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Abstract：Modelling dynamic heterogeneity in amorphous shape memory polymers 

(SMPs) is a huge challenge due to the complex statistics of strain energy distributions 

during their thermodynamic relaxations. In this study, based on the dynamic 

heterogeneity of strain energy distribution, we have considered, for the first time, the 

influences of different temperature rates and strain rates on strain energy evolution as 

a dynamic equilibria, rather than a quasi-static problem. We propose a phase transition 

model incorporated with Gaussian distribution statistics to investigate the dynamic 

equilibria with glass transition heterogeneity and tailorable mechanics for the 

amorphous SMPs. The Gaussian distribution statistics is firstly applied to characterize 

the heterogeneity of strain energy distributions in the amorphous polymers. Phase 

transition theory is then developed to describe working principles of strain energy 

evolution, glass transition heterogeneity, thermodynamic relaxation and tailorable 
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mechanics. Finally, the dynamic equilibria of heterogeneity about the statistics of 

strain energy distribution are formulated based on the one dimensional Maxwell 

multi-branch model. The analytical results are compared with the experimental data of 

epoxy, polyamide and vinylester SMPs reported in literature, and good agreements 

between them are demonstrated. This study provides a new insight into the dynamic 

heterogeneity in the mechanics of amorphous SMPs. 

Keywords: shape memory polymer; dynamic heterogeneity; glass transition 

1. Introduction 

Shape memory polymer (SMP) is one of the amazing smart materials which after 

pre-deformed, can respond to external stimuli and produce mechanical actuations by 

regaining their permanent shapes [1]. There are various external stimuli to trigger 

shape recovery, including heat, light, solvent, electric and magnetic fields [2-6]. 

Shape memory effect (SME) in the SMPs is originated from their intrinsically 

molecular features of having both hard and soft segments, and can be triggered 

through either glass transition or melting processes [7]. The unique thermodynamics 

of SMPs as well as their large deformation strain, low density and tunable properties 

[8] enable them to have wide-range applications for actuators [9], textile [10], 

deployable structures [11] and biomedical devices [12-14].  

Glass transition is a key factor for generating the SME in amorphous SMPs. In 

terms of their thermodynamics, heterogeneous molecules in the SMPs preserve 

various stored strain energies, thus resulting in the multiple glass transitions. SME in 

the amorphous SMP is originated from the transformation of frozen phases into active 



ones, when the frozen phases are heated above their glass transition temperatures [15]. 

Liu et al developed a phase transition model for amorphous SMPs, in which the active 

and frozen phases were formulated and linked with their shape memory behaviors 

[16]. Long et al proposed another phase transition model to analyze the dynamic 

behaviors during glass transition of frozen phases in SMPs [17]. Xiao et al formulated 

the constitutive relationship between the relaxation time and fractions of the frozen 

phases in the SMPs [18]. Guo et al studied the constitutive relationship of an 

amorphous SMP by analyzing the applied stress as a function of the frozen phase 

fraction [19]. However, these previous studies were focused mainly on the effects of 

temperature and stress on the glass transition of the homogeneous frozen phases. 

Whereas effects of strain energy evolution and distributions of the frozen phases 

within the matrix have never been investigated and understood, even though it is well 

known that they are strongly associated with the thermodynamic relaxations in the 

SMPs. When temperature or external load changes, the segments of SMP cannot be 

immediately rearranged from its original equilibrium state to a new equilibrium state 

due to its thermodynamic relaxation. Previous models [15-19] generally suggest that 

the relaxation of segments between two different equilibrium states is consistent and 

quasi-static. So far, there are few studies on the dynamic heterogeneity and dynamic 

equilibrium of strain energy distribution during the phase transitions.  

In this study, we formulate a constitutive model for the dynamic heterogeneity and 

strain energy evolution/distribution to explain the tailorable mechanics and stress-

strain relationship of the amorphous SMPs. Gaussian distribution statistics [20] of 



strain energy is firstly employed to characterize the dynamic heterogeneity of glass 

transitions. Phase transition theory is then proposed to describe the dynamic equilibria 

of strain energy evolution/distribution. Furthermore, the constitutive relationships of 

thermodynamic relaxations and tailorable mechanics have been formulated based on 

the one-dimensional (1D) Maxwell multi-branch model [21], considering complex 

statistics of strain energy distribution. Finally, analytical results obtained using our 

newly developed model are compared with the experimental data of epoxy, polyamide 

and vinylester SMPs reported in Ref. [22-24] for verifications. 

