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Abstract 

Traditionally, vessel air emissions are monitored onboard vessels or at fixed points 

at sea. These methods ineffectively meet the needs of monitoring pollution from vessels 

travelling. Unmanned aerial vehicles (UAVs) equipped with pollution monitoring 

sensors are becoming a research focus. However, due to battery capacity constraints, 
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the monitoring scope of UAVs is still not optimal. Thus, using a ship (such as a patrol 

ship) as a UAV mobile supply base can overcome battery limitations and increase 

monitoring coverage. This paper investigates the joint routing and scheduling problem 

of ship-deployed multiple UAVs (SDMU) for the monitoring of pollution from vessels. 

The artificial bee colony (ABC) algorithm based on simulated annealing is employed 

to minimize the total monitoring time. The model and solution algorithm are verified 

by real-time dynamic vessel data from Tianjin Port. 

Keywords: 

UAVs, Vessel air pollution, Two-level path planning, Bee colony algorithm 

1. Introduction 

Maritime transport plays an important role in international supply chains and 

carries approximately 90% of global trade in terms of volume (United Nations, 2019). 

The 2019 United Nations Shipping Report (UNCTAD, 2019) shows that the total global 

shipping capacity reached 11 billion tons in 2018, an increase of 300 million tons 

compared to 2017 levels. With the rapid growth of the shipping industry, the number of 

vessels in the port is increasing, and consequently, environmental pollution from vessels 

is becoming increasingly critical (Lee et al., 2020). Currently, air pollution from vessels 

has become the third-largest source of air pollution after motor vehicle exhaust 

emissions and industrial production emissions (Liang, 2016). Since 2015, the 

International Maritime Organization (IMO) has successively established four vessel air 

pollution emission control areas (ECAs), and more ECAs are being planned (Xia et al., 

2019). International communities are making efforts to reduce pollution from vessels. 
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At the 70th meeting of the IMO in October 2016, the Marine Environmental Protection 

Committee (MEPC) confirmed that January 2020 was the implementation time of a 

global standard according to which the sulfur content of vessels must not exceed 0.50% 

m/m (CHINA MSA, 2019). In 2019, the Marine Bureau of the Ministry of Transport in 

China published the Implementation Plan of the Global Marine Fuel Limit in 2020 and 

the Guidelines for the Supervision and Management of Marine Atmospheric Pollutant 

Emissions and proposed stricter requirements to reduce vessel exhaust emissions. The 

plans suggest that all types of sea-going vessels should use marine fuel oil with a sulfur 

content no more than 0.1% m/m in inland river ECAs and no more than 0.5% m/m in 

coastal ECAs (CHINA MSA, 2019). To ensure that vessels obey these standards of 

international regulations, it is necessary for all law enforcement agencies to effectively 

implement the relevant laws and regulations, and monitoring air pollution from vessels 

is essential. Traditional monitoring methods require that environmental law 

enforcement officers board vessels or install sensors at fixed points. These methods are 

not cost-effective and have inadequate capacity. For instance, due to the outbreak of 

COVID-19, monitoring air pollution on board vessels has been suspended in many 

countries due to concerns over spreading the virus. 

Using UAVs to monitor air pollution from vessels has attracted widespread 

attention from researchers due to the advantages of their high flexibility, few 

geographical restrictions, and less manual work involved (Shen et al., 2020; Zhou et al., 

2020; Xia et al., 2019). This is evident from their applications in areas such as military 

surveillance (Galbraith et al., 2020), maritime search and rescue (Wang et al., 2018), 
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and waterway mapping and logistics distribution businesses (Li et al., 2020). China has 

carried out pilot projects in which UAVs were used to monitor air pollution from vessels. 

For example, in November 2019, the Dalian Maritime Safety Administration in China 

tested the use of UAVs carried by a patrol ship to monitor the air pollution from vessels 

in high traffic waters, such as the Laotieshan Waterway and Dasanshan Waterway. On 

April 23, 2020, the Bureau of Yangzhou Maritime Affairs of China used Dajiang M210 

UAVs to monitor the emissions from dozens of vessels and carried out real-time visual 

analysis on air pollution. On May 20, 2020, a DJI M210 UAV equipped with an air 

pollution detection system called Lingxi V2 measured the vessel exhaust gas in the area 

surrounding the Hanjiang Maritime Department of the Yangzhou Maritime Safety 

Administration. The findings of these pilot projects indicate that the use of UAVs to 

monitor air pollution from vessels can significantly expand the monitoring scope. 

The application of UAVs in monitoring air pollution from vessels is, however, in 

its infancy. Among the main challenges is UAV operations suffering from limited 

battery capacity and consequently very limited flying distance and time (Shen et al., 

2020; Xia et al., 2019). In practice, the maximum coverage by UAVs is not in proportion 

with ECAs requiring air emission detection. Meanwhile, the number of vessels to be 

monitored in ECAs is often high (Xia et al., 2019), revealing a complicated traffic 

scenario in which ships come in and out the areas with high uncertainty and randomness. 

Furthermore, vessels with emissions exceeding the regulated limits make every effort 

to avoid the monitoring of environmental law enforcement agencies and the disclosure 

of their ships’ true emission levels (Shen et al., 2020; Xia et al., 2019). In light of these 
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difficulties, UAVs have advantages in terms of their high frequency, broad monitoring 

coverage and routine/nonroutine detection. To further improve the UAV’s detection 

ability, the use of ship to carry and deploy multiple UAVs in ECAs has been proposed 

(Xia et al., 2019). Using ship-deployed multiple UAVs (SDMU) to monitor air pollution 

at sea is a new idea, and many theoretical issues still need to be resolved. In this paper, 

we specifically focus on the synergistic path planning problem for UAVs and the ships 

carrying them simultaneously. This problem involves path planning coordination 

between the ship carrier and UAVs, coordination between UAVs, and the prediction of 

the locations of vessels to be monitored. In this paper, a two-level path planning model 

is developed to address the problem of minimizing the total monitoring task completion 

time. Our model can also ensure that the routes of a ship carrier and its carried UAVs 

are synchronized, the workloads of UAVs are balanced, and each UAV is reasonably 

scheduled. 

2. Literature review 

Zhou et al. (2020) evaluated the use of 27 UAVs to monitor air pollution from 

vessels in the Yangtze River Estuary. The main contribution of their research is to 

compare and analyse levels of SOx, NOx and other gases contained in the atmospheric 

pollutants emitted by moving vessels. Their research suggests that the use of UAVs to 

monitor vessel air pollution is feasible in practice. However, Zhou et al. (2020) did not 

consider the path planning issue relating to their UAVs and their carrying ships. 

There are only limited studies examining the path planning problem involved in 

UAVs monitoring air pollution from vessels in maritime transport. Xia et al. (2019) 
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investigated path planning for UAVs to monitor air pollution from vessels sailing in 

ECAs and developed a mixed integer linear programming model based on time-

extended networks. The authors also proposed a solution method based on Lagrangian 

relaxation to solve the model. In their study, UAVs needed to fly to and from fixed 

stations on the shore to be charged. Shen et al. (2020) examined the problem of using 

multiple UAVs to monitor air pollution for vessels sailing in ports. The authors 

developed a path planning model for multiple dynamic targets and adopted the particle 

swarm algorithm to solve the problem. In both Shen et al. (2020) and Xia et al. (2019), 

UAVs needed to fly to and from fixed stations to gain power supply. To the best of our 

knowledge, no study has investigated a path planning problem wherein UAVs are 

charged at their carrying ships. 

Inspired by the traditional vehicle routing problem (VRP), researchers worldwide 

have carried out research on UAV routing. Huang et al. (2020) proposed a dynamic 

UAV path planning framework for the purpose of the rapid collection and reliable 

transmission of information when dealing with emergency tasks. Sun et al. (2018) 

theoretically analysed the target detection problem based on an underwater wireless 

sensor network (UWSN) and derived the optimal path planning algorithm for UAVs to 

detect moving targets. Studies have been carried out to address the problem of path 

planning for UAVs as well as the vehicles that carry UAVs or provide power supply. 

Liu et al. (2019) investigated the route planning problem of UAVs and their carrying 

vehicles to complete intelligence, surveillance and reconnaissance missions for armies. 

Yu et al. (2019) proposed algorithms for path planning issues in two scenarios where 
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UAVs may be recharged at fixed locations or mobile stations. Hu et al. (2019) 

considered a single carrying vehicle and multiple UAVs and proposed two-level path 

planning algorithms for vehicles and UAVs. Wang et al. (2019) studied the joint 

distribution of drones and trucks. A truck carrying drones from the distribution centre 

where the drone stops to serve the customer and lands on another truck with flying 

range and loading capacity limits will complete the mission. Meanwhile, a mixed-

integer programming model and branching pricing algorithm are proposed. Extensive 

experiments have been performed in practical environments to verify the effectiveness 

and accuracy of the proposed algorithm. Moshref-Javadi et al. (2020) proposed a route 

planning model for the combined distribution of trucks and multiple UAVs. Their model 

can determine the optimal route of trucks and the optimal launch and collection 

locations of UAVs along truck routes. Booth et al. (2020) proposed the joint use of 

UAVs and ground mobile charging vehicles (modular robotic vehicles (MRVs)) to 

search for multiple moving targets. The problem is solved using MILP and constraint 

programming (CP). The authors applied real road network data from Scotland to test 

the proposed model and explore the effect of UAV speed on path optimization results. 

