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Fast and Blind Detection of
Rate-Distortion-Preserving Video Watermarks

Anonymous Author(s)

(a) Watermarked video crop (QP𝑤 = 27). (b) Attacked video crop (QP𝑎 = 37).

Figure 1: The proposed method is between 1400 and 5700 faster in detecting watermarks from (a) watermarked videos. The
robustness of fast detection is reduced in comparison with slow detection, although it can still detect the watermark after
applying (b) content-preserving recompression attacks, even when these reduce the video quality.

ABSTRACT
Forensic watermarking enables the tracing of digital pirates that
leak copyright-protected multimedia. To prevent a negative im-
pact on the video quality or bit rate, rate-distortion-preserving
watermarking exists, which represents a watermark as compres-
sion artifacts. However, this method has two main disadvantages;
the detection has a high complexity and it is non-blind. Although a
method based on perceptual hashing exists that speeds up the detec-
tion of a fallback watermarking system, it decreases its robustness.
Therefore, this paper proposes a novel fast detection method that
has less impact on the robustness than related work. Our method
optimized NS-DCT-DST hashes for rate-distortion-preserving wa-
termarking, which are more robust to content-preserving attacks.
Moreover, a blind version is proposed which does not require the
original video for hash extraction. As such, the detection is up to
5700 times faster, at the cost of a modest decrease in robustness.
In fact, the proposed method shows good robustness to content-
preserving recompression attacks when using hashes that are as
small as 432 bytes. This is much smaller than comparable per-
formance of related work. In conclusion, this paper enables fast
adversary tracing using watermarks that do not impact the video’s
compression efficiency.
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1 INTRODUCTION
Forensic watermarking is a popular solution for tracking digital
pirates after they leak copyright-protected videos [1, 13]. Two main
challenges are imperceptibility and robustness. That is, the water-
mark should not decrease the video quality nor increase its bit rate.
Additionally, the watermark should resist attacks that attempt to
delete the watermark. Typically, there is a trade-off between imper-
ceptibility and robustness: a watermark that is more perceptible is
harder to delete, whereas an invisible one may be easily deleted by
simple signal-processing attacks such as recompression.

Although most robust watermarking methods claim to be imper-
ceptible, they objectively decrease the video’s quality. An exception
to this is the rate-distortion-preserving watermarking method by
Mareen et al., which embeds a robust watermark without affecting
the video’s quality and bit rate [11]. Although this method has
a high level of robustness, the imperceptibility comes at the cost
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of a high embedding and detection complexity. Additionally, the
method is non-blind: the original watermarked videos are required
during the detection process. Requiring all watermarked videos for
detection is a potential security thread and hence not desirable.

This paper solves the twomain disadvantages of the rate-distortion-
preserving method by proposing a faster watermark detection
method that utilizes perceptual hashing. Note that perceptual hashes
or content-based fingerprints were typically designed for other ap-
plications though, such as content identification or video copy
detection. For example, it can be used to automatically discover
if a video found on the internet is present in a certain database,
i.e., to automatically find copyright-protected videos. To do this
in an efficient way, a small perceptual hash is extracted from each
video segment. The perceptual hashes are small in file size such
that the database can be queried quickly and efficiently. Moreover,
the perceptual hash is robust against content-preserving attacks.
This means that the perceptual hash should not change much when
exposed to common signal-processing manipulations such as re-
compression. In contrast, perceptual hashes of two videos with
different content should be significantly different from each other.
These two features (i.e., fast querying and high robustness) are
desired in the watermarking use case as well. Hence, this paper
proposes to utilize perceptual hashes to perform fast and robust
watermark detection. It has been shown that applying perceptual
hashes on watermarks has merit as well [12]. However, the robust-
ness of this fallback system decreased due to using the hashes, and
the system is still non-blind.

Our paper investigates fast detection of rate-distortion-preserving
watermarking using a perceptual hashing method optimized for our
use case. Additionally, the impact on the robustness is minimized,
and a blind variant is proposed as well.

