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Abstract

In this paper, we study a flocking behavior that may or not appear for Cucker−Smale model with distributed time de-

lays. For the short range communicated Cucker−Smale model, the flocking condition has strong restrictions on initial

data. For this case, we mainly consider the non−flocking behavior. By establishing and appropriately estimating an

inequality of the position variance such that the second order space moment is unbounded, we drive a sufficient con-

dition for the non−existence of the asymptotic flocking when the time delays satisfy a suitable smallness assumption.

Furthermore, we also provide a sufficient condition of asymptotic flocking. Finally, we present numerical simulations

to validate the theoretical results.

Keywords: Cucker−Smale model, distributed time delays, non−flocking, flocking.

1. Introduction

The Cucker−Smale(C−S) model is one of the most celebrated multi-agent models, which can describe the flocking

behavior of moving animals in nature, such as flying of birds, herding of sheep and schooling of fishes [1–3]. This

model was first proposed by Cucker and Smale in 2007 [1], then it was quickly extended in many directions, including

the model with time delays in [4–10], the model with collisions avoidance in [11–16], the model with nonlinear

systems in [17–19], the model with the problem of leader in [20, 21], and so forth.

In a real multi-agent system, it is natural to introduce a delay as a reaction time or a time to receive environmental

information, which is denoted as the reaction delay or the transmission delay respectively. The C−S model and

other extended models with the transmission delay were investigated in [22, 23]. However, in typical applications

of C−S model in biology or engineering, the transmission delay is much smaller than the reaction delay due to the

high speed communication of agents. Thus, we pay attention on the C−S model with reaction delays. When this

delay is a positive constant, [24] proved that there is an asymptotic alignment of velocities for the delayed C−S

model with or without noise, under the a-priori assumption that the Fiedler number (smallest positive eigenvalue)

of the communication matrix is uniformly bounded away from zero. By using similar assumptions of the Fiedler

number of Laplacian matrix, some sufficient and/or necessary conditions of controllability for the non-delay systems

were derived in [25, 26]. Then, Haskovec and Markou derived sufficient conditions of flocking behavior in [27] for all

classical communication weights. In a more realistic situation, the time delay is distributed over an interval rather than
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concentrated at a single time instant. Thus, the C−S model with distributed reaction delays was further considered

in [27, 28]. However, to get the flocking behavior, the decreasing of the time−varying delay or a lower bound of

the derivative of the communication weight is assumed in these papers, which is not natural. In this paper, these

assumptions are successfully removed, and the flocking behavior is also established. For other flocking results on

delayed C−S models, we refer to [22, 23, 28–30] and the references therein.

Note that the above results only focus on the flocking behavior. But, the non−flocking behavior can be easily

observed in numerical simulations. It is also common in many practical situations, such as the opinion disagreement

in society, fish flock breaking, flight multi-formation and so on. Moreover, for the short range communicated C−S

model (∃r0 > 0 such that
∫ r0

0 ϕ(r)dr = ∞; where ϕ is a communication weight function), it is unreasonable to directly

investigate sufficient conditions of flocking, since the conditions have strong restrictions on initial data. In other

words, it is more appropriate to study the non-flocking behavior. However, the theoretical results are far from perfect

particularly about the delay model. Recently, it is shown in [31] that the C−S model has the non-flocking behavior

when the initial data satisfies some conditions. When there exist distributed delays, we are also interested to find

a sufficient condition of the non-flocking behavior, which should be simple enough. We refer to [32–35] for other

non-flocking or multi-flocking results.

The remainder of this paper is organized as follows. Section 2 is to address system description and some prelimi-

naries. Section 3 is devoted to giving a simple sufficient condition to the non-flocking behavior. In Section 4, we also

establish the flocking behavior for the delayed model under some initial conditions. In Section 5, some simulation

examples are shown to validate our theoretical results. For simplicity, some proofs are given in Appendix.

2. Preliminaries

Let N be the number of agents, and (xi(t), vi(t)) ∈ R2d denote the position and velocity of ith agent at the time t.

Let the communication weight ϕ be positive and Lipschitz. Then, the delayed model is described by
ẋi = vi,

v̇i =
λ

Nh(t)

N∑
k=1

∫ t

t−τ(t)
α(t − s)ϕ(|xk(s) − xi(s)|)(vk(s) − vi(s))ds,

(1)

where the parameter λ > 0 measures the alignment strength, τ(t) ≥ 0 satisfies that 0 < τ0 ≤ τ(t) ≤ τ̄ for all t ≥ 0.

Moreover, α : [0, τ̄]→ [0,∞) is a weight function satisfying

h(t) :=
∫ τ(t)

0
α(s)ds,

∫ τ0

0
α(s)ds > 0.

For the above model, we consider prescribed initial position and velocity trajectories

(xi(t), vi(t)) = (x0
i (t), v0

i (t)), ∀ t ∈ [−τ̄, 0], (2)

where x0
i , v

0
i ∈ C([−τ̄, 0];Rd).

For simplicity, we define the position and velocity fluctuations as

V(t) :=

 N∑
i=1

N∑
k=1

|vk(t) − vi(t)|2


1
2

, X(t) :=

 N∑
i=1

N∑
k=1

|xk(t) − xi(t)|2


1
2

. (3)
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By defining the average position and velocity

(xc(t), vc(t)) :=

 1
N

N∑
i=1

xi(t),
1
N

N∑
i=1

vi(t)

 ,
we know from (1) that vc(t) ≡ vc(0) for any t ≥ 0, and then xc(t) = xc(0) + vc(0)t. Thus, we have that for any t ≥ 0,

V(t) =

2N
N∑

i=1

|vi − vc|2


1
2

, X(t) =

2N
N∑

i=1

|xi − xc|2


1
2

,

(4)

but they don’t hold for t ∈ [−τ̄, 0) generally.

