
Northumbria Research Link

Citation: Chen, Haojie, Zhang, Jian, Li, Rong, Ding, Guofu and Qin, Sheng-feng (2022) A
two-stage genetic programming framework for Stochastic Resource Constrained Multi-
Project Scheduling Problem under New Project Insertions. Applied Soft Computing, 124. p.
109087. ISSN 1568-4946 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.asoc.2022.109087
<https://doi.org/10.1016/j.asoc.2022.109087>

This  version  was  downloaded  from  Northumbria  Research  Link:
https://nrl.northumbria.ac.uk/id/eprint/49262/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


A Two-stage Genetic Programming Framework for Stochastic Resource 

Constrained Multi-Project Scheduling Problem under New Project Insertions 

HaoJie Chen 1, Jian Zhang1, Rong Li1, Guofu Ding1, Shengfeng Qin2 

HaoJie Chen 

e-mail: chenhaojie12138@163.com  

Jian Zhang(Correspondence author) 

e-mail:jerrysmail@263.net 

Rong Li(Correspondence author) 

e-mail: bogiey@home.swjtu.edu.cn 

Guofu Ding 

e-mail: dingguofu@163.com  

Shengfeng Qin 

e-mail: sheng-feng.qin@northumbria.ac.uk 

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, 

China  

2. Department of Design, Northumbria University, Newcastle upon Tyne NE1 8ST, UK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:%20chenhaojie12138@163.com
mailto:jerrysmail@263.net


Abstract:  This study proposes a novel hyper-heuristic based two-stage genetic programming 

framework (HH-TGP) to solve the Stochastic Resource Constrained Multi-Project Scheduling 

Problem under New Project Insertions (SRCMPSP-NPI). It divides the evolution of genetic 

programming into generation and selection stages, and then establishes a multi-state combination 

scheduling mode with multiple priority rules (PRs) for the first time to realize resource constrained 

project scheduling under both stochastic activity duration and new project insertion. In the 

generation stage, based on a modified attribute set for multi-project scheduling, NSGA-II is 

hybridized to evolve a non-dominated PR set for forming a selectable PR set. While in the selection 

stage, the whole decision-making process is divided into multiple states based on the completion 

activity duration, and a weighted normalized evolution process with two crossovers, two mutations 

and four local search operators to match the optimal PR for each state from the PR set. Under the 

existing benchmark, HH-TGP is compared with the existing methods to verify its effectiveness. 

 

Key words: Multi-state combination scheduling; Genetic programming; Hyper-heuristic; Priority 

rule; Stochastic resource constrained multi-project scheduling 

 

1 Introduction 

The Resource Constrained Project Scheduling Problem (RCPSP) [1] has been widely studied 

for many years [2]  as a NP-hard problem [3], aiming to optimize one or more objective 

functions such as the minimum makespan with a wide variety of application constraints  and 

extensions [4]. When dealing with a multi-projects application [5,6] in the past decade, the 

problem becomes the Resource Constrained Multi-Project Scheduling Problem (RCMPSP), 

thereby referring multiple projects as a portfolio. Different from RCPSP, RCMPSP needs to 

schedule multiple projects, each containing a set of activities with finish-to-start precedence 

relations, and activities from different projects may require the same resources. Therefore, the 

concepts of global resources and local resources are defined in RCMPSP [7]. In general, the 

optimization of RCMPSP is primarily focusing on the minimum makespan and only considering 

deterministic environment.  

However, in the actual environment, due to many unpredictable dynamic events during the 

execution of a project or portfolio, the actual duration of an project activitymay be longer or 

shorter than its initial estimate. In order to deal with this uncertainty, the Stochastic 

Resource-Constrained (Multi-)Project Scheduling Problem (SRC(M)PSP) has been proposed and 

become a research hotspot in the field of project scheduling in the past decade [8,9]. Generally 

speaking, the ideas of solving SRC(M)PSP mainly include the following three categories. The first 

is pure proactive scheduling, in which one schedule responding to changes and uncertainties is 

obtained, that is, by adding some buffers to eliminate the uncertainty [10]. However, due to the 

actual uncertainty may exceed the extreme of the buffer, its application is limited. The second is 

proactive–reactive scheduling with two execution steps. Before the execution of the project or 

portfolio, the proactive scheduling creates a baseline schedule in the case of ignoring the dynamic 

impact, and then the reactive scheduling improves or repairs the schedule to ensure that the whole 

project or portfolio can be implemented normally with respect to the new baseline [11]. In 

proactive–reactive scheduling, all information (e.g. the duration of each activity) can be known at 



the initial state or each driven time, so it can obtain schedules with better quality. Meanwhile, the 

reactive scheduling is to repair the initial baseline, so in addition to quality, robustness is also the 

most common goal of proactive-reactive scheduling [12]. The last one is stochastic scheduling, in 

which randomness is assumed to obey a known distribution, while the execution of the project or 

portfolio is regarded as a multi-stage decision process, and only part of the information can be 

obtained in each stage. As a result, this idea does not produce baseline and there is no repair 

process, and the key of stochastic scheduling is to obtain a so-called scheduling policy [13,14].   

Around these three categories, a large number of algorithms have been proposed to solve 

SRC(M)PSP, mainly PR based heuristics and meta-heuristics (see Section 2.2 for details). 

However, PRs lack optimization ability and have problem dependence, that is, the optimal PR for 

different scales and objectives is often inconsistent [15]. Although meta-heuristics can avoid this 

problem, their responsiveness and robustness are poor due to a large number of iterative 

calculations and random searches. These PRs limitations and meta-heuristics in stochastic 

problems lead to the hyper-heuristic proposal, which designs a high-level search mechanism for 

selecting or generating low-level heuristics to ensure solving problems in a heuristic 

computational time [16]. Now, hyper-heuristics, especially genetic programming algorithm (GP), 

have been applied to scheduling fields, such as flow shop scheduling [17], job shop scheduling 

[18,19] and project scheduling (See Section 2.3 for details).  

This paper proposes a novel HH-TGP to solve SRCMPSP-NPI, which extends SRCMPSP to 

include new project insertions for more practical reasons [20]. By constructing a multi-state PR 

combination scheduling mode, this method first breaks the fixed use of the same evolved PR for 

decision-making in existing GP to solve project scheduling. In order to obtain this PR scheduling 

combination, the whole evolution process is divided into two stages, namely generation stage and 

selection stage. The function of the generation stage is the same as that of the traditional GP, but 

HH-TGP is applied to SRCMPSP-NPI, resulting in the need of modifying the attribute set 

constituting evolved PRs. At the same time, because the final result of the generation stage is a 

non-dominant PR set rather than a single PR for decision-making, NSGA-II is integrated for PR 

performance evaluation based on non-dominated relationship. After obtaining the PR set, the 

selection stage is executed to evolve the PR combination in multiple states, that is, matching the 

most appropriate PR for each state to improve performance. In order to complete this evolution 

effectively, the state partition method based on the parameter of completion activity duration, the 

gene expression of PR combination and the genetic and local search operators are designed. The 

above key techniques in HH-TGP have been fully verified by SRCMPSP-NPI benchmark under 

five distributions. Compared with the existing research, the key contributions of this study are: 

1. A novel HH-TGP framework is proposed (see Fig.2 for details), which enables GP being 

applied to stochastic multi-project scheduling. More importantly, it constructs a multi-state PR 

combined scheduling mode in project scheduling for the first time, which breaks the fixed use of 

evolved PR at different decision times in existing GP research. 

2. In order to obtain the non-dominant PR set, two improvements of modifying the attribute 

set in the existing GP and combining it with NSGA-II provide a new solution space and an 

evaluation idea for the subsequent hyper-heuristic research in multi-project or multi-objective 

scheduling.  

3. A new state partition method is designed with two crossovers, two mutations and four local 

search operators to realize the evolution of selection stage, based on completion activity duration 



and the PR expression of each state with integer coding. 

The remainder of the paper is organized as follows. Section 2 summarizes the existing related 

research from the perspective of stochastic project scheduling and hyper-heuristics, and gives the 

motivation of this paper. Section 3 overviews the mathematical model of SRCMPSP-NPI. The 

whole framework of HH-TGP and its basic components in the two stages are described in Section 

4. Section 5 introduces the details of evolution in the generation and selection stages. Section 6 

provides the comparative experimental results and discussion. Section 7 summarizes the findings 

from this work and proposes some future research directions. 

2 Related work 

2.1 Existing PRs and meta-heuristics for solving SRC(M)PSP 

For solving SRC(M)PSP, the literature on exact algorithm is very scarce. In addition to the 

branch and bound method for SRCPSP [8], to our best knowledge, only Creemers [21] designed 

an exact procedure based on Markov chain, and Alipouri et al. [22] proposed a mixed integer 

linear programming model. The computational time of exact algorithm will increase exponentially. 

Therefore, researching into PR based heuristics and meta-heuristics attracts a lot of attention. For 

applying PRs and meta-heuristics to project scheduling, the key two sub problems need to be 

answered: (1) how to optimize activity sequencing and (2) how to transform activity sequencing 

into schedule. The solution of the former sub problem is to design a new priority calculation 

method or search mechanism, while the latter needs to explore new policy classes [23], similar to 

the schedule generation scheme in RCPSP [24]. In this section, the existing PRs and 

meta-heuristics applied to SRC(M)PSP are reviewed from these two aspects.  