In summary, the main contributions of this paper are:

• This paper proposes a perceptual hashingmethod optimized
for rate-distortion-preserving watermarks. The perceptual
hashing method is based on similar ideas of the technique
by Khelifi and Bouridane, which was made for content iden-
tification and authentication purposes [9]. In contrast, the
proposed hash extraction method is adapted and optimized
for the use case of watermarking. Additionally, a blind ver-
sion of the perceptual hashing method is proposed.

• This paper proposes a fast watermark detection method
for rate-distortion-preserving watermarks that utilizes the
proposed perceptual hashes.

• This work demonstrates that the proposed solution is robust
against attacks. For example, a small hash of 432 Bytes
(B) is resistant against recompression attacks that do not
significantly decrease the video’s quality, whereas a higher
level of robustness is achieved when using larger hashes of
approximately 5 kiloByte (kB).

• Additionally, blind detection showcases an acceptable level
of robustness for larger hashes of 40 kB.

• When the hashes of the watermarked videos are extracted
before watermark detection, the detection is accelerated up
to a factor of 5700.

The rest of this paper is organized as follows. First, Section 2
discusses the rate-distortion-preserving watermarking method in

more detail, as well as some perceptual hashing methods. Then, Sec-
tion 3 presents the proposed watermark detection method, which
is evaluated in Section 4. Finally, Section 5 concludes this paper.

2 RELATEDWORK
2.1 Rate-Distortion-Preserving Watermarking
This section briefly describes rate-distortion-preserving watermark-
ing. A more detailed description can be found in [11].

The watermark is embedded during H.265/HEVC video com-
pression. More specifically, the video encoder is modified such
that it variates the quantization parameters (QPs) of the Coding
Tree Units (CTUs). Due to this QP variation, different compres-
sion artifacts are introduced. Note that these compression artifacts
are not drift-error artifacts that occur during e.g. packet loss, but
rather ordinary artifacts that are always introduced during lossy
video compression. Besides from this subtle video encoder mod-
ification, the compression process operates as usual. Hence, the
rate-distortion performance is preserved.

Every watermarked video contains different compression arti-
facts because they are each compressed with a different seed for QP
variation (i.e., the watermark input). In other words, the collection
of compression artifacts is a representation of the watermark, and is
used for watermark detection. The detection is done by comparing
an uncompressed attacked video to all uncompressed watermarked
videos. Although the detection is very robust, it is slow and requires
access to all watermarked videos.

In short, the method embeds a watermark consisting of com-
pression artifacts without affecting the rate-distortion performance.
Although the system is robust, the detection method has the main
disadvantages that it is slow and that all watermarked videos are
required during watermark detection (i.e., it is non-blind). These
disadvantages are tackled in Section 3.

2.2 Perceptual Hashing
As explained in Section 1, state-of-the-art perceptual hashing meth-
ods are typically designed for content identification, i.e., not for
watermarking purposes [3–5, 7, 10, 14–16]. This section briefly de-
scribes some related perceptual hashing methods for videos. For a
more detailed analysis, we refer to recent surveys [7, 10].

The discrete cosine transform (DCT) is a popular transformation
in video compression, and also in perceptual hashing. For exam-
ple, Coskun et al. proposed to perform perceptual hashing using
the three-dimensional (3D) DCT on the 3D video signal [6]. Es-
maeili et al. used the two-dimensional (2D) DCT for hashing, and
included the temporal domain by using temporally informative rep-
resentative images (TIRIs) [8]. A TIRI summarizes a short 3D video
signal in a 2D image. As such, the TIRI-DCT hash summarizes both
temporal and spatial information, and is robust to attacks. More
recently, Khelifi et al. proposed a perceptual hashing algorithm uti-
lizing both the DCT and discrete sine transform (DST) [9]. In their
algorithm, they proposed the normalizing shift (NS): the number
of samples that is required for shifting a digital signal so that it
matches a certain pattern according to the DCT/DST coefficients.
This normalizing shift is a sort of calibration that makes the method
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Figure 2: Diagram of the proposed fast watermark detection.

robust to signal processing operations. In this way, their NS-DCT-
DST hashing algorithm is robust to attacks such as filtering, noise
addition, and compression.

