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Abstract 23 

Water pollution due to dyes from industrial effluents and domestic wastewater is a big 24 

environmental issue, so an effective adsorbent is needed. In this study, graphene oxide/chitosan 25 

(GO/CS) composites were synthesized and applied for methylene blue (MB) dye removal. 26 

Characterization was done on the GO and GO/CS composites using FTIR, EDX, SEM, and 27 

TGA. The adsorption studies were conducted to verify the effect of pH, adsorbent dosage and 28 

contact time. The interactive effects of the process variables were verified using response 29 

surface methodology (RSM), and optimal conditions for higher adsorption efficiency are 30 

evaluated by Artificial neural network (ANN)-Particle swarm optimization (PSO). ANN-PSO 31 
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predictions are in good agreement with the experimental values and hence resulted in higher 32 

R2 (=0.998) compared to RSM predictions (R2 = 0.981). The MB adsorption process is found 33 

to be obeying the Langmuir isotherm and pseudo 1st order kinetic model. The maximum MB 34 

removal efficiency (90.34%) and adsorption amount (7.53 mg/g) can be obtained at an initial 35 

dye concentration of 10 mg/L and optimal values of pH (5), adsorbent dosage (0.143 g/L) and 36 

contact time (125 min). These results further confirm that the ANN-PSO-based approach is 37 

able to capture the inherent mechanisms of the MB adsorption process and can be used as a 38 

good modelling approach. 39 

Keywords: Graphene oxide/chitosan composite; Methylene blue; Response surface 40 

methodology; Particle swarm optimization; Artificial neural network  41 

1. Introduction  42 

A huge amount of dyes is being used in the textile industry every year, and the excess dyes 43 

are carried with water used for cleaning. The textile industry alone contributes huge quantity  44 

of dye wastewater annually [1]. In the present era, the dyes used in the textile industry are 45 

mostly synthetic dyes rather than natural dyes. This is due to the limited availability of natural 46 

dyes and fading of color when exposed to sunlight during drying [2]. According to the world 47 

bank [3], the effluent from the textile industry contains 72 toxic chemicals; among these, 30 48 

chemicals are difficult to be removed from wastewater using the treatment process [4]. The 49 

effluent of the textile industry contains heavy metals and toxic chemicals like cyanide, oil, and 50 

grease [5]. More synthetic chemicals are manufactured and used widely in these textile 51 

industries due to their improved stability at high temperatures and UV radiation [6]. The dye 52 

wastewater that consists of various hazardous chemicals poses a severe danger to the 53 

environment, animals, and humans and hence needs proper removal treatment. These pollutants 54 

can accumulate in soil and pose long-term danger [7-9]. In this regard, many countries have 55 

enforced laws and regulations to control the effluent from the textile industry. International 56 
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standards for dye effluent are biological oxygen demand (BOD) (<30 mg/L), chemical oxygen 57 

demand (COD) (<50 mg/L), colourless, pH (6-9), suspended solids (<20 mg/L), temperature 58 

(<42°C) [10-12]. However, some industrial plants violate the laws leading to water pollutions. 59 

Recently, graphene has been getting worldwide attention for its extraordinary chemical, 60 

physical, thermal and electrical properties [13, 14]. Its role as a filler in a polymer matrix to 61 

form nanocomposites has dramatically improved the mechanical and thermal properties 62 

compared to graphite-based composites [15]. Graphene is a 2D structure formed by a single 63 

sheet of carbon atoms arranged in a honeycomb shape, while graphite refers to stacks of 64 

graphene planes arranged in hexagonal or rhombohedral sequence [16]. In graphene, sp2 65 

hybrids form σ bonds which contribute to the extremely high Young’s modulus of 1 TPa. 66 

Graphene can be obtained from graphite by ultrasound sonication treatment, where the 67 

multilayer structure of graphite sheets can be exfoliated to make graphene [16]. 68 

On the other hand, graphene oxide (GO) is formed when graphene is oxidized. The 69 

functional groups of the oxidant for the oxidation process can be hydroxyl (OH), carbonyl 70 

(C=O), and alkoxy (C-O-C). The degree of oxidation or the grades of oxidation is dependent 71 

on the number of oxygen present in the structure of GO. When the GO has a percentage of 72 

oxidation ranging between 0-10 %O, this GO is termed as reduced graphene oxide (rGO) [17]. 73 

Theoretically, the maximum oxidation that GO can achieve is 50 %O due to the sp2 74 

hybridization of carbon atoms in graphene hexagons [18]. 75 

Chitin, the second most abundant source of natural biopolymer on earth, can be obtained 76 

from both plants and animals [19, 20]. It is commonly found in the cell wall of fungi, yeast, 77 

and the shell or exoskeleton of insects and sea animals. The percentage of chitin in different 78 

sources ranges from 3 - 40%. Chitin has a similar structure to cellulose as both of these 79 

biopolymers are in the class of polysaccharides; their difference is that the acetamide group 80 

exists in chitin . It is biodegradable, biocompatible, non-toxic, renewable, and affordable, thus 81 
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making this biopolymer more advantageous in biomedical and pharmacological applications. 82 

Chitosan, the most important derivative of chitin, is insoluble in water; however, it is soluble 83 

in acidic conditions. Chitosan (CS) also possesses significant features like biodegradability, 84 

biocompatibility, nontoxicity, antibacterial activity, and strong film-forming features. Recently, 85 

chitosan has been vastly researched by the scientific community and applied in a wide range 86 

of applications, for instance, water and wastewater treatment and biomedical [21, 22]. Due to 87 

its excellent biodegradability and biocompatibility, chitosan is labeled as a green adsorbent. 88 

Also, its adsorption efficiency is not broad; the hydroxyl and amine groups of chitosan behave 89 

as active sites to store anionic pollution, but its inclination towards cationic dyes is slight 90 

because of its adverse electrostatic interactions. But, when evaluated as a composite with GO, 91 

chitosan-based material attained removal of a minimum of 85% for cationic dyes [23]. 92 

Besides, GO embedded in chitosan is an active technique for enhancing chitosan's physical 93 

and chemical properties. Several research studies have incorporated GO with chitosan (low 94 

concentrations) to produce strong, biocompatible, and biodegradable graphene oxide/chitosan 95 