From the perspective of policy class, one of the most used policy classes, is Resource-based 

Policy Class (RB-policy), similar to the parallel SGS in RCPSP [23]. Its role is to make sure that, 

at any decision-making time, if the resource and precedence constraints are not violated, the 

decision maker will allow all the unimplemented activities to start. However, RB-policy has the 

defect of discontinuity and non-monotonicity, which leads to the existence of Graham anomalies 

[25]. This defect can be eliminated by adding a side start-start constraint to form Activity-based 

Policy Class (AB-policy). At the same time, based on the minimum forbidden set, Earliest-start 

Policy Class (ES-policy) [26] and Pre-selective Policy Class (PS-policy) [27] are introduced. The 

minimum forbidden set means that any two activities in the set do not satisfy the resource 

constraint, but any subset of the set can break this condition. The difference is that ES-policy adds 

finish-start constraints, while PS-policy continuously pre-selects from the activity sequence, to 

break the minimum forbidden set and form a new logical relationship without resource constraints 

between activities. Furthermore, meta-heuristics are applied on the top of finish-start and 

start-start constraints, resulting in Pre-processor Policy Class (PP-policy) [28] and Generalized 

Preprocessor Policy Class (GP-policy) [29]. In fact, PP-policy only adds finish-start constraints 

between activities, while GP-policy depends on finish-start and start-start constraints. PP-policy 

and GP-policy are both showed effective. 

Compared with policy class research, many meta-heuristics are proposed to solve 

SRC(M)PSP. Ginzburg et al. [30] proposed a greedy meta-heuristic composed of three operators 



with control, calculation and selection functions for effectively reducing the makespan. With the 

goal of further improving the performance, Tsai et al. [31] developed a diversified tabu search 

algorithm combining multiple tabu lists, randomized short-term memory and multiple starting 

schedules. Similarly, Ballestin et al. [32] described a GRASP-heuristic strategy with improved 

performance. In addition to greedy and local search, the improved evolutionary algorithm and 

swarm intelligence are also applied in SRC(M)PSP. Fang et al. [33] improved an estimation of 

distribution algorithm by combining permutation-based local search, which has a clear dominance 

under medium or high variance distribution. Ma et al. [34] designed an integrated genetic 

algorithm for searching the quasi-optimal. Satic et al. [35] analysed and compared the 

optimization ability and the coping ability facing the increasing uncertainty of five meta-heuristics 

in SRCMPSP. Sallam et al. [36] designed a control approach based on Q-learning to realize the 

alternating search of differential evolution and discrete algorithm. 

At the same time, PR based heuristics [37-39], due to their simplicity, rapidity, stability, and 

intuition, have recently attracted more attention in solving RC(M)PSP. Similarly, for SRC(M)PSP, 

Wang et al [40] established an effective Markov decision process model to solve SRCMPSP by 

using the existing efficient PRs to reduce the solution space. Chen et al [23] summarized 17 PRs 

and applied them to schedule different scales of SRCPSP, showing that the optimal PR in 

stochastic environment is different from that in deterministic environment. Meanwhile, they 

verified that under medium or high variance distribution, the optimal PR is superior to the five 

state-of-the-art meta-heuristics for solving SRCPSP. Under the SRCPSP optimization with the 

goal of net present value, Rezaei et al. [41] also verified the superiority of PRs over existing 

meta-heuristics. In the same vein, Wang et al [42] analysed the performance of 20 PRs from two 

aspects of robustness and schedule quality. Chen et al. [20] incorporated new project insertions 

into SRCPSP-NPI for further exploring the solving ability of the same PRs. Chakrabortty et al [43] 

proposed a method based on PR to solve the SRCPSP by considering the dynamic resource 

demand. 

2.2 Hyper-heuristics in resource constrained project scheduling 

From the research in Section 2.1, when solving SRC(M)PSP, in addition to the large 

consumption caused by iterations and random searches, the results of the existing meta-heuristic 

algorithms are worse than the optimal PR under medium and high variance distribution. However, 

it is noticed that (1) PRs have no optimization ability and (2) there is no single optimal PR that can 

be applied to all problems when facing different environments (deterministic or stochastic 

environment), objectives or validation criterion. Meanwhile, due to the need for a lot of 

experience and data, it is very difficult to manually design or mix PR for improving performance 

[44]. Therefore, while retaining the advantages of PR decision-making, the hyper-heuristics of 

selecting or generating PRs with better performance by training show great potential in 

SRC(M)PSP.  

Over the past few years, the hyper-heuristics have limited applications in resource 

constrained project scheduling. Initially, some local search methods are explored for the high-level 

search of hyper-heuristics, such as greedy search [45] and threshold accepting [46]. Then, 

population-based meta-heuristics become popular as high-level search. In addition to a few studies 

based on swarm intelligence, such as particle swarm optimization [47], GP has almost become the 



most mainstream method in hyper-heuristics. For example, Lin et al. [48] adopted GP as the 

upper-level search and considered 10 neighbourhood structures as the low-level heuristics to 

optimize the multi-skill RCPSP. Based on the same framework, Zhu et al. [49] further designed a 

decomposition mechanism to improve population diversity and the search ability of GP. In 

addition, Chand et al. [50] applied GP to RCPSP, showing that the evolved PRs can be better than 

the existing state-of-the-art PRs. The similar improved methods are reported to considering the 

dynamic resource disruptions [51], enhancing the evolution ability with adding 

Rollout-Justification procedure [52].  

Furthermore, when scheduling in stochastic environment, the research on hyper-heuristics is 

scarcer. Alipouri et al. [53] proposed an adaptive differential evolution hyper-heuristic, which only 

realized the automatic combination of existing PRs and scheduling policy classes. Kühn et al. [54] 

used neural network to automatically assign weights to different attributes, to establish hybrid PRs 

with linear priority combination. Considering the collaborative decision, Chen et al. [55] 

introduced ensemble learning into the hyper-heuristic framework to schedule SRCPSP by 

evolving a decision ensemble instead of single PR. This is the first time to realize the application 

of GP in RCPSP with stochastic duration. 

2.3 Motivation 

By analysing the above existing literature, the motivation of this paper is as follows: 

1. In addition to being fast, intuitive, and stable, PR can produce better results than the 

existing meta-heuristics for stochastic project scheduling, which gives the great potential to the 

research of hyper-heuristics. However, to the best of our knowledge, there is scarce literature on 

GP to generate PRs for SRCMPSP, which is one of the most common cases in practice considering 

the randomness and the complexity of multiple projects simultaneously. At the same time, the 

hyper-heuristic studies in Section 2.2 are oriented to single objective or weighted normalized 

multi-objective optimization. The multi-objective evolution mode based on non-dominated 

relationship needs to be further explored, although its goal in this paper is to obtain the 

non-dominant PR set.  

2. More importantly, the existing GP with PR generation is applied to obtain an optimal PR 

through iterative optimization and relies on this PR to calculate the priority during the scheduling 

process, so that the optimal priority of each decision point is consistent. However, it is well known 

that the optimal priority will be changed with the execution of a portfolio or project. For example, 

the resource attributes of the optimal PR should be considered more in the early state of the 

scheduling process and time level attribute of the optimal PR should be paid more attention in the 

later stage [20]. With this goal, two challenges need to be addressed in this paper: 1) A multi-state 

PR combination scheduling mode needs to be constructed for breaking the fixed use of PR in the 

decision-making process; 2) A novel GP framework needs to be designed for automatically 

matching the most appropriate PR for each state. 

3 The problem description of SRCMPSP-NPI 

In actual project management, there is often new project insertion in addition to the stochastic 

activity duration. For example, in aircraft assembly production, manual assembly is the main 



influencing factor of stochastic duration, while emergency orders cause some production tasks 

(projects) not to exist at the initial scheduling time. Therefore, SRCMPSP-NPI [20] is a new 

problem formed by adding two dynamic factors, i.e., the stochastic activity duration and the new 

project insertion, on the basis of RCMPSP, in which the goal is to achieve objective optimization 

by scheduling a portfolio P={p1, p2,…, pn} composed of n projects. Each project pi 

( {1,  2,  ..., }i n ) can be represented as a directed acyclic graph Gi(Vi, Ei), where the nodes 

,0 ,1 , 1{ ,  ,  ..., }
ii i i ma a a +=iV  represents mi+2 activities, and activity ai,0 and activity , 1ii ma +  are dummy 

activities to express the beginning and end of the project. For example, the structure of 14 

activities shown in Fig.1. During the execution of P, |K| renewable resources are required, each of 

which has a constant maximum supply Rk. At the same time, the execution of each activity ai,j 

needs a fixed resource requirement and duration di,j. Suppose ri,j,k is the requirement for resource k, 

and sti,j refers to the start time of activity ai,j. There are two important constraints to be observed in 

the execution of RCMPSP [20,42]. 

 Precedence constraints: These represent the logical relationships between the activities 

in each project. In this study, only the finish-start constraint is considered, that is, the activities in 

the successors Si,j of activity ai,j can only start after ai,j is completed. At the same time, there is no 

precedence constraint between activities from different projects. 

 Resource constraints: These limit the number of executable activities, that is, at the 

same time t, the total activity requirements in the execution activity set At for resource k should 

not exceed Rk. If there is no such a constraint, the makespan lower bound of each project pi is its 

critical path CPi. 
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Fig.1 The structure of SRCMPSP-NPI 

 

Unlike RCMPSP, SRCMPSP-NPI is a dynamic problem with time randomness as shown in 

Fig.1. First, the activity resource requirement and the resource supply are fixed. Secondly, the 

duration of each activity follows a known distribution over a range, which determines that the 

project critical path is not fixed. Thirdly, each project has a start constraint [20], that is, before the 

insertion time psti of project pi, the relevant information of the project is unknown, and the start 

time of all activities in the project cannot be less than psti. Considering the evaluation of schedule 

quality and robustness [20,42], the mathematical model of SRCMPSP-NPI is as follows. 
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Eq.(1) to Eq.(4) express the calculation of the four objective functions. fQ1 and fQ2 

respectively express the schedule quality, where ADi represents the expected makespan of project 

pi when the activity duration is equal to its expected value. These two objectives are mainly to test 

the ability of PR to obtain better makespan under the expected activity duration, in which fQ1 is to 

measure the balance of makespan in each project, while fQ2 is to evaluate the overall level 

(portfolio). fR1 and fR2 are robustness metrics, where SADi represents the average makespan of 

project pi derived from Monte Carlo simulations with stochastic activity durations. Similarly, fR1 

and fR2 evaluate the deviation of the actual makespan from the expected value under multiple 

simulations from the perspective of each project and portfolio, respectively. By referring to 

[20,42], in the constraints, Eq.(5), Eq.(6) and Eq.(7) are the three key constraints in the problem 

description respectively, namely precedence constraints, resource constraints and start constraints, 

where T in Eq.(6) is a maximum positive number. Eq.(8) shows the start and end dummy activity 

constraints, that is, each dummy activity has no resource requirements and the probability of its 

duration being 0 is 100%. Eq.(9) indicates the activity duration constraint, where the probability of 

each activity duration less than 0 is 0%. 

