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Cooperative coordination in multi-agent systems has been a topic of interest in networked control
theory in recent years. In contrast to cooperative agents, Byzantine agents in a network are capable
to manipulate their data arbitrarily and send bad messages to neighbors, causing serious network
security issues. This paper is concerned with resilient tracking consensus over a time-varying ran-
dom directed graph, which consists of cooperative agents, Byzantine agents and a single leader. The
objective of resilient tracking consensus is the convergence of cooperative agents to the leader in
the presence of those deleterious Byzantine agents. We assume that the number and identity of the
Byzantine agents are not known to cooperative agents, and the communication edges in the graph are
dynamically randomly evolving. Based upon linear system analysis and a martingale convergence
theorem, we design a linear discrete-time protocol to ensure tracking consensus almost surely in a
purely distributed manner. Some numerical examples are provided to verify our theoretical results.

Keywords: Linear systems in control theory, graphs and linear algebra, random graphs,
controllability

2020 Mathematics Subject Classification: 93C05 (Primary), 05C50 (Secondary)

1 Introduction

Distributed cooperative control of multi-agent systems has been a rapidly emerging topic in
networked control theory over the past decades. Reaching consensus is a primary goal, which
concerns designing control protocols such that all agents reach a common state or output via
information interaction with their nearest neighbors. This control issue can be roughly catego-
rized into leaderless consensus [10, 20] and tracking consensus (or leader-follower consensus)
[12, 28, 33]. The former considers agreement seeking in a situation where no leader is present,
while the objective of the latter is for other agents to follow the trajectory of a leader. Leaderless
and tracking consensus problems have been extensively studied in fixed networks [5, 20, 28],
switching or time-varying networks [12, 33], and random networks [21, 24]. An overview of
some classical control theory results on consensus problems can be found in the review paper
[20], and more recent advances are reviewed in the works [2, 4] from a broader perspective of
system science.
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Resilient tracking consensus over dynamic random graphs 409

In terms of consensus problems in large-scale networked systems, a realistic difficulty lies in
the malicious behavior of some unknown adversaries due to cyber-physical attacks. In computer
science, the strongest adversaries are dubbed as Byzantine agents [17], who do not follow a
desired coordination strategy and potentially ruled by some sophisticated attackers. Byzantine
agents are notoriously difficult to cope with as they may even collude with other agents to
arbitrarily distort information exchange in the network [18, 19]. In this setting, (tracking) con-
sensus problems are referred to as resilient (tracking) consensus because the control objective is
to ensure all cooperative agents to converge in spite of the interference of potential Byzantine
agents. To filter out the potential malicious behaviors, a class of Weighted-Mean-Subsequence-
Reduced (W-MSR) algorithm is proposed in [18] to remove extremal values in the neighboring
area of any cooperative agent. It is shown that if the communication graph is sufficiently
robust with respect to the maximum number of Byzantine neighbors, resilient consensus can
be achieved. The idea is that when the graph is sufficiently connected, scrapping some extremal
neighbors at each time step of the iteration could ensure the states of cooperative agents (i) lie
within the convex hull of their initial values and (ii) are updated towards a final convergence.

The idea of W-MSR algorithms has been later generalized to cope with resilient consensus
for agents with higher-order [7] and asynchronous [23] dynamics as well as hybrid multi-agent
systems with both continuous-time and discrete-time agents [25, 27]. Trusted agents have been
introduced in [1] to relax the robustness requirement in W-MSR algorithms, where trusted agents
are assumed to be insusceptible to attacks. In [26], the problem of constrained resilient consen-
sus is considered by employing a projection-based method to push the states of cooperative
agents back to their constraint sets. To achieve resilient consensus on relatively sparse networks,
two-hop communications have been introduced to multi-agent control in discrete-time [34] and
continuous-time [35].

On top of these deterministic system dynamics, some randomness has also been incorpo-
rated recently in resilient consensus problems to reflect varied challenges in real-world complex
systems. Randomized quantized states [8] and random faulty links [21] have been factored in
under the framework of almost sure convergence. In [24], mean square convergence for a class
of hybrid systems containing some randomly interacting agents as well as misbehaving ones
has been examined. Mean square consensus for a group of cooperative agents is shown in [9]
under the stochastic influence of malicious agents with differential privacy of their initial states
corrupted by communication noise.