Firstly, a local classical solution {(xi, vi)}Ni=1 of model (1), (2) can be obtained, since the right hand side of (1) is

continuous as a function of (xi, vi). Actually, its solution is global because the boundedness of V(t) and X(t) will be

proved in Section 4.

Secondly, we give the definition of asymptotic flocking of model (1), (2).

Definition 1. [1] Model (1), (2) exhibits asymptotic flocking if and only if

lim
t→∞

V(t) = 0 and sup
t≥0

X(t) < ∞.

In particular, non-flocking (see [36] for details) can be classified in more details as semi-nonflocking, where only

lim
t→∞

V(t) = 0 holds, and full non-flocking, where neither lim
t→∞

V(t) = 0 nor sup
t≥0

X(t) < ∞ holds. The non−existence of

the asymptotic flocking is proved through the unboundedness of X(t) in next section.

3. The non-flocking behavior

For simplicity, we define ϕki = ϕ(|xk(s) − xi(s)|) and Φki(t) :=
∫ |xk(t)−xi(t)|

0 rϕ(r)dr, ∀ 1 ≤ k, i ≤ N. We are now

devoted to establishing a simple sufficient condition to the non-flocking behavior of model (1), (2).

Theorem 1. Let τ(t) be a continuously differentiable function such that τ′ < 1, τ′ ∈ L1(R+) and τ0 ≤ τ(t) ≤ τ̄.
Assume that α is bounded, and 0 ≤ ϕ ∈ Cb(R+) and rϕ(r) ∈ L1(R+). Let k0 =

max
s∈[−τ̄,0]

V(s)

V(0) , when τ̄ is sufficiently small
such that 4k2

0λ∥ϕ∥∞τ̄ ≤ 1, the classical solution {(xi, vi)}Ni=1 of model (1), (2) exhibits non-flocking if

N∑
i=1

(x0
i − xc) · (v0

i − vc) > ∥rϕ(r)∥L1

 ∥α∥∞∫ τ0

0 α(s)ds
∥τ′∥L1 + 1

 . (5)

Remark 1. Note that ϕ and τ do not need to be decreasing in the above theorem. The typical short range communi-
cation weights ϕ(r) ≤ (1+ r2)−

β
2 with β > 2 satisfy the assumption that rϕ(r) ∈ L1. Any smooth function with compact

support also satisfies this assumption.

3.1. An inequality of the position variance

Based on Definition 1, we intend to show the unboundedness of X(t), which yields the non-flocking behavior.

Inspired by the key equality of the position variance established in [31, 37], we obtain the following proposition.
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Proposition 1. Assume that τ(t) be a continuously differentiable function such that τ0 ≤ τ(t) ≤ τ̄, and let {(xi, vi)}Ni=1
be a smooth solution to model (1), (2). Then, we have that for any t ≥ τ̄

d
dt

1
2

N∑
i=1

|xi(t) − xc(t)|2


≥
N∑

i=1

(xi(τ̄) − xc) · (vi(τ̄) − vc) − λ
2N

N∑
i=1

N∑
k=1

∫ t

τ̄

1
h(s)

∫ s

s−τ(s)
α(s − u)Φ′ki(u)duds

+
1

2N

∫ t

τ̄

(
V2(s) − λ∥ϕ∥∞τ̄ sup

u∈[s−τ̄,s]
V2(u)

)
ds. (6)

Proof. We first compute d2

dt2

(
1
2

N∑
i=1
|xi − xc|2

)
and then integrate it over (τ̄, t). Following from (1) we obtain that for any

t ≥ τ̄,

d2

dt2

1
2

N∑
i=1

|xi − xc|2
 = d

dt

 N∑
i=1

(xi − xc) · (vi − vc)


=

N∑
i=1

|vi − vc|2 −
λ

2N

N∑
i=1

N∑
k=1

1
h(t)

∫ t

t−τ(t)
α(t − s)ϕki · (vk(s) − vi(s)) · (xk(t) − xi(t))ds, (7)

To estimate the last term of the right hand side of (7), we can rewrite xk(t) − xi(t) as

xk(t) − xi(t) = xk(s) − xi(s) + xk(t) − xk(s) − (xi(t) − xi(s)) = xk(s) − xi(s) +
∫ t

s
(vk − vi)(θ)dθ.

Note that the definition of Φki(t) gives that (xk(t) − xi(t)) · (vk(t) − vi(t))ϕ(|xk(t) − xi(t)|) = d
dtΦki(t). Then, we can use

the above equalities to obtain that

N∑
i=1

N∑
k=1

ϕki · (vk(s) − vi(s)) · (xk(t) − xi(t))

=

N∑
i=1

N∑
k=1

ϕki · (vk(s) − vi(s)) · (xk(s) − xi(s)) +
N∑

i=1

N∑
k=1

ϕki · (vk(s) − vi(s)) ·
∫ t

s
(vk(θ) − vi(θ))dθ

≤
N∑

i=1

N∑
k=1

d
ds
Φki(s) + ∥ϕ∥∞τ̄ sup

u∈[t−τ̄,t]
V2(u), (8)

since the Hölder inequality yields that

N∑
i,k=1

(vk(s) − vi(s)) ·
∫ t

s
(vk(θ) − vi(θ))dθ

≤
∫ t

s

 N∑
i,k=1

(vk(s) − vi(s))2


1
2
 N∑

i,k=1

(vk(θ) − vi(θ))2


1
2

dθ =
∫ t

s
V(s)V(θ)dθ ≤ τ̄ sup

u∈[t−τ̄,t]
V2(u)

for any s ∈ [t − τ(t), t]. As a consequence, combining (7) with (8) we get that

d2

dt2

1
2

N∑
i=1

|xi − xc|2


≥ 1
2N

V2(t) − λ
2N

N∑
i=1

N∑
k=1

1
h(t)