(GO/CS) nanocomposites. This is due to the strong interaction between GO and chitosan. 96 

Adequate diffusion of GO in chitosan matrix on a molecular scale, and interfacial adhesion, 97 

consequently substantially improving properties of GO/CS nanocomposites [24]. Sabzevari et 98 

al. [25], in their study, crosslinked GO with CS and their studies confirmed that the adsorption 99 

properties of GO are markedly improved upon the formation of a GO–chitosan composite. 100 

Another recent study by Muda et al. [26] applied GO-CS for rotenone pesticide removal. In 101 

their studies, they found that the CS-GO nanocomposites possess ideal characteristics as 102 

nanocarriers for hydrophobic rotenone and can be used as water-solubilizing agents so that the 103 

pesticides can become eco-friendly & safer for the environment. Hence, intending to produce 104 

a material that can be competitive with cationic dyes, with superior morphology, mechanical 105 

adsorption properties, the research on GO/CS composites has attained considerable momentum. 106 
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Furthermore, the majority of the studies mentioned above did not focus on optimizing 107 

the adsorption process parameter, which affect the removal efficiency using statistical 108 

modelling. It is very important to design experiments and optimize limited resources to reduce 109 

time and ambiguity in the results. The design of experiments using a novel approach such as 110 

response surface methodology (RSM); reduces the wastage of valuable chemicals, minimizes 111 

the experimental time, and thus leads to the effective use of experiment runs [17, 27-29].  112 

To predict the process conditions at which it results in maximum performance, a data-113 

driven model based on an artificial neural network (ANN) is a very useful approach. ANN 114 

needs no introduction, and it has been extensively used in all fields of engineering and sciences. 115 

In recent years, ANN is integrated with hybrid evolutionary techniques like a genetic algorithm 116 

(GA) [30], differential evolution optimization (DEO) [31], particle swarm optimization (PSO) 117 

[32], ant colony optimization (ACO) [33, 34], etc. These hybrid evolutionary techniques 118 

optimize the weights in the hidden layer. Owing to the benefits of PSO, which mimics the 119 

behavior of birds and is found to be successfully applied in diverse fields [32, 35]. 120 

Considering the immense benefits of graphene oxide and Chitosan and addressing the issue 121 

of dye removal, graphene oxide/chitosan composite is synthesized. Therefore, the main 122 

objective of this is to synthesize and evaluate the performance of graphene oxide/chitosan 123 

composite to remove the cationic dye, MB, from aqueous solutions. To conduct a minimum 124 

number of experiments and optimize the process variables RSM with Box-Behnken Design 125 

(BBD) framework is used. To predict the MB dye removal at different process conditions, a 126 

data-driven model based on an artificial neural network (ANN) embedded with particle swarm 127 

optimization (PSO) is used. The implementation of optimization methodologies and a data-128 

driven strategy to forecast MB dye removal using the graphene oxide/chitosan composite has 129 

never been published in the open literature, thus making this work unique. 130 
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2. Materials and Methods  131 

2.1 Materials 132 

The materials used were graphene powder (8 nm flakes), 360 mL of sulfuric acid (H2SO4) 133 

(95-97% purity), 40 mL of phosphoric acid (H3PO4) (50%), 50 mL of humic acid colloid, 18 g 134 

of potassium permanganate (KMnO4) (99% purity), 3 mL of hydrogen peroxide (H2O2) (30%), 135 

200 mL of hydrochloric acid (HCl) (30%), sodium hydroxide (NaOH) (99%), 8 mL of acetic 136 

acid (CH3COOH) (99%), low molecular weight chitosan powder (50,000-190,000 Da), 137 

methylene blue powder, 400 mL of ice and 2000 mL of ultrapure water. All chemicals were 138 

purchased from Sigma-Aldrich and used as received without further purification. 139 

2.2 Apparatus and Equipment 140 

The equipment used in this experiment were probe ultra-sonicator (LPS-500, SONO 141 

Mechanics), freeze dryer (Labconco), pH meter (HACH), centrifuge (Universal 320 R, Hettich), 142 

shaking incubator (SASTEC), ultra-pure water instrument (Purelab), Fourier-transform 143 

infrared spectrometer (FTIR, Perkin Elmer Frontier), field emission scanning electron 144 

microscopy (FESEM, FEI Quanta 400), energy-dispersive X-ray spectroscopy (EDX, FEI 145 

Quanta 400) and thermogravimetric analyzer (TGA, Perkin Elmer STA 6000). 146 

2.3 Experimental Methods  147 

2.3.1 Synthesis of GO 148 

The synthesis of GO is based on the improved Hummer method [36]. Firstly, 149 

concentrated H2SO4 and H3PO4 with a ratio of 9:1 (360:40 mL) were mixed and added with 3 150 

g of graphene powder and 18 g of KMnO4. The mixing of these chemicals produced a slight 151 

exothermic reaction raising the temperature to 30 to 40°C. The mixture was stirred for 12 h at 152 

50°C. Then cooling of the mixture was commenced until it reached room temperature and then 153 

poured into a beaker with an ice bath. Later, 3 mL of H2O2 was added to the mixture. The 154 

mixture was centrifuged at 4000 rpm for 30 min, and the supernatant layer was discarded. 200 155 
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mL of ultrapure water and 200 mL of 30% HCl were added to the solid residue. The mixture 156 

was centrifuged again at 4000 rpm for 30 min, and the supernatant layer was also discarded. 157 

This step was repeated at least four times with the same amount of ultrapure water and HCl for 158 

washing the solids. The solids, after washing, were transferred into smaller tubes and kept in 159 

the freezer. The frozen solids were freeze-dried using a freeze dryer at -50°C and vacuum 160 

condition for 24 h. 161 

2.3.2 Synthesis of GO/CS composites  162 

The GO powder and Chitosan were prepared with a weight ratio of 0.1 g:1 g (GO: CS). 163 

0.1 g of GO was dissolved into 100 mL of ultrapure water and treated with an ultrasonic bath 164 

for 15 min to form a homogenous suspension of GO solution. 1 mL of humic acid colloid (HAC) 165 

and 1.0 g of Chitosan was added to 100 mL of ultrapure water. The Chitosan was stirred at 166 

room temperature until it completely dissolved into the solution. The chitosan solution and GO 167 

solution were mixed and stirred for 12 h. The mixture was frozen and freeze-dried at -50°C for 168 