Most of the existing research on resilient consensus problems including those above only stud-
ies leaderless consensus. The W-MSR type algorithms do not differentiate leaders from malicious
attackers. These protocols ensure convergence to the convex hull of cooperative agents regard-
less of how leaders/malicious agents behave. As a result, tracking consensus cannot be achieved
via a traditional W-MSR algorithm if a leader moves out of the convex hull. To overcome this
difficulty, a set of leaders taking the same constant reference value is introduced in [29] to guar-
antee resilient tracking consensus in discrete-time multi-agent systems. The minimum number of
leaders is determined based upon the maximum number of Byzantine agents in the communica-
tion graph. This method is further extended in [30] to allow some piecewise constant trajectories
for leaders by using a sliding-window analysis. Leader-following resilient consensus has been
investigated in [22] with a single leader in continuous-time multi-agent systems by employing
some saturation functions to regulate the errors between the leader and followers. The leader
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410 Y. Shang

agent may take a time-dependent bounded trajectory, where the bounds and the leader’s identity
are assumed to be known to all cooperative agents.

Along this line, we here further study the resilient tracking consensus problem in multi-agent
systems in the presence of Byzantine agents. To overcome the restrictions in the existing works
such as the large number and identifiability of the leaders, we here design a new W-MSR-type
resilient consensus protocol for systems with a single leader and adopt a linear system approach
to show that almost sure resilient tracking consensus can be achieved for discrete-time agents
over directed random graphs. The main novelties of this work are as follows. Firstly, in the
previous research on resilient tracking consensus [22, 29, 30], the communication topology is
assumed to be a fixed graph and the system dynamic is deterministic. Here, we lift these restric-
tions by considering a general class of random graphs with time-dependent edge probabilities.
The resilient tracking consensus will be guaranteed by a martingale convergence result benefiting
from the construction of our linear system and communication topology. Secondly, the proposed
distributed control protocol accommodates not only the conventional linear diffusive mecha-
nism (i.e. the Laplacian-type coupling) but also a general nonlinear coupling function, which is
more general than most existing work on resilient consensus problems; see for example [1, 9, 18,
21, 25]. Thirdly, compared to the work in [22], we assume the leader is a trustworthy node whose
value is always trusted by the followers. The identity of the leader is not revealed to other nodes
(see Remark 4 below).

The rest of the paper is organized as follows. Section 2 prepares some preliminaries on graph
theory and introduces the model of our multi-agent system. Section 3 presents the resilient
tracking consensus analysis. Section 4 contains numerical simulation examples, and Section 5
concludes the paper.

2 Problem formulation

2.1 Graph theory

In a multi-agent system, the interaction topology of agents (i.e. vertices) is represented by a
time-varying directed graph G(t) = (V , E(t), A(t)) for t ∈N, where N is the set of non-negative
integers. The vertex set V = {1, 2, · · · , N} is composed of all agents, and the edge set E(t) ⊆
V × V describes the information interaction. Let R be the set of reals. The adjacency matrix
of G(t), A(t) = (aij(t)) ∈R

N×N , is a weighted random matrix, where aij(t) > 0 when ( j, i) ∈ E(t),
that is, agent j can send information to agent i at time t, and aij(t) = 0 otherwise. We assume
aij(t) > 0 with probability pij(t) and aij(t) = 0 with probability 1 − pij(t). We mention that we do
not require independence for the entries aij(t) in the adjacency matrix with respect to i, j or t.
This gives desirable flexibility in practical applications.

Denote by N in
i (t) = {j ∈ V : ( j, i) ∈ E(t)} the set of in-neighbors of agent i. Similarly, the set

of out-neighbors of i can be defined as N out
i (t) = {

j ∈ V : i ∈N in
j (t)

}
. The agents in the graph

G(t) are divided into three categories, the cooperative agents in C, the Byzantine agents in B
and a leader agent �. In other words, V = {�} ∪ C ∪B. The rules for these agents will be given
in the next section. Fix t ∈N. A vertex set S ⊆ V is r-reachable at time t [18] if there exists
a vertex i ∈ S such that

∣∣N in
i (t)\S∣∣� r. The graph G(t) is said to be leader-follower r-robust

at time t [22] if (i)
∣∣N out

� (t)
∣∣� r and (ii) for any S ⊆ V\({�} ∪N out

� (t)
)
, S is r-reachable. The

concept of leader-follower r-robust is a natural generalization to the r-robustness notation which
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is first introduced in [18]. A directed graph G = (V , E) is called r-robust if for any two nonempty
mutually exclusive sets S1, S2 ⊆ V , at least one of them is r-reachable.