∫ t

t−τ(t)
α(t − s)Φ′ki(s)ds − λ∥ϕ∥∞τ̄

2N
sup

u∈[t−τ̄,t]
V2(u), (9)

4



since
∫ τ(t)

0 α(s)ds = h(t). Finally, by integrating both sides of (9) over [τ̄, t] we complete the proof. �
Taking into account the right hand side of (6), we firstly estimate the third term. In the following lemma, we show

that V(t) does not change dramatically when t grows, so

V2(s) − λ∥ϕ∥∞τ̄ sup
u∈[s−τ̄,s]

V2(u)

can be non-negative when τ̄ is small enough.

Lemma 1. Let 0 ≤ ϕ ∈ Cb(R+), and let V(0) , 0. Assume that τ̄ > 0 satisfies ekτ̄ ≤ 2, then

V(s) ≤ k0ek(t−s)V(t), ∀ t > 0, s ∈ [−τ̄, 0), (10)

and
V(s) ≤ ek|t−s|V(t), ∀ t, s ≥ 0, (11)

where

k0 :=
max

s∈[−τ̄,0]
V(s)

V(0)
, k = 2k0λ∥ϕ∥∞. (12)

As a result, for any t ∈ (0, τ̄]
1
2

V(0) ≤ V(t) ≤ 2V(0), X(t) ≤ X(0) + 2τ̄V(0). (13)

By establishing the following delay inequality of V ,

d
dt

V(t) ≥ −λ∥ϕ∥∞ sup
s∈[t−τ(t),t]

V(s),

we can eventually prove the above lemma. The precise proof is given in Appendix.

According to the first term of the right hand side of (6), we need to estimate
N∑

i=1
(xi(τ̄) − xc) · (vi(τ̄) − vc). Since τ̄ is

sufficiently small, the following lemma shows that
N∑

i=1
(xi(τ̄) − xc) · (vi(τ̄) − vc) is close to

N∑
i=1

(x0
i − xc) · (v0

i − vc). The

precise proof is given in Appendix.

Lemma 2. Let 0 ≤ ϕ ∈ Cb(R+), and let V(0) , 0. Assume that τ̄ > 0 satisfies ekτ̄ ≤ 2, then the classical solution
{(xi, vi)}Ni=1 of model (1), (2) satisfies that

N∑
i=1

(xi(τ̄) − xc) · (vi(τ̄) − vc)

≥
N∑

i=1

(x0
i − xc) · (v0

i − vc) +
τ̄

2N

(
1
4

V2(0) − λ∥ϕ∥∞(X(0) + 2τ̄V(0))V(0)
2k

)
.

3.2. The key estimate

Obviously, it is key to compute
∫ t
τ̄

1
h(s)

∫ s
s−τ(s) α(s−u)Φ′ki(u)duds in the right hand side of (6). If we roughly replace

Φ′ki(u) by Φ′ki(s) in this term, then∫ t

τ̄

1
h(s)

∫ s

s−τ(s)
α(s − u)Φ′ki(s)duds =

∫ t

τ̄

Φ′ki(s)ds = Φki(t) − Φki(τ̄),

since h(s) =
∫ τ(s)

0 α(u)du. By the definition of Φki, we know that

0 ≤ Φki(t) ≤ ∥rϕ(r)∥L1 , (14)

5



so there is a good estimate ∫ t

τ̄

1
h(s)

∫ s

s−τ(s)
α(s − u)Φ′ki(s)duds ≤ ∥rϕ(r)∥L1 .

But, we can not follow this method directly. Actually, even we can establish that Φ′ki(u) ≤ Φ′ki(s) +C(s − u), then∫ t

τ̄

1
h(s)

∫ s

s−τ(s)
α(s − u)Φ′ki(u)duds

≤
∫ t

τ̄

1
h(s)

∫ s

s−τ(s)
α(s − u)

(
Φ′ki(s) +C(s − u)

)
duds ≤ ∥rϕ(r)∥L1 +C

∫ t

τ̄

τ(s)ds,

which is not bounded. In the following lemma, we give a reasonable estimate of
∫ t
τ̄

1
h(s)

∫ s
s−τ(s) α(s− u)Φ′ki(u)duds. For

clarity, the whole proof is divided into four steps.

Lemma 3. Let {(xi, vi)}Ni=1 be a smooth solution to model (1), (2). Let τ(t) be a continuously differentiable function
such that τ′ < 1, τ′ ∈ L1(R+) and τ0 ≤ τ(t) ≤ τ̄. Assume that α is bounded, and 0 ≤ ϕ ∈ Cb(R+) and rϕ(r) ∈ L1(R+).
Then, ∫ t

τ̄

1
h(s)

∫ s

s−τ(s)
α(s − u)Φ′ki(u)duds ≤ ∥rϕ(r)∥L1

 ∥α∥∞∫ τ0
0 α(s)ds

∥τ′∥L1 + 1

 , ∀t ≥ 2τ̄.

Proof. Step 1: Changing the order of integral.