Table 1 A summary of UAV routing studies 

Literature 
UAV 

routing 

Carrier 

routing 

Carrier 

types 

Moving 

target 

UAV monitors air 

pollution from vessels 

Xia et al. (2019) Y N N Y Y 

Zhou et al. (2020) N N Ship Y Y 

Shen et al. (2020) Y N N Y Y 
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Huang et al. (2020) Y N N Y N 

Sun et al. (2018) Y N N Y N 

Liu et al. (2019) Y Y Vehicle N N 

Hu et al. (2019) Y Y Vehicle N N 

Wang et al. (2019) Y Y Vehicle N N 

Moshref-Javadi et al. 

(2020) 

Y Y Vehicle N N 

Booth et al. (2020) Y Y Vehicle N N 

This study Y Y Ship Y Y 

 

Our research aims to fill the knowledge gap in the literature in relation to joint 

path planning for both UAVs and their carrying ships. Table 1 shows that there are 

currently only three studies (e.g., Xia et al 2019, Zhou et al 2020 and Shen et al 2020) 

that have addressed the use of UAVs to monitor air pollution from vessels. One of these 

works (Zhou et al 2020) has contributed to the use of UAVs to monitor the content of 

SOx, NOx and other gases contained in the air pollutants emitted by moving vessels. 

The value and content value of manual monitoring are compared and analysed. The 

results show that it is feasible to use UAVs to monitor the air pollution of sailing vessels. 

The other two papers (Xia et al 2019, Shen et al 2020) investigate the path planning of 

multiple UAVs to monitor air pollution from vessels, but the UAVs considered in the 

two studies are limited by battery capacity and have to return to fixed onshore charging 

stations. Studies on the path planning problem for vehicle carriers and multiple UAVs 

in road transportation cannot be directly applied to maritime transport. When studying 
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the problem of path planning coordination between a carrier and multiple UAVs, it is 

necessary to determine the path of the carrier based on the transportation mode involved. 

For road transportation, the determination of a carrier’s path is subject to the distribution 

of infrastructure construction and road regulations. In the case of maritime 

transportation, the determination of a carrier's travel path is subject to the distribution 

of port channels and port management regulations. 

3. SDMU model establishment 

In this section, we present a model for planning paths for UAVs and their carrying 

ship. 

3.1. Problem description 

We assume that a ship carries multiple UAVs to monitor air pollution from the 

vessels sailing at sea. UAVs need to be released based on the number and locations of 

vessels to be monitored. The deployment of UAVs in a port water is simulated in Fig 1. 

Scenario 1: A single UAV is shown in states Ⅰ and Ⅲ in Fig 1. According to the 

number of monitored vessels, the ship carriers from 𝐷0 to 𝐴𝑘1
 and from 𝐴𝑘2

 to 𝐴𝑘3
 

only need to release one UAV to perform the pollution monitoring task; 

Scenario 2: Multiple UAVs are shown in states Ⅱ and V in Fig 1. According to the 

number of monitored vessels, the ship carriers from 𝐴𝑘1
  to 𝐴𝑘2

  and 𝐴𝑘4
  to 𝐴𝑘5

 

need to launch multiple UAVs to perform monitoring tasks; 

Scenario 3: The UAV is idle, as shown in state IV in Fig 1. At this time, there is 

no vessel to be monitored in the surrounding area. During this particular journey, no 

UAV will be released to perform any monitoring task. 
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Fig 1 Path planning of ship-deployed UAVs for air pollution monitoring 

The primary decision-making issues emerging from the above scenarios are path 

planning for the ship carrier and the multiple UAVs. More specifically, the following 

three questions need to be resolved: 

(1) How can path planning be coordinated for the ship carrier as well as UAVs? 

This involves determining the path for the ship carrier, the released and collected 

locations of UAVs, the number of UAVs to be released each time, and the flying paths 

of UAVs. 

(2) How can path planning be coordinated between UAVs? This problem mainly 

involves the coordination and path planning of multiple UAVs to minimize the total 

monitoring time. 

(3) How can the positions of the monitored target vessels be predicted in real time? 

This problem involves predicting the locations of the vessels to be monitored and 

rescheduling UAV monitoring tasks when the location of the vessel to be monitored 
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changes. 

To model the above UAV-based air pollution monitoring system, the following 

assumptions are made: 

(1) The travel route of a ship carrier is modelled as a connected graph. 

(2) The time for UAVs to monitor the pollution from a vessel is fixed. 

(3) The travel time for a UAV to travel from one vessel to another is calculated 

according to the distance between the two vessels and the UAV’s speed. The impact of 

wind on UAVs is not considered to make the problem tractable. 

(4) The time needed to replace UAV batteries is negligible. 

(5) The ship carrier and the UAVs travel at constant speeds. 

(6) One UAV can monitor multiple vessels, and each vessel to be monitored can 

only be monitored by one drone. 

 

3.2. Notation and terminology 

In this subsection, we define the index and set to be used in our formulation. 

𝑁: the total number of UAVs available for the monitoring tasks. 

𝑁𝑟: the number of UAVs that the ship carrier needs to release each time, 𝑁𝑟 ∈

{1,2,3, ⋯ , 𝑁}. 

𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛}: a set of vessels to be monitored. 𝑣𝑖 is the ith vessel to be 

monitored, 𝑖 ∈ {1,2,3, ⋯ , 𝑛}.𝑣𝑖 ∈ 𝑉. 

𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑁}: a set of UAVs. 𝑢𝑖 is the ith UAV and 𝑖 ∈ {1,2,3, ⋯ , 𝑁} , 

𝑢𝑖 ∈ 𝑈. 
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𝐴𝑘𝑟 = {𝐴𝑘𝑟1
, 𝐴𝑘𝑟2

, . . . , 𝐴𝑘𝑟𝑚
} : a set of  locations where the ship carrier releases 

UAVs on the traffic route. 𝐴𝑘𝑟𝑖
 is the ith location, 𝑖 ∈ {1,2,3, ⋯ , 𝑚} , 𝐴𝑘𝑟𝑖

∈ 𝐴𝑘𝑟. 

𝐴𝑘𝑐 = {𝐴𝑘𝑐1
, 𝐴𝑘𝑐2

, . . . , 𝐴𝑘𝑐𝑚
} : a set of   locations where the ship carrier collects 

UAVs on the traffic route. 𝐴𝑘𝑐𝑖
 is the ith location, 𝑖 ∈ {1,2,3, ⋯ , 𝑚} , 𝐴𝑘𝑐𝑖

∈ 𝐴𝑘𝑐. 

𝐺 = {𝐺1, 𝐺2, 𝐺3, ⋯ , 𝐺𝐻}: cluster centres of adjacent vessels to be monitored. 𝐺𝑖 

is the ith cluster centre of adjacent vessels to be monitored, 𝑖 ∈ {1,2,3, ⋯ , 𝐻} , 𝐺𝑖 ∈ 𝐺. 

𝐾 = {𝑘1, 𝑘2, ⋯ 𝑘𝑁𝑟
}: the set of UAV flying paths, where 𝑘𝑖 represents the path of 

a UAV, and |𝑘𝑖| represents the number of vessels to be monitored in the UAV path set, 

that is, the number of vessels to be monitored on the ith UAV path.  𝑘𝑖 ∩ 𝑘𝑗 = ∅ , 𝑖 ∈

{1,2,3, ⋯ , 𝑁𝑟} , and 𝑗 ∈ {1,2,3, ⋯ , 𝑁𝑟} are used to ensure that for each vessel to be 

monitored in set 𝐾, 𝑘𝑖 is monitored only once, and set K includes all vessels to be 

monitored. 

𝐷0: the departure point of the ship carrier from the port. 

𝑇𝑣: the time required to monitor a vessel. 

𝑆𝑢: the flying speed of a UAV. 

𝑇𝑤: the maximum flying time of a UAV. 

𝑇𝑘𝑖
(𝑠𝑡𝑎𝑟𝑡): the moment when a UAV starts path 𝑘𝑖. 

𝑇𝑘𝑖
(𝑒𝑛𝑑): the moment when a UAV ends path 𝑘𝑖. 

𝑝𝑢𝑖,𝑡𝑗
∶ the location of the ith UAV at time 𝑡𝑗 , 𝑡 ∈ [ 𝑇𝑘𝑖

(𝑠𝑡𝑟𝑎𝑡), 𝑇𝑘𝑖
(𝑒𝑛𝑑) ]，𝑡𝑗 ∈ 𝑡. 