2.2 Model description

Recall that there are three types of agents in the graph G(t): cooperative agents in C, Byzantine
agents in B and the leader � satisfying V = {�} ∪ C ∪B. Byzantine is a traditional name that is
used in computer science and control theory [17]. These agents are able to arbitrarily update
their data and hence can potentially be malicious. Formally, Byzantine agents can include both
faulty agents, which are due to random errors, and malicious agents, which may be controlled
by some malicious attackers. Hence, Byzantine agents in B are potentially harmful and pose
a serious threat to the collective control objective of the multi-agent systems [18, 19, 25, 27].
They can collude with other Byzantine agents, and their identity and number are not available
to the cooperative agents. Cooperative agents in C on the other hand are those we have control
upon. They usually take a diffusive agent dynamics, and the aim of resilient (tracking) consensus
problem is to design appropriate distributed protocols for these cooperative agents so that they
can reach an agreement in some sense despite the obstruction from potential Byzantine agents.
The leader � is also a cooperative agent by nature, but it does not receive information from other
agents, namely, N�(t) = ∅ for all t. We will adopt a linear system design to enable the cooperative
agents to track the leader’s trajectory in the sense of almost sure convergence.

Formally, the dynamics of any agent i ∈ V takes the following form

xi(t + 1) = Axi(t) + Bui(t), t ∈N, (2.1)

where A ∈R
n×n, B ∈R

n, xi(t) ∈R
n means the state of agent i and ui(t) ∈R is its control input.

Here, the linear system design enables us to accommodate vector state spaces (see e.g. [26]),
which is more general than most of the existing work on resilient consensus problems. The
control input ui(t) for cooperative agents i ∈ C will be designed below in (2.5). For a Byzantine
agent i ∈B, ui(t) can take any value [Using the unifying framework (2.1) for Byzantine agents is
for the ease of presentation; essentially, no restriction is imposed on the behavior of Byzantine
dynamics]. The leader agent � assumes u�(t) = f (t) for some function f : N→R satisfying the
following assumption.

Assumption 1. We assume limt→∞ x�(t) = xf for some xf ∈R
n, and ‖x�(t) − xf ‖ = o

(
t−1
)

as
t → ∞. Here, ‖ · ‖ is the Euclidean norm in R

n.

Remark 1. The convergence here is more general compared to the constant reference states
required in [29, 30]. Under Assumption 1, the state x�(t) is obviously bounded. Although the
convergence assumption is more restrictive compared with the boundedness requirement in [22],
the bounds information has to be shared with all cooperative agents therein, which is difficult to
realize in a distributed manner in practice. It is also worth noting that the convergence here is
non-probabilistic because � is not influenced by other agents through random edges.

Remark 2. A simple example that satisfies Assumption 1 is f (t) ≡ 0. In fact, the dynamics for
the leader reduces to x�(t + 1) = Ax�(t) by (2.1). It follows from the Jordan normal form, if any
eigenvalue λ of A has norm less than 1, Assumption 1 is met. The convergence is exponentially
fast.
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Denote by det(λIn − A) = λn + α1λ
n−1 + α2λ

n−2 + · · · + αn the characteristic polynomial
of A. If the pair (A, B) is controllable, we define the transformation matrix

� = (
B, AB, A2B, · · · , An−1B

) ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1 α1 α2 · · · αn−1

0 1 α1 · · · αn−2

0 0 1 · · · αn−3
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈R
n×n. (2.2)

Here, the controllability of (A, B) means the matrix
(
B, AB, A2B, · · · , An−1B

)
has rank n [6].

The system (2.1) can be recast as the following canonical form [32] by using the similarity
transformation xi(t) = �yi(t) for i ∈ V:

yi(t + 1) = Âyi(t) + B̂ui(t), t ∈N, (2.3)

where Â = �−1A� =

⎛
⎜⎜⎜⎜⎜⎜⎝

−α1 −α2 −α3 · · · −αn

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈R
n×n and B̂ = �−1B =

(1, 0, 0, · · · , 0)T ∈R
n, where T is the matrix transpose.

Write yi(t) = (
yi,n−1(t), yi,n−2(t), · · · , yi,0(t)

)T
. Instead of transmitting vector states between

agents in G(t), we define a scalar value zi(t) for each agent i ∈ V:

zi(t) = yi,n−1(t) +
n−1∑
k=1

βkyi,n−1−k(t), (2.4)

which encodes the components of yi(t). We will see in the next section the information agents
exchange over G(t) will be expressed by zi(t). Here, βk ∈R for k = 1, 2, · · · , n − 1 are chosen
such that the polynomial λn−1 + β1λ

n−2 + β2λ
n−3 + · · · + βn−1 becomes Schur stable, meaning

that its roots are in the open unit disk. A quick sufficient condition for Schur stability is, for
example, 0 < βn−1 < βn−2 < · · · < β1 < 1 [3].

2.3 Resilient tracking consensus protocol

In this subsection, we introduce the resilient tracking consensus strategy for cooperative agents,
which is a purely distributed protocol.

