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Abstract
Human activity recognition based on generated sensor data plays a major role in a large number of applications such as
healthcare monitoring and surveillance system. Yet, accurately recognizing human activities is still challenging and active
research due to people’s tendency to perform daily activities in a different and multitasking way. Existing approaches based
on the recurrent setting for human activity recognition have some issues, such as the inability to process data parallelly, the
requirement for more memory and high computational cost albeit they achieved reasonable results. Convolutional Neural
Network processes data parallelly, but, it breaks the ordering of input data, which is significant to build an effective model
for human activity recognition. To overcome these challenges, this study proposes causal convolution based on performers-
attention and supervised contrastive learning to entirely forego recurrent architectures, efficiently maintain the ordering
of human daily activities and focus more on important timesteps of the sensors’ data. Supervised contrastive learning is
integrated to learn a discriminative representation of human activities and enhance predictive performance. The proposed
network is extensively evaluated for human activities using multiple datasets including wearable sensor data and smart
home environments data. The experiments on three wearable sensor datasets and five smart home public datasets of human
activities reveal that our proposed network achieves better results and reduces the training time compared with the existing
state-of-the-art methods and basic temporal models.

Keywords Activity recognition · Contrastive learning · Class imbalanced problem · Temporal evaluation ·
Attention mechanism · Sensor data

1 Introduction

Sensors from smart home environments and wearable
objects generate a large amount of valuable data used for
different applications including human activity recognition
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(HAR). Smart home environments based on equipped
sensors are designed for ambient assisted living to
unobtrusively track human activities [12]. Further, wearable
sensors have been also used to gather customized data
about users’ habits. Wearable sensors can be embedded
into different objects such as mobile, clothes, belts,
wristwatches, or glasses which can be worn to record users’
movement with the aim of HAR [19]. Moreover, wearable
and smart home sensors can record perceived information to
sufficiently detect the ambulatory and postural activities [5,
29].

HAR is an active and challenging research field in
ubiquitous computing to understand human activities, which
plays a significant role in several applications in the fields
of healthcare monitoring [30], security surveillance systems
[27], and resident situation assessment [21]. HAR, as one
of the important applications of healthcare monitoring from
sensors data, is used to monitor and track vulnerable people
[25]. However, human activities are highly diverse due
to different sensor readings and even the same subject
tends to perform an activity in different ways. Also, the
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intrinsic characteristic of categories denoting daily human
activities is inherently imbalanced, and hence building a
robust machine learning model for HAR is challenging.
Moreover, occasionally generated data by sensors could be
noisy which adds extra challenges and ambiguity to the
interpretation of human activities [13].

Deep learning models are widely employed in different
applications of computer vision, audio recognition, and
natural language processing. Furthermore, deep learning
approaches have improved HAR systems based on sensors
generated data and show promising results. Since mostly
HAR problems are formed as a sequential learning [22],
Recurrent Neural Network (RNN) as a type of sequential
learning and its variations particularly Long Short-Term
Memory (LSTM) have demonstrated satisfying and state-
of-the-art performance [25]. LSTM integrated models
are commonly used and increase the performance of
HAR systems, however, LSTM requires a large amount
of memory and high computational capacity for its
memory cells and gating mechanism in learning to process
temporal sequential contextual information [13]. Further,
LSTM models process timesteps of sensors temporal data
sequentially because processing any timestep requires the
outcomes of the previous timesteps [2, 42]. Convolutional
Neural Network (ConvNet) is employed to extract the
temporal contextual information for HAR systems from
sensors data [13, 36]. Even though the training of one
dimensional (1D) ConvNet models is remarkably faster than
LSTM due to the nonexistence of recurrent settings, LSTM
models show better performance than 1D ConvNet for HAR
systems. Furthermore, 1D ConvNet models are not sensitive
to the order of the sensors sequential data which is crucial
for HAR due to processing sensors sequential temporal data
in parallel.

The self-attention technique is used to focus more on
important timesteps of the feature maps by computing simi-
larity scores for all timesteps [42]. However, computational
and memory requirements of the self-attention technique are
quadratic with the length of the input sensor sequential data
which leads to slow learning and occupying more memory.