By integrating over s first we get that∫ t

τ̄

1
h(s)

∫ s

s−τ(s)
α(s − u)Φ′ki(u)duds =

∫ t

τ̄−τ(τ̄)

(∫ min{g(u),t}

max{u,τ̄}

α(s − u)
h(s)

ds
)
Φ′ki(u)du, (15)

where g is a bijective function from (0,∞) to (τ0,∞) such that

g(u) − τ(g(u)) = u (16)

since τ′ < 1. Then g is strictly increasing and

u + τ0 ≤ g(u) ≤ u + τ̄. (17)

Furthermore, from (16) we have know that g and τ are commutative, then

1 − g′(u) = −τ′(g(u))g′(u) = −g′(τ(u))τ′(u), (18)

Step 2: Integrating by parts.

For simplicity, we denote f (u) =
∫ min{g(u),t}

max{u,τ̄}
α(s−u)

h(s) ds. By (16), we have that t + τ0 ≤ g(t) ≤ t + τ̄, so for any t ≥ τ̄

f (t) =
∫ min{g(t),t}

max{t,τ̄}

α(s − t)
h(s)

ds = 0.

Similarly, following from (16) we get that g(τ̄ − τ(τ̄)) = τ̄, and then for any t ≥ τ̄

f (τ̄ − τ(τ̄)) =
∫ min{g(τ̄−τ(τ̄)),t}

max{τ̄−τ(τ̄),τ̄}

α(s − τ̄ + τ(τ̄))
h(s)

ds = 0.

6



Combing the above two equalities with (15), we have that∫ t

τ̄

1
h(s)

∫ s

s−τ(s)
α(s − u)Φ′ki(u)duds

= f (t)Φki(t) − f (τ̄ − τ(τ̄))Φki(τ̄ − τ(τ̄)) −
∫ t

τ̄−τ(τ̄)
Φki(u) f ′(u)du

= −
∫ t

τ̄−τ(τ̄)
Φki(u) f ′(u)du. (19)

Note that

d
du

f (u) = −
∫ min{g(u),t}

max{u,τ̄}

α′(s − u)
h(s)

ds − α(0)
h(u)

1[τ̄,∞](u) +
g′(u)α(g(u) − u)

h(g(u))
1g(u)<t(u), ∀t ≥ 2τ̄, (20)

where 1Ω(u) is an indicative function such that 1Ω(u) = 1 when u ∈ Ω, otherwise 1Ω(u) = 0.

Step 3: Dividing the integral region.

To compute f ′(u), the integral region [τ̄ − τ(τ̄), t] is divided into [τ̄ − τ(τ̄), τ̄], [τ̄, g−1(t)] and [g−1(t), t]. Firstly, for

u ∈ [τ̄ − τ(τ̄), τ̄] we have from (20) that

− d
du

f (u) =

∫ g(u)

τ̄

α′(s − u)
h(s)

ds − g′(u)α(g(u) − u)
h(g(u))

=
α(g(u) − u)

h(g(u))
− α(τ̄ − u)

h(τ̄)
− g′(u)α(g(u) − u)

h(g(u))
+

∫ g(u)

τ̄

α(s − u)τ′(s)α(τ(s))
h2(s)

ds

≤ (1 − g′(u))
α(g(u) − u)

h(g(u))
+

∫ g(u)

τ̄

α(s − u)τ′(s)α(τ(s))
h2(s)

ds, (21)

since g(u) is increasing and

h′(s) =
d
dt

(∫ τ(t)

0
α(s)ds

)
= τ′(s)α(τ(s)).

Similarly, we have from (20) that for u ∈ [τ̄, g−1(t)],

− d
du

f (u) =

∫ g(u)

u

α′(s − u)
h(s)

ds +
α(0)
g(u)

− g′(u)α(g(u) − u)
h(g(u))

≤ (1 − g′(u))
α(g(u) − u)

h(g(u))
+

∫ g(u)

u

α(s − u)τ′(s)α(τ(s))
h2(s)

ds,

and for u ∈ [g−1(t), t]

− d
du

f (u) =

∫ t

u

α′(s − u)
h(s)

ds +
α(0)
g(u)

≤ α(t − u)
h(t)

+

∫ t

u

α(s − u)τ′(s)α(τ(s))
h2(s)

ds.

Combining the above two inequalities with (21), we can conclude that

−
∫ t

τ̄−τ(τ̄)
Φki(u) f ′(u)du

≤
∫ t

τ̄−τ(τ̄)
Φki(u)

∫ max{t,g(u)}

min{u,τ̄}

α(s − u)τ′(s)α(τ(s))
h2(s)

dsdu +
∫ g−1(t)

τ̄−τ(τ̄)
Φki(u)(1 − g′(u))

α(g(u) − u)
h(g(u))

du

+

∫ t

g−1(t)
Φki(u)

α(t − u)
h(t)

du. (22)

7



Step 4: Final estimates.

Thus, for the third term of the right hand side of (22) we have that

∫ t

g−1(t)
Φki(u)

α(t − u)
h(t)

du ≤ ∥rϕ(r)∥L1

∫ t−g−1(t)
0 α(s)ds

h(t)
= ∥rϕ(r)∥L1 , (23)

since (16) gives that t − g−1(t) = τ(t). For the second term of the right hand side of (22), we can use (14) and (18) to

get that ∫ g−1(t)

τ̄−τ(τ̄)
Φki(u)(1 − g′(u))

α(g(u) − u)
h(g(u))

du =
∫ g−1(t)

τ̄−τ(τ̄)
−τ′(g(u))g′(u)

α(g(u) − u)
h(g(u))

Φki(u)du

≤ ∥rϕ(r)∥L1
∥α∥∞
inf h

∫ g−1(t)

τ̄−τ(τ̄)
(τ′(g(u)))−g′(u)du ≤ ∥rϕ(r)∥L1

∥α∥∞∫ τ0
0 α(s)ds

∥(τ′)−∥L1 , (24)

where ρ+ = max{ρ, 0} and ρ− = max{−ρ, 0}. Now, we compute the first term of the right hand side of (22). By

integrating over u first, we get that∫ t

τ̄−τ(τ̄)
Φki(u)