In short, perceptual hashing methods were designed for copy
detection and exhibits great properties such as robustness to signal
processing attacks, and fast look-up. These characteristics are also
desired in a watermark detection system. Therefore, Mareen et al.
proposed to apply the TIRI-DCT hashing algorithm of Esmaeili et al.
on their fallback watermarking method in order to speed up the
detection. However, the robustness of their system decreased due
to using the hashes. Our paper further investigates the application
of perceptual hashing for watermarking purposes in Section 3, with
less impact on the robustness. That is, we aim to speed up the
slow watermark detection method of the rate-distortion-preserving
watermarking system of Section 2.1. Additionally, we investigate
how to make the watermark detection blind.

3 PROPOSED METHOD
This section proposes a fast and blind watermark detection system,
targeted at rate-distortion-preserving watermarked videos. The
system utilizes perceptual hashes, as these summarize a video signal
in a concise and robust way.

A diagram of the proposed system is shown in Fig. 2. First, a
perceptual hash of each watermarked video 𝑤𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑁 }
(with 𝑁 the number of watermarked videos) is extracted, as well as
from the attacked video 𝑎. This is done using the adapted NS-DCT-
DST hashing algorithm described in Section 3.1. This can optionally
be done in a blind way, i.e., without using the unwatermarked video.
The hash extractions of the watermarked videos can happen offline,
before watermark detection. Then, these small hashes can be stored
instead of the large watermarked videos.

After extracting the small hashes, they are fed to the fast water-
mark detection system, which is presented in Section 3.2. Finally,
the complexity reduction of the fast detection system is discussed
in Section 3.3.

3.1 NS-DCT-DST Hashing of Watermarks
This section presents the perceptual hash extraction method. Be-
cause of space limitations, we reduced the number of equations
and explanations of the hashing method, but instead kindly refer
to the hashing method by Khelifi and Bouridane for more detailed

motivations [9]. Note that the original hashing method was de-
signed for content identification and authentication, whereas this
paper optimized the method for the entirely different use case of
watermarking.

Fig. 3 summarizes the proposed perceptual hashing method. The
input video 𝑣 has a resolution𝑊 ×𝐻 and 𝐹 frames at 𝑅 frames per
second (fps). First, 𝑣 is preprocessed by extracting the luminance
component and downsampling (with anti-alias filtering) it to 𝑅𝑑
fps, resulting in the preprocessed video 𝑝𝑣 that contains 𝐾 = 𝐹 · 𝑅𝑑

𝑅
frames. This video 𝑣 is either the attacked video 𝑎 or a watermarked
video 𝑤𝑖 , as seen in Fig. 2. Optionally for the non-blind version,
𝑝𝑢 , the preprocessed version of the unwatermarked video 𝑢, can be
subtracted from 𝑝𝑣 . We call the resulting preprocessed and option-
ally subtracted signal 𝑝 . This subtraction increases the robustness
by removing the underlying video-content signal, i.e., it enables
us to hash only the watermark signal. However, requiring the un-
compressed video 𝑢 makes the method non-blind, which may be
undesired in certain applications. Therefore, this step is optional
and we evaluate both blind and non-blind versions in Section 4.2.

After the preprocessing, we calculate the differential luminance
block means (DLBMs) in the horizontal, vertical, and temporal
directions. That is, 𝑝 is divided in 𝐽 × 𝐼 blocks of size

⌊
𝑊
𝐽

⌋
×
⌊
𝐻
𝐼

⌋
pixels, and the mean luminance value is calculated for each block.
This results in the 3D array𝑀 of block means. Then, the difference
between each two blocks is calculated in the horizontal, vertical
and temporal direction, resulting in the 3D arrays 𝐷𝐻 , 𝐷𝑉 , and 𝐷𝑇 ,
respectively. This is done in a circular way, as presented in (1) for
𝐷𝐻 , and analogously for 𝐷𝑉 and 𝐷𝑇 . Note that the used notations
index the array vertically first (𝑖), followed by a horizontal ( 𝑗 ) and
temporal (𝑘) indexation. We omitted the equations for 𝐷𝑉 and 𝐷𝑇
because of the limited space and their high redundancy. As such,
the 3D arrays 𝐷𝐻 , 𝐷𝑉 , and 𝐷𝑇 have a size of 𝐼 × 𝐽 × 𝐾 .

