝑡 = 0 represents adverse scenario. At any time
slot 𝑡, if 𝐿𝑄𝑡 is measured as 1, it is expected to be 1 as well
in the next slot (𝑡+ 1) with probability 𝑙𝑞𝑜𝑛. Conversely, the
probability of 𝐿𝑄𝑡 = 0 for both present and next time slots
is given by 𝑙𝑞𝑜𝑓𝑓 .
4.1.4. Energy harvesting

At each time slot 𝑡, energy harvesting 𝐸𝐻𝑡 ∈ {0, 1} is
modeled such that 𝐸𝐻𝑡 is 1 if energy is harvested in present
slot and𝐸𝐻𝑡 would be 1 in next slot as well with probability
𝑒ℎ𝑜𝑛. However, no energy will be harvested in the next slot
(𝑡+1)with probability 𝑒ℎ𝑜𝑓𝑓 when no harvesting takes place
at present slot i.e 𝐸𝐻𝑡 = 0.
4.2. Pre-deployment Phase

This phase focuses on the stochastic modeling of the nodes
using MDP prior to the deployment of the network.
4.2.1. Markov Decision Process Formulations

At each time slot, the data transmission mode is regu-
lated by MDP with the objective to maximize lifetime with-
out degrading performance.

a) Defining system states and actions: The system state
at time 𝑡 can be defined as a combination of essential param-
eters (energy level 𝐵𝐿𝑡, event occurrence 𝐸𝑂𝑡, link quality
𝐿𝑄𝑡 and energy harvesting 𝐸𝐻𝑡) that primarily regulate a
node’s performance after deployment. Here, each of the pa-
rameters serves as state variable as follows:

𝑠𝑡 = (𝐵𝐿𝑡, 𝐸𝑂𝑡, 𝐿𝑄𝑡, 𝐸𝐻𝑡) (2)
During each time slot 𝑡, the system performs an action 𝑎𝑡 ∈
{0, 1, 2, ..., 𝑁} that drives the system state 𝑠𝑡 to a probable
next state 𝑠𝑡+1. Here, the actions are defined in terms of
data transmission. Action 0 denotes no transmission of data
though some local computation could be carried out. Ac-
tion 1 to𝑁 represents data transmission with corresponding
transmission power 𝑡𝑥 = 𝑡𝑥1 to 𝑡𝑥𝑁 respectively. Each 𝑡𝑥
is associated with a packet success rate 𝜙𝑖 for 1 ≤ 𝑖 ≤ 𝑁 .
Evidently, for energy level 𝐵𝐿𝑡 = 𝑖, the permitted actions
are 𝑎𝑡 ∈ {0, 1, 2, ..., 𝑖} for 0 ≤ 𝑖 ≤ 𝑁 .

b) Reward estimation: At any given time slot 𝑡, perform-
ing an action 𝑎𝑡 on system state 𝑠𝑡 results in reward 𝑟(𝑠𝑡, 𝑎𝑡)and the system moves to the next state 𝑠𝑡+1. Here, the ob-
tained reward 𝑟(𝑠𝑡, 𝑎𝑡) is quantified as follows:

𝑟(𝑠𝑡, 𝑎𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑝𝐸𝑂𝑜𝑛 (𝑡)×𝑝𝐿𝑄𝑜𝑛 (𝑡)×𝑝𝐸𝐻𝑜𝑛 (𝑡)×𝜙𝑖
𝑡𝑥𝑚𝑖𝑛
𝑡𝑥𝑖

if 𝐸𝑟𝑒𝑚(𝑡) > 𝛿0+𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑖
0 otherwise

(3)
In this case, 𝑝𝐸𝑂𝑜𝑛 (𝑡), 𝑝𝐿𝑄𝑜𝑛 (𝑡) and 𝑝𝐸𝐻𝑜𝑛 (𝑡) denote the proba-
bility of occurring event, having stable link conditions and
harvesting energy respectively at time slot 𝑡. These proba-
bilities are evaluated as follows:

𝑝𝐸𝑂𝑜𝑛 (𝑡) = 𝐸𝑂𝑡−1 × 𝑒𝑜𝑛 + (1 −𝐸𝑂𝑡−1) × (1 − 𝑒𝑜𝑓𝑓 ) (4)

𝑝𝐿𝑄𝑜𝑛 (𝑡) = 𝐿𝑄𝑡−1 × 𝑙𝑞𝑜𝑛 + (1−𝐿𝑄𝑡−1) × (1− 𝑙𝑞𝑜𝑓𝑓 ) (5)

𝑝𝐸𝐻𝑜𝑛 (𝑡) = 𝐸𝐻𝑡−1×𝑒ℎ𝑜𝑛+(1−𝐸𝐻𝑡−1)×(1−𝑒ℎ𝑜𝑓𝑓 ) (6)
Here, the input probabilities together determine how much
favorable the environment is to carry out the action 𝑎𝑡. Packet
success rate 𝜙𝑖 for 1 ≤ 𝑖 ≤ 𝑁 corresponding to the power
level of the chosen action gives the benefit of selecting this
particular action. In general, a high transmission power pro-
vides a better packet success since the chances of data de-
livery enhance with an increased power level. However, the
packet success rate depends on the link quality as well. For
poor link quality (𝐿𝑄𝑡 = 0), the following condition holds:

𝜙𝑖
(𝛿0 + 𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑖 )

≤
𝜙𝑖+1

(𝛿0 + 𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑖+1 )

On the contrary, when the link quality is stable (𝐿𝑄𝑡 = 1),
the following condition is satisfied:

𝜙𝑖
(𝛿0 + 𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑖 )

>
𝜙𝑖+1

(𝛿0 + 𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑖+1 )

Thus, when the link quality is good, a better packet success
rate could be achieved with the same transmission power
level 𝑡𝑥𝑖 (i.e. with similar energy consumption) as compared
to its adverse counterpart. Unlike 𝜙𝑖, the ratio 𝑡𝑥𝑚𝑖𝑛