To overcome the above challenges, we propose the causal
ConvNet based on performers-attention and supervised con-
trastive learning. The proposed network improves the results
of the HAR systems in sensors generated data. In addition,
the proposed method also accelerates the learning process
compared to the existing methods. Causal convolution [2,
31] is adopted to avoid violating the ordering timesteps
of the input datasets, which is crucial in HAR systems.
Performers-attention [6] which scales linearly with the input
sequence length is proposed to reduce the computation and
memory cost compared to the self-attention mechanism for
HAR systems. Moreover, supervised contrastive learning is

adopted to learn a good representation from the input sen-
sors data that supports classifiers to gain useful information
[3, 20]. Due to integrating supervised contrastive learning,
the proposed network has two learning stages. The network
learns a good representation of human activities in the first
stage to learn a more accurate classifier in the second stage.
Further, in the first stage, the supervised contrastive loss
function is applied to learn the representation of human
activities which is further propagated through a projection
network. In the second stage, a linear classifier is trained
on top of the frozen representations while the projection
network is discarded. The two stages of learning prepare a
discriminative representation that renders a more accurate
classifier [20].

Moreover, due to the diversity of human activity
recognition which leads to generating long-tailed datasets
with skewed class distributions, often classifiers tend to
be more biased towards majority classes and misclassify
minority classes. To address this limitation, the focal
loss function [23] based upon the effective number of
samples [7] is proposed by assigning higher weights
to hard-classified examples to sufficiently learn minority
classes. The focal loss function is conducted in the second
stage to learn a linear classifier for HAR. The proposed
network is evaluated on eight benchmark HAR datasets
and compared with the existing state-of-the-art methods.
The experimental results demonstrate that our proposed
network can obtain better results compared with the existing
state-of-the-art methods. An ablation study is carried out
to demonstrate the contribution of each of the components
(performer attention, supervised contrastive learning: two
stages learning, causal convolution, and focal loss) of the
proposed network.

To summarise, we propose a causal ConvNet-based
performers-attention and supervised contrastive learning to
increase the accuracy of HAR systems and accelerate the
learning process. The main components of the proposed
network are described below:

i. The performers-attention is adopted to effectively expose
significant timesteps that involve human activities.

ii. Supervised contrastive learning within the network is
proposed to render expressive representations that help
the classifier to accurately and easily recognize human
activities.

iii. Causal convolutions as part of the network are
proposed to maintain the ordering of sensor data
which is important for systems of HAR by preventing
information flow from future to past.

iv. The focal loss function based on the effective number of
samples is proposed to down-weights well-classified
examples and focus on hard-classified examples.
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The remainder of this paper is structured as follows.
The related works is reviewed in Section 2. A background
for this study is provided in Section 3. The details of
the proposed network is described in Section 4. Section 5
reports evaluations of the experimental setup. Finally,
Section 6 concludes the paper.

2 Related works

Deep learning models have shown a significant break-
through with appreciable performance on different HAR
benchmark datasets [11]. Moreover, deep learning models
are used not only in the form of single model learning
but also joint models learning to address class imbalanced
problems and improve HAR systems [15]. Since HAR is a
sequential classification problem, recurrent network-based
architectures, i.e., RNN and LSTM, have shown satisfy-
ing results. HAR based on RNN is conducted to recognize
human activities from sensors data [8]. Although the results
achieved based on RNN are reasonable, RNN cannot pre-
vent gradient vanishing and exploding problems in process-
ing long input sequences [25]. LSTM [17] was developed
to prevent the occurrence of exploding problems and van-
ishing gradients using multiple switch gates. LSTM can
process long-term dependencies of temporal sequential data
including HAR systems. Several studies have used LSTM to
model human activities from sensor data [11, 25, 33]. More-
over, LSTM is not only used alone or in ensemble form [25]
to model human activities but also combined with ConvNet
vertically or parallelly to process long-term dependencies
and enhance HAR systems [11]. ConvNet is used for HAR
systems to dispense recurrent architectures, make the learn-
ing phase faster, and process sequential temporal human
activities in parallel [36].