2. Theoretical framework 

2.1 Gaussian statistics of energy distribution 

SMPs contain a huge number of macromolecules and each of them has conserved 

different strain energy values. This is often called dynamic heterogeneity, which 

results in the difficulties to predict the glass transition and relaxation behavior of the 

SMPs. The initial strain energy distribution of an amorphous polymer is mainly 

determined by the cooling rate (qc) during the transition from an equilibrium state to a 

non-equilibrium state [20]. The distribution probability P(F) of strain energy per mol 

(F) in the SMP can be expressed using the Gaussian distribution statistics [20], 
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where ΔF is the standard energy deviation (per mol) of the Gaussian distribution, cp is 

the specific heat, Tg is the glass transition temperature and R (R=8.314 J/mol·K) is the 

gas constant.  



During cooling process, relaxation time (t0c) in the glassy state of a polymer can be 

expressed using the Arrhenius equation [21], i.e., t0c=τ0exp [F0/(RT)]. Because there is 

a certain mount of activation energy to be exchanged with the environment, i.e., a 

value of cpTg at T=Tg, the strain energy (F0) of the SMP can be modified as F0-cpTg 

[20]. Therefore, the Tg can be derived as [20],  
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where τ0 is a given constant, and F0 is the per mol free energy of the SMP in its active 

state. 

Assuming under a constant cooling rate qc, the relaxation time t0c can be given by, 

 
0c d e c( ) /t T T q= −                                                   (3) 

where Td is the temperature for the SMP to be deformed into a temporary shape and Te 

is the transition temperature for the SMP in the cooling process. 

By substituting equations (2) and (3) into (1), effects of deformation temperature 

(Td) and cooling rate (qc) on the distribution probability of strain energy P(F) can be 

obtained,  
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where αc is the programming parameter as a function of cooling rate (qc). 

2.2 Dynamic glass transition heterogeneity 

The strain energy evolution within the SMPs leads to the dynamic glass transition 

heterogeneity and various relaxation behaviors. At the relaxation time of t0h, the stored 

strain energy per mol (Fd) can be expressed by [25], 



( )d 0 0h 0lnF F TR t = −                                           (5) 

where F0 is the initial active energy per mol and τ0 is the initial relaxation time. The 

item of t0h refers to the relaxation time for the SMP in the heating process, and has a 

constitutive relationship with the heating rate (qh), 

0h r e h( ) /t T T q= −                                                 (6) 

where Tr is the recovery temperature of SMP from its temporary shape to its 

permanent shape. 

By substituting equation (6) into (5), we can obtain the relationship between stored 

strain energy (Fd) and heating rate (qh),  
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where αh is the relaxation parameter as a function of heating rate (qh). 

According to the equation (7), the stored strain energy (Fd) is decreased when the 

recovery temperature (Tr) is increased. Accordingly, the release of stored strain energy 

can be expressed using a function of the frozen volume fraction (𝜙f), which can be 

further written using the distribution probability of strain energy (P(F)), i.e., 
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where εs and εpre are the stored and pre-deformed strains, respectively. 

In combination of equations (4) and (8), the frozen volume fraction (𝜙f) in the SMP 

can be rewritten as, 
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To solve the equation (9), the transformation from cartesian integral to polar 

integral is performed, and following equation is obtained,   
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Based on the equation (10), dynamic glass transition heterogeneity and relaxation 

behavior can be characterized by the strain energy distribution, which is determined 

by the thermodynamic history of the SMP. Therefore, it is necessary to investigate the 

influence of thermodynamic history on the relaxation behavior of SMPs. Based on the 

Mori-Tanaka equation [26], the SMP is incorporated from the frozen and active 

phases, where the storage modulus (E) can be expressed as, 
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where Ea and Ef are the storage moduli of the active and frozen phases, respectively, 

and   is the fitting constant. 