24 h. The GO/CS composites with a weight ratio of 0.2g (w/w) and 0.3g (w/w) were prepared 169 

in a similar way, and the amount of ultrapure water to dissolve both GO and CS was kept 170 

constant at 100ml each. The composites were labeled as GO/CS1, GO/CS2, and GO/CS3 for 171 

the weight ratio of 0.1g (w/w), 0.2g (w/w) and 0.3g (w/w) respectively. The 10 mg/L initial 172 

MB concentration was used to optimize the process parameter using RSM. The beaker was 173 

shaken at a specific agitation speed, and aliquots were collected from the reaction mixtures at 174 

specific time intervals. The mixture was diluted with distilled water, filtered through Whatman 175 

filter paper (42), and then sucked through a hydrophilic Polytetrafluoroethylene (PTFE) 176 

membrane using a vacuum pump (Brand: ULVAC. Model: DTC-41B). The absorbance was 177 

monitored at 595 nm using a UV-Vis spectrophotometer, and the MB concentrations were 178 

determined using a UV-Vis spectrophotometer. The MB dye removal efficiency (R%) was 179 

evaluated by using Equation (1): 180 
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𝑹% = (
𝑪𝟎 − 𝑪𝒇

𝑪𝟎
) × 𝟏𝟎𝟎 

(1) 

Where C0 and Cf are the initial and final concentration of MB dye, respectively 181 

2.4 Design of experiments methodology 182 

From previous similar studies, it was found that the pH, adsorbent dosage and contact 183 

time are the parameters that influence the MB removal [32, 37, 38]. As reported by most 184 

researchers, these process parameters are mostly used for dye removal studies by adsorption. 185 

Several experiments are to be conducted to understand the effect of each parameter on the 186 

overall MB removal efficiency. In the pH study, only acidic conditions of dye solution at pH 187 

3, 4, 4.5 and 5 were studied, dosage the amount of adsorbent studied were 0.05 g, 0.75 g, 0.10 188 

g and 0.15 and Initial concentration of 10 mg/L. These ranges are chosen based on the previous 189 

studies [32, 37, 38]. The agitation speed and temperature in these studies were set to be constant 190 

at 25°C and 100 rpm. A batch adsorption experiment was performed by using 100 mL of 10 191 

mg/L of initial MB concentration to optimize the process parameters using the Design of 192 

Experiment as shown in Table 1. The effectiveness of dye removal is measured by percentage 193 

removal of dye and adsorption capacity or adsorption amount of adsorbent (amount of dye 194 

adsorbed per gram of adsorbent). In this regard, the design of experiments (DOE) methodology 195 

is used to estimate the experimental matrix, as shown in Table 1. Here, the Box-Behnken 196 

Design approach is applied, resulting in 17 experiments for the given set of process variables. 197 

So, as per the experimental matrix shown in this table, the corresponding experiments are 198 

conducted to determine the MB removal efficiency. This experimental matrix will also provide 199 

valuable information on the interaction effects of process variables and their impact on the 200 

overall removal efficiency. All adsorption experiments were done in triplicate, and the average 201 

values were used for further analysis. 202 

Table 1. Design matrix by Box-Behnken design with three factors and two responses* 203 
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Run A: pH 

B: 

Adsorbent 

dosage (g/L) 

C: Contact 

time (min) 

Response 1: 

MB Removal 

(%) 

Response 2: 

Adsorption amount 

(mg/g) 

1 4 (0) 0.05 (-1) 120 (-1) 23.48 2.43 

2 5 (+1) 0.05 (-1) 150 (0) 31.08 2.99 

3 4 (0) 0.15 (+1) 180 (+1) 73.56 6.14 

4 5 (+1) 0.10 (0) 180 (+1) 69.93 5.88 

5 4 (0) 0.10 (0) 150 (0) 44.76 4.01 

6 4 (0) 0.10 (0) 150 (0) 44.76 4.01 

7 4 (0) 0.10 (0) 150 (0) 44.76 4.01 

8 5 (+1) 0.15 (+1) 150 (0) 81.08 6.70 

9 4 (0) 0.10 (0) 150 (0) 44.76 4.01 

10 3 (-1) 0.10 (0) 120 (-1) 31.67 3.04 

11 4 (0) 0.15 (+1) 120 (-1) 58.19 5.00 

12 3 (-1) 0.15 (+1) 150 (0) 66.47 5.62 

13 4 (0) 0.05 (-1) 180 (+1) 31.08 2.99 

14 3 (-1) 0.10 (0) 180 (+1) 53.13 4.63 

15 3 (-1) 0.05 (-1) 150 (0) 22.21 2.33 

16 4 (0) 0.10 (0) 150 (0) 44.76 4.01 

17 5 (+1) 0.15 (+1) 180 (+1) 85.39 7.02 

* coded values in brackets 204 

2.5 A data-driven model developed using ANN-PSO 205 

Due to the immense benefits of ANN and PSO in this research study, the ANN-PSO 206 

framework is used to develop the data-driven model to predict MB dye removal. The 207 

implementation procedure of ANN-PSO, its benefits, and evaluation of parameters was 208 

reported in the previous study [39]. In this research study, the process variables (pH, adsorbent 209 

dosage, and contact time) are used as inputs to the ANN-PSO framework, and response (MB 210 

removal %) is obtained as output from this model. The schematic representation of ANN-PSO 211 

Architecture, along with the input layer, hidden layer and output layer, is shown in Figure 1. 212 

The model is trained, tested and validated using the 70%-15%-15% rule. 213 
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 214 
Figure 1: Schematic representation of ANN-PSO Architecture 215 