4 The framework of HH-TGP 

The framework of HH-TGP is designed and shown in Fig.2, in which the key features in the 

generation stage and the selection stage are highlighted in yellow and green, respectively. With 

parameters initialization, training set construction and policy class selection, HH-TGP first 

executes the generation phase to obtain a non-dominant PR set. The improvements in this stage 

include two points: 1) the calculation of existing attributes is modified and the project level 



attribute is added for realizing PR evolution under SRCMPSP-NPI; 2) NSGA-II is combined to 

evaluate PR based on non-dominant relationships. Upon the completion of the generation stage, 

the generated non-dominated set is combined with the excellent traditional PRs to form a 

selectable PR set and enter the selection stage. In the selection stage, the optimal PR scheduling 

combination is obtained based on the following two improvements: 1) the state partition method 

based on the completion activity duration and the PR combination gene expression in multiple 

states are proposed; 2) the crossover, mutation and local search operators are designed to realize 

genetic evolution under PR combination coding.  

Depending on the evolution process in Fig.2, each execution of HH-TGP first trains the 

optimal PR scheduling combination based on the training set, and then this combination performs 

scheduling on all test sets for performance evaluation. At the same time, in order to perform the 

evolution steps of generation stage and selection stage, some basic elements need to be introduced 

in detail, that is, the encoding and decoding in the two stages. 
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Fig.2 The framework of HH-TGP 

4.1 The PR structure in generation stage 

As shown in Fig.2, the function of generation stage is to generate a Pareto PR set, so the gene 

structure of each individual needs to express a PR in this stage. Referring to [50-52], this study 

selects the tree gene structure to form a PR as shown in Fig.3. The PR structure can be divided 

into two parts, including the bottom priority expression to construct the basis of priority value 

calculation and the top discriminant to judge the priority value. In the discriminant “Jud”, there 

are only two elements: “fall” and “rise”. When the discriminant is “fall”, it is expressed as 

minimized, that is, the smaller the value calculated by the priority expression, the higher the 



priority, while when it is “rise”, it is maximized. In the constituent elements of priority expression, 

there are two symbols: attribute (“Att”) and function (“f”), that is, the priority expression 

combines the attributes of different levels (such as activities, resources, etc.) through different 

functions. Based on existing research [50,55], the function set and attribute set used in this study 

are shown in Table 1 and Table 2 respectively. The difference is that the project attribute "CPi" is 

added in Table 2, and the calculation of all attributes is modified for adapting to multi-project 

scheduling. At the same time, in the initialization and search process of the PR structure, it cannot 

be allowed to increase infinitely, so as to prolong the priority calculation time. Therefore, the 

concept of maximum depth is proposed to control the distance between the topmost node and the 

lowest node in the priority expression. Fig.3 illustrates the maximum depth of 3. 
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Att Att
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Fig.3 The PR structure 

 

Table 1 The function set 

Index Symbol Function Formula Index Symbol Function Formula 
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Table 2 The activity attribute set 
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Because the SRCMPSP-NPI is a dynamic problem, only the activities in the eligible set AEt 

at point t can be selected when making decisions (i.e., calculating priority and sorting). The 

condition for an activity to be eligible is that the project to which it belongs has been started and 

all its predecessors have been completed. In addition, due to RB-policy integrated with critical 

path method is selected to transform the schedule (see Section 3.3 for details), the earliest start 

time of all activities in AEt is the same at each decision point, so the attribute of earliest start does 

not exist in Table 2. The normalized attributes in Table 2 have the following meanings: 

 EFi,j: The earliest finish time of activity ai,j, of which calculation ignores resource 

constraints. 

 LSi,j/LFi,j: The latest start/finish time of activity ai,j, and the resource constraints are 

ignored when calculating. 

 TSi,j: The total number of all immediate and non-immediate successors of activity ai,j. 

 TSDi,j: The duration sum of all immediate and non-immediate successors of activity ai,j. 

 RRi,j: The total number of resource types required for activity ai,j. 

 AvgRRi,j/MaxRRi,j/MinRRi,j: The average/maximum/minimum resource requirement of 

activity ai,j across its duration. 

 CPi: The critical path length of the project to which the activity ai,j belongs. 

4.2 The gene expression in selection stage 

Based on the selectable PR set formed after the generation stage, the goal of the selection 

stage is to form a PR combination under multiple states. Therefore, the gene expression at this 

stage is the matching relationship between different states and the selected PRs. For 

SRCMPSP-NPI, its basic elements determine that the better way to express its state is the ratio of 

current resource occupancy to supply and the portfolio current progress. However, the resource 

occupancy, also affected by RB-policy, can always reach the maximum at each decision time, so 



this study uses the ratio of the total completion activity duration and the total activity duration to 

express the portfolio progress as the state parameter, as shown in Eq. (10).  
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Where ACi represents a set of completed activities in project pi. 

Based on this parameter, the following two steps are needed to form the gene expression in 

the selection stage. The first is to establish the index of all PRs in the selectable set. To further 

improve the selection scope, in addition to the PRs evolved in the generation stage, the selectable 

set also includes some excellent traditional PRs recommended by [20], as shown in Fig.2. The 

second step is to set the state number to divide the portfolio proportionally. For example, the gene 

expression under five states is shown in Fig.4  where integer coding is used to correspond to the 

numbered PR in the selection stage, and the interval length between states is 20% since there are 

only five stages in total. As shown in Fig.4, when the value of ratio is in the range of 0% to 20%, 

it belongs to state 1, and the PR with index seven is used in this state. 
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Fig.4 The example of gene expression in selection stage 

4.3 The RB-policy for decoding 

Because of the function for transforming solution into schedule, the policy plays an important 

role in HH-TGP with the evaluation in evolution training and decision-making in testing. To 

realize HH-TGP framework with heuristic computation time, the selection of policy class should 

also need to avoid iteration or extra computation. Taking the single project instance in PSPLIB as 

an example [8], the calculation of minimum forbidden set, will increase dramatically from 326 

with 30 activities to 243,871 with 120 activities. Therefore, the selection of ES-policy and 

PS-policy will lead to a lot of extra computation, especially in a larger scale multi-project 

environment. Similarly, PP-policy and GP-policy generate computation time consumption by 

iterating. In addition, a large number of experimental results show that good RB-policy is 

significantly better than good AB-policy in terms of average schedule quality [23], so RB-policy is 

our final choice. 

On this basis, the critical path method is integrated into traditional RB-policy for two reasons. 

First, the duration of each activity in SRCMPSP-NPI is uncertain, so the priority value calculated 

initially may change with the progress of decision-making. For example, the critical path in the 

initial state may not match that of a decision point. At the same time, some projects are inserted 

during the portfolio execution, so the information about these projects cannot be obtained to 

calculate the priority before the insertion time. Second, the existing research [38,55] found that 

dynamic priority calculation will bring better schedule quality. Therefore, the use of the critical 



path method is very necessary to combine with its RB-policy for dealing with the decoding in 

generation and selection states, as shown in Algorithm 1. It is worth mentioning that in the 

Algorithm 1, each activity ai,j has three judgement variables Jsi,j, Jci,j and Jri,j, and their value 

range is only "true" or "false". When Jsi,j/Jci,j/Jri,j is "true", it indicates that activity ai,j has been 

scheduled/completed/ satisfied the resource constraint. 

 

Algorithm 1 The RB-policy in HH-TGP 

Input: the selectable PR set PRs, the selection gene Genes, the instance P, the decision point t; 

Output: the scheduled activity ASt; 

1: ACt←{}, AEt←{}, ASt←{}; // ACt/ AEt means the completed/eligible activity set 

// obtain eligible set and completion set 

2: for pi in P   

3: if psti≥t and Jsi,(mi+1)==false 

4:  for ai,j in Vi 

5:   if Jci,j==true 

6:    ACt←ACt∪{ai,j}; 

7:   else 

8:    Set: PSi,j←the predecessor set of ai,j; 

9:    if (| PSi,j | ==0 or all activities in PSi,j are completed) and Jsi,j==true 

10:     Update the earliest/latest start/finish time and all attribute values of ai,j; 

11:     AEt←AEt∪{ai,j}; 

12:    end if 

13:   end if 

14:  end for 

15: end if 

16: end for 

// Calculate priority and perform scheduling 

17: Normalize the attribute of activities in AEt based on Table 2; 

18: Set index←0; // the index of selected PR 

19: if |Genes|>0 

20: Calculate the ratio according to Eq.(10) and obtain the state s; 

21: index←The s-th gene in Genes; 

22: end if 

23: Set PR←The index-th PR in PRg 

24: Maximize or minimize sorting activities in AEt according to PR structure; 

25: for ai,j in AEt 

26: Set Jri,j←update the resource satisfaction when scheduling ai,j;  

27: if Jri,j==true 

28:  Update the resource supply; 

29:  ASt←ASt∪{ai,j}; 

30: end if 

31: end for 

32: return ASt 



5 The evolutions in HH-TGP 

Based on the encoding and decoding methods described in Section 4, this section describes 

the evolution process of the generation and selection stage in detail, including initialization, 

evaluation, and search operators. Before that, a common evolution characteristic of the two stages 

needs to be emphasized. Although the objective function of SRCMPSP-NPI includes scheduling 

quality and robustness, the training of robustness is very difficult due to the following two reasons. 