Self-attention mechanism [42] is used with recurrent-
based networks and ConvNet to focus more on the
most relevant time steps and increase the accuracy of
HAR systems. Hybrid ConvNet and LSTM with self-
attention mechanism are used for HAR using reinforcement
learning from wearable sensors [16]. Due to this hybrid
method trained based on reinforcement learning, large
computing resources for the training phase are required.
Furthermore, the self-attention mechanism is appended to
the Convolutional LSTM model for HAR to pay more
attention to informative timesteps from temporal sequential
wearable sensor data [37]. The self-attention mechanism
is employed in further studies of HAR based on wearable
sensors data [4, 24]. Recurrent network architecture
from these methods leads to a delay in the training
process. Moreover, these methods are built only based on

wearable sensors data for HAR systems. Moreover, the
DeepConvLSTM method is suggested for HAR based on
sensor data from smart homes [26]. Due to the recurrent
setting in this method, parallelization in processing the
input sequence is restricted which makes this model
computationally expensive and occupies more memory.
Further, this model is only compared to bidirectional LSTM
and evaluated on three smart home datasets. ConvNet based
on dual attention is proposed that entirely dispense recurrent
settings for activity recognition, however, the proposed
model is only evaluated on wearable sensor datasets [9].

Despite the effectiveness of self-attention for HAR,
computation and memory cost of the self-attention tech-
nique scales quadratically with the length of the data
which delays the learning process. To remedy these lim-
itations and enhance the performance of HAR systems
from sensors data, we propose causal ConvNet-based
performers-attention and supervised contrastive learning.
This is because firstly the performers-attention mechanism
linearly scales with the length of the sensor input data which
makes the learning process faster. Secondly, supervised con-
trastive learning increases the performance of the proposed
network by replacing one stage learning with two stages of
learning where the first stage is representation learning and
the second stage is classifier learning.

3 Background

3.1 Self-attention

Self-attention is a powerful mechanism that computes
correlation scores for all pairs of the samples in the input
sensor data. The self-attention mechanism is introduced
and exploited by the Transformer architecture to process
sequential data in parallel [42]. To make the model pay
extra attention to the essential time steps in modelling HAR
from the temporal sensor representation, the self-attention
technique is employed in the training phase. Attention
technique has the following learned components: query Q,
key K , and values V . The dimension size of query Q and
key K is dk , where the dimension size of V is dv [42]. The
complexity of the self-attention mechanism with the length
of the input temporal sequence scales quadratically which
increases model learning time and requires more memory.
This is the limitation of the self-attention mechanism
which is addressed in Section 4.2. The attention matrix
implementation is shown in (1).

Z(Q,K, V ) = sof tmax

(
1√
dk

Q · KT

)
V . (1)
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Fig. 1 Proposed network

3.2 Contrastive learning

Contrastive learning [10] has been employed for supervised
and unsupervised learning as an objective function [20,
28]. The purpose of contrastive learning is to learn
fθ : R

D → R
d (a parametric function) that able to

map an input data x to a feature map (fθ (x) ∈ R
d

with d < D) so that a cosine distance as a distance
measure can project a high-dimensional input space with
complex similarities to a low-dimensional feature latent
embedded space. Generally, contrastive learning aims to
learn representations by mapping input data to a feature
space where similar examples are close together and
dissimilar examples are far apart [10]. Hence, contrastive
learning increases both compactnesses of intra-classes and
separability of inter-classes which lead to rendering a better
classifier. Moreover, learning representations of the input
data support classifiers to easily extract useful information
to properly distinguish categories [3]. The supervised
contrastive learning [20] maps the encoded normalized

samples belonging to the same class close together in
embedding space and simultaneously pushing apart clusters
of samples from different categories.