3. Result and Discussion 216 

3.1 Characterization of GO/CS 217 

3.1.1 Fourier-Transform Infrared Spectroscopy (FTIR) analysis  218 

Fourier-Transform Infrared Spectroscopy (FTIR) is a technique to identify the organic 219 

compounds in a substance. A graph of transmittance versus wavelength is generated from this 220 

characterization technique. The stretching or peaks at a different wavelength and existing 221 

organic compounds are identified from the graph. The FTIR graph of GO, GO/CS1, GO/CS2, 222 

and GO/CS3 is shown in Figure 2. From the graph, peaks can be seen, and the organic 223 

compounds represented by the peaks are identified. At a wavenumber of 3000 to 3500 cm-1, 224 

the stretching vibration can be observed in the plot of GO, GO/CS1, and GO/CS2, which 225 

corresponds to the OH bonds. In the wavenumber range of 2800 to 3000 cm-1, peaks can be 226 

seen in all four plots, and these bands are attributed to C-H bonds of CH2 and CH3 [40]. The 227 
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plot of GO, GO/CS1 and GO/CS2 have similar peaks at 1731 cm-1 and 1623 cm-1. The peak at 228 

1731 cm-1 corresponds to the C=O stretching vibration of carboxylic and carbonyl groups [41, 229 

42]. The peak at 1623 cm-1 corresponds to the carbon-carbon bond of graphene [42]. Bands are 230 

observed at 1045 cm-1, 1044 cm-1, and 1040 cm-1 for GO, GO/CS1, and GO/CS2, respectively. 231 

These three bands corresponding to the stretching vibration of C-O-C bonds alkoxy groups 232 

(epoxy) [43].  233 

 234 

Figure 2: FTIR spectra of GO, GO/CS1, GO/CS2, and GO/CS3 235 

However, the profile of GO/CS3 is slightly different when compared to the other three 236 

graphs. In the plot of GO/CS3, peaks are found at 1624 cm-1, 1546 cm-1, 1406 cm-1, 1379 cm-237 

1, 1151 cm-1, 1065 cm-1, and 1033 cm-1. The band at 1624 cm-1 is attributed to the C=O bonds 238 

carbonyl groups of NHCO or secondary amide (Amide II band) due to chitosan [44]. The band 239 

at 1546 cm-1 is attributed to the stretching vibration of N-H bonds of Amide II and the 240 

symmetric NH3+ deformation, and this band can also attribute to skeletal vibration of carbon-241 

carbon bond in GO [44]. The bands at 1406 cm-1 and 1379 cm-1 correspond to the stretching 242 

vibration of O-H bonds of carbonyl groups and symmetrical deformation of CH3 in the 243 
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acetamide group (NHCOCH3), respectively [44-46]. At 1151 cm-1, the stretching vibration 244 

corresponds to C-O-C antisymmetric. The band at 1065 cm-1 is attributed to N-H stretching 245 

vibration, while the band at 1033 cm-1 is attributed to the introduction of epoxy groups of 246 

graphene oxide [47]. From the result of FTIR, the composites of GO/CS1 and GO/CS2 do not 247 

bind well, which is why they have similar peaks to GO. In the peaks of GO/CS3, more bonds 248 

or amide groups can be identified, and Chitosan is the source of the amide group's bond. 249 

However, the peaks of GO/CS3 are very weak, which indicates that not much Chitosan is bound 250 

with GO.  251 

3.1.2 Field Emission Scanning Electron Microscopy (FESEM) Analysis 252 

Field emission scanning electron microscopy (FESEM) analysis was used to study the 253 

surface morphology of GO, GO/CS1, GO/CS2, and GO/CS3. Figure 3 shows the SEM images 254 

of GO, GO/CS1, GO/CS2, and GO/CS3 at 5000 times magnification (Figure S1 at 600 times 255 

magnification). From Figure 3 (a), the 2D structure of the GO sheet can be observed, and the 256 

surface of the composite becomes rougher when the composition of the GO and chitosan 257 

increases. The roughness on the surface is due to the crosslinking or entanglement of the 258 

graphene oxide and Chitosan [48]. This entanglement of the composite increased the surface 259 

area and thus improved the efficiency of the adsorption process. The surface morphology of 260 

GO/CS also shows that it has more pores, resulting in better adsorption. 261 
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 262 

Figure 3 : FESEM images of (a) GO, (b) GO/CS1, (c) GO/CS2 and (d) GO/CS3 at 263 

magnification of 5000x 264 

3.1.3 Energy-dispersive X-ray Spectroscopy (EDX) Analysis 265 

Energy-dispersive X-ray spectroscopy (EDX) was carried out with FESEM. The 266 

resulting graph of EDX is shown in Figure 4. The analysis was carried out at 2500 times 267 

magnification and acceleration voltage of 20kV. From the result of the EDX analysis, the 268 

percentage of N in GO/CS1, 2, and 3 are 3.81%, 3.82%, and 16.83%, respectively. The 269 

percentage of N increases with the amount of Chitosan used; this indicates that more Chitosan 270 

was successfully crosslinked with graphene oxide [45]. However, S and Cl are also found in 271 

the composites, and this is due to the usage of hydrochloric acid and sulfuric acid in the 272 

synthesis of GO which was not thoroughly washed off.  273 
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 274 

Figure 4 : EDX analysis of (a) GO, (b) GO/CS1, (c) GO/CS2 and (d) GO/CS3 275 

  276 
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3.1.4 Thermogravimetric Analysis (TGA) 277 

From the TGA curves (see Figure S2) of GO/CS1, GO/CS2 and GO/CS3, three 278 

significant stages of weight loss can be seen at a temperature of 50°C, 140°C, and 230°C, 279 

respectively. Meanwhile, the loss of weight of GO has only two stages, at 50°C and 170°C. At 280 