𝐷𝐻 (𝑖, 𝑗, 𝑘) =
{
𝑀 (𝑖, 𝑗 + 1, 𝑘) −𝑀 (𝑖, 𝑗, 𝑘) if 𝑗 < 𝐽 − 1
𝑀 (𝑖, 0, 𝑘) −𝑀 (𝑖, 𝑗, 𝑘) if 𝑗 = 𝐽 − 1

(1)

After calculating the DLBMs, the 3D arrays 𝐷𝐻 , 𝐷𝑉 , and 𝐷𝑇
are transformed into 2D arrays 𝐶𝐻 , 𝐶𝑉 , and 𝐶𝑇 of calibrated sig-
nals containing normalizing shifts (NS). The NS is the number of
samples that is required for shifting the signal so that it matches a
certain pattern according to certain DCT/DST coefficients. For ex-
ample, we traverse the 3D array 𝐷𝐻 horizontally, resulting in a 1D
signal 𝑥 (𝑛) with 𝑛 = 0, 1, . . . , 𝐿 − 1. On this signal, a normalization
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Figure 3: Diagram of the proposed NS-DCT-DST hashing.

technique is applied that provides the same output signal even if the
input signal has undergone a circular translation. Without going
into details, this is found for the horizontally traversed 𝐷𝐻 using
(2), and analogously for the vertically and temporally traversed
arrays. In this equation, 𝛼 is a predefined reference angle for nor-
malization, set between 0 and 2𝜋 for normalization. Additionally,
𝐷𝑆𝑇{𝐷𝐻,𝑖,𝑘 } (1) is the first DST coefficient, and 𝐷𝐶𝑇{𝐷𝐻,𝑖,𝑘 } (2) is
the second DCT coefficient of the horizontally-traversed sequence
𝐷𝐻,𝑖,𝑘 . As a result, the arrays 𝐶𝐻 , 𝐶𝑉 , and 𝐶𝑇 have a size of 𝐼 × 𝐾 ,
𝐽 × 𝐾 , and 𝐼 × 𝐽 , respectively.

𝐶𝐻 (𝑖, 𝑘) =


𝐿 · arctan

(
DST{𝐷𝐻,𝑖,𝑘 } (1)
DCT{𝐷𝐻,𝑖,𝑘 } (2)

)
+ 𝐽𝛼

2𝜋

 mod 𝐽 (2)

The signal calibration using normalizing shifts has two advan-
tages. First, it reduces the size of a 3D DLBM array to a 2D array, by
extracting a single NS feature from each DLBM signal. Second, it
increases the robustness because it is based on the shift-invariance
property. That is, the resulting hash is invariant to shifts in the input
signal. For a more detailed explanation of the advantages of using
the NS, we kindly refer to the work by Khelifi and Bouridane [9].

Next, the 2D arrays𝐶𝐻 ,𝐶𝑉 , and𝐶𝑇 are optionally binarized into
𝐵𝐻 , 𝐵𝑉 , and 𝐵𝑇 . That is, each 8-bit integer value of the arrays is
converted to a single bit: 1 if the value is larger than the mean of the
2D array, and 0 if it is smaller or equal than the mean. The binariza-
tion idea is similar as those proposed in other hashing algorithms,
such as in TIRI-DCT [8]. As such, the hash size optionally is further

reduced with a factor of 8. We leave this step optional, as it may
reduce the robustness of the system, as evaluated in Section 4.2.

Finally, the three 2D arrays are flattened and concatenated to
form the output hash ℎ with size 𝐼𝐾 + 𝐽𝐾 + 𝐼 𝐽 . This hash is sig-
nificantly smaller than the input video 𝑣 , and can be used for fast
watermark detection, described in Section 3.2.

3.2 Fast Watermark Detection using Perceptual
Hashes

The proposed detection differs from the slow detection of the rate-
distortion-preserving system [11] in the hash comparison. The short
hash comparison is much faster than pixel-by-pixel comparisons
of uncompressed videos.