The storage modulus of the frozen phase has a constitutive relationship with the 

temperature (T), which can be expressed as [27],  

( ) ref ref

flog log ( ) ( )E T E T a T T= − −                                (12) 

where E(T ref) is the modulus of frozen phase at the reference temperature (Tref), and 

a  is the coefficient of thermal expansion.  

Combining equations (10), (11) and (12), the storage modulus (E) of the SMP can 

be obtained, 
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2.3 Dynamic heterogeneity towards tailorable mechanics 

Mechanical performance of the SMP is mainly derived from the stored strain 

energy, and is strongly linked to the dynamic heterogeneity due to the existence of 

different characteristics of the frozen phases. Figure 1(a) illustrates the effect of stored 

strain energy (Fd) on the phase transformation. In the amorphous SMPs, the 

rheological behaviors of frozen and active phases show both viscoelastic and elastic 

ones, according to the Maxwell multi-branch model [21]. With a stored strain energy 

(Fd) in SMP, a large number of frozen and active phases have been involved into its 

dynamic transformations. Therefore, thermodynamic phase transition of the SMP can 

be described by both the frozen and active phases, as shown in Figure 1(b). The active 

branches can be represented by the elastic springs with a Young’s modulus of Ea0 for 

the active phases, and the frozen branches can be represented by an elastic spring and 

a dashpot placed in a series manner for the frozen phases, as reported in Ref. [28]. 

Because the frozen and active branches are co-existed and activated 

simultaneously, the strain of each branch in the Maxwell model can be assumed as a 

constant. Accordingly, the constitutive relationship between the recovery stress (σ) 

and strain (ε) can be expressed as [19], 
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where Efi and Eaj are the storage moduli of the ith frozen and jth active branches, 

respectively. 

  

Figure 1. (a) Schematic illustrations of dynamic heterogeneity and rheological behavior of SMP in 

terms of the stored strain energy and Maxwell multi-branch model, respectively. (b) Schematic 

illustrations of ternary phase diagram of frozen and active phases at the various specific heats (cp) 

during heating and cooling processes.  

The one-branch Maxwell model can be written as [19],  
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where σi is the recovery stress and η is the viscosity. 

Assuming ε=𝜀̇t is the strain under the uniaxial tension (where ε̇ is the strain rate), 

the recovery stress can be written as, 
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where τ(F)=η/Ef0 is the relaxion time. 

On the other hand, the relaxation time τ(Fd) can be determined by the stored strain 

energy per mol (F) as follows [20], 

( )( )d 0 0( ) exp /F F F T = −                                   (18) 

where τ0 is the relaxation time and F0 is the initial stored strain energy when τ(Fd)=τ0. 

Substituting equations (1), (17) and (18) into (14), the constitutive relationship of 

recovery stress and strain of the amorphous SMP under the uniaxial tensile can be 

obtained, 
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3. Numerical algorithm and validation on experimental data 

3.1 Numerical algorithm 

 Figure 2 shows the analytical results obtained using equation (4), and the 

parameters used in calculation are Td=383 K, Te=273 K, τ0=1 s [22] and F0=50 kJ/mol 

[29]. Figure 2(a) presents a cloud chart of distribution probability of strain energy per 

mol, i.e., P(F) as a function of specific heat. Meanwhile, Figure 2(b) reveals that the 

distribution probability of strain energy (P(F)) in the frozen phase is determined by 

the specific heat cp, at a given constant of αc=5.39. The maximum distribution 



probability of strain energy (P(F)) is increased linearly from 3.76×10-5 to 6.40×10-5 

when the specific heat cp is increased from 64 J/mol·K to 400 J/mol·K. The transition 

temperature (Te) of the SMP with a smaller value of specific heat cp is closer to the 

ambient temperature, if compared with those with a higher value of specific heat cp, 

on the condition that the cooling rate is kept a constant. In the case of fast cooling, the 

difference between the ambient and transition temperatures of the SMPs is very large, 

resulting in the frozen transition of active phases within a short relaxation time.  