Fix a parameter r ∈N. For each i ∈ C, at time step t ∈N, the agent i uses the encoded
state information zj(t)

(
j ∈N in

i (t)
)

from its in-neighbors and arranges the list z(|N in
i (t)|

)(t) �
z(|N in

i (t)|−1
)(t) � · · ·� z(1)(t). If at least r values in this list are larger than zi(t), we remove the

corresponding vertices j of the largest r values (except for j = �). If there are less than r such
values, all of their corresponding vertices are removed (except for j = �). Analogously, if at least
r values in this sorted list are smaller than zi(t), we remove the corresponding vertices j of the
smallest r values (except for j = �). If there are less than r such values, all of their corresponding
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Table 1. Processing for a cooperative agent i ∈ C.

Input: zi(t), {zj(t)}j∈Ni(t)

Output: Ri(t)
01: let k = |N in

i (t)| and Ri(t) =N in
i (t)

02: sort {zj(t)}j∈N in
i (t) in an ascending order as zik (t) � · · ·� zi2 (t) � zi1 (t)

03: for l = 1, 2, · · · , k
04: flag = 0
05: if zil (t) > zi(t)
06: flag = 1
07: if il �= �

08: remove il from Ri(t)
09: end if
10: end if
11: if l = r or flag = 0
12: exit for
13: end if
14: end for
15: for l = k, k − 1, · · · , 1
16: flag = 0
17: if zil (t) < zi(t)
18: flag = 1
19: if il �= �

20: remove il from Ri(t)
21: end if
22: end if
23: if l = k − r + 1 or flag = 0
24: exit for
25: end if
26: end for

vertices are removed (except for j = �). All removed vertices are recorded in the set Ri(t). The
strategy is shown in Tab. 1 below. The control input in (2.1) for agent i is taken as

ui(t) =
n∑

k=1

αkyi,n−k(t) −
n−1∑
k=1

βkyi,n−k(t) + zi(t)

+ γi(t) ·
∑

j∈N in
i (t)\Ri(t)

aij(t)(zj(t) − zi(t)), (2.5)

where 0 < γi(t) <
(∑

j∈N in
i (t) aij(t)

)−1
. This control function ui(t) can be further generalized to

accommodate a nonlinear diffusion; see Section 3.

Remark 3. The removal of extreme values is a key feature of W-MSR-type algorithms. The intu-
ition behind is that the Byzantine agents might manipulate the system states by taking some
extremely large or small values to deviate the states of cooperative agents. If these extreme val-
ues are removed, the system is more likely to achieve consensus. This rationale is also in line
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414 Y. Shang

with our daily wisdom in many scoring systems in sports and competitions, where the top and
bottom scores are removed to ensure a fair judgment. The meaning of the parameter r will be
explained below.

Remark 4. In the above algorithm, the leader takes the role of a trustworthy node [1], whose
value will always be trusted by a cooperative agent i. The idea of trustworthy nodes has been
employed in the study of resilient leaderless consensus to effectively mitigate the influence of
Byzantine agents [1, 11, 15]. This assumption is also necessary in resilient tracking consensus
because if the leader is not trusted, it plays a role essentially the same as a malicious agent
and leader-following may not be feasible. A stronger condition that requires a leader being
identifiable has been proposed in [22], where the value of a leader is fed into the protocol
differently from a cooperative agent (A convergence rate is estimated as a result of this).

Remark 5. Although the entry aij(t) of the adjacency matrix is a random variable for any given
time t, γi(t) can be prescribed as a deterministic number. For example, if we know aij(t) � M(t)
holds for some M(t) > 0 and all i, j ∈ V , γi(t) can be chosen in the range of (0, M(t)|N in

i (t)|).

The above strategy is pertinent to a parameter r, which we will use to bound the maximum
number of Byzantine agents in the neighborhood of a cooperative agent. In particular, a vertex
set S ⊆ V is called r-local if for any i �∈ S , |N in

i (t) ∩ S|� r for any t ∈N. If B is r-local, clearly
any cooperative agent will have at most r Byzantine in-neighbors.

With the above resilient tracking consensus strategy, we will show that the cooperative agents
in C can follow the leader � in the sense of almost sure convergence as t → ∞. Specifically,
we say the resilient tracking consensus is achieved for the multi-agent system (2.1) if ‖xi(t) −
x�(t)‖ → 0 as t → ∞ almost surely for any i ∈ C and initial configuration {xi(0)}i∈V .

3 Convergence analysis

In this section, we investigate the resilient tracking consensus of the linear system (2.1) in the
presence of Byzantine agents in a dynamic random graph G(t). Our main result is the following.

Theorem 1. Consider the multi-agent system (2.1) over the dynamic random graph G(t) =
(V , E(t), A(t)) with V = {�} ∪ C ∪B, where � is the leader agent, cooperative agents in C update
their states following the strategy (2.5), and the set B of Byzantine agents is r-local. Suppose
G(t) is leader-follower (2r + 1)-robust with positive probability for each t ∈N and Assumption 1
holds. If (A, B) is controllable, then the resilient tracking consensus for (2.1) is achieved almost
surely.