4 Proposed network

The proposed network is built using causal 1D ConvNet
with the performers-attention based on supervised con-
trastive learning. The proposed method takes the minority
classes from the input datasets into consideration using the
focal loss function with an effective weighting samples tech-
nique as described in Section 4.1. The causal convolutions
component in the proposed network is used to avoid infor-
mation flow from future to past by processing results at time
t based on solely the convolutions of the time steps of the
temporal data from time t and earlier in the previous layer.
Therefore, predicting time steps at time t cannot rely on
any of the future time steps from the sensor sequential data.
This helps the proposed network to maintain the ordering

Fig. 2 Approximation of the regular attention mechanism AV via random feature maps. Dashed blocks show the order of computation with
corresponding time complexities [6]
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of the temporal data [31] which is significant for HAR sys-
tems [13]. Moreover, the details of the performers-attention
are provided in Section 4.2. Figures 1 and 2 presents the
structure of the proposed network and the two stages of
learning in which the representation learning uses super-
vised contrastive loss function and the classifier learning
uses the focal loss function. More details about supervised
contrastive learning and both learning stages are provided in
Section 4.3.

4.1 Focal loss

The focal loss [23] is introduced to address the imbalanced
class problem between background and foreground classes
during training in one stage object detection scenario.
The focal loss is designed to down-weight well-classified
examples and focuses on hard-classified examples. The loss
value of hard-classified examples is much higher compared
to the loss values of the well-classified examples by a
classifier using the focal loss function. Since the focal loss
focuses more on a sparse set of hard-classified samples,
hence the focal loss is used in our proposed network to
improve the learning of minority classes in HAR systems.
The focal loss function is shown in (2).

FL(pt ) = −αt (1 − pt )
γ log(pt ) (2)

4.2 Generalized kernelizable attention

The complexity of the self attention mechanism with the
length of the input temporal sequence scales quadratically
which increases model learning time and requires more
memory. This is the limitation of the self-attention mech-
anism. To address this limitation, we adopt performers-
attention [6] as an efficient attention mechanism whose
complexity scales linearly with the size of an input sequence
L. The performers uses a Fast Attention Via Positive
Orthogonal Random Features (FAVOR+) algorithm and
substitutes Transformer self-attention by generalized ker-
nelizable attention. The FAVOR+ algorithm is used to
estimate the regular softmax attention by random feature
map decompositions. Hence the core idea of the perform-
ers is to decompose the attention matrix into a matrix
product. This algorithm leverages positive orthogonal ran-
dom features to approximate softmax attention kernels with
provable accuracy and O(N) for both computational and
space complexity [6]. Previous attention mechanisms such
as sparsity and low-rankness relied on structural assump-
tions for the attention matrix without approximating the
original softmax function. Generalized kernelizable atten-
tion can make the model process longer input sequences
and train faster compared to previous attention mechanisms.
The aim of using generalized kernelizable attention and

FAVOR+ is to approximate the softmax and choose the
order of computation of the matrices of (1).

4.3 Supervised contrastive learning

In this study, supervised contrastive learning (SCL) is used to
build a model for HAR that outperforms the state-of-the-art
HARmethods. The proposed method based on SCL consists
of two stages of learning. In the first stage, two components
are trained which are encoder and projection networks.
The first stage learns representations used in the second
learning stage to build a robust and accurate classifier for
HAR systems. The details of the first stage are as follows:

1. Encoder network E(·) maps temporal input sequential
data x to a representation vector r = E(x) ∈ RDE

where DE = 512. The encoder network specifically
consists of two 1D ConvNet layers followed by a
fully connected layer. The performers-attention is then
applied to effectively extract deep semantic correlations
from action sequences involving human activities. After
each layer, normalization and dropout regularization
are applied to make the learning process faster and
prevent the encoder from overfitting. 1D ConvNet-
based networks have been proposed as fast and
accurate models for HAR systems [11]. This is due
to the ability of 1D ConvNet in extracting mostly
correlated features by considering local dependency
from temporal sequential input data.