 

 

Figure 2. (a) The cloud chart of distribution probability of strain energy P(F) as a function of 

specific heat, when the specific heat (cp) is increased from 100 J/(mol·K), 200 J/(mol·K), 300 

J/(mol·K) to 400 J/(mol·K). (b) Analytical results of distribution probability of strain energy P(F) 

as a function of energy, when the specific heat (cp) is increased from cp=64 J/(mol·K) to cp=400 

J/(mol·K).  

To identify the effects of cooling and heating rates on the frozen volume fraction 

(𝜙f) of SMPs, Figure 3 plots the analytical results using the newly proposed model of 
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equation (13). The parameters used in the calculation using the equation (10) are 

Td=Th=383 K, Te=273 K, τ0=1 s [22], F0=18.5 kJ/mol [29] and cp=3 J/mol·K [30]. As 

shown in Figure 3(a), the frozen phase can be effectively transformed into the active 

ones at a much higher heating rate, when the heating rate is kept a constant of qh=5 

K/min and the Tg value of the SMP is 425 K. These analytical results reveal that the 

cooling rate (qc) determines the shift of the transition temperature from the frozen 

phases into the active ones, and increase of the cooling rate (qc) decreases the 

transition temperature. 

 

Figure 3. (a) Analytical results of frozen volume fraction (𝜙f) as a function of temperature at the 

given cooling rates (qc) of 1 K/min, 3 K/min, 5 K/min, 7 K/min and 9 K/min. (b) Analytical 

results of frozen volume fraction (𝜙f) as a function of temperature at the given heating rates (qh) 

of 1 K/min, 3K/min, 5 K/min, 7 K/min and 9 K/min. 

Meanwhile, effect of heating rate (qh) on the frozen volume fraction (𝜙f) is also 

investigated using equation (10) and the obtained results are shown in Figure 3(b). 

The analytical results show that the frozen volume fraction ( 𝜙f)  is gradually 

decreased with an increase in the temperature. The values of Tg are 319 K, 385 K, 

425K, 455 K and 483 K at various heating rates (qh) of 1 K/min, 3 K/min, 5 K/min, 7 
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K/min and 9 K/min, respectively, at a given cooling rate of qc=5 K/min. It is revealed 

that a higher cooling rate results in the generation of a much larger stored strain 

energy and an increased dynamic heterogeneity in the SMP, both of which slow down 

the transformation of frozen phases into active ones. These analytical results reveal 

that both the decrease of cooling rate and increase of heating rate are helpful to 

achieve a high distribution probability of strain energy (P(F)) and transformation of 

frozen phase, resulting in the increased Tg. 

Figure 4 shows the analytical results using our newly proposed model (e.g., 

equation 19) for the SMPs. The parameters used in equation (19) are Ef0=978.46 MPa, 

τ0=1 s, cp=0.59166 J/mol·K, Tg=315 K [22], F0=13 kJ/mol [29] and Fd=164 J/mol, 

where Ef0, Tg are experimental data obtained from Ref. [22], and τ0, cp, F0 and Fd are 

obtained using the model based on Ref. [29]. Figure 4(a) shows that the recovery 

stress of SMP is decreased from 36.76 MPa, 31.49 MPa, 26.92 MPa, 23.06 MPa to 

19.86 MPa with the temperature increased from 260 K, 270 K, 280 K, 290 K to 300 

K, respectively, at a given strain (ε) of 21.5% and strain rate of 𝜀̇=3×10-4/s. The 

decrease in recovery stress is mainly due to the increment of molecular mobility and 

decrement of relaxation time, both of which enable the dynamic heterogeneity and the 

decrease of stored strain energy with an increment in temperature. On the other hand, 

Figure 4(b) shows that the recovery stress is gradually increased from 7.83 MPa, 

13.93 MPa, 19.86 MPa, 25.38 MPa to 30.35 MPa at a given strain (ε) of 21.5% and 

ambient temperature of T=300 K, with the strain rate (𝜀̇) increased from 1×10-4/s, 

2×10-4/s, 3×10-4/s, 4×10-4/s to 5×10-4/s. Meanwhile, effects of ambient temperature 



and strain rate on the concentrations of frozen and active phases in the SMP have also 

been illustrated in Figure 4(c). According to the time-temperature superposition 

theory [31], the increased strain rate is equivalent to the decrement of temperature and 

increment of the relaxation time, which can lead to an increased dynamic 

heterogeneity of stored strain energy in the polymer. Therefore, the recovery stress is 

then increased at the same strain.  