𝑡𝑥𝑖
rep-

resents the cost of selecting the acting transmission power
𝑡𝑥𝑖 (corresponding to the action 𝑎𝑡) among available power
levels (𝑡𝑥1, 𝑡𝑥2, ..., 𝑡𝑥𝑁 ) as compared to the minimum power
level 𝑡𝑥𝑚𝑖𝑛. Hence, this ratio in turn indicates the cost of
taking the action 𝑎𝑡. Here, the reward function serves as the
objective function that aims to find a balance between suc-
cessful data delivery and energy depletion. However, no re-
ward would be given for action 0 (i.e. no data transmission).
An optimal action subject to the input conditions is found by
solving MDP in order to maximize the obtained reward in
each iteration.

c) Transition to next decision epoch: The system state
𝑠𝑡+1 in the next time slot (𝑡 + 1) is represented as follows:

𝑠𝑡+1 = (𝐵𝐿𝑡+1, 𝐸𝑂𝑡+1, 𝐿𝑄𝑡+1, 𝐸𝐻𝑡+1) (7)
Remaining energy𝐸𝑟𝑒𝑚(𝑡+1) of each energy harvesting node
in the next time slot (𝑡 + 1) is given as follows:

𝐸𝑟𝑒𝑚(𝑡 + 1) = 𝐸𝑟𝑒𝑚(𝑡) − 𝑙𝑡 + 𝑔𝑡 (8)
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Here, 𝑙𝑡 represents the amount of energy loss for performing
an action 𝑎𝑡 in the previous time slot 𝑡.

𝑙𝑡 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛿0 + [𝛿𝑟𝑥]𝐼𝑡𝑟𝑢𝑒(𝑏𝑒𝑎𝑐𝑜𝑛𝑠) + 𝛿𝑡𝑥𝑖 w.p. [𝑝𝐸𝑂𝑜𝑛 (𝑡 + 1)]𝐼𝑖(𝑎𝑡)
if 𝐸𝑟𝑒𝑚(𝑡) ≥ (𝛿0+
𝛿𝑟𝑥 + 𝛿𝑡𝑥𝑖 )

𝛿0 + [𝛿𝑟𝑥]𝐼𝑡𝑟𝑢𝑒(𝑏𝑒𝑎𝑐𝑜𝑛𝑠) w.p. 𝐼0(𝑎𝑡)
if 𝐸𝑟𝑒𝑚(𝑡) ≥ (𝛿0+
𝛿𝑟𝑥)

0 otherwise
(9)

where 𝑤.𝑝. stands for 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 1 ≤ 𝑖 ≤ 𝑁 .
𝐼𝑖(𝑎𝑡) and 𝐼0(𝑎𝑡) are indicator functions that become 1 when
the value of 𝑎𝑡 equals to the respective subscript (i.e. 𝑖 and 0)
and zero otherwise. Energy loss (𝑙𝑡) in each time interval 𝑡
is quantified as the sum of (i) constant energy depletion (𝛿0)
to run the circuitry, (ii) energy consumption (𝛿𝑟𝑥) when bea-
con is received from sink (indicated using indicator function
𝐼𝑡𝑟𝑢𝑒(𝑏𝑒𝑎𝑐𝑜𝑛𝑠)) and (iii) energy expenditure 𝛿𝑡𝑥𝑖 to carry out
data transmission with power level 𝑡𝑥𝑖 corresponding to the
action 𝑎𝑡. Evidently, for action 0, no energy would be de-
pleted for data transmission. Further, when a node runs out
of energy, no energy loss could be reported.

Here, energy gain 𝑔𝑡 in time slot 𝑡 is measured as follows:

𝑔𝑡 =

{

𝜆 w.p. 𝑝𝐸𝐻𝑜𝑛 (𝑡 + 1)
0 otherwise (10)

Next, event generation 𝐸𝑂𝑡+1 in the next time slot (𝑡 + 1) is
predicted as follows:

𝐸𝑂𝑡+1 =

{

1 w.p. 𝑝𝐸𝑂𝑜𝑛 (𝑡 + 1)
0 otherwise (11)

Accordingly, link quality 𝐿𝑄𝑡+1 in the next time slot (𝑡+ 1)
is evaluated as

𝐿𝑄𝑡+1 =

{

1 w.p. 𝑝𝐿𝑄𝑜𝑛 (𝑡 + 1)
0 otherwise (12)

Herewith, whether a node will harvest energy in the next
time slot (𝑡 + 1) is predicted as

𝐸𝐻𝑡+1 =

{

1 w.p. 𝑝𝐸𝐻𝑜𝑛 (𝑡 + 1)
0 otherwise (13)

d) Formation of 𝑃 matrix and𝑅matrix: State transition
matrix [𝑃 ]𝑛×𝑛 (having 𝑛 number of system states for each
node) is constructed for each action 𝑎𝑡. Here, state transition
probability 𝑝𝑠𝑡→𝑡+1 from present state 𝑠𝑡 to probable next state
𝑠𝑡+1 is quantified in terms of state transition probabilities of
individual state variables as follows.

𝑝𝑠𝑡→𝑡+1 = 𝑝𝐵𝐿𝑡→𝑡+1 ×𝑝𝐸𝑂𝑡→𝑡+1 ×𝑝𝐿𝑄𝑡→𝑡+1 ×𝑝𝐸𝐻𝑡→𝑡+1 (14)

where 𝑝𝐵𝐿𝑡→𝑡+1 , 𝑝𝐸𝑂𝑡→𝑡+1 , 𝑝𝐿𝑄𝑡→𝑡+1 and 𝑝𝐸𝐻𝑡→𝑡+1 represent
the transition probabilities between𝐵𝐿𝑡 to𝐵𝐿𝑡+1 (following
Eq. 9-10), 𝐸𝑂𝑡 to 𝐸𝑂𝑡+1 (following Eq. 11), 𝐿𝑄𝑡 to 𝐿𝑄𝑡+1(following Eq. 12), and 𝐸𝐻𝑡 to 𝐸𝐻𝑡+1 (following Eq. 13)
respectively. Accordingly, the corresponding reward matrix
[𝑅]𝑛×𝑛 is formed for each action 𝑎𝑡 (following Eq. 3-6) that
records the reward gained for carrying out the action at each
present state 𝑠𝑡.
4.2.2. Solving MDP using Value Iteration