∫ max{t,g(u)}

min{u,τ̄}

α(s − u)τ′(s)α(τ(s))
h2(s)

dsdu

≤
∫ t

τ̄

(∫ s

s−τ(s)
Φki(u)α(s − u)du

)
(τ′(s))+α(τ(s))

h2(s)
duds

≤ ∥rϕ(r)∥L1

∫ t

τ̄

(τ′(s))+α(τ(s))
h(s)

ds ≤ ∥rϕ(r)∥L1
∥α∥∞∫ τ0

0 α(s)ds
∥(τ′)+∥L1 . (25)

Combining (22) with (23)−(25), we obtain that

−
∫ t

τ̄−τ(τ̄)
Φki(u) f ′(u)du ≤ ∥rϕ(r)∥L1

 ∥α∥∞∫ τ0
0 α(s)ds

∥τ′∥L1 + 1

 ,
since |τ′| = (τ′)+ + (τ′)−. Thus, following from the above inequality and (19), we complete the whole proof. �

3.3. The proof of Theorem 1

Combining Proposition 1 with the above three lemmas, we can prove Theorem 1.

Proof of Theorem 1. Note that 4k2
0λ∥ϕ∥∞τ̄ ≤ 1⇒ ekτ̄ ≤ 2 since k = 2k0λ∥ϕ∥∞τ̄ and k0 ≥ 1. So for any s ≥ 0, we can

use (10) to get that

λ∥ϕ∥∞τ̄ sup
u∈[s−τ̄,s]

V2(u) ≤ λ∥ϕ∥∞τ̄k2
0e2kτ̄V2(s) ≤ 4k2

0λ∥ϕ∥∞τ̄V2(s),

and then by (11) we have that

1
2N

∫ t

τ̄

(
V2(s) − λ∥ϕ∥∞τ̄ sup

u∈[s−τ̄,s]
V2(u)

)
ds

≥
1 − 4k2

0λ∥ϕ∥∞τ̄
2N

∫ t

τ̄

V2(s)ds ≥
1 − 4k2

0λ∥ϕ∥∞τ̄
2N

·
V2(0)

(
e−2kτ̄ − e−2kt

)
2k

≥
1 − 4k2

0λ∥ϕ∥∞τ̄
4Nk

V2(0)
(

1
4
− e−2kt

)
.
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Note that

1 − 4k2
0λ∥ϕ∥∞τ̄

16Nk
V2(0) +

τ̄

2N

(
1
4

V2(0) − λ∥ϕ∥∞(X(0) + 2τ̄V(0))V(0)
2k

)
> 0

for sufficiently small τ̄. Then, it follows from Proposition 1, Lemma 2 and Lemma 3 that for any t ≥ τ̄,

d
dt

1
2

N∑
i=1

|xi(t) − xc(t)|2


≥
N∑

i=1

(x0
i − xc) · (v0

i − vc) − ∥rϕ(r)∥L1

 ∥α∥∞∫ τ0

0 α(s)ds
∥τ′∥L1 + 1

 − 1 − 4k2
0λ∥ϕ∥∞τ̄

4Nk
V2(0)e−2kt. (26)

Thus, if

N∑
i=1

(x0
i − xc) · (v0

i − vc) > ∥rϕ(r)∥L1

 ∥α∥∞∫ τ0

0 α(s)ds
∥τ′∥L1 + 1

 ,
from (26) there is a positive lower bound of d

dt

N∑
i=1
|xi − xc|2 when t is large enough. Combining this argument with (4),

we know that X(t)→ ∞, so there is the non-existence of flocking. �
Specially, the condition (5) becomes

N∑
i=1

(x0
i − xc) · (v0

i − vc) > ∥rϕ(r)∥L1 as the delays approach zero. For model (1),

(2), it is obvious to see that X(t) is unbounded. It is coincident with Theorem 1 for C−S model without delay in [31].

4. A sufficient condition of flocking

For model (1), (2) with short range communication weights, a sufficient condition of the initial data was given

to establish the non-flocking behavior in the above section. In this section, we investigate the flocking behavior for

model (1), (2).

Lemma 4. Let 0 ≤ ϕ ∈ Cb(R+) be a decreasing function. Let τ ∈ [0, τ̄] satisfy that ekτ̄ < 2. Then, the classical
solution {(xi, vi)}Ni=1 of model (1), (2) satisfies that for any t ≥ τ̄,

dV(t)
dt
≤ −λϕ(D(t))

2
V(t) + 32k2

0τ̄
2λ3∥ϕ∥3∞V(t),

where D(t) = sup{|xk(s) − xi(s)| : s ∈ [t − τ̄, t], k , i}.

Proof. It follows from (1) that for any t ≥ τ̄,

d
dt

 N∑
i=1

|vi − vc|2
 = − λ

Nh(t)

N∑
i=1

N∑
k=1

(vk(t) − vi(t))
∫ t

t−τ(t)
α(t − s)ϕki · (vk(s) − vi(s))ds. (27)

According to (27) and vk(s) − vi(s) = vk(t) − vi(t) + vk(s) − vk(t) + vi(t) − vi(s), we have that

d
dt

 N∑
i=1

N∑
k=1

(vk − vi)2


= − 2λ

h(t)

N∑
i=1

N∑
k=1

(vk(t) − vi(t))2
∫ t

t−τ(t)
α(t − s)ϕkids

+
4λ
h(t)

N∑
i=1

N∑
k=1

∫ t

t−τ(t)
α(t − s)ϕki(vi(s) − vi(t))(vk(t) − vi(t))ds, ∀t ≥ τ̄.