𝑇𝛿𝑢𝑖
,𝑝𝑢𝑖,𝑡𝑗

: the current remaining available flying time of the UAV. 

𝑆𝑠ℎ𝑖𝑝: the running speed of the ship carrier. 

𝐴𝑘: the location where the ship carrier releases or collects UAVs on a traffic route. 
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𝑇𝐴𝑘
(𝑐𝑜𝑙𝑙𝑒𝑐𝑡): the time when the ship carrier collects the UAV at 𝐴𝑘. 

𝑇𝐴𝑘
(𝑟𝑒𝑙𝑒𝑎𝑠𝑒): the time when the ship carrier releases the UAV at 𝐴𝑘. 

𝑁𝐴𝑘
(𝑎𝑟𝑟𝑖𝑣𝑒): the number of idle UAVs when the ship carrier arrives at 𝐴𝑘. 

𝑁𝐴𝑘
(𝑙𝑒𝑎𝑣𝑒): the number of idle UAVs when the ship carrier leaves 𝐴𝑘. 

𝑑𝐺𝑖
: the sum of the distances between all vessels to be monitored in the ith cluster. 

𝑅𝐴𝑘
(𝑠𝑡𝑎𝑟𝑡): the set of UAV paths where the ship carrier starts to release at 𝐴𝑘, 

where |𝑅𝐴𝑘
(𝑠𝑡𝑎𝑟𝑡)|  refers to the number of elements contained in the set of UAV 

paths, that is, the number of UAVs released by the ship carrier at 𝐴𝑘. 

𝑅𝐴𝑘
(𝑒𝑛𝑑) : the set of UAV paths where the ship carrier ends at 𝐴𝑘 , where 

|𝑅𝐴𝑘
(𝑒𝑛𝑑)| refers to the number of elements contained in the UAV path set, that is, the 

number of UAVs collected by the ship carrier at 𝐴𝑘. 

Decision variable  

𝑑𝐴𝑘𝑟𝑖
,𝐴𝑘𝑐𝑖

: the length of the travel route of a ship carrier that starts from 𝐴𝑘𝑟𝑖
 and 

reaches 𝐴𝑘𝑐𝑖
.  

𝑑𝐴𝑘𝑟𝑖
𝑘𝑖,𝐴𝑘𝑐𝑖,

: the length of the monitoring route of a UAV released from 𝐴𝑘𝑟𝑖
 that 

visits each vessel to be monitored in path 𝑘𝑖 and that returns to 𝐴𝑘𝑐𝑖
.  

3.3. SDMU path planning model 

The objective function of the SDMU path planning model includes two parts 

denoted as 𝐹1 and 𝐹2. 𝐹1 represents the ship carrier’s travel time, which is equal to 

the total length of the ship carrier’s travel route divided by the ship carrier’s travel speed. 

Taking state I in Fig 1 as an example, 𝐹2 represents the situation where a UAV (𝑢1) 

leaves for work, and the ship carrier is also moving forward. The time spent is equal to 
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the larger value between the time it takes for the UAV to leave the ship carrier to 

perform the current round of monitoring tasks to return to the ship carrier and the time 

it takes for the ship carrier to travel from the location where the UAV is released (𝐷0) 

to the location where the UAV is collected (𝐴𝑘1
). 

Obj:  

𝐹1 = ∑ (𝑑𝐷0,𝐴𝑘𝑟1
+ 𝑑𝐴𝑘𝑐𝑖

,𝐴𝑘𝑟𝑖+1
+ 𝑑𝐴𝑘𝑐𝑚 ,𝐷0

)

𝑚−1

𝑖=1

/𝑆𝑠ℎ𝑖𝑝 
(1) 

𝐹2 = ∑ 𝑚𝑎𝑥{

𝑚

𝑖=1

𝑑𝐴𝑘𝑟𝑖
,𝑘𝑖,𝐴𝑘𝑐𝑖

/𝑆𝑢 + |𝑘𝑖| × 𝑇𝑣, 𝑑𝐴𝑘𝑟𝑖
,𝐴𝑘𝑐𝑖

/𝑆𝑠ℎ𝑖𝑝} 
(2) 

𝐹
min

= 𝐹1 + 𝐹2

 

(3) 

s.t.  

𝑇𝑘𝑖
(𝑒𝑛𝑑) = 𝑇𝑘𝑖

(𝑠𝑡𝑟𝑎𝑡) + |𝑘𝑖| × 𝑇𝑣 + 𝑑𝐴𝑘𝑟𝑖
,𝑘𝑖,𝐴𝑘𝑐𝑖

/𝑆𝑢 

𝑖 ∈ {1,2,3, ⋯ , 𝑁𝑟}, 𝑘𝑖 ∈ 𝐾 

(4) 

𝑇𝛿𝑢𝑖
,𝑝𝑢𝑖,𝑡𝑗

− 𝑑𝑝𝑢𝑖,𝑡𝑗
,𝑐𝑖

/𝑆𝑢 ≥ 0 

𝑡 ∈ [ 𝑇𝑘𝑖
(𝑠𝑡𝑟𝑎𝑡), 𝑇𝑘𝑖

(𝑒𝑛𝑑) ]，𝑡𝑗 ∈ 𝑡 
(5) 

𝑇𝛿𝑢𝑖
,𝑝𝑢𝑖,𝑡𝑗

= 𝑇𝑤  

𝑡 ∈ [ 𝑇𝑘𝑖
(𝑠𝑡𝑟𝑎𝑡), 𝑇𝑘𝑖

(𝑒𝑛𝑑) ]，𝑡𝑗 ∈ 𝑡  

𝑡𝑗 = 𝑇𝑘𝑖
(𝑠𝑡𝑟𝑎𝑡) 

(6) 

0 ≤ 𝑇𝛿𝑢𝑖
,𝑝𝑢𝑖,𝑡𝑗

≤ 𝑇𝑤 
(7) 
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𝑡 ∈ [ 𝑇𝑘𝑖
(𝑠𝑡𝑟𝑎𝑡), 𝑇𝑘𝑖

(𝑒𝑛𝑑) ]，𝑡𝑗 ∈ 𝑡 

 𝑑𝐴𝑘𝑟𝑖
,𝑘𝑖,𝐴𝑘𝑐𝑖

/𝑆𝑢 + |𝑘𝑖| × 𝑇𝑣 ≤ 𝑇𝑤 

𝑖 ∈ {1,2,3, ⋯ , 𝑁𝑟},𝑘𝑖 ∈ 𝐾 
(8) 

𝑇𝐴𝑘𝑐𝑖
(𝑐𝑜𝑙𝑙𝑒𝑐𝑡) = 𝑇𝐴𝑘𝑟𝑖

(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) + 𝑑𝐴𝑘𝑟𝑖
,𝐴𝑘𝑐𝑖

/𝑆𝑠ℎ𝑖𝑝 

𝑖 ∈ {1,2,3, ⋯ , 𝑚}, 𝐴𝑘𝑟𝑖
∈ 𝐴𝑘𝑟 ,𝐴𝑘𝑐𝑖

∈ 𝐴𝑘𝑐 
(9) 

𝑁𝐴𝑘𝑖
(𝑎𝑟𝑟𝑖𝑣𝑒) = 𝑁𝐴𝑘𝑖−1

(𝑙𝑒𝑎𝑣𝑒) 

𝑖 ∈ {2,3, ⋯ , 𝑚} 

(10) 

𝑁𝐴𝑘𝑖
(𝑙𝑒𝑎𝑣𝑒) = 𝑁𝐴𝑘𝑖

(arrive)+|𝑅𝐴𝑘𝑖
(end)|-|𝑅𝐴𝑘𝑖

(start)| 

𝑖 ∈ {1,2,3, ⋯ , 𝑚} 

(11) 

𝑇𝐴𝑘𝑖
(𝑐𝑜𝑙𝑙𝑒𝑐𝑡) = 𝑇𝑘𝑗

(𝑒𝑛𝑑) 

𝑖 ∈ {1,2,3, ⋯ , 𝑚} 

j ∈ {1,2,3, ⋯ , 𝑁𝑟} 

(12) 

𝑇𝐴𝑘𝑖
(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) = 𝑇𝑘𝑗

(𝑠𝑡𝑟𝑎𝑡) 

𝑖 ∈ {1,2,3, ⋯ , 𝑚} 

𝑗 ∈ {1,2,3, ⋯ , 𝑁𝑟} 

(13) 

 

Constraint (4) means that the time when the UAV returns to the ship carrier after 

this round of monitoring tasks is equal to the time when the UAV leaves on the ship 
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carrier plus the time spent by the UAV traveling and the time spent by the UAV in the 

monitoring node period; Constraint (5) ensures that the remaining power of the UAV 

can return to the ship carrier; Constraint (6) ensures that the power of the UAV upon it 

leaving the ship carrier is the battery capacity; Constraint (7) denotes that the current 

remaining available time of the UAV cannot be less than zero or greater than the 

maximum flying time of the UAV; Constraint (8) is used to ensure that the period of 

time the UAV goes out to perform a task (the UAV leaves the ship carrier + undertakes 

monitoring tasks + returns to the ship carrier) does not exceed the maximum endurance 

period; Constraint (9) denotes the time at which the ship carrier collects the UAV, which 

is equal to the time at which the ship carrier releases the UAV, plus the travel time of 

the ship carrier when UAV is performing the monitoring task; Constraint (10) indicates 

that “the number of idle UAVs when the ship carrier releases (collected) UAVs” is equal 

to the number of idle UAVs upon leaving the position of the previous ship carrier to 

collect (release) the UAV; Constraint (11) indicates that the number of idle UAVs when 

the ship carrier leaves the UAV release location is equal to "the number of idle UAVs 

upon arriving at this location " plus "the number of UAVs collected at this location" 

subtracted by "the number of UAVs flying at this location"; Constraint (12) denotes that 

the position where the ship carrier collects the UAV is the same as the position where 

the UAV ends its path; Constraint (13) means that the position of the ship carrier to 

release the UAV is the same as the position of the UAV's starting path. 