50°C, weight loss is due to the evaporation of water that is physically and chemically bonded 281 

with the composites. The weight loss between 140°C and 230°C is presumed to be due to the 282 

decomposition of oxygen functionalities of GO in the composites [49, 50]. These results 283 

indicate that the composites are much more thermally stable than the GO because of amino 284 

groups in the Chitosan [51].  285 

3.2 Analysis of various process parameters on dye removal efficiency 286 

3.2.1 Effect of pH 287 

In this research study, four different amounts of adsorbent dosage and pH were used for 288 

removing methylene dye over three hours, and the percentage removal and adsorption capacity 289 

of the adsorbent were calculated and recorded every 30 min. The results of the study of pH are 290 

shown in Figure 5 (a). The data of percentage removal for the studies used for the graphs are 291 

the percentage of removal after 3 h. From the graph, it is observed that as the pH increases, the 292 

efficiency of MB removal also increases and the same trend is also observed as the increased 293 

dosage the removal efficiency also increases; this is due to the existence of a sulfonate group 294 

in MB and H+ in acid solution. H+ of acidic conditions will combine with the sulfonate group, 295 

decreasing the adsorption capacity [52]. As the pH value is lower, more H+
 is present in the 296 

solution, and thus, the adsorption capacity and percentage removal will be decreased. Lower 297 

removal was observed at lower pH due to competitive interactions of H+ and catatonic MB and 298 

the repulsive force interaction of the dye cations with the +ve surface of GO/CS. While rising 299 

solution pH (3-5), increased adsorptive removal of MB due to the number of –ve charged sites 300 
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enlarged that lead to the existence of the electrostatic force of attraction between cationic MB 301 

and GO/CS.  302 

 303 

 304 

Figure 5: The behaviour of MB removal due to (a) pH at different dosage (b) dosages at 305 

different pH, (c) contact time at different dosages, and pH (d) contact time at different initial 306 

concentrations [Experiment conducted at the optimal conditions:  pH of 5, adsorbent dosage: 307 

of 0.143 g/L and contact time of 125 min]. 308 

3.2.2 Effect of Dosage 309 

Similar to the effect of pH, four different amounts of adsorbent dosage and four different 310 

pH were used to remove methylene dye over three hours. The percentage removal and 311 

adsorption capacity of the adsorbent were calculated and recorded every day for 30 min. The 312 

results of the study of dosage at different pH are shown in Figure 5 (b). From the graphs, it is 313 

noticeable that the increase in adsorbent dosage improves the dye removal efficiency (average) 314 

by 25% for every increase in pH value in the range of 3-5. The increase of percentage removal 315 

with adsorbent dosage is because of the increase in total active sites to adsorb the dye particles 316 

[45, 53].  317 
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3.2.3 Effect of Contact time  318 

A graph percentage versus time with the combination of pH and dosage is plotted, as 319 

shown in Figure 5 (c). From the graph, the percentage removal increases over time, and the 320 

highest percentage removal is 85% with 0.15 g adsorbent at a pH of 5. The increase in 321 

percentage removal becomes lower after two hours. This is due to the active sites of the 322 

adsorbent being occupied, and the adsorbent starts to become saturated [45]. The difference in 323 

the increase in percentage removal became to be evident after 60 min for 0.05 g and 0.15 g 324 

adsorbent. When comparing the percentage removal at 180 min, 0.05 g adsorbent at pH of 3, 325 

4, and 5 seem to reach their maximum adsorption as the adsorbate fully occupied the adsorbent. 326 

However, the line of 0.10 g and 0.15 g adsorbent with pH of 3, 4, and 5 are still increasing, and 327 

their maximum adsorption amount is yet to reach. 328 

3.2.4 Effect of Initial Concentration 329 

The initial concentration effect was investigated from 10 to 60 mg/L of methylene blue, as 330 

shown in Figure 5 (d). The amount of adsorbent used and pH of dye solution was set to 0.15g 331 

and pH of 5 as a result of the effect of pH and effect of adsorbent dosage show this condition 332 

has better efficiency in dye removal. The dye solution's concentration was checked every hour 333 

for 8 h, and an additional concentration reading was taken at 24 h to identify the equivalent 334 

adsorption amount. The highest adsorption capacity observed in this experiment is 16.7 mg/g, 335 

as seen in Figure 6. For 10 mg/L dye solution, the adsorption amount has reached equilibrium 336 

at the third hour, while for 40 mg/L and above has yet to reach equilibrium after 8 h. A longer 337 

contact time is needed for a higher concentration of dye solution to remove the dye particles in 338 

the solution entirely. The equilibrium adsorption capacity indicates that the dye particles fully 339 

occupied the active sites of the adsorbent; more amount of adsorbent is needed to remove the 340 

remaining dye particles in the solution.  341 

 342 
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 343 

Figure 6: Effect of contact time on MB adsorption capacity at a different initial 344 

concentration. [Experiment conducted at the optimal conditions:  pH of 5, adsorbent dosage: 345 

of 0.143 g/L and contact time of 125 min] 346 

3.3 Interaction effects within process variables and their effect on MB removal (%)  347 

In the above section, the effect of each process variable on the overall MB removal is 348 

investigated. However, each process variable may exhibit different behavior in the presence of 349 

other variables. The results are shown in Figure 5 exhibit the behaviour of isotherm at the 350 

different concentrations for MB removal for the effect of pH, dosage and time. To understand 351 

the interactive effects within the process variables, 3D surface plots and contours, are drawn, 352 

as shown in Figure 7. It is observed that increasing the pH increases the time as results increase 353 

in MB removal was observed. Also, the contour plots shown on the bottom surface are 354 

distinctive, thus depicting the non-linear distribution within the process variables. Figure 7 (a) 355 

depicts the 2D contour plot pH-and contact time on MB removal. The wider contours indicate 356 

the strong interaction between these factors. The 3D surface plot of the same combination of 357 

parameters is given in Figure 7 (b). The curvature of the surface plot shows the interactive 358 

effect of pH – contact time on MB removal. It can be observed that the removal efficiency is 359 

very low at a lower contact time and lower pH. At lower contact time, higher pH is preferred 360 
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to obtain higher MB removal efficiency. The interactive effect of pH – dosage on MB removal 361 

is shown in Figure 7 (c). It can be observed that the removal efficiency is increasing for 362 

different adsorbent dosages, irrespective of pH. At pH of 5 and dosage of 0.15 g/L, it results in 363 

removal efficiency of over 80%. The interactive effect of dosage-contact time on MB removal 364 

is shown in Figure 7 (d). This interactive plot shows that higher dosage results in higher MB 365 

removal efficiency, irrespective of contact time. 366 

 367 
Figure 7: (a) 2D contour plot pH-and contact time (b) 3D surface plots for MB removal-pH-368 

contact time; (c) MB removal-pH-Dosage and (d) MB removal-contact time-Dosage 369 