9



By the above equality and the Young inequality we get that for any t ≥ τ̄

d
dt

 N∑
i=1

N∑
k=1

(vk − vi)2


≤ − λ

h(t)

N∑
i=1

N∑
k=1

(vk(t) − vi(t))2
∫ t

t−τ(t)
α(t − s)ϕkids +

4λ
h(t)

N∑
i=1

N∑
k=1

∫ t

t−τ(t)
α(t − s)ϕki(vi(s) − vi(t))2ds

≤ − λ
h(t)

V2(t)
∫ t

t−τ(t)
α(t − s)ϕkids + 4Nλ∥ϕ∥∞ sup

s∈[t−τ̄,t]

N∑
i=1

(vi(s) − vi(t))2, (28)

since h(t) =
∫ τ(t)

0 α(s)ds. Then, we compute
N∑

i=1
(vi(s) − vi(t))2. According to (1) and the Cauchy−Schwarz inequality,

we have that for any s ∈ [t − τ̄, t],

(vi(s) − vi(t))2 =

(∫ t

s
v̇i(u)du

)2

=

∣∣∣∣∣∣∣
∫ t

s

λ

Nh(u)

N∑
k=1

∫ u

u−τ(u)
α(u − ω)ϕki(vk − vi)(ω)dωdu

∣∣∣∣∣∣∣
2

≤ λ2∥ϕ∥2∞
N

N∑
k=1

∣∣∣∣∣∣
∫ t

s

∫ u

u−τ(u)

α(u − ω)(vk − vi)(ω)
h(u)

dωdu

∣∣∣∣∣∣2

≤ λ2∥ϕ∥2∞
N

N∑
k=1

(∫ t

s

∫ u

u−τ(u)

α(u − ω)|vk − vi|2(ω)
h(u)

dωdu
) (∫ t

s

∫ u

u−τ(u)

α(u − ω)
h(u)

dωdu
)
.

Following from (10), we get that

N∑
i=1

N∑
k=1

∫ t

s

∫ u

u−τ(u)

α(u − ω)|vk − vi|2(ω)
h(u)

dωdu

≤ sup
w∈[t−2τ̄,t]

V2(w)
∫ t

s

∫ u

u−τ(u)

α(u − ω)
h(u)

dωdu ≤
(
k0e2kτ̄V(t)

)2
∫ t

s
du ≤ 16k2

0τ̄V
2(t),

since h(t) =
∫ τ(t)

0 α(s)ds. Combining the above two inequalities, we obtain that

sup
s∈[t−τ̄,t]

N∑
i=1

(vi(s) − vi(t))2

≤ λ2∥ϕ∥2∞
N

· 16k2
0τ̄V

2(t)
∫ t

s

∫ u

u−τ(u)

α(u − ω)
h(u)

dωdu ≤
16k2

0τ̄
2λ2∥ϕ∥2∞
N

V2(t). (29)

Thus, by (28) and (29) we have that

d
dt

 N∑
i=1

N∑
k=1

(vk − vi)2

 ≤ − λh(t)
V2(t)

∫ t

t−τ(t)
α(t − s)ϕkids + 64k2

0τ̄
2λ3∥ϕ∥3∞V2(t). (30)

According to the definition of D(t), from the decreasing of ϕ we can get that

−
∫ t

t−τ(t)
α(t − s)ϕkids ≤ −h(t)ϕ(D(t)).

Thus, combining the above inequality with (30),

2V(t)
dV(t)

dt
≤ −λϕ(D(t))V2(t) + 64k2

0τ̄
2λ3∥ϕ∥3∞V2(t),

which completes the proof. �
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Theorem 2. Let τ ∈ [0, τ̄] satisfy that ekτ̄ < 2. Let 0 ≤ ϕ ∈ Cb(R+) be a decreasing function. Assume that there exists
γ > 1 satisfies that

(γ − 1)(D(0) + 1)ϕ(γ(D(0) + 1)) ≥ 8

λ
√

N
V(0). (31)

Then the classical solution {(xi, vi)}Ni=1 of model (1), (2) exhibits flocking behavior if τ̄ is small enough.

Proof. According to the definition of D(t) in Lemma 4, by the model of (1) we have that

|xk(s) − xi(s)| = |xk(0) − xi(0)| +
∫ s

0
|vk(u) − vi(u)|du.

Using the triangular inequality, we get that

|vk(u) − vi(u)| ≤ |vk(u) − vc| + |vi(u) − vc|

≤ 2

√
|vk(u) − vc|2 + |vi(u) − vc|2

2
≤
√

2

√√√ N∑
i=1

|vi(u) − vc|2 =
V(u)
√

N
. (32)

From the above two inequalities and (13), we have that

D(t) ≤ D(0) +
∫ τ̄

0

V(u)
√

N
du +

∫ t

τ̄

V(u)
√

N
du ≤ D(0) + 2

V(0)
√

N
τ̄ +

∫ t

τ̄

V(u)
√

N
du

≤ D(0) + 1 +
∫ t

τ̄

V(u)
√

N
du, (33)

if τ̄ is small enough (2 V(0)√
N
τ̄ ≤ 1). Note that D(τ̄) ≤ D(0) + 1. So for any γ > 1, there exists t > τ̄ such that

D(t) ≤ γ(D(0) + 1). Let t0 be the largest time such that D(t) ≤ γ(D(0) + 1).