As shown in Fig. 2, the hash from an attacked video 𝑎 is given
as input of watermark detection, along with the hashes of all wa-
termarked videos𝑤𝑖 . First, the last step of the hashing algorithm
of Section 3.1 is reversed: all hashes are de-concatenated into the
(binarized) 2D arrays 𝐵𝐻 , 𝐵𝑉 , and 𝐵𝑇 . Then, the distance between
the hash of the attacked video is calculated against all hashes from
the watermarked video, using the identification measure proposed
by Khelifi and Bouridane [9]. This is done by considering the dis-
tance of the three (binarized) arrays individually, and finally adding
them to one another. The distance 𝑑𝐻 between two horizontal 2D
arrays 𝐵1

𝐻
and 𝐵2

𝐻
is defined in (3), and it is performed analogously

for the vertical and temporal arrays, resulting in 𝑑𝑉 and 𝑑𝑇 . Be-
cause the normalizing shifts are determined in a forward direction
only, the equation additionally considers the case where a change
in the video splits the normalizing shift to the beginning of the
sequence as it exceeds the boundary. Therefore, the equation addi-
tionally considers the subtractions between 𝐵1

𝐻
(𝑖, 𝑘) and 𝐵2

𝐻
(𝑖, 𝑘)

with 𝐽 subtracted or added to it. Then, the distance 𝑑 is equal to
𝑑 = 𝑑𝐻 + 𝑑𝑉 + 𝑑𝑇 .

𝑑𝐻 (𝐵1
𝐻
, 𝐵2
𝐻
) =

𝐼∑︁
𝑖=0

𝐾∑︁
𝑘=0

min{|𝐵1
𝐻
(𝑖, 𝑘) − 𝐵2

𝐻
(𝑖, 𝑘) |,

|𝐵1
𝐻
(𝑖, 𝑘) − 𝐵2

𝐻
(𝑖, 𝑘) − 𝐽 |,

|𝐵1
𝐻
(𝑖, 𝑘) − 𝐵2

𝐻
(𝑖, 𝑘) + 𝐽 |}

(3)

After calculating the distance 𝑑𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑁 } between the
attacked video and each of the watermarked videos, the rest of the
process is equal to that of the slow detection system of Section 2.1.
These steps are shortly discussed here, and we kindly refer the
reader to the work by Mareen et al. for a more detailed explana-
tion [11]. For each distance value 𝑑𝑖 , outlier detection is performed
by calculating the z-score 𝑧𝑖 , as defined in (4). The z-score 𝑧𝑖 indi-
cates the number of standard deviations 𝜎A that a distance value
𝑑𝑖 differs from the mean `A of the distribution of distance values
corresponding to watermarks that are absent in the video. That
is, we assume that all watermarks are absent, except for the one
corresponding to the smallest distance value.

𝑧𝑖 =
𝑑𝑖 − `A
𝜎A

(4)

Then, each z-score is compared to a threshold 𝑇 in order to
get a decision 𝑑𝑖 of the corresponding watermark’s presence or
absence. The threshold 𝑇 is calculated for a certain false-positive
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(FP) probability 𝑃fp using the Gaussian method, as defined in (5).
In the equation, erfc−1 is the inverse of the complimentary error
function. For example, for 𝑃fp = 10−6, the corresponding threshold
is 𝑇 ≈ −4.8.

𝑇 = −
√
2 erfc−1 (2𝑃fp) (5)

3.3 Theoretical Complexity
This section discusses the theoretical complexity of hash extraction
and fast watermark detection, in comparison to slow detection. The
slow detection method compares every pixel of an attacked video 𝑎
of size𝑊 ×𝐻 × 𝐹 to all 𝑁 watermarked videos. It has a complexity
of Θ(𝑁 · 𝐹 ·𝑊 · 𝐻 · 𝐵), in which 𝐵 is the number of bits per pixel.

The computational complexity of the hash extraction is analyzed
in three steps. First, the complexity of preprocessing is Θ(𝐹 ·𝑊 ·𝐻 ).
Then, the DLBMs calculation is performed inΘ(𝑊 ·𝐻 ·𝐾+3 ·𝐼 · 𝐽 ·𝐾).
Lastly, the signal calibration has a complexity ofΘ(𝐼 ·𝐽 ·𝐾). Although
the hash extraction has to be performed for every watermarked
video, this can be done prior to watermark detection.