  

 

Figure 4. The constitutive stress-stress relationships of amorphous SMP. (a) For the constitutive 

stress-strain relationship at different ambient temperatures of T=260 K, 270 K, 280 K, 290 K, 300 

K. (b) For the constitutive stress-strain relationship at various strain rates of 𝜀̇=1×10-4/s, 2×10-4/s, 

3×10-4/s, 4×10-4/s and 5×10-4/s. (c) Aggregation morphology and concentration of frozen and 

active phases in SMP with respect to heating and loading processes, respectively.  
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3.2 Validation on experimental data 

Experimental data reported in Ref. [22] for the epoxy SMP are used to verify the 

analytical results generated using our newly proposed model. Based on the frozen 

volume theory [16], Kim et al [22] analyzed and proved that the volume fraction of 

frozen phases, storage modulus and strain of epoxy SMP undergoing the shape 

memory behavior vary with the temperature at different heating rates. The 

experimental result [22] proved that the microstructure of SMPs cannot be rearranged 

instantaneously to an equilibrium configuration in response to temperature changes. 

 Levenberg-Marquardt optimization algorithm is adopted here for all the calculation 

parameters. It is one of the most widely used a nonlinear least squares algorithms 

[32], which uses the gradient of data to find their maximum (or minimum) values. 

Therefore, it simultaneously has the advantages of both the gradient method and 

Newton method. The key idea of this algorithm is to use the model function to make a 

linear approximation of the parameter vector, then calculate the partial derivative of 

each parameter. The derivative term above the second order is ignored, thus the 

nonlinear least squares problem can be effectively transformed into a linear minimum 

problem to solve. Table 1 summarizes all the values of the parameters used in the 

calculations using the equation (10). In Table 1, the heating rates qh are obtained from 

Ref. [22], and the value of αc and αh are calculated by substituting the cooling rates qc 

and the heating rates qh into equation (10). The values of F0 and cp are obtained by the 

Levenberg-Marquardt optimization algorithm, using equation (10). 

 



Table 1. Values of parameters used in equation (10) for epoxy SMP [22]. 

qh (K/min) F0 (kJ/mol) αc αh cp J/(mol·K) 

3 15.34 

4.883 

5.394 

0.59166 5 14.06 4.883 

7 13.36 4.546 

 

Figure 5. (a) Comparisons of analytical results of equation (10) and experimental data of epoxy 

SMP [22] for the frozen volume fraction (𝜙f) as a function of temperature, at various heating rates 

of qh=3 K/min, 5 K/min and 7 K/min. (b) Error of analytical and experimental results for frozen 

volume fraction (𝜙f). 

Figure 5(a) shows the obtained analytical results which reveal that the proposed 

model can well predict the experimentally obtained results for the epoxy SMP. By 

increasing the heating rate from 3 K/min, 5 K/min to 7 K/min, the Tg value is 

increased from 336 K, 342 K to 349 K, where the frozen volume fraction of epoxy 

SMP is decreased from 1 to 0. With a higher heating rate, a much higher stored strain 

energy is needed to generate phase transformation from a frozen phase into an active 

one, resulting into a higher value of distribution probability of strain energy (P(F)) 

and Tg. Furthermore, the correlation index (R2) between the analytical and 

experimental results are calculated to be 99.88%, 99.45% and 99.84% for the epoxy 
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SMP with heating rates of qh=3K/min, 5 K/min and 7 K/min, respectively, as shown 

in Figure 5(b). The obtained R2 data reveal that the analytical results agree well with 

the experimental ones ( f 0.06  ). 