Remark 6. Fix t ∈N. Define Ê(t) = {(i, j) ∈ V × V : pij(t) > 0}. Note that the graph G(t) is a finite
graph. Therefore, if the adjacency matrix A(t) has independent elements, the condition that G(t)
is leader-follower (2r + 1)-robust with positive probability is equivalent to saying that the graph
(V , Ê(t)) is leader-follower (2r + 1)-robust.
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Proof. For any agent i ∈ C, by (2.3) and (2.5), we have

yi(t + 1) =

⎛
⎜⎜⎜⎜⎜⎝

−α1 −α2 −α3 · · · −αn

1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ yi(t) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·
(

n∑
k=1

αkyi,n−k(t)

−
n−1∑
k=1

βkyi,n−k(t) + zi(t) + γi(t) ·
∑

j∈N in
i (t)\Ri(t)

aij(t)(zj(t) − zi(t))

⎞
⎟⎠ . (3.1)

Noting that yi(t) = (yi,n−1(t), yi,n−2(t), · · · , yi,0(t))T for t ∈N, we obtain

yi,n−1(t + 1) = −
n−1∑
k=1

βkyi,n−k(t) + zi(t)

+ γi(t) ·
∑

j∈N in
i (t)\Ri(t)

aij(t)(zj(t) − zi(t)), (3.2)

and

yi,n−2(t + 1) = yi,n−1(t), yi,n−3(t + 1) = yi,n−2(t), · · · , yi,0(t + 1) = yi,1(t). (3.3)

It follows from the definition of zi(t) in (2.4) and (3.2) that for i ∈ C,

zi(t + 1) = zi(t) + γi(t) ·
∑

j∈N in
i (t)\Ri(t)

aij(t)(zj(t) − zi(t)). (3.4)

Since 0 < γi(t) <
(∑

j∈N in
i (t) aij(t)

)−1
, zi(t + 1) in (3.4) can be viewed as a convex com-

bination of zi(t) and zj(t) for j ∈N in
i (t)\Ri(t). Define z(t) = max{{zi(t)}i∈C , z�(t)} and z(t) =

min{{zi(t)}i∈C , z�(t)}. Fix t ∈N. For any agent i ∈ C, since B is r-local and the convex combi-
nation is in effect, there are at most r in-neighbors (excluding possibly �) taking values outside
the range [z(t), z(t)] at time t + 1. By our resilient tracking consensus strategy, any such neigh-
bors will be removed in the update for agent i at time step t + 1 with two possible exceptions:
(i) a neighbor j has state zj(t + 1) satisfying z(t) < zj(t + 1) � z�(t + 1) or (ii) a neighbor j
has state zj(t + 1) satisfying z(t) > zj(t + 1) � z�(t + 1). In both cases, � ∈N in

i (t). Employing
Assumption 1, we know there exists 0 � ε(t) = o

(
t−1
)

such that

z(t) − ε(t) � z(t + 1) � z(t + 1) � z(t) + ε(t) (3.5)

for t ∈N. This relationship holds regardless of the randomness of edges in G(t).
For any cooperative agent i ∈ C, write wi(t) = (yi,n−2(t), yi,n−3(t), · · · , yi,0(t))T ∈R

n−1.
Therefore, yi(t) = (yi,n−1(t), wi(t)T)T. In view of (3.3), we obtain a new linear system

wi(t + 1) = Ãwi(t) + B̃zi(t), (3.6)
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where Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−β1 −β2 −β3 · · · −βn−1

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈R
(n−1)×(n−1) and B̃ = (1, 0, 0, · · · , 0)T

∈ R
n−1, where zi(t) is given by (2.4).

Define b(t) = z(t) − z(t) − 2tε(t) for t ∈N and let F(t) be the σ -algebra generated
by {{zi(0)}i∈V , {zi(1)}i∈V , · · · , {zi(t)}i∈V}. By (3.5), we obtain E|b(t)| < ∞ for t ∈N and
E(b(t)|F(t − 1)) � b(t − 1) for t � 1. Thus, b(t) is a super-martingale relevant to the filtration
F(t). There is some b � 0 such that

lim
t→∞ b(t) = lim

t→∞(z(t) − z(t)) = b, (3.7)

almost surely by employing the martingale convergence theorem [14, p. 2] and our assumption
of ε(t).

Next, we will show the limit b = 0. In fact, if this is not the case we define three
random sets I1(t) = {i ∈ V\B : zi(t) = z(t)} �= ∅, I2(t) = {i ∈ V\B : zi(t) = z(t)} �= ∅, and I3(t) =
(V\B)\(I1(t) ∪ I2(t)). Clearly, these three sets partition V\B. We consider three cases depending
on the location of leader �: (i) � ∈ I1(t), (ii) � ∈ I2(t), and (iii) � ∈ I3(t).