The fast detection method compares hashes of size (𝐼𝐾 + 𝐽𝐾 +
𝐼 𝐽 ) · 𝐵𝐻 , where 𝐵𝐻 is the number of bits per element in the option-
ally binarized arrays of calibrated signals. Without binarization,
these are 8-bit integers, whereas each element is a single bit when
binarization is performed. As such, the complexity of comparing 𝑁
hashes is Θ(𝑁 · (𝐼𝐾 + 𝐽𝐾 + 𝐼 𝐽 ) · 𝐵𝐻 )). Since 𝐼 , 𝐽 , 𝐾 , and possibly
𝐵𝐻 are significantly lower than𝑊 , 𝐻 , 𝐹 , and 𝐵, respectively, the
proposed method is much faster than the slow variant. Although
the proposed method still scales linearly in the number of water-
marked videos 𝑁 , it is several orders of magnitude faster than the
slow detection method, such that it is practical to apply in realistic
scenarios.

As an example, consider a video segment with resolution𝑊 ×𝐻 =

1920 × 1080 pixels, 𝐹 = 500 frames at 50 fps, and 𝐵 = 8 bits per
luminance pixel value. Assume the following parameters are used
for perceptual hashing: 𝐼 = 𝐽 = 128, 𝑅 = 10, 𝐾 = 100, 𝐵𝐻 = 1. This
results in hashes of size 𝐿 = (𝐼𝐾 + 𝐽𝐾 + 𝐼 𝐽 ) · 𝐵𝐻 = 41, 984 bits =
5248 Bytes. As a result, for these parameters, we get a theoretical
speed-up of 𝑁 ·𝐹 ·𝑊 ·𝐻 ·𝐵

𝑁 ·𝐿 ≈ 197, 560. Note that the actual speed-up
may differ in practice. This is measured in Section 4.3.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
To evaluate the performance of the proposed fast detection method,
we used five test sequences with resolution 1920 × 1080: BQTerrace,
Cactus, Kimono1, ParkJoy, and ParkScene [2]. These are 10 seconds
long and contain between 240 and 600 frames (i.e., they have a
framerate between 24 and 60 fps). The watermarking was done
using the rate-distortion-preserving algorithm [11], implemented
using the HEVC reference Model (HM) version 16.15. Each test
sequence was compressed using 4 default QPs (22, 27, 32, and 37),
further denoted as QP𝑤 . These default QPs were varied during
watermarking with 20 different seeds or watermarked IDs. Thus,
every test sequence was converted into 4 × 20 = 80 watermarked
videos.

The perceptual hash extraction and distance algorithms were im-
plemented in MATLAB. Several parameters were swept to explore

hashes with various sizes: the number of blocks in the horizontal (𝐼 )
and vertical (𝐽 ) direction was set to 16, 32, 64, and 128, the resample
rate 𝑅𝑑 was set to 5 and 10, the binarization process was either
applied or not applied, and both the non-blind and blind variant
were executed. Note that only a few selected configurations are
reported in this paper, though, because of space limitations.

The robustness experiments were performed using recompres-
sion attacks with 6 QPs (22, 27, 32, 37, 42, and 47), further denoted
as QP𝑎 . Note that a recompression with QP𝑎 = 47 results in a very
low-quality video. Watermark detection was performed for each
attacked video, using the slow watermark detection [11], the pro-
posed fast watermark detection using NS-DCT-DST hashes, as well
as the proposed fast detection method using TIRI-DCT hashes from
the state of the art [12]. The FP probability was set to 𝑃fp = 10−6,
corresponding to a threshold 𝑇 ≈ −4.7534. Grouping all detection
results into a single value is done by using the false-negative rate
(FNR), which is calculated as in (6).

FNR =
#FN Detections

Total Number of Detections (6)

4.2 Robustness
Table 1 shows selected robustness results of the experiments. More
specifically, the table shows the results for the slow configuration
of the rate-distortion-preserving detection method [11], as well as
for five configurations using the proposed fast detection method
that utilizes the proposed NS-DCT-DST hashes, and for the state-
of-the-art TIRI-DCT hashing algorithm. The parameters 𝐼 and 𝐽 ,
the optional binarization and blindness were varied, while the pa-
rameter 𝑅𝑑 was fixed to 10 fps because it led to the best trade-off
between hash size and robustness. Additionally, results from a sin-
gle configuration using the TIRI-DCT method used in the state of
the art is presented [8, 12].