The state value function at a state 𝑠 ∈ 𝑆 for any sta-
tionary policy 𝜋 = (𝜋0, 𝜋1, ..) satisfies the Bellman equation
[31] as follows:

𝑉 𝜋(𝑠) = 𝑟(𝑠, 𝜋(𝑠)) + 𝛾Σ𝑦𝑝(𝑦|𝑠, 𝜋(𝑠))𝑉 𝜋(𝑠) (15)
State transition matrix [𝑃 ]𝑛×𝑛 and reward matrix [𝑅]𝑛×𝑛together with discount factor 𝛾 are given as input to a value

iteration technique. Value iteration function begins with as-
signing an arbitrary value 𝑉0 (generally 0.00 [31]) to each
state 𝑠 ∈ 𝑆. In each iteration, the value of the state 𝑉𝑚(𝑠) (at
𝑚𝑡ℎ iteration) is evaluated by Bellman backup. The iterations
continues until 𝜖 convergence is achieved i.e. 𝑚𝑎𝑥𝑠|𝑉𝑚+1(𝑠)−
𝑉𝑚(𝑠)| < 𝜖. This value iteration technique results in the op-
timal transmission policy 𝜋 for given input conditions (i.e.
𝑒𝑜𝑛, 𝑒𝑜𝑓𝑓 , 𝑙𝑞𝑜𝑛, 𝑙𝑞𝑜𝑓𝑓 , 𝑒ℎ𝑜𝑛 and 𝑒ℎ𝑜𝑓𝑓 ) together with dis-
counted utility value 𝑈𝑑 for each state 𝑠. The process is to
be repeated each time to obtain a transmission policy for dif-
ferent input probability value combinations. Unlike learning
techniques, the value iteration process cannot perceive the
dynamic operational environment and thus, results in a fixed
policy for a given input condition. Hence, in order to cope
with runtime dynamic ambience, the process would require
to be executed for a range of input conditions. This may in-
cur significant computational overhead.
4.3. Post-deployment Phase

The phase focuses on the design and implementation of
the proposed modified Q-learning algorithm for each WBAN
node.
4.3.1. Design of the proposed modified Q-learning

algorithm
In this work, we propose a modified Q-learning algo-

rithm to solve the pre-deployment MDP formulation at run-
time. The classical Q-learning algorithm is modified to en-
hance the convergence speed as follows:

• The action space corresponding to each state is mod-
ified.

• The state-space exploration for each state-action pair
is modified.

• The Q-table is initialized following the solution ob-
tained from the value iteration technique.

The original state-action space of the Q-learning algorithm
is reduced in the proposed modified Q-learning algorithm
to avoid unnecessary exploration in the Q-table. Since, the
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Table 3
The relevant action space mapping table for 𝑁 = 3 where
{1***} represents the states (𝑠𝑡 = {𝐵𝐿𝑡, 𝐸𝑂𝑡, 𝐿𝑄𝑡, 𝐸𝐻𝑡})
when 𝐵𝐿𝑡 = 1

State-space Action-space to be explored

{0***} {0}
{1***} {0,1}
{2***} {0,1,2}
{3***} {0,1,2,3}

Table 4
The relevant state space mapping table for 𝑁 = 3 where
{1***} represents the states (𝑠𝑡 = {𝐵𝐿𝑡, 𝐸𝑂𝑡, 𝐿𝑄𝑡, 𝐸𝐻𝑡})
when 𝐵𝐿𝑡 = 1

State-space Action-
space

State-space to be explored

{0***} 0 {0***}

{1***}
0 {1***}
1 {0***} and {1***}

{2***}
0 {2***}
1 {1***} and {2***}
2 {1***} and {2***}

{3***}

0 {3***}
1 {2***} and {3***}
2 {2***} and {3***}
3 {2***} and {3***}

permitted actions for each system state is governed by the
energy level 𝐵𝐿𝑡 of each node, the action space 𝐴𝑡 to be ex-
plored gets limited to {0,1,2,...,𝑖} for the system states {𝑖***}
where 0 ≤ 𝑖 ≤ 𝑁 . For instance, the relevant action space
mapping table for 𝑁 = 3 is presented in Table 3.

Next, execution of an action of data transmission (i.e.
𝑎𝑡 ≠ 0) on present state {𝑖***}, drives the system into one of
the probable states among {𝑖***} or {(𝑖− 1)***} following
transition probabilities recorded in [𝑃 ]𝑛×𝑛 matrix where 1 ≤
𝑖 ≤ 𝑁 . However, since no data transmission is performed for
action 0, this action when executed on states {𝑖***} causes
transition to one of the states {𝑖***} only where 0 ≤ 𝑖 ≤ 𝑁 .
Herewith, the relevant state space 𝑆𝑡+1 mapping table for
𝑁 = 3 is presented in Table 4.