Firstly, for a specific distribution, having enough sampling times is necessary, otherwise the 

sampling results may likely be only applicable to a certain distribution or even smaller range due 

to randomness. As a result, an individual's evaluation calculation increases dramatically in 

generation and selection stages, because it needs to schedule all the sampling data. Secondly, the 

results with good robustness in one distribution are not necessarily suitable for other distributions, 

which leads to the further increase of sampling. Therefore, in order to reduce the calculation 

amount and increase the generalization of evolved PR combination, in the training process of 

HH-TGP, it is assumed that the activity duration is the expected value di,j
*, and the evaluation of 

PR (combination) only depends on fQ1 and fQ2. In this way, each instance in the training set only 

needs to be scheduled once without violating SRCMPSP-NPI's goal of optimizing the expected 

makespan. In addition, the PR combination evolved by HH-TGP divides the whole 

decision-making process into multiple states. Since the stochastic activity duration may only affect 

some states and the complementary effect of different PRs in different states, the deterioration 

degree of randomness is reduced, so the robustness is hoped to be compensated by HH-TGP 

framework in the test decision.  

5.1 Non-dominant evolution in generation stage 

As shown in Fig.2, in order to obtain a non-dominated PR set, the PR evolution in the 

generation stage depends on the non-dominated relationship, and the evolution operators of the 

two parts are described below. The first is population initialization and evaluation. To randomly 

generate different PR tree structures as shown in Fig.3, initialization includes two steps to obtain 

discriminant and priority expression respectively. In the discriminant, “fall” and “rise” are 

randomly generated with a probability of 0.5, while the priority expression is generated by the 

classical ramped half-and-half method, in which the tree depth is controlled between 2 and 6 [56]. 

In the evaluation, since only fQ1 and fQ2 need to be considered in the evolution of HH-TGP, the 

evaluation algorithm conducive to more than three objectives is not considered for easy 

implementation and stable performance. At the same time, NSGA-II can achieve better results in 

most cases [57], so it can be used as the evaluation of the generation stage in this study. 

In addition, the search in generation stage plays a very important role, including selection, 

crossover mutation in standard GP and additional local search. Based on the analysis in [58], the 

tournament selection is adopted by HH-TGP to obtain the sub-population performing genetic and 

local search, that is, continuously executing the comparison cycle between two randomly selected 

PRs until the PR number of the sub population reaches 90% of the population. In each comparison, 

the PR meeting one of the following two conditions wins: 1) the PR with smaller number of 

non-dominated layer; 2) the PR with the same number of non-dominated layer and larger 



crowding distance. At the same time, based on existing research [50,55], the search methods in the 

generation stage are described as follows, and their examples are shown in Fig.5. 

 Crossover: The crossover is the only search that requires the participation of two parent 

PRs, in which each parent PR exchanges a part of its own structure tree to form new two offspring 

PRs, as shown in Fig.5(a). 

 Node replacement local search: As shown in Fig.5(b), this local search will replace a 

node of the original PR by a randomly generated node. It should be noted that the replacement 

node must have the same number of child nodes as the original node. For example, an attribute 

node can only be replaced by another attribute node. Since only the “if” node in Table 2 has three 

child nodes, when the selected replacement node is “if”, the first judgment child node will change, 

that is, “0” will become “1”. 

 Subtree replacement local search: Like crossover, this local search also uses a new 

subtree to replace part of the original PR, but the difference is that the subtree is randomly 

generated, that is to say, it may produce a new subtree structure that does not exist in the original 

population. 

 Subtree deletion local search: Using this local search will delete the subtree of the 

selected node as the root node to keep another subtree under its parent node. However, if the 

parent node of the selected node has only one child node, this local search may cause the original 

PR to leave only one discriminant, so under this condition, an attribute node will be randomly 

selected to replace the deleted subtree. 

 Discriminant mutation: In the above three local searches and crossover, almost all 

search methods are included in the tree structure, but the top-level discriminant has not changed. 

Therefore, the mutation in HH-TGP will only perform discriminant mutation, that is, if the 

original discriminant is “fall”, it will become “rise”. 

Based on the above evolution operators, the execution process of the generation stage is 

shown in the Algorithm 2. 

 

Algorithm 2 The execution process of generation stage 

Input: the all portfolios Ptotal in the training set, the mutation rate pm, the crossover rate pc, the 

maximum iteration number Maxgen, the population size Popsize; 

Output: the non-dominated PR set PRn; 

1: Randomly initialize Popsize PR to form population PRt; 

2: Calculate the objective functions fQ1 and fQ2 of each PR in PRt based on Ptotal; 

3: for gen in {1, 2, …, Maxgen} 

4: Use NSGA-II for calculating non-dominated stratification and crowding distance; 

5: Execute tournament selection operation to form PRsub and randomly shuffle PRsub; 

6: for i in {1, 2, …, |PRsub|-1} 

7:  if rand<pc   // rand is a random number from 0 to 1 

8:   Execute crossover operation; 

9:  end if 

10: end for 

11: for i in {1, 2, …, |PRsub|} 

12:  Generate a random integer index from 0 to 2 

13:  switch(index) 



14:   case 0: subtree replacement local search; break; 

15:   case 1: node replacement local search; break; 

16:   case 2: subtree deletion local search; break; 

17:  end switch 

18:  if rand＜pm 

19:   Execute discriminant mutation; 

20:  end if 

21: end for 

22: Update PRn with non-dominated relationship; 

23: end for 

24: return PRn 
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Fig.5 The search operation in generation state 

5.2 Normalization evolution in the selection stage 

Based on the execution process similar to Algorithm 2, the selection stage aiming at 

obtaining the optimal PR combination only needs to change the corresponding evolution operator. 

Firstly, the population initialization in the selection stage is relatively simple, in which only the 

matching PR needs to be randomly selected for each state to obtain the PR combination shown in 

Fig.4. Secondly, only the optimal PR combination needs to be obtained in the selection, resulting 

in the transformation of non-dominated evolution into normalization evolution, that is, the 

evaluation and fitness function of the PR combination depend on the normalized objective fQ, as 

shown in Eq.(11). When facing the different demands of decision-maker (focusing on project 



manager or portfolio manager), the selection stage only needs to adjust the corresponding weight 

value.  

 1 1 2 2Q Q Qf w f w f=  +   (11) 

Where w1 and w2 represent the weight values of two objectives, respectively, constrained with that 

their sum is 1 must be satisfied. 

In addition, the integer gene structure shown in Fig.4 makes the search operations in Fig.5 

inapplicable in selection stage, resulting in crossover, mutation and local search need to be 

redesigned. In the selection stage, a gene only represents the selected PR index in a certain state, 

so there is no constrained relationship between genes, resulting in more search methods can be 

established. From the perspective of genetic search, the crossover and mutation under five states 

are shown in Fig.6, and the related description are shown as follows: 

 Crossover: The crossover in selection stage adopts the single-point crossover which is 

commonly used in integer coding. The difference is that to meet the crossover condition, the 

generated random number is less than the crossover rate pc, this study uses a 0.5 probability to 

determine whether the front or the back part is crossed shown in Fig.6(a), so as to form more 

different combinations. 

 Mutation: Similar to crossover, mutation also uses 0.5 probability to control the two 

mutation modes under the mutation condition shown in Fig.6(b): 1) Randomly select and 

exchange two points in the original combination gene; 2) Randomly select a point and replace the 

original PR index with a randomly generated different one. 
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Fig.6 The crossover and mutation in selection stage 

From the perspective of local search, there are also four local searches with different 

structures, whose search methods are different from crossover and mutation to further produce 

more combinations, as shown in Fig.7.  
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Fig.7 The local searches in selection stage 

 

 Two-Binding-Swap local search: This local search will first randomly select a point b, 

and then swap PRb with PRb+3 and PRb+1 with PRb+2. If the selected point causes the index to 

exceed the gene length, the index will cycle from the beginning. For example, if the selected 

position is 5 shown in Fig.7(a), it will swap with the third gene through a loop.  

 Forward-Insert/Backward-Insert local search: In these two local searches, two points b 

and c (c>b) are randomly selected first, and then PRc is inserted after PRb in Forward-Insert local 

search, while in Backward-Insert local search, PRb is inserted before PRc. 

 Inverse local search: Similarly, this local search will first produce two random points, 

and the difference is that then it will inverse the sub-sequence between the two points, as shown in 

Fig.7(c). 

6 Numerical experiments 

In this part, firstly, the experiment preparation is described in Section 6.1, including 

experimental environment, parameter design, benchmark, traditional PRs participating in 

comparison and an example of PR combination after HH-TGP evolution. Secondly, HH-TGP is 

compared with 16 traditional PRs and two state-of-the-art hybrid PRs in Section 6.2 to fully verify 

its effectiveness. The existing meta-heuristics are not selected and compared due to the following 

reasons: 1) to our best knowledge, there is no meta-heuristics applied to SRCMPSP-NPI, and the 

existing meta-heuristics cannot be directly applied to this problem due to the new project insertion 

constraint with unknown insertion time; 2) the original intention of HH-TGP is to get better results 

in heuristic computation time, but the use of meta-heuristic scheduling is contrary to it; 3) the 

existing meta-heuristics have been showed to be inferior to the optimal PR for solving stochastic 

project scheduling [23,41]. Thirdly, HH-TGP is a hyper-heuristic based two-stage genetic 

framework. The necessity of the selection stage and generation stage needs to be further verified 

in Section 6.3, which is also regarded as a comparison between HH-TGP and the state-of-the-art 

GP for (S)RCPSP. Fourthly, as shown in Eq.(11), the PR combination performance evaluation in 

the selection stage evolution depends on two weights w1 and w2, and the robustness is not 

considered in the evolution. The influence of w1 and w2 on the comprehensive performance of PR 

combination with robustness considered in the test is further explored in Section 6.4. Finally, in 



Section 6.5, taking SPEA2 as an example for comparison [60], the impact of non-dominated 

evaluation methods in the generation stage on the HH-TGP performance is explored. 