(i) Suppose I2(t) ∩N out
� (t) �= ∅. We have, say, i ∈ I2(t) ∩N out

� (t). By our resilient tracking
consensus strategy, z�(t) will be used in the update for agent i at time step t + 1 via (3.4). Since
B is r-local, it is easy to see our protocol guarantees any value outside [z(t), z(t)] will not be used
in the update for agent i at time step t + 1 in this situation. Because of the convex combination
in (3.4), agent i must take a larger value at the next time step, that is, zi(t + 1) > zi(t).

If I2(t) ∩N out
� (t) = ∅, by our assumption that G(t) is leader-follower (2r + 1)-robust with pos-

itive probability, we know I2(t) is (2r + 1)-robust with positive probability. Hence, with positive
probability there exists i ∈ I2(t) such that i has at least 2r + 1 in-neighbors outside the set I2(t).
As B is r-local, i has at least r + 1 cooperative in-neighbors outside I2(t). By our algorithm, at
least one of such neighbors will be used in the update for agent i at time step t + 1. Using the
fact that B is r-local again, we know that any value outside [z(t), z(t)] will not be used by i in the
update at time t + 1. Therefore, via the convex combination in (3.4), we obtain zi(t + 1) � zi(t)
and with positive probability zi(t + 1) > zi(t).

(ii) This case can be shown analogously as in (i) by considering two situations: I1(t) ∩
N out

� (t) �= ∅ and I1(t) ∩N out
� (t) = ∅. Consequently, we know that with positive probability there

exists some agent i ∈ I1(t) such that zi(t + 1) � zi(t) and with positive probability zi(t + 1) < zi(t).
(iii) We first consider two situations I2(t) ∩N out

� (t) �= ∅ and I2(t) ∩N out
� (t) = ∅ and proceed

similarly as in case (i) to conclude there is some agent i ∈ I2(t) satisfying zi(t + 1) � zi(t) and
with positive probability zi(t + 1) > zi(t). Then, we consider two situations I1(t) ∩N out

� (t) �= ∅
and I1(t) ∩N out

� (t) = ∅ and proceed similarly as in case (ii) to derive there exists agent j ∈ I1(t)
satisfying zj(t + 1) � zj(t) and with positive probability zj(t + 1) < zj(t).

Combining (i), (ii), (iii) and noting that G(t) is a finite graph, we conclude that z(t) − z(t) tends
to zero in probability as t → ∞. But this is at odds with our assumption that b > 0 in (3.7).
Therefore, we have shown that almost surely

lim
t→∞(z(t) − z(t)) = 0. (3.8)

https://doi.org/10.1017/S0956792522000225 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000225


Resilient tracking consensus over dynamic random graphs 417

Using Assumption 1, (3.5) and (3.8), we obtain that there is some c ∈R satisfying
limt→∞ zi(t) = c almost surely for all i ∈ C ∪ {�}. Moreover, by (2.4) we know that c is determined
via the following

c = (
�−1xf

)
n−1

+
n−1∑
k=1

βk

(
�−1xf

)
n−1−k

, (3.9)

where �−1xf =
((

�−1xf

)
n−1

,
(
�−1xf

)
n−2

, · · · ,
(
�−1xf

)
0

)
.

With the convergence of zi(t) at hand, we now move onto the convergence of wi(t) for i ∈ C.

In doing so, define an error vector δi(t) = wi(t) − c/
(

1 +∑n−1
k=1 βk

)
1n−1, where 1n−1 ∈R

n−1 is

an all one vector. Using (3.6), we arrive at

δi(t + 1) = Ãwi(t) + B̃zi(t) − c

1 +∑n−1
k=1 βk

1n−1

= Ãδi(t) + Ã
c

1 +∑n−1
k=1 βk

1n−1 + B̃zi(t) − c

1 +∑n−1
k=1 βk

1n−1

= Ãδi(t) +

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

−β1 −β2 −β3 · · · −βn−1

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

· c

1 +∑n−1
k=1 βk

+ B̃zi(t)

= Ãδi(t) − B̃c + B̃zi(t). (3.10)

Denote by ρi(t) = zi(t) − c for i ∈ C and hence limt→∞ ρi(t) = 0 almost surely. From (3.10), we
have

δi(t + 1) = Ãδi(t) + B̃ρi(t). (3.11)

It is easy to see that the matrix Ã is Schur stable because the characteristic polynomial
det(λIn−1 − Ã) is a Schur stable polynomial as defined at the end of Section 2.2. Thanks to
the Lyapunov stability theory [6, Theorem 5.D5], we obtain for any positive definite matrix
Q ∈R

(n−1)×(n−1) there is a positive definite matrix P ∈R
(n−1)×(n−1) such that P − Q = ÃTPÃ.