Now, we prove t0 = ∞. If not, D(t0) = γ(D(0) + 1). Then, from Lemma 4 we have that

dV(t)
dt

≤ −λϕ(γ(D(0) + 1))
2

V(t) + 32k2
0τ̄

2λ3∥ϕ∥3∞V(t)

≤ −λϕ(γ(D(0) + 1))
4

V(t), ∀ t ∈ [τ̄, t0], (34)

when τ̄ further satisfies that 128k2
0τ̄

2λ∥ϕ∥3∞ ≤ ϕ(γ(D(0) + 1)). Following from (34), we get that for any t ∈ [τ̄, t0],

V(t) ≤ V(τ̄) exp
{
−λϕ(γ(D(0) + 1))

4
(t − τ̄)

}
. (35)

Combining the above inequality with (33),

D(t) < D(0) + 1 +
V(τ̄)
√

N

4
λϕ(γ(D(0) + 1))

≤ D(0) + 1 +
V(0)
√

N

8
λϕ(γ(D(0) + 1))

, ∀ t ∈ [τ̄, t0].

Thus, from assumption (31) we get that D(t0) < γ(D(0)+1), which is in contradiction with D(t0) = γ(D(0)+1). Thus,

t0 = ∞, and then (35) holds for any t ≥ τ̄. �

Remark 2. There does exist a sufficiently large γ such that assumption (31) holds, if rϕ(r)→ ∞ as t → ∞. A typical
example is that ϕ(r) = (1 + r2)−β/2 with β ∈ [0, 1).
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5. Simulations

Example 1. Similarly as before, we first investigate the non-flocking behavior. Roughly, let α(t) = 1, N = 6,

d = 3, τ(t) = 1+t
2+t , ϕ(|xk − xi|) = 10

(1+|xk−xi |2)β
, β = 0.1. But ϕ may not be a polynomial function in this paper. The initial

positions and the initial velocities are

x10 = (0.1,−0.5, 0.5), v10 = (1,−1, 1),

x20 = (0.2, 0, 0.3), v20 = (−100,−5, 4),

x30 = (0, 0.2, 0.1), v30 = (0, 20, 40),

x40 = (0.6, 0.5, 0.2), v40 = (−2, 1, 3),

x50 = (0.1, 0.2, 0.2), v50 = (6, 200, 3),

x60 = (0.8, 0.3, 0.1), v60 = (80, 4, 2).

It is easy to compute that the above initial condition satisfies (5) in Theorem 1. The velocities distance vi(t)− vc(t) are

shown in Fig.1(b). As expected, the system appears the non−flocking behavior. The simulation results successfully

validate our theoretical analysis about Theorem 1.

In addition, the velocity distances vi(t) − vc(t) are shown in Fig.1(a)(b)(c)(for τ(t) = 1+t
10(2+t) , τ(t) =

1+t
2+t or τ(t) =

10(1+t)
2+t respectively) for the case of the critical exponent β = 0.1. From the above simulation results, we can know that

τ(t) is a positive influence on the non−flocking behavior. The results are consistent with Theorem 1.

Example 2. For the behavior of flocking, we choose the following data: α(t) = 1, N = 3, d = 3, τ(t) = 1+t
2+t ,

ϕ(|xk − xi|) = 1
(1+|xk−xi |2)β

, β = 0.1, the initial positions and the initial velocities are

x10 = (1,−5, 5), v10 = (1, 1, 0),

x20 = (−2, 3, 3), v20 = (−2,−0.5, 0),

x30 = (5, 2, 1), v30 = (1,−2, 0).

They satisfy the condition of Theorem 2. The velocities distance vi(t)−vc(t) are shown in Fig.3(b). It is easy to see that

there exists flocking, so the results successfully validate Theorem 2. Compared with the previous case (see Fig.1(b)),

it seems that the flocking behavior is sensitive to the initial data. If initial data satisfy the condition of Theorem 2,

there exists flocking. It exhibits non-flocking if initial data satisfy the condition (5).

Similar to Example 1, we change the value of β in order to investigate the influence of ϕ on the flocking behavior.

The simulation results are given in Fig.2(a)(b)(c)(for β = 0.5, β = 1 or β = 10 respectively). It is easy to see that

ϕ promotes flocking, it is in keeping with the sufficient condition (31) in Theorem 2. It is also consistent with the

classical results by Cucker and Smale in 2007 (see [1]). In addition, we can change the value of τ(t), then we obtain

the following Fig.3(a)(b)(c)(for τ(t) = 1+t
10(2+t) , τ(t) =

1+t
2+t or τ(t) = 10(1+t)

2+t respectively). From the simulation results, we

can discover that the flocking behavior is closely related to delay τ(t) and τ(t) is a negative influence on the flocking

behavior. From this perspective, it verifies our conclusion from Theorem 2.
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Figure 1: The velocity distance vi(t) − vc(t) when τ(t) = 1+t
10(2+t) , τ(t) =
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2+t or τ(t) = 10(1+t)

2+t .
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Figure 2: The velocity distance vi(t) − vc(t) when β = 0.5, β = 1 or β = 10.

0 2 4 6 8 10 12

Times(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

D
is

ta
nc

e 
to

 th
e 

av
er

ag
e 

V
el

oc
ity

 v
-v

c

v
i
(t)-v

c
, τ(t)=(1+t)/10(2+t), i=1,2,3

(a) τ(t) = 1+t
10(2+t)

0 2 4 6 8 10 12

Times(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

D
is

ta
nc

e 
to

 th
e 

av
er

ag
e 

V
el

oc
ity

 v
-v

c

v
i
(t)-v

c
, τ(t)=(1+t)/(2+t), i=1,2,3

(b) τ(t) = 1+t
2+t

0 20 40 60 80 100 120

Times(s)

-400

-300

-200

-100

0

100

200

300

D
is

ta
nc

e 
to

 th
e 

av
er

ag
e 

V
el

oc
ity

 v
-v

c

v
i
(t)-v

c
, τ(t)=10(1+t)/(2+t), i=1,2,3

(c) τ(t) = 10(1+t)
2+t

Figure 3: The velocity distance vi(t) − vc(t) when τ(t) = 1+t
10(2+t) , τ(t) =

1+t
2+t or τ(t) = 10(1+t)

2+t .