6.1 Experimental setup 

All experiments are performed on an Intel Core i5-4200 quadcore processor computer with 

2.50 GHz clock speed and 8 gigabyte RAM and program code is written in Java on the MyEclipse 

2017 compiler. Based on existing research [20,50-52,55], the parameters of HH-TGP are shown in 

Table 3, of which two aspects need to be emphasized. Firstly, as shown in Fig.5, since the 

mutation does not change the priority expression of PR and is the only operator to search the 

discriminant in the generation stage, the pm of HH-TGP is relatively large based on [55]. Secondly, 

it can be seen from Eq.(1) and Eq.(2) that fQ1 is usually less than fQ2 and has a larger fluctuation 

range. At the same time, due to the limited resources, the two goals are often in conflict, that is, 

the smaller fQ1 usually has the larger fQ2, so a higher weight value is assigned to fQ2 for forming 

more balanced combinations. Therefore, the initial values of w1 and w2 are set to 0.3 and 0.7, and 

the influence of weight distribution on combination performance will be further analysed and 

discussed in Section 5.4. 

Table 3 The parameters of HH-TGP 

Variable Meaning Value Variable Meaning Value 

Popsize Population size 200 Maxgen Maximum iteration number 25 

pc Crossover rate 0.9 pm Mutation rate 0.2 

w1/ w2 Weight of fQ1/ fQ2 0.3/0.7 snum Number of States 5 

 

In addition, the evaluation information in the whole experiment needs to be introduced, that 

is, the evaluation method and the benchmark. The model of SRCMPSP-NPI comes from [20], so 

the evaluation criteria and benchmark used for comparison are the same. The benchmark is 1000 

instances based on PSPLIB [59] composed of 200 different portfolios with five conditions, in 

which each condition refers to the insertion of new projects with different structures and different 

start times. The start time and structure of a new project are random before the decision, so the 

training set in this study is the 200 basic portfolios, and the test set is the complete 1000 instances. 

In order to meet the uncertainty duration, five distributions [20,23], including two low variance 

distributions, two medium variance distributions and one high variance distribution, are adopted to 

fully verify and compare the performance, as shown in Table 4.  

Table 4 Five distributions of activity duration [20,23] 

Distribution type Code Range Variance 

Uniform distribution 
U1 

* * * *

, , , , U( ,  )i j i j i j i jd d d d− +  d
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i, j/3 

U2 
*

, U(0,  2 )i jd  (d
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Beta distribution 

B1 
* * * *

, , , , B( / 2,  2 ,  / 2 1/ 3,  2 / 3)i j i j i j i jd d d d− −  d
* 

i, j/3 

B2 
* *

, , B( / 2,  2 ,  1/ 6,  1/ 3)i j i jd d  (d
* 

i, j)2/3 

Exponential distribution E 
*

, E( )i jd  (d
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Further, the objective functions in SRCMPSP-NPI involve the comparison of different 



perspectives (schedule quality and robustness) and levels (project and portfolio). There is a gap 

between different objective values. For example, fQ1 (fQ2) may reach hundreds or even thousands 

of times of fR1 (fR2). At the same time, from Eq.(1) to Eq.(4), it can be seen that the fluctuation of 

objectives from the perspective of project and portfolio is inconsistent. If the average values of the 

four objectives in different instances are directly dependent for evaluating, it is impossible to 

judge the pros and cons between the strategies with non-dominant relationship, where this 

probability is high due to the comparison under four objectives. In addition, it is also unreasonable 

to calculate the mean value between different objectives due to inconsistent fluctuations. For 

example, an increase of 10 for fQ2 may be equal to an increase of 20 under fQ1. Therefore, in order 

to measure the strategy performance, the superior ranking [20,42] is adopted by performing the 

following three steps: 1) the rulenum strategies participating in the ranking are used to schedule 

1000 instances in the test set, and calculate the four objectives under each instance according to 

Eq.(1) to Eq.(4); 2) In each instance, rulenum strategies are sorted and transformed into ranking 

values from 1 to rulenum according to the sequence under each objective; 3) the average ranking 

values of each strategy from the perspective of scheduling quality, robustness and comprehensive 

performance are calculated by relying on Eq.(12) to Eq.(14). It is worth mentioning that if the two 

strategies have the same value under a certain objective, they are given the same ranking. For 

example, three strategies participate in the ranking. If the fQ1 of the first two strategies is the same, 

their ranking under fQ1 is 1, while the third strategy is 3. Meanwhile, in order to calculate the 

robustness objective, for each instance, SADi of Eq.(3) and Eq.(4) is obtained by means of a 

simulation with 10 replications in the whole experiment.  
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Where rule is the rule-th strategy, and rkrule,* is the ranking of the rule-th strategy under condition 

*. For example, rkrule,Q1,P represents the fQ1 ranking by evaluating portfolio P.  

Finally, as shown in Fig.2, the selectable PR set in the selection stage includes some excellent 

traditional PRs in addition to the non-dominated PR set obtained in the generation stage. Based on 

the traditional PRs as shown in Table 5 and the analysis in [20], seven PRs are selected, including 

MINSLK, SASP, FCFS, MINLFT, MAXSP, WACRU and MS. They are numbered from 0 to 6 in 

this order, while PRs in the non-dominated set are numbered backwards from 7. From our 

experimental results, in most cases, the PRs in the evolved combination all come from the 

non-dominated PR set obtained in the generation stage, and an example of combination containing 

traditional PR is shown in the Fig.8, where 5 represents WACRU. 

Table 5 The traditional PRs 

PR name Abbreviation PR name Abbreviation 

Minimum slack MINSLK Shortest operation duration first SOF 

Maximum slack MAXSLK Maximum operation duration first MOF 

Shortest activity from shortest project SASP Minimum late finish time MINLFT 

Longest activity from longest project LALP Maximum schedule pressure MAXSP 

Minimum total work content MINTWK Minimum worst case slack MINWCS 



Minimum total work content MAXTWK Criticality & resource utilization WACRU 

MAXTWK & earliest late start time TWKLST Maximum total successors MS 

First come first serve FCFS Maximum critical successors MCS 

5

1

32 61 61 38PR

State 2 3 4 5

fall

+

*
AvgR

R

* CP

TSD +

TSD TS

fall

+

+ *

*
AvgR

R

AvgR

R
Exp

TSD

TSD

TSD max

CP

fall

+

* *

Exp
AvgR

R

TS

TSD CP

 

Fig.8 An example of PR combination evolved by HH-TGP 

6.2 Comparison with existing PRs 

SRCMPSP-NPI with two stochastic factors is a high dynamic problem, which leads to high 

requirement for response speed, and, to our best knowledge, there are no meta-heuristic methods 

to solve SRCMPSP-NPI and meet timeliness requirement. Therefore, the existing heuristics (PRs) 

are selected to compare with HH-TGP, which includes 20 different traditional PRs [20,42] and six 

hybrid PRs [20]. However, the RB-policy in this paper leads to the fact that the earliest start time 

of each activity participating in the scheduling is identical, and some PRs in the traditional PRs or 

hybrid PRs are equivalent, such as EDDF and MINSLK, so only one of them is selected in the 

comparison. The filtered PRs is shown in Table 5, and the comparative performance ranking of 16 

traditional PRs and HH-TGP is shown in Table 6. Because this part data is relatively large, only 

the average value after 20 experiments is shown in Table 6, and the average ranking comparison 

between optimal traditional PRs and HH-TGP under each distribution is shown in Fig.9.  

 

Table 6 The average ranking comparison between traditional PRs and HH-TGP 

Strategy rkrule,Q 
U1 U2 B1 B2 E 

rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C 

MINSLK 4.95 7.80 6.37 8.73 6.84 7.93 6.44 9.46 7.21 10.09 7.52 

MAXSLK 15.42 9.94 12.68 8.69 12.06 9.87 12.65 8.08 11.75 7.15 11.29 

SASP 7.97 8.93 8.45 9.63 8.80 9.10 8.53 10.25 9.11 10.53 9.25 

LALP 12.50 7.00 9.75 7.75 10.13 7.09 9.79 8.52 10.51 8.93 10.72 

MINTWK 10.58 5.63 8.10 5.30 7.94 5.69 8.14 5.53 8.05 5.13 7.86 

MAXTWK 10.72 13.91 12.31 13.54 12.13 13.56 12.14 12.70 11.71 12.51 11.61 

TWKLST 10.67 13.96 12.31 13.57 12.12 13.57 12.12 12.67 11.67 12.43 11.55 

FCFS 7.30 7.64 7.47 8.52 7.91 8.02 7.66 9.00 8.15 10.05 8.68 

SOF 12.03 11.27 11.65 10.28 11.16 11.22 11.63 9.22 10.62 8.28 10.15 



MOF 13.78 9.91 11.85 9.18 11.48 9.24 11.51 8.99 11.39 9.08 11.43 

MINLFT 6.03 11.35 8.69 10.94 8.49 11.54 8.79 10.21 8.12 10.28 8.15 

MAXSP 9.15 5.26 7.20 6.00 7.57 5.47 7.31 6.79 7.97 6.65 7.90 

MINWCS 4.94 7.83 6.38 8.80 6.87 8.00 6.47 9.57 7.25 10.13 7.53 

WACRU 7.12 8.74 7.93 7.45 7.29 8.58 7.85 6.51 6.81 5.73 6.42 

MS 8.72 4.57 6.65 4.98 6.85 4.70 6.71 5.73 7.23 5.42 7.07 

MCS 6.29 7.92 7.10 8.48 7.38 8.02 7.15 9.04 7.66 9.56 7.93 

HH-TGP 2.91 8.71 5.81 9.30 6.10 8.80 5.86 9.05 5.98 9.72 6.32 

 

Fig.9 The average rkrule,C comparison between HH-TGP and optimal traditional PRs 

 

The comparison results between traditional PRs shown in Table 6 are similar to [20,42], that 

is, different traditional PRs tend to effect different objectives, such as MINSLK and MINWCS can 

get better average rkrule,Q, while MS and WACRU perform well in average rkrule,R, and the PRs 

with good robustness often has poor scheduling quality. At the same time, it can be shown from 

Fig.9 that with the increase of distribution variance, the optimal traditional PR changes from 

MINSLK to WACRU. This result is also consistent with [20] and shows that PR has problem 

dependence.  