4. Algorithm implementation 

We establish an SDMU two-level path planning model in the previous section. 
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This section presents an artificial bee colony (ABC) algorithm. In Section 4.1 discusses 

the ABC algorithm enhanced by the simulated annealing idea and its implementation 

process in detail. In Section 4.2, we introduce an improved ABC algorithm for the 

SDMU path planning model. 

4.1. Improved ABC algorithm based on the idea of simulated annealing 

In this section, we first discuss the standard ABC algorithm and then the 

application of the algorithm to the path planning problem of UAVs and their carriers. 

4.1.1. The basic ABC algorithm 

The ABC algorithm is mainly composed of food sources and a leader, scouter, and 

follower. When solving a problem, each food source represents a viable solution to the 

SDMU problem. The quality of the solution is represented by the quality of the food 

source. Each leader is associated with a food source it is developing and records 

relevant information about the food source, such as distance and quality information. 

Every time the leader returns to the nest, it will share the information with other bees 

with a certain probability. The follower selects a leader to follow based on the 

information shared by the leader and follows the food source corresponding to the 

leader to select a new food source. The scouter can actively and independently explore 

new food sources in the environment around the nest. Although the behaviour of the 

characters varies, the role of the bees is not fixed. When the nectar from a food source 

is exhausted, the corresponding leader will become a scouter. When a scouter finds a 

new food source, it becomes a leader. This process of role conversion also corresponds 
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to the two most basic behaviour patterns of an ABC: giving up a certain food source 

and recruiting for a certain food source. 

The ABC designed in this paper mainly improves the original ABC from the 

generation mechanism of the neighbourhood solution of the food source and the new 

solution generated by the scouter. In solving the previously discussed problems, a large-

scale damage and repair algorithm is used to ensure that the algorithm does not fall into 

a local optimal solution. 

The first-level path of a ship carrier is clustered by the greedy strategy to cluster 

the vessels to be monitored. The cluster centres obtained are numbered according to the 

value of the abscissa of the cluster centres in an increasing order and then connect the 

cluster centres of adjacent vessels to be monitored into a line. We take the midpoint of 

the two adjacent cluster centres as key points that the ship carrier must visit and plan 

the sailing path of the ship carrier as shown in Algorithm 1: 

Algorithm 1: first -level 

//greedy strategy to cluster the vessels to be monitored 

//randomly select 𝐻 initial cluster centre points 

//return clustering results 𝐺 = {𝐺1, 𝐺2, 𝐺3, ⋯ , 𝐺𝐻} 

List greedyCluster(H) ; 

//VRP 

  results = greedyCluster(H) 

   //take the midpoint of the two adjacent cluster centres 𝑚𝑝 = (𝐺𝑖 + 𝐺𝑖+1)/2 as the 
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key points that the ship carrier must visit 

   mp = [] 

    i = 0 

for i in (1, ceil(results. length()/2))) 

                mp. add(results[i] + result[i + 1])/2) 

      firstLevelPathResult=VRP(mp) 

              return  firstLevelPathResult 

For the second-level multiple UAVs pursuing path planning, a damage and repair 

algorithm needs to be used to improve the local search ability of the ABC. Since the 

greedy algorithm of the ABC algorithm finds a local optimal solution, this paper uses 

the idea of a simulated annealing algorithm to introduce the concepts of "temperature" 

and "acceptance probability" to obtain a global optimal solution. This enables the ABC 

to find new solutions with a larger step size in early stages of the algorithm, which is 

convenient for leaving the local optimum; In the later stages of the algorithm, it accepts 

new solutions with a longer step size with low probability, which is convenient for 

convergence and prevents the algorithm from falling into the local optimal solution. 

4.1.2. The improved ABC algorithm 

In this paper, a two-dimensional vector is used to represent the solution to the 

SDMU problem. The corresponding solution representation of the path in Figure 1 is 

shown in Table 2. The first row of the table represents the first-level path of the ship 

carrier, and the other rows represent the flying paths of the second-level UAVs 
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belonging to two adjacent UAVs that leave the ship carrier to then return to the ship 

carrier. 𝐷0 is the base station at which the ship carrier departs from the port, and 𝑢1, 

𝑢2, and 𝑢3 are the corresponding numbers of UAVs. 

Table 2 Representation of the solution to the SDMU problem 

First-level path 𝐷0 → 𝐴𝑘1
→ 𝐴𝑘2

→ 𝐴𝑘3
→ 𝐴𝑘4

→ 𝐴𝑘5
→ 𝐷0 

Second-level path 

𝐷0 → 𝐴𝑘1
 𝑢1 

𝐷0 → 𝑣1 → 𝑣2 → 𝐴𝑘1
 

𝐴𝑘1
→ 𝐴𝑘2

 

𝑢2 
𝐴𝑘1

→ 𝑣3 → 𝑣4 → 𝑣5 → 𝐴𝑘2
 

𝑢3 
𝐴𝑘1

→ 𝑣6 → 𝑣7 → 𝐴𝑘2
 

𝐴𝑘2
→ 𝐴𝑘3

 𝑢3 
𝐴𝑘2

→ 𝑣8 → 𝑣9 → 𝐴𝑘3
 

𝐴𝑘3
→ 𝐴𝑘4

 
NULL 

𝐴𝑘4
→ 𝐴𝑘5

 

𝑢1 
𝐴𝑘4

→ 𝑣10 → 𝑣11 → 𝑣12 → 𝑣13 → 𝐴𝑘5
 

𝑢2 
𝐴𝑘4

→ 𝑣14 → 𝑣15 → 𝐴𝑘5
 

𝑢3 
𝐴𝑘4

→ 𝑣16 → 𝑣17 → 𝑣18 → 𝐴𝑘5
 

𝐴𝑘5
→ 𝐷0 

NULL 

Based on the above mentioned process, the steps of the ABC algorithm, which are 

enhanced based on the simulated annealing idea, to realize the coordinated monitoring 

of air pollution and the path planning problem of ship carriers and UAVs are listed as 

follows: 

(1) First, initialize 𝑚 initial solutions 𝑦𝑖 , 𝑖 ∈ {1,2, ⋯ , 𝑚}  representing 𝑚 food 

sources where each food source corresponds to a leader. Each solution can be 

considered a D-dimensional vector where D can also be defined as a number of 

parameters. 
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(2) Initialize 𝑤1 = 𝑤2 = ⋯ = 𝑤𝑚 = 0 and 𝑛 = 0 . 𝑤𝑖  means that solution 𝑦𝑖 

has not been optimized in the past successive 𝑤𝑖 rounds of iterations, and 𝑛 means 

that the algorithm has already performed 𝑛 rounds of iterations. 

(3) In each iteration, the leader searches the fields of their respective food sources 

and obtains new food source 𝑦𝑖
′ , 𝑦𝑖

′ = 𝑦𝑖
𝑗

+ 𝜑(𝑦𝑖
𝑗

− 𝑦𝑘
𝑗
) . In the formula, 𝑖, 𝑘 ∈

{1,2,3,4, ⋯ , 𝑚}, 𝑗 ∈ {1,2,3,4, ⋯ , 𝐷}, 𝑘 ≠ 𝑖 and 𝜑 are random numbers between [-1, 

1]. Calculate 𝑓𝑖𝑡 for new food sources. If the fitness value of the new food source 

𝑓𝑖𝑡(𝑦𝑖
′) is higher than the fitness value of the current food source, replace the current 

food source with the new food source, and set the number of searches 𝑤𝑖  to 0; 

otherwise, 𝑤𝑖 increases by 1. The neighbourhood operation accepts a solution as input 

and returns a neighbourhood solution of the solution. 