Unlike the classical Q-learning algorithm, the modified
algorithm initializes the Q-table entries𝑄(𝑠, 𝑎) following the
representative policy 𝜋𝑉 𝑎𝑙𝑢𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 obtained using value it-
eration process. The Q-value corresponding to each {𝑠𝑖, 𝑎𝑗}
pair where action 𝑎𝑗 (for 0 ≤ 𝑗 ≤ 𝑁) is recommended for
state 𝑠𝑖 (where 1 ≤ 𝑖 ≤ 𝑛) by 𝜋𝑉 𝑎𝑙𝑢𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is initialized as
𝑄0(𝑠𝑖, 𝑎𝑗) = 𝜓 . Here, 𝜓 represents a non-negative value.
The rest of the Q-table entries 𝑄0(𝑠𝑖, 𝑎𝑘) are set to 0 such
that 0 ≤ 𝑘 ≤ 𝑁 and 𝑄0(𝑠𝑖, 𝑎𝑗) ≠ 𝑄0(𝑠𝑖, 𝑎𝑘). This initializa-
tion process would enable the learning algorithm to make
decision by exploiting some knowledge right from the be-
ginning. Thus, data loss due to performing exploration from
scratch could be prevented and faster convergence could be

achieved as well.
In each episode, an action 𝑎𝑡 for system state 𝑠𝑡 is selected

by exploration (w.p. 𝜖′) or exploitation (w.p. (1 − 𝜖′)). The
Q-value is updated in each iteration as follows [34][16]:

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼𝜃𝑡 (16)
where 𝛼 is the learning rate and 𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) denotes new
estimated value. 𝜃𝑡 is the temporal difference error at time 𝑡
measured as follows [34][16]:

𝜃𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑚𝑎𝑥𝑎𝑡+1𝑄(𝑠𝑡+1, 𝑎𝑡+1) −𝑄(𝑠𝑡, 𝑎𝑡) (17)
Since the value of the best next action is utilized here regard-
less of the policy to carry out the estimation, the algorithm is
termed as off-policy. The step-by-step approach of the mod-
ified Q-learning algorithm is summarized in Algorithm 1.
The algorithm comes into play with some initial knowledge
about the ambience (step 4-9 of Algorithm 1) and then grad-
ually learns the environment as well. The decision is made
through exploitation and exploration (step 13-19 of Algo-
rithm 1) accordingly. The algorithm results in the optimal
transmission policy together with the Q value correspond-
ing to each state and it ends when the outcome got stable
in consecutive episodes. Hence, unlike the value iteration
technique that results in a stationary policy for each given
ambient condition, this algorithm is more suitable to find a
solution for a dynamic environment.
4.3.2. Implementation of the proposed modified

Q-learning algorithm on WBAN nodes
Herewith, the modified Q-learning algorithm (i.e. Algo-

rithm 1) is implemented on each WBAN. To assess the in-
put probability conditions, only a periodic beacon from the
sink would suffice. Since the algorithm is initialized with
the policy obtained from the value iteration technique, the
algorithm can even make effective decisions for a node that
recently joins a network and does not have any prior knowl-
edge of the input conditions. Gradually, as the node learns
the input probabilities, these probabilities are fed into the
proposed algorithm to find the optimal policy through ex-
ploration and exploitation. However, with this approach, the
node only needs to execute the algorithm again when there
is a change in the input probabilities. Accordingly, the node
can update its policy subject to ambient conditions after de-
ployment.
4.3.3. Complexity analysis of the proposed modified

Q-learning algorithm
The proposed modified Q-learning algorithm finds a so-

lution based on two main search spaces i.e. action space and
state space, both of which are well-bounded here. To find
the best action (𝑎𝑡) for each current state (𝑠𝑡), the algorithm
explores any action with probability 𝜖′ from the action space
with uniform random distribution as mentioned in Step 13 of
Algorithm 1 which gives result in constant time. However,
when the decision is made through exploitation with proba-
bility (1 − 𝜖′), the algorithm needs to search the Q-values in
its Q-table to find the action with the highest Q-value. Here,
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the complexity may polynomially increase with the action
as in Step 14 of Algorithm 1. Thus, the search space never
grows exponentially.

In [35], Koenig et al. established that the task of reach-
ing a goal state for the first time is (𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ×
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠) or, alternatively(𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒×𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒)
through appropriate task representation or suitable initial Q-
values. Here, the action space or the maximum number of
actions (𝑚) for a state depends on the number of transmis-
sion power levels in use which is less than the total number
of states 𝑛 following the system model. Hence, the action
space would vary with (𝑚). In addition, in this work, the
goal state represents such a state when the entire energy of
a node would be drained and nothing would be left for per-
forming data transmission. The proposed system comprises
of the eight-goal states which can be represented as {0 ∗∗∗}.
Following the design of our proposed modified Q learning
algorithm as illustrated in Section 4.3.1 and Table 4, the ef-
fective state space for each state would be in the order of the
total number of goal states i.e. 2 × 𝑛𝑜. 𝑜𝑓 𝑔𝑜𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 which
is constant in this case. Hence, in the worst case, for 𝑛 num-
ber of system states, any of the goal states could be reached
through ((𝑛 − 8) − 1) i.e. (𝑛 − 7) intermediate states which
can be considered as (𝑛). Herewith, the worst-case com-
plexity to reach the goal state is (𝑚𝑛) which is always less
than (𝑛2).

This is in-line with the results established in [35] that
every Q-learning algorithm that does not know the effect of
an action before it has executed it at least once has the worst
case complexity of (𝑛3). It is also reported by the authors
in [35] that the complexity can be reduced to (𝑛2) if the q-
values are suitably initialized. In Algorithm 1, this is done
based on the value iteration outcomes of the pre-deployment
phase.

5. Performance analysis
This section presents the experimental results demon-

strating the performance of the proposed approach. The ex-
periments are mostly conducted in pre-deployment phase us-
ing Python1 with the support of ’pymdptoolbox’ library pro-
viding classes and functions for the resolution of discrete
time MDP. Post-deployment performance analysis is con-
ducted using Castalia 3.22 open source network simulator
based on OMNeT++ that is widely used for WBAN exper-
imentation.
5.1. Pre-deployment experimentation

In this phase, several experiments are carried out to find
out the best strategy based on the ambient conditions.
5.1.1. Experimental setup

Four energy levels 𝐵𝐿𝑡 ∈ {0, 1, 2, 3} are taken into ac-
count for experiments. Event occurrence𝐸𝑂𝑡 ∈ {0, 1}, link
quality 𝐿𝑄𝑡 ∈ {0, 1} and energy harvesting 𝐸𝐻𝑡 ∈ {0, 1}

1https://www.anaconda.com/products/individual last accessed date:
28.08.2020.