 370 

3.4 Multi-regression analysis 371 

Conducting experiments at different process conditions is tedious and also involves lots of 372 

chemicals. Hence, conducting multiple experiments is expensive and leads to a waste of 373 
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chemicals. The DOE approach using RSM methodology is used to minimize the number of 374 

experiments. However, based on the minimum experiments conducted, it’s good to develop a 375 

multi-regression relation that can be used to predict the MB removal efficiency at different 376 

process conditions. In this regard, ANOVA analysis (see Table S1) is used, and a quadratic 377 

expression for evaluation of removal (%) is obtained as follows: 378 

Removal (%) = +63.78 - 20.58 * pH - 0.717 * Time + 439.675 * Dosage - 0.307 * pH * Time 379 

+ 28.70 * pH * Dosage +1.295 * Time * Dosage + 9.451 *pH² + 0.0064 * Time² - 1600.50 * 380 

Dosage² 381 

Similarly, ANOVA analysis (see Table S2) is used and a quadratic expression for 382 

evaluation of adsorption amount is obtained as follows: 383 

Adsorption amount = + 5.437 - 1.536 * pH - 0.053 * Time +33.00 * Dosage - 0.027 * pH * 384 

Time + 2.10 * pH * Dosage + 0.096 * Time * Dosage + 0.701 * pH² + 0.0005 * Time² - 385 

120.50 *Dosage² 386 

3.5 Implementation of ANN-PSO approach  387 

As mentioned earlier, the identified process variables (pH, adsorbent dosage, and contact time) 388 

are used as inputs to the ANN-PSO framework, and response (MB removal %) is obtained as 389 

output from this model. The model is trained, tested, and validated using the 70%-15%-15% 390 

rule, in which the data is segregated randomly. The performance of ANN-PSO depends on 391 

various model parameters such as number of neurons, swarm size, cognition coefficient (C1), 392 

and social assessment (C2). Therefore, the optimal values of these parameters are evaluated, 393 

which are given in Table S3. Also, the effect of the number of neurons in a hidden layer on the 394 

statistical metrics RMSE and R2 is verified, as shown in Figure 8. It can be seen that the eight 395 

neurons in the hidden layer are resulting in lower RMSE and higher R2. Therefore, the 3-8-1 396 

topology is considered an optimal ANN configuration. Accordingly, the optimal values of 397 

swarm size, C1, and C2 are estimated as shown in Table S3, resulting in lower RMSE and higher 398 
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R2. Finally, the optimal weights involved in the ANN-PSO framework were evaluated is given 399 

in Table S4. Thus, the optimal ANN-PSO model values for the number of neurons, swarm size, 400 

maximum iterations, C1 and C2 are 8, 80, 300, 1.5, and 2.5, respectively. 401 

 402 
Figure 8: Variation of RMSE and R2 with respect to the number of neurons in the hidden 403 

layer 404 

3.6 Comparison of RSM and ANN-PSO models 405 

The effectiveness of the proposed approaches are validated to establish the superiority of 406 

the methods to depict the MB dye removal using GO/Ch composites. Therefore, the respective 407 

model (ANN-PSO and RSM) predictions are produced and compared, as shown in Figure 9. 408 

It can be observed that both the model predictions are equally good; however, the ANN-PSO 409 

predictions are in good agreement with the experimental values compared to RSM predictions. 410 

Typically, the scatter plots are a good representation of model predictions, but they may not 411 

provide the complete picture of the goodness of fit or error distribution. Therefore, the model 412 
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predictions are compared by evaluating various statistical metrics. The various well-known 413 

nonlinear statistical metrics that can be used for validating the efficacy of model predictions 414 

are shown in Table 2. It is found that the R2 value for ANN-PSO is 0.998, which is much higher 415 

than the R2 (0.981) of RSM. A similar trend is observed for all other metrics, thus confirming 416 

the superiority of ANN-PSO over RSM. Even though ANN-PSO is more computationally 417 

intensive than RSM, this model could capture the MB dye adsorption process characteristics. 418 

Table 2. Nonlinear statistical metrics for validating the efficacy of model predictions 419 

Error function Mathematical expression RSM ANN-PSO 

Coefficient of 

determination (R2) 

∑ (%𝑅𝑝𝑟𝑒𝑑
𝑖 − %𝑅𝑒𝑥𝑝

𝑖 )
2𝑛

𝑖=1

∑ [(%𝑅𝑝𝑟𝑒𝑑
𝑖 − %𝑅𝑚𝑒𝑎𝑛,𝑒𝑥𝑝

𝑖 )
2

]𝑛
𝑖=1

 0.981 0.998 

Sum of the squares of 

errors (SSE) 
∑(%𝑅𝑝𝑟𝑒𝑑

𝑖 − %𝑅𝑒𝑥𝑝
𝑖 )

2
𝑛

𝑖=1

 94.228 8.937 

Average relative errors 

(ARE) 

100

𝑝
∑

|%𝑅𝑝𝑟𝑒𝑑
𝑖 − %𝑅𝑒𝑥𝑝

𝑖 |

%𝑅𝑒𝑥𝑝
𝑖

𝑛

𝑖=1

 1.311 0.415 

Root means square 

errors (RMSE) 
√

1

𝑛 − 1
∑(%𝑅𝑝𝑟𝑒𝑑

𝑖 − %𝑅𝑒𝑥𝑝
𝑖 )

2
𝑛

𝑖=1

 2.427 0.747 

Sum of the absolute 

errors (SAE) 
∑|%𝑅𝑝𝑟𝑒𝑑

𝑖 − %𝑅𝑒𝑥𝑝
𝑖 |

𝑛

𝑖=1

 26.180 7.647 

Absolute average 

deviation (AAD) 
| 

1

𝑛
∑

(%𝑅𝑝𝑟𝑒𝑑
𝑖 − %𝑅𝑒𝑥𝑝

𝑖 )

%𝑅𝑒𝑥𝑝
𝑖

𝑛

𝑖=1

| ∗ 100 0.043 0.030 

Pearson’s Chi-square 

(2) 