(4) In each iteration, each follower selects a food source in a roulette manner 

according to the fitness of each current food source and searches it to obtain new 

solution 𝑦𝑖
′ . The probability that food source 𝑦𝑖  is selected can be expressed as 

𝑝(𝑦𝑖) = 1/ ∑ 𝑓𝑖𝑡(𝑦𝑖)
𝑚
1 . If the fitness of new solution 𝑦𝑖

′ found by the follower is less 

than the fitness of current optimal solution 𝑦𝑖  (𝑓𝑖𝑡(𝑦𝑖
′) > (1 − 𝜃)𝑓𝑖𝑡(𝑦) ), the new 

solution may perform a local search. If the fitness of the last 𝑦𝑖
′ is higher than 𝑦𝑖, 

replace 𝑦𝑖 with 𝑦𝑖
′and set 𝑤𝑖 to 0; otherwise, increase 𝑤𝑖 by 1. 

(5) Add the search for the current optimal solution so that the current optimal 

solution can be fully searched. 

(6) When certain food source 𝑦𝑖  is not optimized in 𝑁𝑙𝑖𝑚𝑖𝑡  iterations, the 

crossover operation is used for the solution, and its descendant is used as new food 
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source 𝑠𝑖
′ for subsequent searches si

‘ = smin
j

+ φ(smax
j

− smin
j

); in the formula, 𝑖 ∈

{1,2,3,4, ⋯ , 𝑚}, 𝑗 ∈ {1,2,3,4, ⋯ , 𝐷}, and φ are random numbers between [-1, 1]. 

(7) The number of group iterations 𝑛 is increased by 1. 

(8) The algorithm ends when the maximum number of iterations 𝑁max is reached. 

To construct the neighbourhood solution, this paper uses a damage and repair 

algorithm. For a complete solution, first select a damage operation to partially destroy 

the path of the solution, and then choose a repair operation from the repaired set 𝑅 to 

rerepair the broken solution, thereby obtaining a new solution. Assuming that the set of 

destruction operations is 𝐹 , input solution 𝑓  is to perform a damage and repair 

operation ( 𝑓′ = 𝑟(𝑑(𝑓))) and return the new solution after repair, as shown in Algorithm 

2: 

Algorithm 2: second -level 

 NeighborhoodOperator(f, F)  

        damage = DamageOperator(F) 

        repaire = RepaireOperator(R) 

        f ′ = r(d(f)) 

        f ′ = initializer(f ′) 

        count = 0 

while the count is less than the maximum number of iterations 

         s′′ = NeighborhoodOperator(s′) 

         if f(s′′) < f(s′) 

        s′ = s′′ 

                return  s′      

In the algorithm designed in this paper, the damage and repair operations used are 

only designed for second-level UAV path planning. The damage operations are mainly 

divided into the random removal of vessels to be monitored, the removal of adjacent 
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vessels to be monitored and the random removal of the UAV path. The repair operation 

involves reinserting the vessels to be monitored into the current solution by putting the 

damage operations into the pool of vessels to be monitored, mainly including greedy 

insertion, greedy insertion with disturbance, and forced greedy insertion. 

(1) Random removal of the vessels to be monitored 

The random removal of the vessels to be monitored involves randomly selecting 

𝑔 ships to be monitored from the second-level path in the current solution, and then 

these vessels are removed from the path of the current solution and stored as the pool 

of vessels to be monitored. Whenever a vessel to be monitored is removed, the 

algorithm developed in this paper does not replan the path of the first-level ship carrier, 

instead it waits until all selected vessels to be monitored are removed. In the subsequent 

repair operation, the path of the ship carrier is reoptimized. 

(2) Removal of adjacent vessels to be monitored 

This operation randomly selects a vessel to be monitored as a seed point and then 

marks the vessel to be monitored that is the closest to the seed point. The selection of 

the marked seed point is unlimited. Finally, the seed points and marked points are 

removed from the UAV path of the current solution to the pool of vessels to be 

monitored. The removal process is the same as the random removal of the vessels to be 

monitored. 

(3) Random removal of UAV path 

This operation randomly removes 𝑏(𝑏 > 1) paths from all second-level paths of 

the current solution and places all vessels to be monitored on the removed UAV paths 
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among the pool of vessels to be monitored. 

(4) Greedy insertion 

The vessels to be monitored among the pool of vessels to be monitored are 

removed one by one in random order and inserted into the current solution to minimize 

current insertion cost (𝑑𝐴𝑘𝑟𝑖
,𝑘𝑖,𝐴𝑘𝑐𝑖

/𝑆𝑢 + |𝑘𝑖| × 𝑇𝑣). This operation needs to meet the 

following conditions: (a) A vessel can only be inserted into the position where the ship 

carrier releases or collects drones. (b) A vessel can be inserted into the existing UAV 

path where the ship carrier releases the UAV, but after its insertion, it ensures that the 

UAV can return to the ship carrier after monitoring all the vessels to be monitored on 

the path, satisfying 𝑑𝐴𝑘𝑟𝑖
,𝑘𝑖,𝐴𝑘𝑐𝑖

/𝑆𝑢 + |𝑘𝑖| × 𝑇𝑣 ≤ 𝑇𝑤，𝑖 ∈ {1,2,3, ⋯ , 𝑁𝑟}, 𝑘𝑖 ∈ 𝐾. (c) 

Regardless of the effect of the first-level ship carrier on the path, after all greedy 

insertion operations are completed, the first-level ship carrier path is replanned. 

(5) Greedy insertion with disturbance 

This operation is similar to the above greedy insertion operation, while the only 

difference is that to increase randomness, the greedy insertion with disturbance needs 

to multiply the random number in the interval [0.8, 1.2] when calculating the insertion 

cost. 

(6) Forced greedy insertion 

The insertion method used in this paper always ensures that the time consumed on 

the UAV flying path is not greater than the maximum endurance time of the UAV during 

the calculation process. 

Therefore, this easily occurs when all UAV paths released by the ship carrier are 
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fully loaded or the remaining available UAV flying time is less than the current vessel 

to be monitored and inserted and the cost of creating a new UAV path is relatively high. 

According to the calculation method of the greedy insertion operation presented in this 

paper, the vessel to be monitored cannot be assigned to the position where the ship 

carrier releases the UAV and must be inserted into the position where the next ship 

carrier releases the UAV, even if the vessel to be monitored is more suited to the position 

assigned to the current ship carrier to release the UAVs. To solve this problem, forced 

greedy insertion operation ignores whether the UAV has enough time to monitor the 

vessel to be monitored when calculating the cost of insertion. 

4.2. An improved ABC algorithm for the SDMU path planning model 

SDMU path planning is examined in this section based on three aspects: path 

planning coordination between the ship carrier and UAVs, coordination between 

UAVs, and UAV task reassignment in a dynamic environment. A flowchart 

introducing the algorithmic framework is shown in Fig 2. 
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Fig 2 Algorithmic framework 

4.2.1. Path planning coordination between a ship carrier and UAVs 
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Fig 3 Coordination of a ship carrier and a UAV 

Fig 3 presents as an example to explain how the path planning of the ship carrier 

and UAVs is coordinated. At 𝑡0, a UAV leaves the ship carrier, and the UAV travels 

from 𝐴𝑘1
 to 𝑝𝑢1,𝑡1

 to monitor the air pollution of the vessel to be monitored, 𝑣1. The 

time needed to perform this task is 𝑡1 = 𝑑(𝐴𝑘1
, 𝑝𝑢1,𝑡1

)/𝑆𝑢. At this time, the ship carrier 

continues to move forward following the predetermined route. After the UAV has 

finished checking the emissions of vessel 𝑣1 , it needs to identify the vessel to be 

monitored that is closest to its current position. After calculation, it is found that the 

vessel to be monitored is 𝑣2. The time it takes for the UAV to fly from vessel 𝑣1 to 

vessel 𝑣2 is 𝑡2 = 𝑑(𝑝𝑢1,𝑡1
, 𝑝𝑢1,𝑡2

)/𝑆𝑢. At this time, it is necessary to judge in advance 

whether the UAV can return to the ship carrier (𝐴𝑘4
) after monitoring vessel 𝑣2, that is, 

to compare the remaining time for the UAV to monitor vessel 𝑣2, 𝑇𝐿 = 𝑇𝑤 − 𝑡1 − 𝑡2 −
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𝑇𝑣1
− 𝑇𝑣2

, to the time needed for the UAV to travel from vessel 𝑣2 to ship carrier (𝐴𝑘4
), 

𝑡3 = 𝑑(𝑝𝑢1,𝑡2
, 𝐴𝑘4

)/𝑆𝑢. When 𝑇𝐿 > 𝑡3, the UAV can return to ship carrier (𝐴𝑘4
) after 

monitoring vessel 𝑣2, and the UAV will continue to perform the task of monitoring 

vessel 𝑣2. When 𝑇𝐿 < 𝑡3, the UAV cannot return to ship carrier (𝐴𝑘4
) after monitoring 

vessel 𝑣2. At this time, the UAV is limited by its remaining electrical energy. After 

monitoring vessel 𝑣1, the UAV cannot continue to monitor vessel 𝑣2. The UAV needs 

to immediately return to the ship carrier (𝐴𝑘2
). 