In addition, it can be seen from Table 6 that HH-TGP is significantly better than all 

traditional PRs on average rkrule,Q, which shows that HH-TGP can obtain better expected 

makespan and mainly leads to that the average rkrule,C of HH-TGP is also better than the optimal 

traditional PRs under all distributions, as shown in Fig.9. From the perspective of rkrule,R, HH-TGP 

ranks only medium in the comparison of all traditional PRs, because 1) according to Eq.(3) and 

Eq.(4), the denominator (expected makespan) of HH-TGP is smaller, resulting in greater 

fluctuation; 2) the complex structure and multiple attributes deteriorate the robustness in 

scheduling. However, compared with the traditional PRs that also focus on rkrule,Q, HH-TGP has 

better adaptability to randomness changes. For example, the trend curves of the average rkrule,R in 

MINSLK (best in [20,42]) and HH-TGP under different variance distributions are shown in Fig.10. 

It can be seen that the average rkrule,R of MINSLK is better than HH-TGP under medium and low 

variance distributions, and vice versa at high variance. The intersection point between the two 

curves represents the equal robustness point at the specific variance distribution. In application, 

when the variance distribution is under this point, MINSLK is more robust scheme while over this 



point, HH-TGP is a more robust scheme. Therefore, in general, it can be concluded that HH-TGP 

has excellent scheduling quality, effective comprehensive performance and certain randomness 

adaptability, which shows its effectiveness. 

 

Fig.10 The average rkrule,R trend curves of MINSLK and HH-TGP 

 

Furthermore, based on the performance analysis of traditional PRs, a heuristic combination 

method is proposed in [20], in which the former stage depends on the earliest start and the latter 

stage depends on the latest start, so as to produce six hybrid PRs. For the same reason, the two 

filtered hybrid PRs are compared with HH-TGP, in which FCFS/WCS-SLK represents the mixed 

result of FCFS/MINWCS and MINSLK. The average ranking comparison are shown in Table 7 

after 20 experiments, and the average rkrule,C comparison between hybrid PRs and HH-TGP under 

each distribution is shown in Fig.11. 

 

Table 7 The average ranking comparison between hybrid PRs and HH-TGP 

Strategy rkrule,Q 
U1 U2 B1 B2 E 

rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C 

FCFS-SLK 2.27 1.86 2.07 1.89 2.08 1.88 2.08 1.92 2.10 1.94 2.11 

WCS-SLK 2.35 1.96 2.15 1.98 2.16 1.95 2.15 2.05 2.20 2.04 2.20 

HH-TGP 1.33 2.11 1.72 2.08 1.71 2.10 1.72 1.99 1.66 1.98 1.66 

 

It can be seen from the Table 7 and Fig.11 that the comparison results of HH-TGP and hybrid 

PRs are similar to those of traditional PRs, that is, it has very excellent scheduling quality and 

better comprehensive performance, resulting in that the average rkrule,C of HH-TGP is still better 

than the optimal hybrid PR under all distributions in Fig.11. Further, it can also be seen from Table 

7 that HH-TGP has good adaptability, because the gap of average rkrule,R between HH-TGP and 

hybrid PRs decreases with the increase of distribution variance. These results show that HH-TGP 

is still effective, and also confirm that this framework is more suitable for solving SRCMPSP-NPI, 

especially under high variance distribution and comprehensive performance requirements. 



 

Fig.11 The average rkrule,C comparison between HH-TGP and hybrid PRs 

6.3 Validation of the two-stage framework 

Compared with the existing PRs, HH-TGP has been shown  to be an effective method for 

solving SRCMPSP-NPI. However, it can be seen from Fig.2 that the training process of HH-TGP 

has two stages: the first stage generates a group of evolved PRs, and the second stage constructs a 

combination. Whether the two-stage framework is helpful improving the effectiveness of the 

HH-TGP needs further verification. Therefore, a two-part experiment, using the generation and the 

selection stage alone to evolve, is set up as follows. 

Firstly, HH-TGP is compared with the GP containing only generation stage (HH-GGP) to 

verify the effectiveness of the selection stage, that is, the comparison between constructing PR 

combination and evolving a single optimal PR. HH-GGP is also the evolution mode of existing GP, 

and in order to ensure the fairness, except that Maxgen is expanded to 50 for ensuring the same 

search (HH-TGP has two stages with Maxgen equal to 25), its other parameters and search 

operators are all consistent with the generation stage in HH-TGP. At the same time, based on the 

experimental results generated in Section 6.2 and because the ranking calculation depends on the 

average value of 1000 instances, the fluctuation under each evolution is very small, resulting in 

only 10 evolutions in the comparison of different GPs in this section. The average ranking 

comparison of HH-GGP and HH-TGP under 10 evolutions is shown in Table 8 and Fig.12, and 

their detailed evolution results are shown in the appendix. 

 

Table 8 The average ranking comparison between HH-GGP and HH-TGP 

Strategy rkrule,Q 
U1 U2 B1 B2 E 

rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C 

HH-GGP 1.52 1.55 1.53 1.57 1.54 1.55 1.53 1.54 1.53 1.58 1.55 

HH-TGP 1.47 1.43 1.45 1.42 1.45 1.43 1.45 1.45 1.46 1.41 1.44 



 

Fig.12 The average rkrule,C comparison between HH-TGP and OPR 

 

As can be seen from Table 8, HH-TGP is better than HH-GGP on average rkrule,Q. More 

importantly, no matter which distribution, the average rkrule,R of HH-TGP is also better than 

HH-GGP, and the gap increases with distribution variance increasing. Therefore, as shown in 

Fig.12, the comprehensive performance of HH-TGP is also better than HH-GGP under all 

distributions, especially under high variance distribution. To sum up, on the basis of further 

verifying the HH-TGP effectiveness, a conclusion is obtained that the combined scheduling of 

multiple PRs can not only further improve the schedule quality compared with a single PR, it can 

also improve the robustness to deal with stochastic problem. 

Secondly, the GP with only using selection stage (HH-SGP) is compared with HH-TGP to 

explore the function of generation stage, that is, the comparison between PR combinations 

including or excluding evolved PRs. Similar to the comparative experiments with HH-GGP, the 

comparison of the average values between HH-TGP and HH-SGP under 10 evolutions based on 

the same parameters and search operators is shown in Table 9 and Fig.13, and the detailed data are 

still shown in the appendix. 

 

Table 9 The average ranking comparison between HH-SGP and HH-TGP 

Strategy rkrule,Q 
U1 U2 B1 B2 E 

rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C 

HH-SGP 1.81 1.49 1.65 1.47 1.64 1.48 1.65 1.47 1.65 1.48 1.65 

HH-TGP 1.18 1.50 1.34 1.52 1.36 1.50 1.34 1.51 1.35 1.51 1.35 

 

It can be clearly seen from Table 9 that the average rkrule,Q of HH-TGP is almost close to 1, 

which indicates that the schedule quality of HH-TGP is much better than that of the strategy only 

using the selection stage under the same generation combination mode. At the same time, in Table 

9, the average rkrule,R of HH-TGP is inferior to HH-SGP under all distributions, so it can be 

concluded that the robustness of PR combination is deteriorated when adding PRs with multiple 

attributes that need to be considered in calculating priority. However, compared with the 

improvement of scheduling quality, the gap between robustness is very small, resulting in the 

better comprehensive performance of HH-TGP under all distributions, as shown in Fig.13. In this 



part of the experiment, the effectiveness of HH-TGP is verified again, and the main function of 

generation stage is explained, that is, for generating more evolved PRs to help the whole 

framework improve the schedule quality. 

 

Fig.13 The average rkrule,C comparison between HH-TGP and OC 

6.4 The effect of w1 and w2 on HH-TGP performance 

Eq.(11) shows that in the selection stage, the weights w1 and w2 are assigned to the two 

objectives fQ1 and fQ2 for achieving the normalized evolution and obtaining the optimal PR 

combination. Based on the explanation in Section 6.1, in the performance verification in Section 

6.2 and Section 6.3, the evolution of HH-GP gives fQ1 and fQ2 weights of 0.3 and 0.7, respectively. 

However, how the change of w1 and w2 will affect the HH-TGP performance needs to be further 

explored, so w1 increases from 0.1 to 0.5 in the range of 0.1 without violating the principle that w2 

is greater than w1. Therefore, in this part, based on the same non-dominated set evolved by 

generation stage in each experiment, different weights are allocated to perform selection stage 

evolution and obtain different optimal PR combinations, and this process is also repeated 10 times. 

Further, all PR combinations are compared with traditional PRs to calculate the performance 

ranking, and the average ranking comparison of different weights under 10 evolutions is shown in 

Table 10 (the detailed results are shown in the appendix). Meanwhile, the average curves of the 

three rankings with weight changing are shown in Fig.14 to Fig.16, in which robustness and 

comprehensive ranking have three different variance distributions (U1, U2 and E). 

 

Table 10 The average ranking of HH-TGP under different weights 

w1/w2 rkrule,Q 
U1 U2 B1 B2 E 

rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C 

0.1/0.9 4.08 8.33 6.20 8.97 6.52 8.41 6.24 9.26 6.67 9.65 6.87 

0.2/0.8 3.17 8.43 5.79 9.13 6.15 8.58 5.88 9.41 6.29 9.85 6.51 

0.3/0.7 2.93 8.68 5.80 9.26 6.10 8.76 5.85 9.01 5.97 9.67 6.30 

0.4/0.6 3.04 9.07 6.06 9.79 6.41 9.14 6.09 9.34 6.19 10.25 6.64 

0.5/0.5 3.26 9.52 6.39 10.35 6.80 9.56 6.41 9.71 6.48 10.79 7.03 



 

Fig.14 The average rkrule,Q curve with different weights 

 

Fig.15 The average rkrule,R curve with different weights under three distributions 

 

Fig.16 The average rkrule,C curve with different weights under three distributions 

 

Based on the data in Table 10 and Fig.14, it can be concluded that the change of rkrule,Q is 



similar to a parabola, and when the weight is close to fQ2, the deterioration of rkrule,Q is more 

serious, that is, the sensitivity is higher. Therefore, in order to get a better rkrule,Q, a relatively 

middle weight should be assigned, such as 0.3/0.7 and 0.4/0.6. From the perspective of robustness, 

Fig.15 shows that under different variance distributions, rkrule,R deteriorates with the increase of w1, 

so fQ2 should be given a large weight for robustness requirements. Combined with these two 

aspects, the comprehensive performance is also shown as parabola, and has the characteristics of 

gentle trend under low variance. To sum up, this part shows that 0.3/0.7 is a good weight 

allocation, and if the decision makers prefer robustness, 0.2/0.8 is also a very recommended 

weight allocation. 