( )
2

ex

2

p1

% %

%

i i

pred exp

i

n

i

R R

R


=

−
=  2.338 0.278 

Marquart’s percentage 

standard deviation 

(MPSD) 
100 ∗ √

1

𝑛 − 𝑝
∑

(%𝑅𝑝𝑟𝑒𝑑
𝑖 − %𝑅𝑒𝑥𝑝

𝑖 )
2

%𝑅𝑒𝑥𝑝
𝑖

𝑛

𝑖=1

 15.705 1.925 

Hybrid fractional error 

function (HYBRID)  

100

𝑛 − 𝑝
∑

(%𝑅𝑝𝑟𝑒𝑑
𝑖 − %𝑅𝑒𝑥𝑝

𝑖 )
2

%𝑅𝑒𝑥𝑝
𝑖

𝑛

𝑖=1

 39.482 13.607 

 420 

Where , ,,i i

e exp e predq q  are the qe values of the experimental and predicted values, respectively; p 421 

is the number of parameters; n is the number of experimental runs. 422 
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 423 
 424 

Figure 9: Assessment of RSM and ANN-PSO model predictions 425 

  426 
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3.7 Adsorption Isotherms  427 

To understand the inherent mechanisms of the MB adsorption process, different types of 428 

isotherm models are validated (see Table S5). Most researchers linearize the non-linear 429 

isotherm models to estimate the respective isotherm parameters by fitting a regression line. But 430 

this linearization procedure underestimates the mechanisms involved in the adsorption process 431 

[54, 55]. So, a non-linear approach is implemented to estimate the respective isotherms, as 432 

shown in Table 3. It can be observed that the non-linear approach gives higher R2 than the 433 

linear approach for all isotherm models, indicating that this non-linear approach model better 434 

captures the non-linearity in the respective models. It can be observed that the R2
 values for all 435 

the considered isotherms are higher than 0.95, but the Freundlich isotherm model better depicts 436 

the MB adsorption by graphene oxide/chitosan composite, which gives R2 = 0.995 and also 437 

lower statistical metrics. These results are very similar to other published works on MB 438 

adsorption [56]. To visualize the efficacy of the model parameters evaluated by the non-linear 439 

approach, these parameters (both linear and non-linear) are substituted in respective isotherm 440 

models, and qe values are predicted. Various isotherm plots depicting linear and non-linear 441 

approaches are shown in Figure S4. These plots also confirm that the parameters evaluated by 442 

the non-linear approach provide better predictions and are close to experimental values.  443 

3.8 Kinetic modelling 444 

To understand the inherent kinetic mechanism involved in MB adsorption using graphene 445 

oxide/chitosan composites, various adsorption reaction kinetic models (Pseudo first and 446 

second-order) and intraparticle diffusion kinetic models (Weber-Morris and Boyd) are 447 

investigated (see Table S6). As mentioned in the previous section, most researchers also 448 

linearize the non-linear kinetic models to estimate the respective kinetic model parameters by 449 

fitting a regression line. But this linearization procedure underestimates the mechanisms 450 

involved in the adsorption process [54, 55]. So, the non-linear approach is implemented to 451 
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estimate the respective isotherms, as shown in Units: qe (mg/g), K1 (min-1), K2 (g mg -1 min-1), Kid 452 

(mg/g min0.5), B (min-1) . Here the respective rate constants and equilibrium adsorption capacities 453 

were evaluated by both approaches. Since R2
 is the most occasionally used metric to identify 454 

the best kinetic model that can depict the inherent mechanism accordingly, R2 is evaluated for 455 

all the investigated kinetic models for both linear and non-linear approaches. It can be observed 456 

that the R2 value is higher for parameters evaluated by non-linear approaches. This itself 457 

signifies that the non-linear approach better captures the non-linearity in the kinetic model and 458 

hence better interprets the inherent mechanisms. It can be observed that Pseudo's first kinetic 459 

order provided an R2 value of 0.9881, indicating that this model better explains the MB 460 

adsorption process. Hence, this adsorption system follows the Pseudo-first-order kinetic model 461 

[56].  462 

To further visualize the efficacy of the kinetic model parameters evaluated by the non-463 

linear approach, these parameters (both linear and non-linear) are substituted in respective 464 

kinetic models, and corresponding adsorption capacity at equilibrium (qe) values are predicted. 465 

Various kinetic model plots depicting linear and non-linear approaches are shown in Figure S3. 466 

These plots also confirm that the parameters evaluated by the non-linear approach provide 467 

better predictions and are close to experimental values. 468 
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Table 3. Validation of various Isotherm models for depicting MB adsorption by graphene oxide/chitosan composite 469 

Models → Freundlich Langmuir Temkin Redlich–Peterson Sips Toth 

Statistical  

metrics  
Linear 

Non-

linear 
Linear 

Non-

linear 
Linear 

Non-

linear 
Linear 

Non-

linear 
Linear 

Non-

linear 
Linear 

Non-

linear 

Parameters

→ 

KF: 6.54  

bF: 1.727 

KF: 6.79  

bF: 1.833 

KL: 18.55 

bL: 0.67 

KL: 25.35 

bL: 0.35 

bT: 4.72 

KT: 5.143 

bT: 4.86 

KT: 4.948 

KR: 12.58 

aR: 0.715 

α: 0.941 

KR: 11.99 

aR: 0.774  

α: 0.777 

Ks: 22.29 

bs: 0.476 

ns: 1.127 

Ks: 33.88 

bs: 0.247 

ns: 1.228 

Kth: 31.26  

bth: 0.331 

nth: 0.823 

Kth: 43.51 

bth: 0.528 

nth: 0.57 

R2 0.991 0.995 0.956 0.983 0.945 0.948 0.966 0.986 0.972 0.987 0.979 0.986 

SAE 1.833 1.651 4.975 2.656 5.158 5.018 4.352 2.607 4.116 2.492 5.059 2.519 

SSE 1.403 1.219 6.513 1.944 5.700 5.619 4.738 1.496 4.478 1.405 6.376 1.510 

ARE 7.281 6.594 23.598 6.062 36.652 35.876 21.481 9.274 19.158 9.086 34.039 10.283 

RMSE 0.592 0.474 1.276 0.497 1.194 1.106 1.088 0.632 1.058 0.593 1.263 0.614 

Units: Langmuir: KL (mg/g), bL (L/mg); Freundlich: KF (mg−1-(1/n) L(1/n)
 g−1), bF is dimensionless; Temkin: KT (L/mg), bT (J/mol); Redlich–Peterson: KR (L/g), aR(L/mg) nP, nR is 470 

dimensionless; Sips: KS (mg/g), bs (L/mg)n, ns is dimensionless; Toth: Kth (L/g), bth (mg/L)n, nth is dimensionless. 471 
 472 
Table 4. Validation of various Kinetic models for depicting MB adsorption by graphene oxide/chitosan composite 473 