Path of ship carrier with UAV

The cluster center of vessels to be monitored

The line connect the cluster centers of adjacent vessels to be monitored

C2 C3
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The position of the UAV to be release and collect on the ship carrier

The Path of  UAV

 
Fig 4 Schematic diagram of solving the collaborative idea of ship carrier and UAV 

The ABC algorithm based on the simulated annealing idea is employed to solve 

the problem of first-level cooperative path planning between the ship carrier and the 

UAVs. Take Fig 4 as an example to explain the solution to this problem: 

(1) Identify the number  of vessels 𝑁𝑣  to be monitored in the port and use the 

greedy strategy to cluster the vessels to be monitored. Randomly select 𝐻  initial 

cluster centre points, set the number 𝑁𝐻 of iterations, continuously update the center 

points of the clusters, and stop the iteration when the center points do not change or 
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when the number of iterations is reached to obtain the clustering results 𝐺 =

{𝐺1, 𝐺2, 𝐺3, ⋯ , 𝐺𝐻}. For example A, B, D, E, F in Fig 4. 

(2) The cluster centers obtained in step (1) are numbered according to the value of 

the abscissa of the cluster centers from small to large and then connect the cluster 

centers of adjacent vessels to be monitored 𝐺𝑖  and 𝐺𝑖+1  into a line, where 𝑖 ∈

{1,2,3, ⋯ , 𝑞}  (𝑖 + 1) ∈ {1,2,3, ⋯ , 𝑞} . For example A − B − D − E − F  in Fig 4. 

Taking the midpoint of two adjacent cluster centers 𝑚𝑝 = (𝐺𝑖 + 𝐺𝑖+1)/2 as the key 

points that the ship carrier must visit, such as C1 − C2 − C3 − C4 in Fig 4, after which 

the sailing path of the ship carrier is planned; 

(3) Calculate the total time required to use a UAV to monitor each cluster. This is 

equal to the sum of the distances of all vessels to be monitored in each cluster divided 

by the flying speed of the UAV plus the number of vessels to be monitored in the 

category multiplied by the monitoring time required for each vessel to be monitored. 

Let 𝑁𝑟 denote the number of UAVs that need to be released, and let 𝑁𝑟 be determined 

by the total monitoring time and maximum flying time of a single UAV. When 

calculating, it is necessary to ensure that the value of Eq (2) is the smallest, and the 

following constraints must be met. Constraint (9) is used to ensure that the time it takes 

for the UAV to perform a task (the UAV leaves the ship carrier + performs monitoring 

tasks + returns to the ship carrier) does not exceed the maximum endurance time. 

Constraint (14) holds that because a UAV needs to consume electricity when traveling 

to and from the ship carrier, the number of UAVs released is greater than the number of 

UAVs required to monitor all vessels to be monitored in the cluster. Otherwise, a UAV 
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may not return to the ship carrier after completing a monitoring task. Constraint (15) 

indicates that the number of UAVs released cannot exceed the total number of UAVs 

carried by the ship carrier. 

 𝑑𝐺𝑖
/𝑆𝑢 >= 𝑁𝑟  

 𝑖 ∈ {1,2,3, ⋯ , 𝑞} 

(14) 

𝑁𝑟 <= 𝑁 (15) 

where 𝑑𝐺𝑖
/𝑆𝑢 represents the number of UAVs required to monitor all the vessels 

to be monitored in the cluster without considering the electricity consumption of the 

UAVs traveling to and from the ship carrier. 

(4) When the ship carrier sails a distance of 𝐿  from the cluster centre of the 

vessels to be monitored, it will start to release the UAV to undertake the monitoring 

task. In this paper, 𝐿 is half the farthest distance from adjacent cluster centers, that is, 

max{𝑑𝐺1,𝐺2
, 𝑑𝐺2,𝐺3

, ⋯ , 𝑑𝐺𝑖,𝐺𝑖+1
, ⋯ , 𝑑𝐺𝐻−1,𝐺𝐻

}/2 . As shown in Fig 4, the distance 

between cluster E and cluster F is the largest, so L=𝑑𝐸,𝐹/2. That is, when the ship 

carrier travels from left to right to 𝐴𝐾 = {𝐴𝑘1
, 𝐴𝑘2

, 𝐴𝑘3
, 𝐴𝑘4

, 𝐴𝑘5
}, the UAV starts to fly to 

monitor the vessels to be monitored in each cluster. The positions of C5 and 𝐴𝑘5
 are 

coincident. According to the triangle theorem, the distance range from the cluster center 

to the ship's route is [0, L]. When the connection line of the two clusters with the farthest 

distance between the two adjacent cluster centers is perpendicular to the driving route 

of the ship carrier, the ship carrier will release the drone at the position 𝐿 >=

𝑚𝑎𝑥{𝑑𝐺1,𝐺2
, 𝑑𝐺2,𝐺3

, ⋯ , 𝑑𝐺𝑖,𝐺𝑖+1
, ⋯ , 𝑑𝐺𝐻−1,𝐺𝐻

}/2 , so when the set L is less than 
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𝑚𝑎𝑥{𝑑𝐺1,𝐺2
, 𝑑𝐺2,𝐺3

, ⋯ , 𝑑𝐺𝑖,𝐺𝑖+1
, ⋯ , 𝑑𝐺𝐻−1,𝐺𝐻

}/2 , It will appear that the vessels to be 

monitored in the two clusters with the farthest distance between the two adjacent cluster 

centers will not release UAVs for monitoring. The 𝐿 we choose in this way can ensure 

that the ship carrier can fly the UAV on the driving route to monitor vessels to be 

monitored in all clusters. 

(5) Determine the number of UAVs released in each cluster according to step (3) 

to obtain the monitoring path of 𝑁𝑟 UAVs and calculate the connection distance from 

the positions of all UAVs and vessels to be monitored at a certain time. The distance 

between all UAVs and vessels to be monitored is 𝐿1, and distance 𝐿2  is the distance 

connecting all vessels to be monitored. Based on the principle of the shortest total route, 

disconnect one of the two adjacent lines of each UAV and obtain 𝑁𝑟 paths starting 

from the UAV, and the UAV will follow this path during monitoring. 

4.2.2. Multiple UAVs collaborative path optimization 

The ABC algorithm based on the simulated annealing idea is applied to solve the 

problem of second-level cooperative path planning between two UAVs. The solution is 

as follows: 

During the monitoring process, if there any idle UAV is not assigned any 

monitoring tasks, we need to consider whether it needs to be deployed and cooperate 

with other UAVs to reduce the overall time required to complete the monitoring task. 

The procedure employed to make the decision is presented as follows: 

(1) Calculate the remaining tasks of other working UAVs on their respective paths 

(the number of vessels to be monitored multiplied by the time that the UAV monitors 
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one vessel to be monitored + the length of the route divided by the flying speed of the 

UAV). According to the extent of the remaining tasks, sort the paths of the UAVs 

performing the tasks in sequence; 

(2) According to the sorted working UAV paths, calculate whether the idle UAV 

monitoring of each vessel can reduce the total monitoring time needed to determine the 

first vessel that can reduce the total monitoring time. For an example, see vessel 𝑣3 in 

Fig 5; 

(3) If the vessel is not the last vessel in the path of a working UAV (vessel 𝑣3 in 

Fig 5), disconnect the edge between the vessel and the adjacent vessel in the opposite 

direction of the flying path of the working UAV (vessels 𝑣3、𝑣4 and 𝑣5 in Fig 5). If 

the vessel is the last on the flying path of a working UAV, the vessels on the route are 

relatively evenly allocated to two UAVs for monitoring and at the same time cancel out 

the tasks of other UAVs to monitor these vessels; 

(4) Because of the limitations of UAV battery capacity, when the UAV battery is 

insufficient, the UAV needs to return to the ship carrier for charging. Each UAV will 

continue to participate in monitoring tasks after charging is complete. 
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Fig 5 Schematic of multiple UAVs collaboration 

4.2.3. UAVs task reassignment in a dynamic environment 

Since the vessels to be monitored in the port are sailing at sea and their positions 

change in real time, it is necessary to redistribute UAV tasks depending on the dynamic 

changes of these ships. For multiple UAVs monitoring of vessels in the port, we need 

to consider the following three situations that may lead to the redistribution of UAVs: 

new vessels entering the port, unmonitored vessels leaving the port, and the location 

updating of vessels to be monitored in the port. UAVs have to be redistributed when 

any of these three situations happen individually or collectively. Assuming that the 

sequence of tasks that a UAV needs to undertake is shown in Fig 6(a), at time 𝑇 = 𝑡0, 

the UAV deployed to monitor vessel 𝑣1  starts to conduct the vessel's air pollution 

monitoring task. 