6.5 The effect of evaluation method in generation stage on HH-TGP performance 

As shown in Fig.2, the PR scheduling combination evolved in the selection stage depends on 

the non-dominated PR set obtained in the generation stage, resulting in the non-dominated 

evaluation method used in the generation stage affecting the HH-TGP performance under the same 

search operators. Therefore, similar to the experiment in Section 6.4, this section selects SPEA2 as 

the evaluation method in HH-TGP to explore the impact of different evaluation methods on 

HH-TGP. Compared with traditional PRs, the average performance ranking of 10 evolutions is 

shown in Table 11 (the detailed results are shown in the appendix), where HH-TGP-S represents 

HH-TGP with SPEA2, HH-TGP-N represents HH-TGP with NSGA-II, and the average rkrule,C 

comparison is shown in Fig.17.  

Table 11 The average ranking of HH-TGP with different evaluation algorithms 

Strategy rkrule,Q 
U1 U2 B1 B2 E 

rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C rkrule,R rkrule,C 

HH-TGP-S 4.24 8.17 6.20 8.68 6.46 8.34 6.29 9.03 6.64 9.27 6.75 

HH-TGP-N 2.91 8.71 5.81 9.30 6.10 8.80 5.86 9.05 5.98 9.72 6.32 

 

Fig.17 The average rkrule,C with different evaluation algorithms 

The following two conclusions can be drawn from Table 11 and Fig.17. Firstly, the rkrule,C of 

HH-TGP-N is better than that of HH-TGP-S under five distributions, which shows that when 

HH-TGP applied into SRCMPSP-NPI, using NSGA-II as the evaluation method is more effective 

than SPEA2. Secondly, when NSGA-II is used as the evaluation method, the rkrule,Q of HH-TGP 



increases significantly, but its rkrule,R decreases. Therefore, combined with the relevant conclusions 

in Table 9, this shows that when a more effective non-dominated evaluation method is adopted (i.e., 

a more effective non-dominated PR set is obtained), the schedule quality and comprehensive 

performance of PR combination are significantly improved, but the robustness is deteriorated. 

7 Conclusion 

In this study, a novel HH-TGP framework is proposed to obtain more effective scheduling 

strategies by decomposing the evolution into two stages of generation and selection for solving 

SRCMPSP-NPI, which is a stochastic multi-project scheduling problem considering two 

randomness of stochastic activity duration and new project insertion. With this framework, the 

current research is expanded from two aspects. First, the idea of GP is extended to the 

multi-project scheduling in stochastic environment for producing better PRs, so that it retains the 

advantages of PR in solving the scheduling problem, such as simplicity, rapidity, and stability, and 

resolves its defects of no optimization ability and problem dependence. Because of the 

universality of multi-project scheduling in practice and the superiority of PR scheduling in 

stochastic environment, this extension is very meaningful. Secondly, HH-TGP constructs a 

multi-state PR combination scheduling mode, that is, the whole decision process is divided into 

multiple states and the most suitable PRs are matched in each state by genetic evolution. This 

combination mode can control the dynamic change of priority to achieve better performance 

compared with the fixed use of PRs. 

In addition to this novel two-stage framework, more specifically, there are also innovations in 

optimization technology to realize the evolution of generation and selection. First, in the 

generation stage, the attribute set in the existing literature is modified to adapt to the PR evolution 

under multi-project scheduling, and NSGA-II is combined to obtain a non-dominated PR, which 

provides an idea for multi-objective PR evolution based on non-dominated relationship. Secondly, 

in the selection stage, due to the idea of multi-state combination scheduling, the new state partition, 

coding structure and decoding method are designed to realize the normalized evolution. At the 

same time, the genetic operators and local search in selection evolution are also improved.  

A series of experiments based on five common distributions and 1000 multi-project 

benchmarks are carried out to verify the effectiveness of HH-TGP. The experimental results show 

that HH-TGP is superior to both existing heuristics and single-stage traditional GP. Furthermore, 

the experimental results show the function of two stages, the influence of weights and the impact 

of the evaluation methods in generation stage on the performance of HH-TGP. This not only 

verifies the effectiveness of the two-stage architecture, but also provides the insights for 

decision-makers to choose the weight and the evaluation method. To sum up, we believe that this 

method has a great potential in SRCMPSP-NPI. 

In the future work, the following parts need to be explored to further improve the practical 

application of HH-TGP. First, we only aim at the time level in the randomness of SRCMPSP-NPI, 

and the supply of resources should also change in practice, so it is necessary to establish a more 

complex scheduling model. Secondly, although this study relies on experience to set five states in 

the selection stage, the influence of some other factors on the HH-TGP performance needs to be 

further explored, such as the number of states and whether the ratio of each state is equal. Thirdly, 

this study only takes SPEA2 as a comparative example to analyse the impact of evaluation 



methods on HH-TGP performance, so more advanced multi-objective evaluation methods need to 

be combined and analysed. Finally, because of the adoption of RB-policy, the state partition 

parameter of HH-TGP only considers the completion ratio. When policy can also be changed 

dynamically, more state parameters need to be explored to construct a more complete state 

representation. 
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Appendix 

This part shows the detailed evolution process of relevant hyper-heuristics under different 

parameters or structures in Section 6.3 and Section 6.4, in which Per represents the perspective of 

ranking, Dis represents the distribution and Numnum represents the num-th evolution. 

The detailed comparison between HH-TGP and HH-GGP 

Per Dis Strategy Num1 Num2 Num3 Num4 Num5 Num6 Num7 Num8 Num9 Num10 

rkrule,Q / 
OPR 1.52 1.51 1.50 1.52 1.50 1.48 1.53 1.56 1.54 1.50 

HH-TGP 1.47 1.49 1.47 1.47 1.49 1.50 1.45 1.43 1.44 1.48 

rkrule,R 

U1 
OPR 1.54 1.61 1.56 1.53 1.53 1.55 1.58 1.52 1.55 1.54 

HH-TGP 1.43 1.37 1.42 1.45 1.46 1.43 1.40 1.45 1.43 1.44 

U2 
OPR 1.56 1.64 1.58 1.55 1.57 1.55 1.57 1.56 1.54 1.57 

HH-TGP 1.43 1.35 1.41 1.44 1.42 1.44 1.41 1.43 1.45 1.42 

B1 
OPR 1.58 1.60 1.57 1.51 1.53 1.54 1.57 1.51 1.55 1.55 

HH-TGP 1.41 1.38 1.42 1.47 1.45 1.44 1.41 1.47 1.43 1.44 

B2 
OPR 1.52 1.58 1.55 1.53 1.55 1.52 1.52 1.53 1.51 1.56 

HH-TGP 1.47 1.40 1.45 1.46 1.44 1.47 1.47 1.45 1.48 1.42 

E 
OPR 1.55 1.62 1.61 1.58 1.60 1.57 1.57 1.52 1.57 1.60 

HH-TGP 1.43 1.37 1.38 1.42 1.38 1.42 1.42 1.47 1.43 1.39 

rkrule,C 

U1 
OPR 1.53 1.56 1.53 1.52 1.51 1.52 1.56 1.54 1.55 1.52 

HH-TGP 1.45 1.43 1.45 1.46 1.47 1.47 1.42 1.44 1.43 1.46 

U2 
OPR 1.54 1.57 1.54 1.53 1.54 1.51 1.55 1.56 1.54 1.53 

HH-TGP 1.45 1.42 1.44 1.45 1.46 1.47 1.43 1.43 1.44 1.45 

B1 
OPR 1.55 1.55 1.53 1.52 1.52 1.51 1.55 1.53 1.55 1.52 

HH-TGP 1.44 1.46 1.45 1.47 1.47 1.47 1.43 1.45 1.43 1.46 

B2 
OPR 1.52 1.56 1.53 1.52 1.53 1.50 1.53 1.55 1.53 1.53 

HH-TGP 1.47 1.45 1.46 1.47 1.47 1.49 1.46 1.44 1.46 1.45 



E 
OPR 1.54 1.56 1.56 1.55 1.55 1.53 1.55 1.54 1.56 1.55 

HH-TGP 1.45 1.43 1.43 1.44 1.44 1.46 1.43 1.45 1.43 1.43 

 