2https://github.com/boulis/Castalia/ last accessed date: 10.07.2020.

Algorithm 1: Modified Q-learning
input : :

1 [𝑃 ]𝑛×𝑛, [𝑅]𝑛×𝑛, 𝜋𝑉 𝑎𝑙𝑢𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
output: :

2 Optimal policy 𝜋∗(𝑠) ∶ 𝑚𝑎𝑥𝑎𝑄∗(𝑠, 𝑎)
3 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 0;
4 Set action space 𝐴𝑡 = {0, 1, 2, ...,i} for states {𝑖***}

: 0 ≤ 𝑖 ≤ 𝑁 ;
5 if (𝑎𝑡 = 0) then
6 Set state space 𝑆𝑡+1 = {𝑖 ∗∗∗} : 0 ≤ 𝑖 ≤ 𝑁 ;
7 else
8 Set state space 𝑆𝑡+1 = {{𝑖 ∗∗∗}, {(𝑖 − 1) ∗∗∗}}

: 0 ≤ 𝑖 ≤ 𝑁 ;
9 Initialize each 𝑄(𝑠, 𝑎) in [𝑄]𝑛×(𝑁+1) with

representative 𝜋𝑉 𝑎𝑙𝑢𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ;
10 Observe 𝑠𝑡;
11 Initialize (𝛼, 𝛾, 𝜖′);
12 repeat
13 Select 𝑎𝑡 uniformly from 𝐴𝑡 w.p. 𝜖′;
14 Otherwise select 𝑎𝑡 ∈ 𝐴𝑡 :

𝑄(𝑠𝑡, 𝑎𝑡) == [𝑄(𝑠𝑡, 𝑎)]𝑚𝑎𝑥∀𝑎 ∈ 𝐴𝑡 w.p.
(1 − 𝜖′);

15 Execute 𝑎𝑡;
16 Obtain 𝑟(𝑠𝑡, 𝑎𝑡) from [𝑅]𝑛×𝑛;
17 Move to 𝑠𝑡+1 ∈ 𝑆𝑡+1 following [𝑃 ]𝑛×𝑛;
18 Update 𝑄(𝑠, 𝑎) in [𝑄]𝑛×(𝑁+1) following

equation 16-17;
19 Set 𝑠𝑡 = 𝑠𝑡+1;
20 𝑒𝑝𝑖𝑠𝑜𝑑𝑒+ = 1;
21 until episode 𝑀 ;

are implemented with conditional probabilities {𝑒𝑜𝑛, 𝑒𝑜𝑓𝑓},
{𝑙𝑞𝑜𝑛, 𝑙𝑞𝑜𝑓𝑓} and {𝑒ℎ𝑜𝑛, 𝑒ℎ𝑜𝑓𝑓} respectively within their pre-
defined range. Accordingly, 32 (4×2×2×2) different states
are defined following Eq. 2. Four actions 𝑎𝑡 ∈ {0, 1, 2, 3}
are considered for experiments where action 0 denotes no
transmission. The rest of the actions (i.e. 1, 2 and 3) cor-
responds to data transmission with three gradually increas-
ing power levels 𝑡𝑥1, 𝑡𝑥2 and 𝑡𝑥3. However, this approach
can support more number of actions as well. Packet suc-
cess rate (𝜙𝑖) corresponding to the power level 𝑡𝑥1, 𝑡𝑥2 and
𝑡𝑥3 are taken into account as {0.7,0.8,0.9} respectively for
stable link quality and {0.3,0.4,0.5} respectively for adverse
conditions. The state transition matrix [𝑃 ]32×32 for each
action 𝑎𝑡 is constructed considering the input probabilities
{𝑒𝑜𝑛, 𝑒𝑜𝑓𝑓}, {𝑙𝑞𝑜𝑛, 𝑙𝑞𝑜𝑓𝑓} and {𝑒ℎ𝑜𝑛, 𝑒ℎ𝑜𝑓𝑓} following Eq.
14. The corresponding reward matrix [𝑅]32×32 is formulated
following Eq. 3-6.
5.1.2. Results of value iteration

In the following experiments, the performance of the pro-
posed MDP-based model is observed when the value itera-
tion process is applied. An insight about how reward varies
corresponding to each action performed at any given state
following the reward function 𝑟(𝑠𝑡, 𝑎𝑡) (i.e. objective func-
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tion) is presented in Fig. 1. The results are plotted for states
{3111}, {3101}, {2011} and {2001}. Here, two pairs of
states are chosen for observation. One pair (i.e. {3111} and
{3101}) having maximum energy level (i.e. 𝐵𝐿𝑡 = 3) and
the other (i.e. {2011} and {2001}) with moderate energy
level (i.e. 𝐵𝐿𝑡 = 2). Here, link quality varies in each pair of
states. Since energy level, 𝐵𝐿𝑡 = 3 permits all four actions,
rewards are obtained for performing actions 1, 2, and 3 in
states {3111} and {3101}. However, more rewards could be
achieved for taking the same action at a state that gives more
potential for data transmission. Further, no reward could be
obtained as well for carrying out any prohibited action at a
given state (as in the case of action 3 in states {2011} and
{2001}).

However, two different trends of gaining reward corre-
sponding to actions could be observed subject to the link
quality. For the states where link quality is stable like {3111}
and {2011}, more reward is obtained for performing an ac-
tion that suggests data transmission with lower transmission
power. Accordingly, the reward decreases as an action of
high power transmission is carried out. Unlike this, the re-
verse trend is found in the case of adverse link conditions
(i.e. for states {3101} and {2001}). In this case, the action
of high power transmission secures more rewards. Hence,
for adverse link conditions, the objective is to increase the
power level gradually so as to cope with the environment.
However, for stable conditions, the focus is made on energy
saving.
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Figure 1: Rewards obtained corresponding to each action 𝑎𝑡
at di�erent states 𝑠𝑡 where state {3111} represents 𝐵𝐿𝑡 = 3,
𝐸𝑂𝑡 = 1, 𝐿𝑄𝑡 = 1, and 𝐸𝐻𝑡 = 1.