For any cooperative agent i ∈ C, define the Lyapunov candidate function �i(t) = δi(t)TPδi(t) and
along the solution of (3.11) it follows

�i(t + 1) − �i(t) = −δi(t + 1)TPδi(t + 1) − δi(t)
TPδi(t)

= −δi(t)
TQδi(t) + 2δi(t)

TÃTPB̃ρi(t) + ρi(t)
2B̃TPB̃. (3.12)

Recall that Ã is stable. Applying the input-to-state stability result [16, Example 3.4,
Lemma 3.5] to the linear system (3.6), we derive that wi(t) is bounded for all t ∈N. In light
of the definition of δi(t), we know δi(t) is also bounded. Since limt→∞ ρi(t) = 0 almost surely,
we obtain limt→∞ |2δi(t)TÃTPB̃ρi(t) + ρi(t)2B̃TPB̃| = 0 almost surely. By (3.12), it is not dif-
ficult to see limt→∞ �i(t) = 0 almost surely for any cooperative agent i ∈ C. Indeed, if this
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is not true, δi(t) �→ 0 as n → ∞ by the definition of �i(t) and the positive definiteness of P.
Using (3.12) and the positive definiteness of Q, for any t ∈N there are ε > 0 and t̂ � t such that
�i(t̂ + 1) − �i(t̂) �−ε. This is in conflict with the fact that �i(t) for all t ∈N is lower bounded
by zero.

Using the definition of �i(t) again, we have limt→∞ δi(t) = 0 almost surely for i ∈ C. Thereby,

limt→∞ wi(t) = c/
(

1 +∑n−1
k=1 βk

)
1n−1 almost surely. Applying (3.3), we know limt→∞ yi(t) =

c/
(

1 +∑n−1
k=1 βk

)
1n almost surely for all cooperative agents i ∈ C. As xi(t) = �yi(t), it follows

that

lim
t→∞ xi(t) = c(

1 +∑n−1
k=1 βk

)�1n

= �1n
(1, β1, β2, · · · , βn−1)�−1xf(

1 +∑n−1
k=1 βk

)
= ��−1xf

= xf (3.13)

almost surely by using (3.9). This means all cooperative agents will track the evolution of the
leader agent � by Assumption 1. The proof is complete. �

Remark 7. As with W-MSR like protocols, our resilient tracking consensus strategy does not
guarantee ditching all Byzantine agents nor does it guarantee keeping all cooperative agents
at any time step. As a result, the transient trajectories are influenced by the Byzantine agents
in general. However, distinct from leaderless consensus counterparts (e.g. [7, 18, 21, 25, 26]),
the final consensus state goes with that of the leader (and hence not influenced by any Byzantine
agents).

Remark 8. The above linear system analysis method can be applied to a more general control
function ui(t) given as follows

ui(t) =
n∑

k=1

αkyi,n−k(t) −
n−1∑
k=1

βkyi,n−k(t) + zi(t) + γi(t) ·
∑

j∈N in
i (t)\Ri(t)

aij(t)gij(zj(t), zi(t)), (3.14)

where γi(t) is chosen as in (2.5) and the nonlinear function gij : R×R→R satisfies
(i) gij(z1, z2) = 0 if and only if z1 = z2 and (ii) there exist two constants 0 < qi � q′

i � 1
such that

qi �
gij(z1, z2)

z1 − z2
� q′

i (3.15)

for any z1 �= z2. The control function ui(t) in (2.5) is a special case of (3.14) by taking gij(z1, z2) =
z1 − z2. It is worth mentioning that the two bounds in (3.15) do not depend on any node j as we
can always take the maximum and minimum over all nodes of G(t) (which is a finite graph)
without loss of generality.
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FIGURE 1. A leader-follower 3-robust graph G with N = 8 agents: leader � = 1, Byzantine B = {2} and
cooperative C = {3, 4, 5, 6, 7, 8}.

With this coupling function, Theorem 1 can be proved along the same line. In fact, when (2.5)
is replaced by (3.14), the update rule (3.4) for an agent i ∈ C becomes

zi(t + 1) = zi(t) + γi(t) ·
∑

j∈N in
i (t)\Ri(t)

aij(t)gij(zj(t), zi(t)). (3.16)

Although zi(t + 1) is no longer a convex combination of zi(t) and {zj(t)}j∈N in
i (t)\Ri(t)

, it is bounded
by two convex combinations of them from the above and the below.

4 Numerical simulations

In this section, we present two examples to illustrate our theory.