2. Projection network Proj (·) maps the representation
vector r to a projected vector z = Proj (r) ∈ RDE

where DE = 512. The projector network is only a
single fully connected layer appended to the encoder.
The Encoder and projection networks are trained using
contrastive loss function to make embeddings of similar
classes are close together and dissimilar classes are far
apart. The projection is discarded at the end of the
contrastive training. Equation 3 shows the supervised
contrastive loss function which is used in the first stage
to learn the encoder.

(3)

where
– N is the number of random samples in a mini-batch;
– Ny is the total number of samples in the mini-batch with

the same label y;
– zi = Proj (E(xi)) and zj = Proj (E(xj )) are the

projected vectors of the samples belonging to the same
class;
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– while zk = Proj (E(xk)) is the projected vector of a
different class;

– T is a positive scalar temperature parameter;
– avoids inner product of the same vector;

– ensures that the zi and zj are the projected
vectors of the same class;

– is used to ensure that the zk does not belong to the
class of zi and zj .

In the second stage, a classifier with a fully connected
layer followed by a softmax layer is trained using the
encoder network. However, the encoder network of the first
stage is frozen and the projector network is discarded. The
learned representation from the encoder network without
the projector network is used to learn the classifier. In
the second stage, the network uses the focal loss function
to predict human activities. The proposed network causal
ConvNet based on supervised contrastive learning and
Performer-attention forges recurrent settings to further
accelerate the learning phase and improve recognition score
for HAR systems. Causal convolution ensures that the
model does not violate the ordering of the time steps
of the temporal sensors data. The performers-attention
supports the proposed network to pay extra attention to
the discriminative features to accurately recognize human
activities. Supervised contrastive learning is used to build
the proposed network in two stages of learning, where the
first stage is used to learn a good data representation for
learning the classifier in the second stage. Two stages of
learning are used to learn a better representation with more
discriminative features that support the classifier to better
distinguish human activities compared to a normal one stage
learning. The focal loss function according to the effective
number of examples is used to prevent skewed learning
toward majority activities and improve the recognition
scores of the minority activities.

5 Experiments and evaluation

In the section, experiments and evaluations based on eight
datasets of human activities are shown and discussed.
Moreover, results of the proposed network compared with
the existing state-of-the-art models are shown.

5.1 Datasets and preprocessing

5.1.1 Ordonez smart environment datasets

Collected daily human activities in five intelligent environ-
ments using equipped sensors are used in this research to eval-
uate the proposed network. Ordóñez homes A and B [32]
are two smart environments that are equipped with binary
sensors to read and collect human activities. Different binary
sensors within these two smart homes are utilized such as pres-
sure sensors and passive infrared sensors to capture various
human movements. The details of these two smart environ-
ments are shown in Table 1. In Ordóñez smart environ-
ment A, 12 binary sensors including PIR, pressure sensor,
flush, and magnetic were employed to read and collect
nine daily activities in 14 days over 20,358 minutes. In
Ordóñez smart home B, ten human activities are recorded
using 12 binary sensors in 22 days over 30,469 minutes.
There are nine common activities from these two smart envi-
ronments which are Showering, Sleeping, Breakfast, Snack,
Lunch, Spare Time/TV, Grooming, Toileting, and Leaving.
Besides, Ordóñez smart home B has one more recorded
activity which is Dinner.

5.1.2 Kasteren smart environment datasets

Kasteren homes A, B and C are smart environments used to
record human activities by embedded binary sensors
[41]. The details of the recorded datasets from these smart

Table 1 Information about experimental datasets

Ordonez home A - Ordonez home B - Kastern home A - Kastern home B - Kastern home C

Setting Home Home Apartment Apartment House
Gender – – Male Male Male
Activities 10 11 10 13 16
Age - - 26 28 57
Rooms 4 5 3 2 6
Sensors 12 12 14 23 21
Duration 14 days 21 days 25 days 14 days 19 days

8814 R. A. Hamad et al.



Table 2 Details of the Ordonez smart home datasets

Human activity Smart home A Smart home B

Leaving 1,664 5,268

Snack 6 408

Grooming 98 427

Breakfast 120 309

Toileting 138 167

Showering 96 75

Idle 1,598 3,553

Lunch 315 395

Spare time/ TV 8,555 8,984

Dinner - 120

Sleeping 7,866 10,763

Total 20,456 30,427

environments are shown in Table 1 regarding the activities,
the number of sensors and residents. In Kasteren home
A, ten human activities are recorded using fourteen binary
sensors in 25 days over 40,005 minutes. In Kasteren home
B, 13 human activities are captured using 23 binary sensors
in 14 days over 38,900 minutes. In Kasteren home C, 16
human activities are captured using 21 binary sensors in 19
days over 25,486 minutes (Tables 2 and 3).