To verify the proposed model for the dynamic heterogeneity of strain energy 

distribution on the thermodynamic behavior of SMPs, equation (13) is applied to 

predict the thermodynamic properties of the epoxy SMP reported in Ref. [22]. The 

obtained analytical results are plotted in Figure 6. All the values of parameters used in 

equation (13) are listed in Table 2, where E(Tref)=1360 MPa, Ea=3 MPa [22], 

a=0.0005 [27], ν=0.6617 [26] and Tref=305 K. In Table 2, the heating rates qh are 

obtained from Ref. [22], and the value of αc and αh are calculated by substituting the 

cooling rates qc and the heating rates qh into equation (10). The values of F0 and cp are 

obtained by the Levenberg-Marquardt optimization algorithm, using equation (10).  

Table 2. Values of parameters used in equation (13) for epoxy SMP [22]. 

qh (K/min) F0 (kJ/mol) αc αh cp (J/mol K) 

3 12.49 

6.245 

4.371 

0.59166 5 12.50 4.351 

7 12.53 4.267 

As shown in Figure 6(a), with the increase in temperature from 300 K to 361 K, the 

storage modulus (E) of epoxy SMP is decreased from 978.46 MPa to 2.80 MPa. The 

Tg is increased from 355 K, 356 K to 361 K, when the heating rate is increased from 3 

K/min, 5 K/min to 7 K/min, respectively. Figure 6(a) also shows the experimentally 

obtained results reported in Ref. [22]. These analytical and experimental results reveal 

that the dynamic heterogeneity of strain energy distribution in the frozen phase is 



highly determined by the heating rate, which enables the transformation from the 

frozen phase into the active one. At a higher heating rate, a higher value of 

distribution probability of strain energy (P(F)) is achieved according to the equation 

(13), resulting in a higher dynamic heterogeneity and Tg. Therefore, the relaxation 

behavior is delayed until at a much higher temperature, and the relaxation time is also 

increased accordingly. Moreover, the divergences between the analytical and 

experimental results are calculated based on their correlation index (R2), and the 

values are 99.74%, 99.79% and 99.59% for the heating rates of 3 K/min, 5 K/min and 

7 K/min, respectively, as shown in Figure 6(b). These results indicate that good 

agreements between the analytical and experimental results have been obtained, 

where the error ratio is limited to ±5%.  

 

Figure 6. Comparisons between analytical results using equation (13) and experimental data for 

the epoxy SMP [22]. (a) Storage modulus as a function of temperature, at various heating rates of 

3 K/min, 5 K/min and 7 K/min. (b) Divergences of the analytical and experimental results. 
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MPa, Tg =339 K [23], τ0=1 s, F0=20.48 kJ/mol and cp=2.904 J/mol·K [29], where Ef0, 

Ea0, Tg are experimental data from Ref. [23], and τ0, F0 and cp are obtained using the 

equation (19) and Ref. [29]. As shown in Figure 7(a), the analytical results are in good 

agreements with the experimental data [23] of the polyamide SMPs. From both the 

analytical and experimental results, the recovery stress is decreased from 86.79 MPa, 

75.09 MPa, 71.46 MPa, 67.08 MPa to 60.71 MPa with an increase in the temperature 

(T) from 277 K, 294 K, 303 K, 313 K to 323 K, at the same strain of ε=20% and strain 

rate of 𝜀̇=3.3×10-4/s. Meanwhile, the correlation index of R2 between the analytical 

and experimental results are 99.18%, 98.40%, 97.45%, 95.96% and 95.13% at T=277 

K, 294 K, 303 K, 313 K and 323 K, respectively, as shown in Figure 7 (b).  

 

Figure 7. Comparisons between analytical results using equation (19) and experimental data for 

polyamide SMPs [23]. (a) For the stress-strain curves of polyamide SMPs at different ambient 

temperatures of T=277 K, 294 K, 303 K, 313 K and 323 K, respectively, at the same strain of ε=20% 

and strain rate of 𝜀̇=3.3×10-4/s. (b) Error ratio of recovery stress. 