Example 1. Consider a directed graph G over N = 8 vertices with � = 1, B = {2} and C =
{3, 4, · · · , 8}; see Figure 1. The time-dependent random graph G(t) is built upon G by assum-
ing binary edge weights, namely, aij(t) takes 1 or 0. The edge probabilities pij(t) ≡ 0.5 and the
corresponding weights aij(t) are independent for all i, j, and t. It is straightforward to check that
G is leader-follower 3-robust. Hence, G(t) is leader-follower 3-robust with positive probability
for any t ∈N; c.f. Remark 6.

The agents’ dynamics for i ∈ V and t ∈N and are taken as

xi(t + 1) =
(

0.5 1

0 0.5

)
xi(t) +

(
0

1

)
ui(t), (4.1)

where u1(t) = f (t) ≡ 0, u2(t) = 0.2 cos(t/5), and ui(t) for i ∈ C is given by (2.5) with α1 = −1,
α2 = 0.25, β1 = 0.5, γi(t) ≡ 0.2. It is easy to check that the pair (A, B) is stable, xf = (0, 0)T, and
all conditions in Theorem 1 are satisfied. Let xi(t) = (xi,1(t), xi,2(t))T for i ∈ C.

By choosing initial states randomly within [−4, 4], we display the dynamical evolution of the
multi-agent system in Figure 2. We observe that both components of the states of cooperative
agents track the leader agent 1 and converge to the equilibrium xf as expected.

In this example, the Byzantine agent 2 ∈N out
1 (t) with probability 0.5 and it influences half

of the cooperative agents in C. Moreover, the Byzantine agent possesses a dynamics repeatedly
oscillating around the equilibrium. All this represents a highly adverse scenario to the collective
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FIGURE 2. Resilient tracking consensus over the 2-dimensional state space with the leader agent 1 (red)
and the Byzantine agent 2 (blue).

FIGURE 3. The animal interaction network of N = 12 macaca fuscata. It has a leader � = 1, Byzantine
B = {2} and cooperative C = {3, 4, · · · , 12}.

consensus task. Remarkably, our simple distributed protocol enables the cooperative agents to
converge towards the leader’s equilibrium relatively quickly.

Example 2. As is known, determining robustness is an NP-hard problem [31], which prevents us
from considering large-scale empirical networks. In this example, we consider an animal interac-
tion network of primates in Yakushima, Japan [13], which contains N = 12 macaca fuscata with
a leader; see Figure 3. Specifically, the directed graph G has a leader � = 1, a Byzantine agent
in B = {2} and cooperative agents in C = {3, 4, · · · , 12}. We construct a time-dependent random
graph G(t) by assuming binary edge weights, namely aij(t) takes 1 or 0 and edge probabilities
pij(t) ≡ p. The weights aij(t) are independent for all i, j, and t. It is straightforward to verify that
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FIGURE 4. Resilient tracking consensus for the animal interaction network with the leader agent 1 (red)
and the Byzantine agent 2 (blue) with edge density (a) p = 0.1 and (b) p = 0.8.

G is leader-follower 3-robust. Hence, G(t) is leader-follower 3-robust with positive probability
for all t ∈N. Note that the Byzantine agent 2 is highly connected in the network.

Let n = 1. The agents’ dynamics for i ∈ V and t ∈N and are chosen as

xi(t + 1) = 1

2
xi(t) + ui(t), (4.2)

where u1(t) = f (t) ≡ 0, u2(t) = 0.1 cos(t/20), and ui(t) for i ∈ C is given by (2.5) with α1 = −0.5,
γi(t) ≡ 1/12. It is clear that xf = 0, and all conditions in Theorem 1 are satisfied.

The initial configuration is chosen as x1(0) = −0.8, x2(0) = 0.3, x3(0) = −0.1, x4(0) = −0.5,
x5(0) = 1, x6(0) = −0.7, x7(0) = 0.2, x8(0) = 0.6, x9(0) = 0.7, x10(0) = −1, x11(0) = 0.1, x12(0) =
−0.3. In Figure 4(a) and (b), we show the state evolution for different edge probability p = 0.1
and p = 0.8, respectively. In both cases, the followers are able to track the leader and a denser
network tends to give rise to a faster convergence.

5 Conclusion

In this paper, we adopt a linear system approach to solving the resilient tracking consensus
problems over random graphs. The agents are divided into three categories, namely one leader,
some Byzantine agents and cooperative agents. The consensus is reached when the cooperative
agents collapse on the target position of the leader, despite the possibly malevolent action of the
Byzantine agents. We provide sufficient conditions that guarantee almost sure tracking consensus
of cooperative agents towards the leader over time-varying directed graphs with random edges.
The designed control protocol is purely distributed and enables consensus against a bounded
number of Byzantine agents. Our future work will include generalizing the linear system method
to deal with other coordinated complex system problems.
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