5.1.3 Wearable smartphone (inertial sensors) dataset

Inertial sensors are embedded in a waist-mounted smart-
phone to record the human activities of 30 participants [1,
35]. The age of participants is between 19 to 48 years

Table 4 Details of in the smartphone dataset

Human activity Training samples Testing samples

Walking upstairs 1,073 471

Standing 1,374 532

Walking 1,226 496

Sitting 1,286 491

Laying 1,407 537

Walking downstairs 986 420

old. The participants recorded six activities in which three
activities are dynamic (walking downstairs, walking, and
walking upstairs) and three activities are static postures (sit-
ting, standing, lying). Samsung Galaxy S II as a wearable
device is used by the participants to record their activities.
To annotate the datasets the activities were video-recorded.
70% of participants’ data are used for learning while 30% of
participants’ data are used for the inference phase. Table 4
shows the details of the training and testing sets for this
datasets.

5.1.4 Wearable wireless identification and sensing data

Human activities are recorded from 14 participants aged
78-82 years who wore Wearable Wireless Identification
and Sensing Platform (W2ISP) tag [39, 40]. Four activities
which are i) sit on chair ; ii) ambulating ; iii) lying; iv)
sit on bed are recorded. These activities are performed by
senior people in two configured clinical rooms (Roomset1
and Roomset2) that are used for ambulatory monitoring. The

Table 3 Details of human
activities in the Kasteren smart
homes

Activities Home C Activities Home B Activities Home A

Get dressed 70 Eat brunch 132 Go to bed 11,599

prepare dinner 300 Get a drink 6 Idle 7,888

Idle 5,883 Prepare brunch 82 Get snack 24

Prepare breakfast 78 Prepare dinner 87 Prepare breakfast 59

Eating 345 Brush teeth 25 Take shower 221

Get snack 8 Eat dinner 46 Leave house 19,693

Leave house 11,915 Go to bed 6,050 Prepare dinner 325

Prepare lunch 58 Wash dishes 25 Use toilet 154

Go to bed 7,395 Idle 20,049 Brush teeth 21

Take shower 184 Leaving the house 12,223 Get drink 21

Get drink 20 Use toilet 39

Use toilet upstairs 35 Take shower 109

Take medication 6 Get dressed 27

Shave 57

Use toilet downstairs 57

Brush teeth 75

Total 26,486 Total 38,900 Total 40,005
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Table 5 Details of the wearable sensor datasets

Human activity RoomSet1 RoomSet2

Ambulating 1,956 335

Sit on bed 15,162 1,244

Lying 30,983 20,537

Sit on chair 4,381 530

frequency distribution of activities from these two datasets
(Roomset1 and Roomset) are shown in Table 5.

5.1.5 Preprocessing raw smart home sensors data

Recorded human activities from smart home environments
are preprocessed where the timeline of activities are
segmented with a window size�t=1 minute. In the collected
sensor data, sensor readings have start and end times.
Moreover, the raw data also provides information about
the type, location, and place of the sensors within the
smart settings. To produce the input datasets from the
collected sensor readings, a segmentation technique based
on fuzzy temporal window (FTW) as a successful sliding
window method is used [11, 13–15, 25, 34]. FTW as a data
segmentation technique has been employed to extract sensor
readings of short and long term performed activities such
as preparing snacks or sleeping from collected sensors data
[25, 34]. Temporal models have improved the performance
of HAR systems when the FTW is used to generate model
input datasets [11, 25].