Models → Pseudo first order Pseudo-second-order Weber - Morris Boyd 

Statistical metrics  Linear Non-linear Linear Non-linear Linear Non-linear Linear Non-linear 

Parameters → 
K1: 0.015 

qe: 3.153 

K1: 0.013 

qe: 3.190 

K2: 0.023 

qe: 4.356 

K2: 0.004 

qe: 3.862 
Kid:0.1997 Kid:0.1915 

B: 0.0144 

qe: 3.106 

B: 0.0114 

qe: 2.990 

R2 0.9811 0.9881 0.8823 0.9388 0.7496 0.7624 0.9570 0.9747 

SAE 7.757 6.732 12.099 10.848 33.007 31.350 25.710 28.563 

SSE 0.098 0.068 0.263 0.167 0.955 0.869 0.555 0.407 

ARE 0.488 0.330 1.069 0.894 1.934 1.917 0.859 1.168 

RMSE 0.140 0.116 0.229 0.183 0.437 0.385 0.333 0.285 

Units: qe (mg/g), K1 (min-1), K2 (g mg -1 min-1), Kid (mg/g min0.5), B (min-1)  474 



27 
 

3.9 Process optimization and model validation  475 

To identify the optimal process variables at which maximum MB removal efficiency and 476 

adsorption amount are obtained, the above discussed RSM approach is implemented. The 477 

respective process conditions for maximum MB removal efficiency and adsorption amount are 478 

shown in Table 5. The developed ANN-PSO data-driven model is implemented to predict both 479 

responses based on these optimal process conditions. Experiments are conducted at these 480 

process conditions, and respective MB removal efficiency and adsorption amount obtained are 481 

tabulated in this table.  482 

It was observed that the ANN-PSO and RSM model-based predictions are in good agreement 483 

with obtained experimental values (standard deviation of less than 2%); however, the ANN-484 

PSO model predictions are very close to experimental values. These results further confirm 485 

that the ANN-PSO-based approach can capture the inherent mechanisms of the MB adsorption 486 

process and can be used as a good modelling approach. Table 6 compares the removal 487 

efficiency of MB dye with different adsorbents. It can be observed that the GO/CS has resulted 488 

in higher MB dye removal and lowest adsorption capacity, compared to other adsorbents. It 489 

can also be observed that the dye removal adsorption experiments resulted in high removal 490 

efficiency at a pH of 5.  491 

Table 5. Comparison of maximum MB removal efficiency by RSM and ANN-PSO at the 492 

optimal conditions & initial dye concentration of 10mg/L. 493 

No 

A B C Response 

pH 
Dosage 

(g/L) 

Contact Time 

(min) 
Expt. 

RSM 

Pred. 

 

ANN-PSO Pred. 

Removal Efficiency (%) 

1 5.0 0.143 124.9 90.34 90.02 90.28 

2 4.9 0.149 122.0 88.67 88.40 88.60 

 494 

 495 

 496 
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Table 6. Comparison of removal efficiency of MB dye with different adsorbents 497 

Adsorbent pH 
Removal 

efficiency (%) 

Adsorption 

capacity 

mg/g 

References 

Hydroxypropyl 

cellulose/ GO 

- >70 27.849  

Raw mango seed 5 80 25.36  

Cobalt-benzene-1,3,5-

tricarboxylate 

8 67 58  

Tea waste-based 

activation carbon based 

on chemical activation 

agent (H3PO4, KOH and 

ZnCl2) 

- 70 238.1 

357.14 

147.06 

 

copper-benzene-1,3,5-

tricarboxylate 

5 84 288.72  

Coconut shell-biochar 10 88.01 -  

Alginate polymer 

modified with pandan 

leaves 

 

5 61 -  

Graphene oxide-potato 

starch 

8 80 500  

Cu-doped-Fe-Benzene 

dicarboxylic acid metal 

organic framework 

5 82 8.56 - 23.92   

CS nano-

montmorillonite 

The produced composite 

was named R0, RI, RII, 

and RIII for 

montmorillonite ratios 

zero, 0.05, 0.07, and 

0.10, respectively 

8 88.47 248.9, 

276.03, 

204.39, and 

180 

 

GO/CS 5 90.34 7.53 Present study 

 498 

4. Conclusions 499 

This research study is mainly focused on synthesizing graphene oxide/chitosan composite 500 

and determining its feasibility for MB dye removal. The fabrication of the composites was 501 

successful and was proven by the characterization via FTIR, SEM, EDX, and TGA. The 502 

functional groups of epoxy, carbonyl, and hydroxyl were found in GO and GO/CS composites, 503 

while the amide functional group was found in GO/CS composites. At acidic conditions, the 504 

dye removal application has shown higher efficiency at a high pH value. The adsorption 505 
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capacity is considered low, and this might be due to the agglomeration of the adsorbent in the 506 

dye solution, which decreases the contact area between dye particles and adsorbents. The 507 

ANOVA results for the quadratic models obtained for predicting MB removal (%) and the 508 

adsorption amount were found that the model is very significant, which resulted in a p-value 509 

of 0.0014. ANN-PSO framework is implemented to obtain the data-driven model. The optimal 510 

ANN-PSO model values for the number of neurons, swarm size, maximum iterations, C1 and 511 

C2 are 8, 80, 300, 1.5 and 2.5, respectively. ANN-PSO predictions are in good agreement with 512 

the experimental values and hence resulted in higher R2 (=0.998) compared to RSM predictions 513 

(R2 = 0.981). The maximum MB removal efficiency (90.34%) and adsorption amount (7.53 514 

mg/g) can be obtained at an initial dye concentration of 10 mg/L and optimal values of pH (5), 515 

adsorbent dosage (0.143 g/L) and contact time (125 min). 516 
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