To further verify the model, analytical results of recovery stress as a function of 
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data at various strain rates (𝜀̇) of 1×10-4/s, 1×10-3/s, 1×10-2/s and 1/s. The parameters 

used in calculations using equation (19) are listed as follows: Ef0=492.24 MPa, Ea0=3 

MPa, Tg =400 K [24], τ0=1 s, F0=25.82 kJ/mol and cp=3.02 J/mol·K [29], where Ef0, 

Ea0, Tg are experimental data from Ref. [24], and τ0, F0 and cp are obtained using the 

equation (19) and Ref. [29]. Both the analytical and experimental results in Figure 8(a) 

show that the recovery stress is gradually increased from 62.6 MPa, 72.34 MPa, 83.29 

MPa to 110.35 MPa, with an increase in the strain rate (𝜀̇) from 1×10-4/s, 1×10-3/s, 

1×10-2/s to 1/s, at the same strain of ε=5%. It is revealed that the analytical results 

agree well with the experimental data. According to both the analytical results and 

experimental data, with the increase of strain rate, the vinylester SMP has a longer 

relaxation time, a higher dynamic heterogeneity, and thus a higher recovery stress. 

Meanwhile, the correlation index (R2) between the analytical and experimental results 

are calculated as 96.73%, 96.90%, 98.15% and 99.62% for the vinylester SMP [24] at 

𝜀̇ of 1×10-4/s, 1×10-3/s, 1×10-2/s and 1/s, respectively, as shown in Figure 8(b). 

 

Figure 8. Comparisons between analytical results using equation (19) and experimental data [24] 

of stress-strain curves of vinylester SMP at T=323 K. (a) For the stress-strain curves of vinylester 

SMP at 𝜀̇=1×10-4/s, 1×10-3/s, 1×10-2/s and 1/s, respectively. (b) Error ratio of recovery stress. 

0 2 4 6 8
0

25

50

75

100 T=323K

=1/ s
=0.01 / s

=0.001/ s
=0.0001/ s

=1/ s
=0.01 / s

=0.001/ s

Strain  (%)

(a)

Analytical results

 

 

 

 

Experimental data

           

           

           

           

S
tr

es
s 

σ
 (

M
P

a
)

=0.0001/ s

=0.0001/ s

(5,110.35)

(5,83.29)

(5,72.34)

(5,62.60)

0 2 4 6 8

-0.4

-0.2

0.0

0.2

0.4

=1/ s

=0.01 / s

=0.001/ s
=0.0001/ s

Strain  (%)

(b)

                       , R2=96.73% 

                     , R2=96.90%

                  , R2=98.15%

             , R2=99.62%

E
rr

o
r 

ra
ti

o
 



4. Conclusion 

To explore the dynamic principle in SME, we propose an analytical model to 

describe the glass transition heterogeneity and relaxation behavior of the SMP. The 

dynamic SME in the SMP is fundamentally originated from the stored strain energy, 

of which its energy distribution determines the shape recovery and relaxation 

behaviors. Gaussian distribution statistics is firstly used to describe the dynamic 

heterogeneity and strain energy distribution, which play essential roles to determine 

the transformation of frozen phase in SMP. Phase transition theory is then proposed to 

investigate the transformation from a frozen phase into an active one, to formulate the 

constitutive relationship between dynamic heterogeneity and strain energy distribution. 

Finally, the dynamic equilibria of heterogeneity have been formulated based on the 

Maxwell multi-branch model, to explore the working principle of dynamic 

heterogeneity in relaxation behavior and tailorable mechanics of SMP. The analytical 

results obtained from the epoxy, polyamide and vinylester SMPs are compared with 

the experimental data reported in the literature, and good agreements between them 

were obtained. The dynamic equilibria are established by introducing the dynamic 

heterogeneity of strain energy distribution, which considers the effects of different 

thermal histories (heating rate of qh and cooling rate of qc) and different strain rate on 

the dynamic heterogeneity of strain energy and glass transition can explain the 

thermodynamic and thermomechanical behaviors of the SMPs. This study provides a 

fundamental model strategy to explore the working principle of dynamic 

heterogeneity in the amorphous SMP, of which the SME is determined by the 



thermodynamic history, undergoing multiple glass transitions and relaxation 

behaviors simultaneously.  
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