5.2 Hyper-parameters of the proposed network

The proposed network uses these hyper-parameters, 128,
0.001 and 20% for the batch size, learning rate, and
dropout rate, respectively to converge at the minimum of
the validation loss. Early stopping as one of the techniques
of regularization is used to determine the number of epochs
and to prevent overfitting by stopping the training when the
validation error of the proposed network starts increasing.
The 20% dropout rate as another regularization technique
after each learning layer is used to further avoid overfitting
[38]. Batch normalization as a normalization technique is
used to normalize the input data across the batches after
each learning layer [18] to make deep learning models faster
and more stable during training.

5.3 Evaluation of proposed network

To evaluate the proposed network against the existing state-
of-the-art methods F1-score is used. Accuracy is a common
metric to check the performance of the models, but accu-
racy is not a suitable metric to evaluate HAR systems due
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to the existence of imbalanced classes in human activities
[11]. Therefore, F1-score is used to measure and evaluate
the performance of the proposed network against the exist-
ing methods. F1-score is computed by recall with precision
and provides a better measure of the incorrectly classified
activities than the accuracy metric [25]. F1-score as a perfor-
mance metric is used to evaluate the results of the experiments.
The F1-score (2 precision×recall

prscecision+recall ) is the weighted average

of recall ( T P
T P+FN

) and precision ( T P
T P+FP

), where FN,
FP, and TP are the number of false negatives, false pos-
itives and true positives, respectively. F1-score is com-
monly used in evaluating HAR systems [11, 13, 15, 25].

5.4 Results and discussion

The experimental results and findings of the proposed net-
work are shown and discussed. The proposed causal ConvNet-
based performers-attention and supervised contrastive learning
for HAR are compared with several state-of-the-art methods:
HAR+Attention [24], DeepConvLSTM+Attention [37],
DCC+MSA [13] and many temporal models i.e. LSTM, 1D
ConvNet, hybrid of 1D ConvNet and LSTM, Bi-LSTM, and
CuDNN LSTM. The architectures and the results of tempo-
ral models are shown and reported in [13]. To evaluate the
proposed causal ConvNet-based performers-attention and
supervised contrastive learning against existing methods,
eight benchmark human activity datasets are used. Tables 6
to 14 show that the results from all the datasets based
on the proposed network outperform the existing methods.
Moreover, the proposed network enhances the performance
of the minority classes compared to the existing meth-
ods. The achieved results based on each of the datasets
are separately discussed and evaluated in the following
Sections.

To evaluate the proposed methods, the leave-one-day-out
cross-validation is used for the smart home datasets as it
is commonly used for HAR. The human activity recorded
data for a single day are used to inference the model and the
recorded data for the rest of the days are used to train the
model. This technique is commonly used in HAR. Besides,
K-fold cross-validation technique is used to evaluate the
wearable sensors data since information about recording
dates is not provided in the wearable sensors data. To show
the results of the proposed model, the average F-score of
the cross-validation is computed as done in the following
research [11, 25, 33, 34].

5.4.1 Results from Ordóñez datasets

The outcomes of the experiments for the proposed network
against the existing state-of-the-art methods based on the
Ordóñez smart environments A and B are shown in Tables 6
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and 7. The results demonstrate that our proposed network
obtained better results compared with many temporal
models (LSTM, 1D ConvNet, hybrid, Bi-LSTM, and
CuDNN LSTM) in addition to several existing methods [13,
24, 37] for HAR. The proposed network improves the result
scores of all the activities particularly the minority classes.
The minority classes such as Snack, Grooming, Toileting,
Showering, Dinner, and Breakfast as shown in Table 2 are
well improved using our proposed network compared to
the existing methods. The proposed network achieved better
average results for all classes in addition to the results of
each activity in both of the smart home datasets.

5.4.2 Results from kasteren datasets

The results of the proposed network based on the datasets
A, B, and C from Kasteren smart homes against the
temporal models ( LSTM, 1D ConvNet, hybrid 1D ConvNet
+ LSTM, CudNN LSTM and Bidirectional LSTM) in
addition to the existing methods are shown in Tables 8, 9
and 10. The proposed network enhances the performances
of each human activity and the average result score
of all activities including the minority classes such as
Get dressed, Get snack as shown in Table 3 compared with
the existing methods.