The first slow-detection configuration in Table 1 shows the re-
sults from the state-of-the-art rate-distortion-preserving detection
method [11]. As one can see, most reported FNR values are 0%;
the FNR is non-zero only for high QP𝑎 values in combination with
low QP𝑤 values. In other words, the slow detection method has
a very high level of robustness. However, it is slow and requires
all uncompressed watermarked files. For the test sequences, this is
between 746 and 1869 MB, which is over 10,000 times higher than
hash sizes of the proposed fast detection system.

Fast Config. 1 in Table 1 shows the robustness results for the
proposed fast detection with 𝐼 = 𝐽 = 16 and without binarization,
resulting in perceptual hashes of approximately 3 kB. Using this
configuration, the FNR is zero as long as the recompression attack
does not significantly decrease the video quality, i.e., QP𝑎 ≤ QP𝑤 .

Fast Config. 2 in Table 1 is the same as Fast Config. 1, yet with
binarization. Although the hash sizes are 8 times smaller, the ro-
bustness performance is comparable to Config. 1. That is, the FNR
is zero as long as QP𝑎 ≤ QP𝑤 .

Fast Config. 3 in Table 1 is the same as Fast Config. 2, yet with
𝐼 = 𝐽 = 128 instead of 𝐼 = 𝐽 = 16, and thus has a hash size of
approx. 5 kB. As a result of the larger hash size, the robustness
increases significantly: this configuration can resist stronger recom-
pression attacks. For example, a watermarked video with QP𝑤 = 27
(see Fig. 1a) that is attacked with QP𝑎 = 37 (see Fig. 1b) now has
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Table 1: Robustness results for recompression attacks.

QP𝑤
False-Negative Rate (%)

QP𝑎 = 22 27 32 37 42 47
Slow detection [11]: 746 - 1869 MB
22 0 0 0 0 2 87
27 0 0 0 0 0 30
32 0 0 0 0 0 0
37 0 0 0 0 0 0

Fast Config. 1: 𝐼 = 𝐽 = 16, no bin.: 3456 B
22 0 6 81 99 100 100
27 0 0 1 75 93 100
32 0 0 0 7 89 98
37 0 0 0 0 17 92

Fast Config. 2: 𝐼 = 𝐽 = 16, bin.: 432 B
22 0 19 87 100 100 100
27 0 0 7 78 100 100
32 0 0 0 18 96 100
37 0 0 0 0 40 97

Fast Config. 3: 𝐼 = 𝐽 = 128, bin.: 5248 B
22 0 0 0 67 98 100
27 0 0 0 0 74 100
32 0 0 0 0 1 88
37 0 0 0 0 0 6

Fast Config. 4: 𝐼 = 𝐽 = 128, no bin., blind: 41,984 B
22 0 7 60 99 100 100
27 0 0 0 40 96 100
32 0 0 0 0 32 98
37 0 0 0 0 0 30

TIRI-DCT [8, 12] Config. 1: 𝑏𝑡 = 16, 𝑑 = 0: 570 B
22 49 96 98 100 100 100
27 0 19 78 100 99 100
32 0 0 0 50 96 99
37 0 0 0 2 28 93

TIRI-DCT [8, 12] Config. 2: 𝑏𝑡 = 8, 𝑑 = 2: 5016 B
22 0 34 90 98 100 100
27 0 0 0 56 97 100
32 0 0 0 0 45 96
37 0 0 0 0 0 24

a 0% FNR. Thus, this demonstrates that binarization is a powerful
feature to decrease the hash size and/or increase the robustness.

Fast Config. 4 in Table 1 is the blind version of Fast Config. 3,
without binarization. No binarization was performed because blind
hashing with binarization performed significantly worse. This con-
figuration results in hash sizes of approx. 42 kB. The robustness
is similar to the that of Fast Config. 3, of which the hash size was
approx. 100 times smaller. However, these results demonstrate the
potential of blind hashing: we demonstrate that it is not essential
to subtract the original video before extracting hashes.