The detailed comparison between HH-TGP and HH-SGP 

Per Dis Strategy Num1 Num2 Num3 Num4 Num5 Num6 Num7 Num8 Num9 Num10 

rkrule,Q / 
OC 1.84 1.81 1.82 1.77 1.80 1.82 1.83 1.80 1.82 1.81 

HH-TGP 1.15 1.18 1.16 1.23 1.19 1.17 1.16 1.20 1.17 1.18 

rkrule,R 

U1 
OC 1.47 1.53 1.47 1.50 1.43 1.47 1.52 1.53 1.49 1.45 

HH-TGP 1.50 1.45 1.52 1.48 1.55 1.52 1.46 1.45 1.49 1.53 

U2 
OC 1.47 1.50 1.43 1.51 1.43 1.44 1.47 1.51 1.46 1.44 

HH-TGP 1.52 1.49 1.56 1.48 1.55 1.55 1.52 1.48 1.52 1.55 

B1 
OC 1.48 1.48 1.47 1.50 1.42 1.47 1.49 1.51 1.49 1.44 

HH-TGP 1.49 1.49 1.51 1.48 1.56 1.51 1.49 1.46 1.49 1.54 

B2 
OC 1.47 1.46 1.45 1.50 1.47 1.47 1.46 1.50 1.49 1.47 

HH-TGP 1.52 1.53 1.53 1.49 1.52 1.51 1.53 1.49 1.50 1.52 

E 
OC 1.46 1.47 1.46 1.53 1.45 1.46 1.49 1.50 1.53 1.49 

HH-TGP 1.53 1.52 1.53 1.46 1.54 1.53 1.50 1.49 1.46 1.50 

rkrule,C 

U1 
OC 1.66 1.67 1.65 1.63 1.62 1.65 1.67 1.66 1.66 1.63 

HH-TGP 1.32 1.32 1.34 1.35 1.37 1.34 1.31 1.32 1.33 1.35 

U2 
OC 1.65 1.65 1.62 1.64 1.62 1.63 1.65 1.65 1.64 1.62 

HH-TGP 1.38 1.34 1.36 1.35 1.37 1.36 1.34 1.34 1.36 1.36 

B1 
OC 1.66 1.65 1.65 1.63 1.61 1.65 1.66 1.66 1.65 1.63 

HH-TGP 1.32 1.34 1.34 1.36 1.37 1.34 1.33 1.33 1.33 1.36 

B2 
OC 1.66 1.64 1.64 1.63 1.64 1.65 1.64 1.65 1.66 1.64 

HH-TGP 1.34 1.36 1.35 1.36 1.35 1.34 1.35 1.34 1.34 1.35 

E 
OC 1.65 1.64 1.64 1.65 1.63 1.64 1.66 1.65 1.67 1.65 

HH-TGP 1.34 1.35 1.35 1.35 1.37 1.35 1.33 1.34 1.32 1.34 

 

The detailed comparison of HH-TGP under different weights 

Per Dis w1/w2 Num1 Num2 Num3 Num4 Num5 Num6 Num7 Num8 Num9 Num10 

rkrule,Q / 

0.1/0.9 3.73 4.19 3.99 4.03 4.10 4.17 3.78 4.51 4.45 3.82 

0.2/0.8 2.84 3.21 3.16 3.18 3.25 3.00 3.14 3.39 3.15 3.39 

0.3/0.7 2.75 2.83 3.07 3.02 2.98 2.87 2.89 2.95 2.95 2.99 

0.4/0.6 2.96 3.13 3.07 2.84 3.07 2.99 2.94 3.00 3.10 3.29 

0.5/0.5 3.06 3.55 3.14 2.98 3.39 3.08 3.17 3.51 3.21 3.46 

rkrule,R 

U1 

0.1/0.9 8.46 8.23 8.25 8.52 8.41 8.14 8.55 8.03 8.08 8.60 

0.2/0.8 8.55 8.44 8.64 8.49 8.44 8.59 8.46 7.98 8.27 8.40 

0.3/0.7 8.57 8.23 8.85 8.41 9.50 8.92 8.42 8.19 8.54 9.12 

0.4/0.6 9.23 9.07 8.75 8.58 9.36 9.28 8.77 9.03 9.01 9.57 

0.5/0.5 9.85 10.14 9.19 8.85 9.69 9.47 9.17 9.73 9.25 9.84 

U2 

0.1/0.9 9.22 9.09 8.96 9.23 9.22 8.55 8.92 8.71 8.76 9.06 

0.2/0.8 9.02 9.12 9.57 8.95 9.21 9.20 9.43 8.53 9.21 9.02 

0.3/0.7 9.25 8.93 9.53 8.77 9.91 9.46 9.16 8.70 9.20 9.73 

0.4/0.6 10.12 9.91 9.40 9.47 9.99 9.80 9.49 9.75 9.74 10.23 



0.5/0.5 10.61 10.98 10.05 9.64 10.60 10.35 9.98 10.43 10.26 10.62 

B1 

0.1/0.9 8.56 8.41 8.35 8.58 8.62 8.23 8.50 8.00 8.12 8.68 

0.2/0.8 8.51 8.63 8.79 8.56 8.68 8.83 8.72 8.12 8.42 8.50 

0.3/0.7 8.68 8.46 8.82 8.49 9.40 8.96 8.69 8.34 8.63 9.13 

0.4/0.6 9.36 9.28 8.89 8.52 9.43 9.31 8.86 9.08 9.05 9.61 

0.5/0.5 9.95 10.17 9.24 8.87 9.72 9.49 9.33 9.74 9.33 9.78 

B2 

0.1/0.9 9.52 9.48 9.15 9.41 9.44 8.99 9.14 8.94 9.09 9.44 

0.2/0.8 9.01 9.31 9.94 9.26 9.65 9.66 9.49 8.65 9.67 9.49 

0.3/0.7 9.18 9.28 9.19 8.50 9.10 9.12 9.16 8.51 8.89 9.13 

0.4/0.6 9.50 9.30 9.18 9.42 9.28 9.30 9.34 9.50 9.11 9.48 

0.5/0.5 9.84 10.55 9.45 9.11 9.67 9.70 9.58 9.86 9.53 9.77 

E 

0.1/0.9 9.95 9.88 9.66 9.77 9.93 9.20 9.56 9.41 9.54 9.62 

0.2/0.8 9.49 9.77 10.60 9.27 10.37 10.06 9.99 8.93 10.19 9.84 

0.3/0.7 9.82 9.88 9.84 9.26 9.99 9.81 9.63 9.63 9.23 9.64 

0.4/0.6 10.46 10.22 10.02 10.17 10.05 10.37 10.25 10.16 10.22 10.54 

0.5/0.5 11.09 11.26 10.78 10.08 10.70 10.89 10.70 10.74 10.69 11.00 

rkrule,C 

U1 

0.1/0.9 6.10 6.21 6.12 6.27 6.25 6.15 6.17 6.27 6.27 6.21 

0.2/0.8 5.70 5.82 5.90 5.84 5.84 5.80 5.80 5.68 5.71 5.89 

0.3/0.7 5.66 5.53 5.96 5.71 6.24 5.90 5.65 5.57 5.75 6.06 

0.4/0.6 6.10 6.10 5.91 5.71 6.21 6.14 5.86 6.01 6.06 6.46 

0.5/0.5 6.46 6.85 6.16 5.92 6.54 6.28 6.17 6.62 6.23 6.65 

U2 

0.1/0.9 6.47 6.64 6.48 6.63 6.66 6.36 6.35 6.61 6.60 6.44 

0.2/0.8 5.93 6.16 6.36 6.06 6.23 6.10 6.28 5.96 6.18 6.21 

0.3/0.7 6.00 5.88 6.30 5.89 6.45 6.17 6.03 5.82 6.07 6.36 

0.4/0.6 6.54 6.52 6.23 6.16 6.53 6.40 6.21 6.37 6.42 6.76 

0.5/0.5 6.84 7.26 6.60 6.31 6.99 6.72 6.58 6.97 6.73 7.04 

B1 

0.1/0.9 6.14 6.30 6.17 6.31 6.36 6.20 6.14 6.25 6.29 6.25 

0.2/0.8 5.68 5.92 5.98 5.87 5.96 5.91 5.93 5.75 5.79 5.96 

0.3/0.7 5.72 5.65 5.95 5.75 6.19 5.92 5.79 5.64 5.79 6.06 

0.4/0.6 6.16 6.21 5.98 5.68 6.25 6.15 5.90 6.04 6.08 6.45 

0.5/0.5 6.50 6.86 6.19 5.93 6.55 6.29 6.25 6.63 6.27 6.62 

B2 

0.1/0.9 6.62 6.84 6.57 6.72 6.77 6.58 6.46 6.72 6.77 6.63 

0.2/0.8 5.92 6.26 6.55 6.22 6.45 6.33 6.31 6.02 6.41 6.44 

0.3/0.7 5.97 6.06 6.13 5.76 6.04 6.00 6.03 5.73 5.92 6.06 

0.4/0.6 6.23 6.22 6.12 6.13 6.17 6.14 6.14 6.25 6.11 6.39 

0.5/0.5 6.45 7.05 6.30 6.05 6.53 6.39 6.38 6.69 6.37 6.62 

E 

0.1/0.9 6.84 7.04 6.83 6.90 7.02 6.69 6.67 6.96 7.00 6.72 

0.2/0.8 6.16 6.49 6.88 6.22 6.81 6.53 6.56 6.16 6.67 6.62 

0.3/0.7 6.29 6.36 6.45 6.14 6.49 6.34 6.26 6.29 6.09 6.31 

0.4/0.6 6.71 6.68 6.54 6.51 6.56 6.68 6.60 6.58 6.66 6.91 

0.5/0.5 7.07 7.41 6.96 6.53 7.04 6.99 6.94 7.13 6.95 7.23 

 

 

 



The detailed evolution results of HH-TGP with SPEA2 

Per Dis Num1 Num2 Num3 Num4 Num5 Num6 Num7 Num8 Num9 Num10 

rkrule,Q / 4.13 4.53 4.54 4.14 4.36 4.09 4.13 4.32 4.12 4.03 

rkrule,R 

U1 8.44 7.80 7.58 8.25 7.96 8.64 8.46 8.03 8.14 8.41 

U2 9.19 8.50 8.18 8.73 8.25 9.15 8.78 8.41 8.53 9.03 

B1 8.61 7.98 7.90 8.50 8.17 8.65 8.51 8.19 8.38 8.55 

B2 9.57 8.74 8.72 8.96 8.73 9.37 9.07 8.91 8.81 9.45 

E 9.86 9.23 8.62 9.12 8.64 9.80 9.51 8.91 8.91 10.05 

rkrule,C 

U1 6.28 6.16 6.06 6.20 6.16 6.37 6.29 6.17 6.13 6.22 

U2 6.66 6.52 6.36 6.44 6.31 6.62 6.46 6.36 6.33 6.53 

B1 6.37 6.26 6.22 6.32 6.26 6.37 6.32 6.25 6.25 6.29 

B2 6.85 6.64 6.63 6.55 6.55 6.73 6.60 6.62 6.47 6.74 

E 6.99 6.88 6.58 6.63 6.50 6.94 6.82 6.62 6.52 7.04 

 