In the next experiment, the variation of utility values
for different input probability combinations (𝑒𝑜𝑛, 𝑒𝑜𝑓𝑓 , 𝑙𝑞𝑜𝑛,
𝑙𝑞𝑜𝑓𝑓 , 𝑒ℎ𝑜𝑛, 𝑒ℎ𝑜𝑓𝑓 ) are studied as shown in Fig. 2. Here,
input probability combinations are chosen such that these
would cover the entire horizon. The outcome for state {3111}
(representing a favorable state for data transmission) is plot-
ted here. The input probability combinations (0.9, 0.6, 0.9,
0.6, 0.9, 0.6) and (0.6, 0.9, 0.6, 0.9, 0.6, 0.9) producing the
highest and the lowest utilities respectively can be regarded
as the best case and the worst case scenarios. Further, it is
found that, the variations of 𝑒𝑜𝑛, 𝑙𝑞𝑜𝑛, and 𝑒ℎ𝑜𝑛 (observing
outcomes for (0.9, 0.6, 0.9, 0.6, 0.9, 0.6) and (0.6, 0.6, 0.6,
0.6, 0.6, 0.6)) make more impact than the variations of 𝑒𝑜𝑓𝑓 ,
𝑙𝑞𝑜𝑓𝑓 , and 𝑒ℎ𝑜𝑓𝑓 (observing outcomes for (0.6, 0.6, 0.6, 0.6,
0.6, 0.6) and (0.6, 0.9, 0.6, 0.9, 0.6, 0.9)). However, an av-

erage utility obtained for probability combination (0.8, 0.6,
0.8, 0.6, 0.8, 0.6) can be taken into account as an average
scenario.
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Figure 2: Utility values for di�erent probability combinations.

Next, a vision is given in Fig. 3 about how the util-
ity value 𝑈𝑑 changes corresponding to each system state 𝑠𝑡.Here, observation is made for three representative input prob-
ability combinations denoting best, average, and worst sce-
narios (as mentioned in the previous experiment) such that
an overview could be obtained for the entire horizon. Util-
ity values are obtained for each state based on how favorable
the state is for data transmission. Since no data transmis-
sion could be performed at states {0***}, these states re-
ceive no utility value. The highest utility is gained for the
state {3111} and thus, can be regarded as the most favorable
state. Evidently, more utility is obtained for the states with
higher energy levels since more data packets could be sent
with more energy. Besides, the states {***1} denoting the
occasion of energy harvesting enhance benefits in the long
run as well. Thus, the states {***1} receive more utility
as compared to the states regulating event occurrence (i.e.
{*1**}) or stable link quality (i.e. {**1*}) irrespective of
the energy level. Moreover, a similar trend could be found
for the three representative input conditions (presenting two
extremes and an average situation) which indicate the pro-
posed approach could effectively work for any input condi-
tion defined by the probability combinations. Herewith, the
policy obtained for the average scenario could serve as the
reference solution for the modified Q-learning technique.
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Figure 3: Utility values 𝑈𝑑 corresponding to each state 𝑠𝑡 where
state {2010} denotes 𝐵𝐿𝑡 = 2, 𝐸𝑂𝑡 = 0, 𝐿𝑄𝑡 = 1, and 𝐸𝐻𝑡 =
0.
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5.1.3. Performance of the modified Q-learning at the
pre-deployment phase

In the following experiments, we analyze the performance
of the proposed modified Q-learning algorithm in the MDP
framework when executed at the pre-deployment phase. In
Fig. 4, the impact of individual input probability (each of
𝑒𝑜𝑛, 𝑒𝑜𝑓𝑓 , 𝑙𝑞𝑜𝑛, 𝑙𝑞𝑜𝑓𝑓 , 𝑒ℎ𝑜𝑛, 𝑒ℎ𝑜𝑓𝑓 ) on the performance of the
modified Q-learning algorithm has been investigated. Re-
sults are recorded for state {3111}. Here, the Q value ob-
tained for a given input probability combination (i.e. 0.9,
0.6, 0.9, 0.6, 0.9, 0.6) has been taken into account as ref-
erence. Next, each of the input probabilities are varied one
by one keeping others unchanged and the corresponding Q
values are plotted. It is found that, the variations in 𝑒𝑜𝑛, 𝑙𝑞𝑜𝑛and 𝑒ℎ𝑜𝑛 results in more changes in Q-values as compared
to the effect due to the variations in 𝑒𝑜𝑓𝑓 , 𝑙𝑞𝑜𝑓𝑓 and 𝑒ℎ𝑜𝑓𝑓(supporting Fig. 2). However, the variation in 𝑙𝑞𝑜𝑛 (by ob-
serving outcome for (0.9, 0.6, 0.9, 0.6, 0.9, 0.6) and (0.9, 0.6,
0.8, 0.6, 0.9, 0.6)) mostly influences the obtained Q-value as
compared to others. Hence, this probability leaves a signifi-
cant impact on the resultant policy as well.
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Figure 4: Q values for di�erent probability combinations.

The effect of the number of episodes on the outcome
of the proposed algorithm is illustrated in Fig. 5. Results
are plotted for given input conditions (both favorable and
unfavorable). The proposed modified Q-learning algorithm
works in iterations or episodes. In each episode, it learns
the environment and updates its Q table. Hence, the Q value
increases for all states irrespective of input conditions since
it gains more knowledge about the environment with more
iterations. For clarity, observations are reported only for a
state {3111}.
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Figure 5: Q values with increasing number of episodes.