13



6. Conclusion

In this paper, we obtained sufficient conditions of non−flocking and flocking for the C−S model with distributed

delays. It was the key to estimate an inequality of the position variance such that X(t) is unbounded. A significant

basis of our approach was that the non−existence of the asymptotic flocking is equivalent to the unboundedness

of X(t). Furthermore, by estimating an inequality of the derivative of V(t), we obtained a sufficient condition that

velocity decays to zero at the rate of exponential growth and the upper bound of position is bounded when t is large

enough. Above all, the sufficient conditions depend on initial data, communication weight and time delays according

to simulation results and the main theorems.

7. Appendix

Proof of Lemma 1. By the Hölder inequality and (27), we have that for any t ≥ τ̄,

d
dt

 N∑
i=1

|vi − vc|2


≥ −λ∥ϕ∥∞
Nh(t)

∫ t

t−τ(t)
α(t − s)

 N∑
i=1

N∑
k=1

|vk(t) − vi(t)|2


1
2
 N∑

i=1

N∑
k=1

|vk(s) − vi(s)|2


1
2

ds

≥ −λ∥ϕ∥∞
Nh(t)

∫ t

t−τ(t)
α(t − s)V(s)V(t)ds.

From (4), we have that
d
dt

V(t) ≥ −λ∥ϕ∥∞ sup
s∈[t−τ(t),t]

V(s), (36)

since h(t) =
∫ τ(t)

0 α(s)ds. Then, by (36) and (12) we have that

V ′(0) ≥ −λ∥ϕ∥∞τ̄k0V(0).

By the continuous differentiability of V(t) and the definition of k (12) we obtain that V ′(t) > −kV(t) holds in some

time intervals. Define that

t0 = sup{t ≥ 0 : V ′(s) > −kV(s), ∀ s ∈ [0, t)}.

Now, we show that t0 = ∞. If t0 is finite, we have that

V ′(t) > −kV(t), ∀ t ∈ [0, t0), (37)

and

V ′(t0) = −kV(t0). (38)

Following from (37) we obtain that

V(s) < ek(t−s)V(t), ∀ t0 > t ≥ s ≥ 0. (39)

When s ∈ [−τ̄, 0), by the definition of k0 and inequality (37) we obtain that for any t0 > t ≥ 0 > s ≥ −τ̄

V(s) ≤ k0V(0) < k0ektV(t) < k0ek(t−s)V(t).
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Combining the above two inequalities, for any t ∈ [0, t0) we have that

V(s) < k0ekτ̄V(t). (40)

Using (36) again, we can obtain from the above inequality and the assumption of τ̄ that

V ′(t) > −λτ̄∥ϕ∥∞k0ekτ̄V(t), ∀ t ∈ [0, t0).

At the same time, we can use (39) to deduce that

V(t0) ≥ k−1
0 e−kt0 V(0) > 0.

Combining the above two estimates with ekτ̄ ≤ 2 we get that

V ′(t0) ≥ −λτ̄∥ϕ∥∞k0ekτ̄V(t0) = −kV(t0).

Thus, t0 = ∞, and V ′(t) > −kV(t) for any t ≥ 0. Then, we can easily obtain (10) and (11) with t ≥ s. For (11) with

t < s, we can use a similar computation of (36) to get that

d
dt

V(t) ≤ λ∥ϕ∥∞ sup
s∈[t−τ(t),t]

V(s).

By (11) with t ≥ s we get that
d
dt

V(t) ≤ k0λ∥ϕ∥∞τ̄ekτ̄V(t) < kV(t),

which yields (11) for the case of t < s. �
Proof of Lemma 2. From the Hölder inequality we have that for any t ≥ τ̄

d
dt

 N∑
i=1

(xi − xc) · (vi − vc)


=

N∑
i=1

|vi − vc|2 −
λ

2Nh(t)

N∑
i=1

N∑
k=1

∫ t

t−τ(t)
α(t − s)ϕki(vk(s) − vi(s))(xk(t) − xi(t))ds

≥ 1
2N

N∑
i=1

N∑
k=1

|vk − vi|2 −
λ∥ϕ∥∞
2Nh(t)

∫ t

t−τ(t)
α(t − s)

 N∑
i=1

N∑
k=1

|vk − vi|2


1
2
 N∑

i=1

N∑
k=1

|xk(t) − xi(t)|2


1
2

ds

=
1

2N

(
V2(t) − λ∥ϕ∥∞X(t)

∫ t

t−τ(t)
V(s)ds

)
.

Thus, we can obtain from (13) that

N∑
i=1

(xi(τ̄) − xc) · (vi(τ̄) − vc)

≥
N∑

i=1

(x0
i − xc) · (v0

i − vc) +
1

2N

∫ τ̄

0

(
V2(t) − λ∥ϕ∥∞X(t)

∫ t

t−τ(t)
V(s)ds

)
dt

≥
N∑

i=1

(x0
i − xc) · (v0

i − vc) +
τ̄

2N

(
1
4

V2(0) − λ∥ϕ∥∞(X(0) + 2τ̄V(0))V(0)
2k

)
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since (11) gives that ∫ t

t−τ(t)
V(s)ds ≤ V(t)

∫ t

t−τ(t)
ek|t−s|ds ≤ V(t)

k
.
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