The time needed for the UAV to monitor vessel 𝑣1 is 𝑇𝑣1
. At time 𝑇 = 𝑡0 + 𝑇𝑣1

, 
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the UAV completes the monitoring of vessel 𝑣1. Fig 6(b) shows that at 𝑇 = 𝑡0 + 𝑇𝑣1
, 

a new vessel to be monitored 𝑣4  enters the port, which triggers the redistribution 

procedure as well as the path replanning of the UAV. After the UAV monitors vessel 

𝑣1, the next monitoring point of the UAV will change from vessel 𝑣2 to vessel 𝑣4. Fig 

6(c) shows that at 𝑇 = 𝑡0 + 𝑇𝑣1
, the vessel to be monitored 𝑣2 leaves the port, which 

again triggers the path replanning procedure. After the UAV monitors vessel 𝑣1, the 

next monitoring point of the UAV will change from vessel 𝑣2 to vessel 𝑣3. Fig 6(d) 

shows that at 𝑇 = 𝑡0 + 𝑇𝑣1
, since the vessel to be monitored in the port is dynamic, 

after time 𝑇𝑣1
, the position of the vessel to be monitored in the port changes, which 

leads to a replanning of the path of the UAV. After the UAV monitors vessel 𝑣1, the 

next monitoring point of the UAV will change from vessel 𝑣2 to vessel 𝑣3. 

Path of  UAV

Vessel to be monitored

UAV

                
   v4

UAV

                

Unavailable path for UAV

Additional Vessel

Unmonitored vessel departure from port Vessel Location update

(a) (b)

(c) (d)

UAV

                

v1

v2

v3

v1

v1v1

v2

v2

v2

v3

v3

v3

1v0t TT +=
1v0t TT +=

1v0t TT +=0t=T

UAV

                

 

Fig 6 Scenario that triggers dynamic reallocation 

A prediction algorithm is required in the above path replanning procedure to 

predict the real-time, dynamic positioning of the monitored vessels. We design the 
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prediction algorithm as follows: 

(1) When triggering multiple UAVs path replanning, the prediction algorithm is 

utilized to predict the location of the vessel to be monitored at time 𝑡 + 𝑇𝑣𝑖
 based on 

the location data of the vessel to be monitored in the Ship Automatic Identification 

System (AIS) at time 𝑡. 

(2) According to the dynamic environmental changes, the planned path of UAV 

monitoring is reacquired. Since the vessel is always in motion, after monitoring a vessel, 

the vessel is taken as a fixed point, and distance 𝐿2  connecting all vessels to be 

monitored at this moment is calculated. If the difference between the current length of 

𝐿2 and the minimum value of 𝐿2 at all moments exceeds the preset threshold, vessels 

that have not been monitored by UAVs, vessels that have not been monitored, and 

vessels entering the port are regenerated. A new path is composed (Shen et al., 2020). 

5. Experiment and analysis 

5.1. Data preparation 

In this section, to demonstrate the effectiveness of the improved ABC algorithm 

based on the idea of simulated annealing, this paper uses MATLAB R2018a to 

implement the algorithm. This experiment was carried out on a laptop with an Intel(R) 

Core(TM) i5-7500 CPU @ 3.4 GHz processor and 4 GB of RAM. In Section 5.1, the 

UAV flying paths were formulated based on the real vessel position data. Section 5.2 

analyses the sensitivity of different parameters to the experimental results. 

5.2. Data preparation and UAV flying path solution 

In the experiment, we investigated the pollution monitoring of the vessels entering 
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and leaving Tianjin Port at 13:00 on November 29, 2020. We obtained the position data 

of 90 vessels sailing in Tianjin Port from the AIS, as shown in Fig 7. We use the obtained 

position data of 90 vessels to perform a simulation verification. Based on the actual 

geographic location of the port, we scale the monitored range and vessel location to a 

1000*800 area to run our algorithm. We first use the greedy strategy to cluster the 

vessels to be monitored. The cluster centers obtained are numbered according to the 

value of the abscissa of the cluster center from small to large and then connect the 

cluster centers of adjacent vessels to be monitored into a line, take the midpoint of the 

two adjacent cluster centers as the key points that the ship carrier must visit, and plan 

the sailing path of the ship carrier. Through the coordination of the first level of a ship 

carrier and UAV, we define the route of the ship carrier as (100,740) → (200,600) →

(350,450) → (540,340) → (650,300) → (800,200) → (1040,60) → (100,740) . 

The default values of the parameters involved in this example are shown in Table 3. 

 

 

The data are obtained from ShipXun.com at http://www.shipxy.com/. 

Fig 7 Schematic of vessels entering and leaving Tianjin Port 
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Table 3 Default parameter description 

Number of UAVs 3 racks 

Average flying speed of UAVs 1000 m/min 

Average monitoring time per vessel 2 min/vessel 

Number of ships with UAVs 1 ship 

Speed of a ship with UAVs 26 m/min 

Number of vessels to be monitored 90 vessels 

Maximum UAV flying time 35 min 

 

The main parameters listed in Table 3 are defined as follows: 

The number of UAVs used: The number of UAVs refers to the number of UAVs 

considered in Shen (2020). 

Number of ship carriers: Based on the measurement of vessel exhaust gas 

employed by the Maritime Safety Administration, we set the number of ship carriers to 

1. 

Average monitoring time per vessel: This period refers to the average monitoring 

time per vessel set by Shen (2020). 

The speed of a ship carrier: The law enforcement officers of the local Maritime 

Safety Administration use UAVs on a patrol ship to carry out the comprehensive air 

pollution monitoring of vessels in dense waters. With a cumulative cruising mileage of 

51 nautical miles and a water area of 133 square kilometres, the speed of the patrol ship 

is calculated as 26 m/min. 
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Maximum UAV flying time: This paper uses the maximum flying time of the DJI 

M210 UAV in the experiment. 

This paper lists the initial positions of 90 vessels to be monitored, one ship carrier 

and three UAVs. At the initial moment, the 3 UAVs and ship carrier are in the same 

position (𝑣𝑖 represents the ith vessel, and 𝐷0 represents the starting point of the ship 

carrier leaving the port as well as the initial position of the 3 UAVs; (𝑥, 𝑦 ) represents 

the position coordinates), as shown in Table 4. Fig 8 shows the initial positions of the 

vessels to be monitored, ship carrier and UAVs. Fig 9 shows the SDMU path planning 

result calculated by the improved ABC algorithm for the above mentioned scenario, 

and Table 5 shows the corresponding specific UAV flying path. Fig. 10 shows the two 

newly added vessels entering the port based on Fig. 8 and invokes the path replanning 

algorithm to obtain the collaborative route of the first level of a ship carrier and UAV 

as (200,600) → (350,450) → (540,340) → (650,300) → (800,200) →

(1040,60) → (0,750) and the collaborative route of the second level of the UAVs as 

shown in Fig 11. Table 6 shows the specific UAV flight path replanning results. 

Table 4 Initial positions of the vessels to be monitored, ship carrier and UAVs 

 x y 

v1 14.1612200435730 33.7690631808279 

v2 701.341139812628 685.857317220493 

v3 42.5925925925926 703.067417321720 

v4 26.9063180827887 646.276655127741 
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v5 37.6906318082789 641.116193237439 

⋮ ⋮ ⋮ 

v86 859.259259259259 257.525670986474 

v87 867.102396514161 317.756616137001 

v88 874.945533769063 305.712226679497 

v89 1006.31808278867 61.3778810865753 

v90 1030.82788671024 54.4992022727935 

D0 0 750 

 

Table 5 SDMU path planning results 

 
UAV 

number 
UAV monitoring path 

Monitoring 

time (min) 

𝐴𝑘1
 

𝑑1 𝐴𝑘1
→ 𝑣3 → 𝑣2 → 𝑣7 → 𝑣6 → 𝑣8 → 𝐴𝑘2

 10.31420 

𝑑2 𝐴𝑘1
→ 𝑣15 → 𝑣14 → 𝑣11 → 𝑣12 → 𝑣13 → 𝑣16 → 𝑣17 → 𝐴𝑘2

 14.28266 

𝑑3 𝐴𝑘1
→ 𝑣1 → 𝑣4 → 𝑣5 → 𝑣9 → 𝑣10 → 𝑣20 → 𝑣21 → 𝐴𝑘2

 14.41853 

𝐴𝑘2
 

𝑑1 𝐴𝑘2
→ 𝑣28 → 𝑣27 → 𝑣29 → 𝑣30 → 𝑣32 → 𝐴𝑘3

 10.28357 

𝑑2 

𝐴𝑘2
→ 𝑣18 → 𝑣19 → 𝑣34 → 𝑣37 → 𝑣35

→ 𝑣36 → 𝑣38 → 𝑣39 → 𝑣40 → 𝐴𝑘3
 

18.34384 

𝑑3 𝐴𝑘1
→ 𝑣23 → 𝑣22 → 𝑣24 → 𝑣25 → 𝑣26 → 𝑣33 → 𝐴𝑘2

 12.35794 

⋮ ⋮ ⋮ ⋮ 

𝐴𝑘5
 

𝑑3 𝐴𝑘5
→ 𝑣69 → 𝑣71 → 𝑣74 → 𝐴𝑘6

 6.22970 

𝑑2 𝐴𝑘5
→ 𝑣70 → 𝑣72 → 𝑣73 → 𝐴𝑘6

 6.28424 
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𝑑1 𝐴𝑘5
→ 𝑣68 → 𝑣75 → 𝑣76 → 𝐴𝑘6