Next, we observe how the policy for a given probabil-
ity combination changes each time the proposed modified
Q-learning algorithm is executed. The proposed algorithm
starts working on a given probability combination and in
each iteration, it makes a decision either by exploring the
ambience or exploiting its knowledge. Hence, it tunes the
resulting policy accordingly as it learns the dynamic envi-
ronment. This causes variations in the obtained outcome in
each execution. Table 5 summarizes the policies obtained
in 5 runs. Here, a policy gives the best action correspond-
ing to each system state 𝑠𝑡 in the order as presented in Table
5. Though the policies apparently vary from each other, few
trends could be found by closely observing these. Action 2
or 3 i.e. the action of data transmission with higher trans-
mission power is mostly suggested when remaining energy
is at maximum level (i.e. 𝐵𝐿𝑡 = 3). Further, action 3 is
mainly recommended for states {3*0*} i.e. when the energy
level is high but link quality is poor. Action 1 is found to be
the mostly recommended action irrespective of energy level
since it is the most energy-efficient action. In addition, it
is observed that often for the states having low energy levels
and poor link quality i.e. {1*0*}, action 0 is suggested. This
is because here the remaining energy could get insufficient to
make high power transmission to overcome the adverse en-
vironmental conditions. In such a situation, no transmission
and waiting for favorable conditions could become benefi-
cial instead of data transmission with very few chances to
reach the destination. In addition, no transmission (i.e. ac-
tion 0) is often recommended when there is no event in the
present slot (for states {*0**}).

In the following experiment, we have investigated the
performance of the modified Q-learning algorithm with re-
spect to the conventional approaches i.e. classical Q-learning
algorithm, greedy approach, and random power selection ap-
proach. The Q-value (recorded after 10000000 episodes)
corresponding to each state for individual technique consid-
ering given input conditions has been plotted in Fig. 6. Un-
like the modified Q-learning, in classical Q-learning, there
is no initial knowledge about the ambience and the algo-
rithm starts learning the environment only through explo-
ration. Further, there exists some unnecessary exploration
of state-action space in the Q table. Hence, the Q values cor-
responding to each state are found to be low as compared to
the proposed approach. Besides, the greedy approach only
chooses the action of data transmission with maximum al-
lowable transmission power depending on the energy level
in each episode whereas, in the random power selection ap-
proach actions are selected randomly. Since both approaches
do not optimize their decisions depending on the environ-
mental conditions, the proposed algorithm is found to out-
perform them as well.

The pre-deployment phase ends here. The analysis of the
performance of the proposed modified Q-learning algorithm
in the pre-deployment phase gives an estimate of its opera-
tion and behavior in the post-deployment phase. However,
the representative policy obtained using the value iteration
technique in this phase is passed as input to the modified Q-
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Table 5
Policy obtained for a given probability combination at di�erent execution where each
'0', '1', '2' or '3' in a policy '000...322' (from left to right) represents the best action
corresponding to the state {0000} to {3111} respectively

Run number
Obtained policy (Recommended action 𝑎𝑡 for each state 𝑠𝑡 in the following order)

{
0
0
0
0
}

{
0
0
0
1
}

{
0
0
1
0
}

{
0
0
1
1
}

{
0
1
0
0
}

{
0
1
0
1
}

{
0
1
1
0
}

{
0
1
1
1
}

{
1
0
0
0
}

{
1
0
0
1
}

{
1
0
1
0
}

{
1
0
1
1
}

{
1
1
0
0
}

{
1
1
0
1
}

{
1
1
1
0
}

{
1
1
1
1
}

{
2
0
0
0
}

{
2
0
0
1
}

{
2
0
1
0
}

{
2
0
1
1
}

{
2
1
0
0
}

{
2
1
0
1
}

{
2
1
1
0
}

{
2
1
1
1
}

{
3
0
0
0
}

{
3
0
0
1
}

{
3
0
1
0
}

{
3
0
1
1
}

{
3
1
0
0
}

{
3
1
0
1
}

{
3
1
1
0
}

{
3
1
1
1
}

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 2 2 2 2 2
2 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 2 0 1 2 1 1 1 1 2 0 1 2 3 2 2
3 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 2 1 1 2 1 1 1 1 2 0 1 3 2 1 1
4 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 2 1 1 1 2 2 2 1 2 1 2 3 2 1 1
5 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 2 0 1 2 2 2 1 1 2 1 1 2 3 1 2
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Figure 6: Q value corresponding to each system state for a given input condition.

learning algorithm implemented in the next phase.
5.2. Post deployment analysis

This section analyzes the performance of the proposed
scheme from various aspects after deployment. A WBAN is
simulated in Castalia-3.22where the proposed modified Q-
learning algorithm is implemented on each node for execu-
tion at runtime. Seven energy harvesting nodes are placed all
over the human body (around 1m × 1.9m area) together with
a sink residing at the waist to measure the body vitals. Ex-
periments are carried out by taking into account three trans-
mission power levels -15dBm, -12dBm, and -10dBm (sup-
ported by most of the WBAN transceivers) corresponding
to action 1, 2, and 3 respectively. The transmission range
corresponding to each power level is regulated with BAN-
Radio2. Simulation has been made for 10000 sec following
ZigBeeMAC (IEEE 802.15.4 standard) protocol. Energy de-
pletion of each node as well as the network is measured us-
ing the Resource Manager module of Castalia2 which keeps
track of the energy spent by the node. This module takes into
account the radio model in place and the initial energy of the
individual nodes. It also holds some node-specific quantities
such as the clock drift and the baseline power consumption.
It has a complete view of the total power drawn depending
on which the energy consumption is calculated.

5.2.1. Comparative analysis of the proposed approach
In the following experiment, a comparative study is car-

ried out among the performance of the proposed modified Q-
learning algorithm both when executed before deployment
(only the obtained policies are incorporated into the nodes)
as well as at runtime with respect to the state-of-the-art ap-
proaches EEFR [6] and LSE-TPC [7] in similar a simula-
tion setup. Results are depicted in Fig. 7. Though in both
cases (i.e. pre-deployment and post-deployment) the pro-
posed modified Q-learning algorithm starts with the same
initial knowledge (gained from the results of the value iter-
ation technique), learning the environment through the as-
sessment of input probability conditions becomes more ac-
curate at runtime. This enables to make more appropriate
transmission decisions at runtime which is reflected in the
performance.