Finally, the last two configurations in Table 1 show the results for
watermark detection using TIRI-DCT hashes of 570 B and 20,026 B,
respectively [8, 12]. TIRI-DCT Config. 1 is approximately as large as
the size of Fast Config. 2, yet it performs worse. Additionally, TIRI-
DCT Config. 2 is approximately as large as the NS-DCT-DST hash
of Fast Config. 3, yet its robustness performance is significantly
worse. For example, consider a watermarked video with QP𝑤 = 27
(as shown in Fig. 1a )that is attacked with QP𝑎 = 37 (as shown
in Fig. 1b). For Fast Config. 3, this results in a 0% FNR, whereas it
has a 56% FNR for TIRI-DCT Config. 2. This demonstrates that the
proposed method outperforms the state of the art.

In conclusion, we demonstrated that the proposed fast detection
method using perceptual hashes has a modest level of robustness
when using very small hashes, and improves in performance when
using larger hashes. Additionally, we showed that binarization is
a good strategy to reduce the hash size / increase the robustness.
However, binarization had to be disabled during blind hashing to
get a basic level of robustness. Future work should investigate how
to improve the performance of the blind hashing algorithm, for
example by inspecting which features are most robust and only
selecting those in the hash extraction process.

4.3 Time measurements
This subsection reports measurements related to the complexity
of the proposed hashing and fast detection methods. For the time
measurements, the ParkScene sequence containing 240 frames was
used (of which crops are shown in Fig. 1). The experiments were
performed using the high-level programming language MATLAB,
and hence the time results could be significantly improved using a
low-level language such as C++. In order to not take the efficiency
of the programming language into account, we report the measure-
ments of the perceptual hashing and fast detection method as a
factor of the slow detection method.

As a baseline, it takes the slow detection method approx. 24.3
seconds to compare two uncompressed YUV files. To extract the
perceptual hash, it takes approximately 1.37 times longer than
comparing two uncompressed YUV files. This value is averaged
over all test configurations, which all are approximately equally
fast. It should be stressed that extracting the perceptual hashes can
be done offline, prior to watermark detection. As such, only the
small perceptual hashes need to be saved and be given as input to
the fast watermark detection system of Fig. 2. As such, the speed
of the hash extraction method is of less importance.

Comparing two perceptual hashes is between approx. 1400 and
5700 times faster than comparing two uncompressed YUV files, for
the swept parameters and test configurations given in Section 4.1.
These observed speed-ups are much smaller than the theoretical
speed-ups calculated in Section 3.3. This is partly due to constant
factors that are ignored in the asymptotic complexity notation, and
due to MATLAB being very inefficient. Nonetheless, this speed-up
highlights the main advantage of the proposed detection method: it
is several orders of magnitude faster than the slow state-of-the-art
watermark detection method.
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5 CONCLUSION
Rate-distortion-preserving watermark detection is slow and re-
quires all watermarked videos. As high complexity and non-blindness
are undesirable features in practical multimedia security applica-
tions, this paper proposed a fast detection method that uses per-
ceptual hashes. Additionally, a blind hash extraction variant is
proposed. The proposed hashing is based on the normalizing shifts
of the DCT and DST.

The experiments confirm that the proposed detection is robust.
That is, when using very short hashes of approximately 0.4 kB, the
fast detection method is robust against recompression attacks that
do not significantly reduce the quality and outperforms the state of
the art. A higher level of robustness can be obtained by increasing
the hash size to, e.g., approx. 5 kB. Moreover, the blind version is
robust to recompression attacks that do not significantly reduce the
quality when hashes of approx. 40 KB are used. Reducing the size
of the blind hashes as well as increasing its robustness are future
work opportunities.

In conclusion, this paper tackled the main disadvantages of the
rate-distortion-preserving watermarking system. The proposed
detection is much faster and does not require access to the large wa-
termarked videos, but rather only to short precomputed perceptual
hashes. As such, one can perform watermarking without impacting
the video’s compression efficiency, and without worrying about a
high complexity of watermark detection.
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