5.4.3 Results fromwearable sensors datasets

The results of the proposed network for HAR from
wearable sensors data are compared with the results of
the existing methods. Tables 11, 12 and 13 show the
detailed results of our proposed network compared with
the existing methods. The results of the proposed network
from smartphone sensors data are shown in Table 11.
The results of the wearable sensors data from Roomset1
and Roomset2 are shown in Tables 12 and 13 and
demonstrate that the proposed network outperformed the
state-of-the-art techniques. The proposed network enhanced
the performance of the individual activity and the average
performance of all activities compared to the existing
methods from all wearable sensor data. Moreover, the
proposed network improved the results of the minority
class such Sit on chair, Ambulating, andWalking downstairs
compared with the existing methods.

5.4.4 Ablation study of the proposed network

An ablation study is completed to show the contribution of
each component in the proposed network for HAR systems.
The proposed network without performer attention, two
stages learning, causal convolution, and focal loss. Table 14
demonstrate the results of the proposed network without
these four components and the proposed network from the
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experimental datasets. The results indicate the impact of
each component in the proposed network. For instance,
the proposed network obtained the F1-score of 91.53,
while the proposed network without performer attention
obtained the F1-score of 87.64, without two stages learning
obtained the F1-score of 86.73, without causal convolution
obtained the F1-score of 88.29 and without using the focal
loss, the F1-score is 88.42. This example confirms the
contribution of supervised contrastive learning. Moreover,
the proposed network without using two stages of learning
has gained the lowest results from the sensor datasets
compared with other components of the proposed network.
Hence, the results show that the higher contribution is
made by the proposed supervised contrastive learning with
two stages of learning in the proposed network compared
to the performers-attention, causal convolutions, and focal
loss.

5.4.5 Learning time of the proposed network

The training time of our proposed network to converge
with the smallest validation loss based on the self-
attention and performers-attention is reported. The learn-
ing time of our proposed network is compared with
DeepConvLSTM+Attention [37], DCC+MSA [13], and
HAR+Attention [24] methods. The results of the experi-
ments show that the learning time of the proposed network
based on the performers-attention is lower than the training
time of the proposed network based on the self-attention. In
addition, the learning time of the proposed network to con-
verge is also lower than the learning time of the existing
methods as shown in Table 15. For example the proposed
network based on the performers-attention converged in
131.56 seconds while our proposed network based on the
self-attention is converged in 165.19 seconds. Therefore,
our proposed network is faster than the methods proposed
based on the self-attention mechanism.

6 Conclusion

This study proposes causal ConvNet-based performers-
attention and supervised contrastive learning to improve
human activity recognition and reduce the training time in
the datasets collected from smart home environments and
wearable sensors. Extensive experiments are performed on
eight datasets to evaluate the proposed network compared
to the basic temporal models and existing state-of-the-art
methods. The proposed network has four main compo-
nents which are: causal convolution, performers-attention,
supervised contrastive learning for two stages of learning
(representation learning and classifier learning), and focal
loss. Causal convolution is used to preserve the ordering
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of the input temporal data which is significant for human
activity recognition. The performers-attention is used in the
proposed network to focus more on the important timesteps
to improve the recognition process. Supervised contrastive
learning is used to prepare a discriminative representation
and further reduce the classification error compared with
several existing methods for human activity recognition.
Further, the focal loss function is used to address imbal-
anced activities problems and improve the less presented
human activities. The results of the thorough experiments
reveal that the proposed network outperforms the current
methods and reduced the learning time compared with the
existing state-of-the-art methods. We further performed abla-
tion studies to highlight the contribution of each component
of the proposed network. The results of the ablation studies
show that the proposed supervised contrastive learning with
two stages of learning provides a larger contribution in our
proposed network compared with the performers-attention,
causal convolutions, and focal loss.
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