 6.30475 

𝐴𝑘6
 

𝑑3 𝐴𝑘6
→ 𝑣78 → 𝑣77 → 𝑣87 → 𝑣88 → 𝑣86 → 𝑣79 → 𝐴𝑘7

 12.48854 

𝑑2 𝐴𝑘6
→ 𝑣83 → 𝑣85 → 𝑣89 → 𝑣90 → 𝐴𝑘7

 8.28930 

𝑑1 𝐴𝑘6
→ 𝑣80 → 𝑣81 → 𝑣82 → 𝑣84 → 𝐴𝑘7

 8.30835 

Total monitoring time 126.69466 min 

 

Table 6 SDMU path replanning 

 
UAV 

number 
UAV monitoring path 

Monitoring time 

(min) 

𝐴𝑘1
 

𝑑1 𝐴𝑘1
→ 𝑣15 → 𝑣14 → 𝑣13 → 𝑣16 → 𝑣17 → 𝑣18 → 𝐴𝑘2

 12.22149 

𝑑2 𝐴𝑘1
→ 𝑣1 → 𝑣2 → 𝑣4 → 𝑣5 → 𝑣6 → 𝑣20 → 𝑣21 → 𝐴𝑘2

 14.39031 

𝑑3 𝐴𝑘1
→ 𝑣3 → 𝑣7 → 𝑣8 → 𝑣9 → 𝑣11 → 𝑣10 → 𝑣12 → 𝐴𝑘2

 14.34933 

𝐴𝑘2
 

𝑑1 𝐴𝑘2
→ 𝑣22 → 𝑣24 → 𝑣25 → 𝑣26 → 𝑣33 → 𝑣92 → 𝐴𝑘3

 12.38559 

𝑑3 𝐴𝑘2
→ 𝑣23 → 𝑣28 → 𝑣27 → 𝑣29 → 𝑣30 → 𝑣31 → 𝑣32 → 𝐴𝑘3

 14.32686 

𝑑2 

𝐴𝑘2
→ 𝑣19 → 𝑣34 → 𝑣37 → 𝑣35 → 𝑣36

→ 𝑣39 → 𝑣40 → 𝑣38 → 𝐴𝑘3
 

16.50014 

⋮ ⋮ ⋮ ⋮ 

𝐴𝑘5
 

𝑑3 𝐴𝑘5
→ 𝑣64 → 𝑣70 → 𝑣72 → 𝑣73 → 𝐴𝑘6

 8.31453 

𝑑1 𝐴𝑘5
→ 𝑣69 → 𝑣71 → 𝑣74 → 𝐴𝑘6

 6.22970 

𝑑2 𝐴𝑘5
→ 𝑣75 → 𝑣76 → 𝑣77 → 𝐴𝑘6

 6.29898 

𝐴𝑘6
 

𝑑1 𝐴𝑘6
→ 𝑣78 → 𝑣87 → 𝑣88 → 𝑣86 → 𝑣17 → 𝑣18 → 𝐴𝑘2

 10.29106 

𝑑2 𝐴𝑘6
→ 𝑣81 → 𝑣83 → 𝑣85 → 𝑣86 → 𝑣89 → 𝐴𝑘7

 8.29414 
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𝑑3 𝐴𝑘6
→ 𝑣80 → 𝑣82 → 𝑣84 → 𝑣90 → 𝐴𝑘7

 8.30923 

Total monitoring time 134.72770 min 

 

  
Fig 8 Schematic of the initial positions of the 

vessels to be monitored, ship carrier, and UAVs 

Fig 10 Schematic of newly added vessels in the 

port 

 

 

 

 
Fig 9 Schematic of SDMU path planning results Fig 11 Schematic of SDMU path replanning results 

 

5.3. Sensitivity analysis 
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Fig 12 Relationship between the total monitoring time 

of SDMU and the number of UAVs 

 

Fig 13 Relationship between the maximum flying time 

of UAVs and the total monitoring time of SDMU 

 

Fig 14 Relationship between the number of vessels to 

be monitored and the running time of the algorithm 

 

Fig 15 Relationship between the number of UAVs and 

the running time of the algorithm 

 

Fig 12 shows that as the number of UAVs increases, the total time taken for the 

SDMU monitoring task will decrease; however, the reduction rate of the total 

monitoring time of the SDMU decreases. When the number of UAVs exceeds a certain 

threshold, further growth in the number of UAVs will have a minimal effect on the 

reduction of the total time spent on SDMU monitoring tasks. In this particular situation, 

among the main factors that restrict the total monitoring time of the SDMU are the 

monitoring time spent on a single vessel to be monitored and the time taken to travel 

from the departure point of the port to the return point of the ship carrier. 

Fig 13 shows that when the maximum flying time of the UAV is increased, the 
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total time of the SDMU monitoring task does not change significantly. Xia et al. (2019) 

concluded that as the maximum endurance time of the UAV increases, the total time of 

UAV monitoring missions shows a decreasing trend. Compared to the finding in Xia et 

al. (2019) show that the introduction of ship carriers as a mobile supply base for UAVs 

can effectively address UAV electric power limitations. 

Fig 14 shows that when the number of UAVs is unchanged, the number of vessels 

to be monitored increases from 15 to 90, and the calculation time of the algorithm 

increases by 1941.962 s. When the number of vessels to be monitored in the port is 

greater than 73, the increase in the running time of the algorithm is relatively significant, 

and the algorithm can show better computing power when the number of vessels to be 

monitored in the port is not greater than 73. The reason for this result is that the number 

of UAVs is limited. When the number of monitoring target nodes increases, the number 

of calculations that the algorithm requires to analyse damage and repair operations 

increases; thus, the running time of the algorithm increases. 

Fig. 15 shows that when there are 90 vessels to be monitored, the number of 

available UAVs increases from 3 to 8, and the calculation time increases from 2279.677 

s to 3214.958 s. When the number of UAVs is greater than 4, the increase in the running 

time of the algorithm is relatively significant, and the algorithm can show better 

computing power when the number of UAVs carried by a ship is not greater than 4. The 

reason for this result is that when the number of UAVs increases, there are more node 

pairs from origin to destination during monitoring tasks, which causes an increase in 

the calculation time when the algorithm is running. 
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According to the calculation results in Figure 14 and 15, we may find that the 

computational time required may be too long for dynamic cases where the algorithm 

needs to be executed repetitively to deal with the dynamic location changes of drones 

and vessels. Therefore, additional methods need to be employed to apply our algorithm 

in dynamic case. The possible approaches may include the adoption of parallel 

computing to reduce the computational time or the development of heuristic rules to 

update UAVs’ routes based on the dynamic locations of monitoring targets.  

Conclusion 

This paper proposes an improved ABC algorithm designed to solve an SDMU 

problem. The SDMU supports the cooperation of a ship and multiple UAVs in the air 

pollution monitoring of vessels entering and leaving a port. The SDMU allows multiple 

UAVs to be launched and collected at different locations, minimizing the time needed 

for the coordinated monitoring by a ship and UAVs. The real-time AIS data of ships in 

Tianjin Port were used as an input for as a simulation experiment to verify our proposed 

algorithms, and the improved ABC algorithm was developed to solve the problem. The 

algorithm used in this paper is proven to be able to provide a better solution over a 

relatively short period when managing large-scale data. It can therefore significantly 

improve ship emission detection for sustainable shipping and ports.  

However, this study still has limitations. For instance, the influence of sea wind 

speeds and the law of air control on the flying paths of UAVs and the use of larger-scale 

data need further analysis. In addition, the planning scene considered in this paper 

involves a two-dimensional environment, and the flying height of UAVs is not 
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considered. In the future, the SDMU problem may be investigated in a three-

dimensional scenario, and more constraints can be added to the path planning model. 

Furthermore, how to choose the positions for the ship carrier to release UAVs need 

more discussions. Finally, the research should be tested in the actual port environment. 

The model and the algorithms of this paper should be continuously optimized according 

to the real practical application scenarios. 

The future research direction may be the development of exact solution to SDMU. 

Although the meta-heuristic method employed in the study has been proved to be 

effective in the previous literature and many practical applications, it could not 

guarantee to provide the exact solution.  
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