Unlike the proposed approach, transmission power reg-
ulation takes place based only on distance as part of routing
decisions in EEFR [6]. Hence, the effect of environmen-
tal conditions remains unaddressed in the decision-making.
Though in LSE-TPC [7], transmission power is tuned ac-
cording to the link state, the other significant issues such as
the impact of sensing rate, remaining energy are not taken
into account here. Hence, the proposed scheme is found to
exhibit more successful data delivery to the sink as compared
to the existing approaches.
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Figure 7: Variation of successful data delivery to sink with
respect to time.

5.2.2. Effect of multi-node transmissions on the
proposed strategies

In the next experiment, we observe the impact of the
transmissions made by other nodes in the proximity on the
performance of a node that follows the proposed strategy.
For this experiment, we have chosen a node in the network
as a reference node that is in the close communication range
of the other nodes. Here, we have designed four use cases for
analysis and the observations are plotted in Fig. 8. The first
use case i.e. Use case- 1 represents the situation when only
the reference node transmits and the other nodes in the prox-
imity make no transmission. The next use case i.e. Use case-
2 depicts the scenario when the nearby nodes make trans-
mission decisions with the proposed strategies. Use case- 3
and Use case- 4 describe the situations when the nodes in
the proximity of the reference node only transmit with the
least cost policy (use minimum power level) and the greedy
approach (use maximum power level) respectively.

It is evident from the outcome that with the proposed
strategy performance increases when no other nodes in the
proximity perform transmission (Use case- 1), or the nodes
in the proximity follow the least cost policy i.e. transmit
with minimum power level (Use case- 3). This is because
the channel conditions remain stable and favorable for trans-
mission in these scenarios. On the contrary, the channel con-
ditions become adverse when the nearby nodes follow the
greedy approach i.e. transmit with the highest power level
(Use case- 4). However, a consistent and balanced perfor-
mance can be achieved when the nearby nodes follow the
proposed strategy (Use case- 2).
5.2.3. Performance of the proposed strategies based on

real WBAN dataset
The next experiment evaluates the effectiveness of the

proposed strategies based on the real WBAN dataset3. Here,
we experimented with a scenario where a sensor node incor-
porated with the proposed modified Q-learning algorithm is
placed at the right foot and the sink is located at the waist.
We have utilized the RSSI values3 of a total of 30 minutes
as perceived by the sensor node from the sink to analyze
the variations in the channel conditions. The obtained RSSI
values3 range from -42dBm to -94dBm during this period

3https://www.kaggle.com/guanslong/wban-rssi-dataset Accessed:
10.04.2021
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Figure 8: Performance of the proposed strategies when Use
case- 1: only the reference node transmits, Use case- 2: the
nearby nodes of the reference node also transmit with the pro-
posed strategies, Use case- 3: the nearby nodes of the reference
node transmit with the least cost policy, and Use case- 4: the
nearby nodes of the reference node transmit with the greedy
approach.

while receiving periodic beacons from the sink at every 20
ms. Here, a value of -70dBm is considered as the threshold.
This is because below this RSSI value the evaluated packet
success rate𝜙 given by [36] 𝑒𝑘𝑑𝑎𝑡𝑎𝑙𝑜𝑔(1−𝐵𝐸𝑅) for this environ-
ment becomes in the range of 0 to 0.5 satisfying the condi-
tion for poor link quality. Here 𝑘𝑑𝑎𝑡𝑎 is the size of a packet
in bits, and the BER corresponding to a node for the given
RSSI values are calculated as in [37]. The RSSI values less
than the threshold indicates the adverse channel conditions
and vice versa. A window of 120 sec (depending on the rate
of RSSI variation) has been considered to estimate the con-
ditional probabilities related to the channel conditions. The
modified Q-learning algorithm implemented in the node up-
dates its policy in every 120 sec with the variations in input.

Performance of the node is plotted in terms of Packet
Delivery Ratio (PDR) with the variations of 𝑙𝑞𝑜𝑛 and 𝑙𝑞𝑜𝑓𝑓 as
presented in Fig. 9. PDR is defined as the ratio between total
data packets received by the sink to the total data packets sent
by the sensor nodes ∀𝑖 ∈ 𝜅.

𝑃𝐷𝑅 =
𝑑𝑎𝑡𝑎𝑠𝑟𝑒𝑐

∑𝜅
𝑖=1 𝑑𝑎𝑡𝑎

𝑖
𝑠𝑒𝑛𝑡

(18)

It is evident from the outcome that a reasonable PDR i.e.
above 0.9 (i.e. 90%) is achieved with time which follows
moderately similar pattern of the variations of 𝑙𝑞𝑜𝑛. This
findings support the observations of Fig. 4 that the vari-
ations of 𝑙𝑞𝑜𝑛 mostly influences the obtained Q-values and
the resultant policies. Hence, this result also validates our
proposed formulations.

6. Conclusion
The objective of this paper was to propose communica-

tion strategies for energy harvesting WBAN nodes to address
the problem of finding an optimal balance between commu-
nication reliability and energy depletion subject to a dynam-
ically changing environment. Accordingly, in this paper, RL
is used to make decisions at the node level through exploring
and exploiting the ambience. A modified Q-learning algo-
rithm is proposed to solve the pre-deployment MDP formu-
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Figure 9: Variation of PDR with the variation of 𝑙𝑞𝑜𝑛 and 𝑙𝑞𝑜𝑓𝑓
obtained from real dataset.

lation at runtime so that a node can adapt its transmission de-
cisions through learning the ambience. The effectiveness of
the proposed modified Q-learning algorithm is also analyzed
when employed in the pre-deployment phase. However, it
is found that, with the proposed approach, the performance
increases as compared to the pre-deployment strategy adap-
tation. The effect of multi-node transmission on the strategy
has been explored. The performance of the proposed scheme
is also validated based on the real WBAN dataset. For future
work, we seek to implement the proposed approach on a real
health monitoring platform.
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