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Contemporary approaches to gait assessment use wearable devices within free-living environments to capture habitual information, 

which is more informative compared to data capture in the lab. Wearables range from inertial to camera-based technologies but 

pragmatic challenges such as analysis of big data from heterogenous environments exist. For example, wearable camera data often 

requires manual time-consuming subjective contextualization, such as labelling of terrain type. There is a need for the application of 

automated approaches such as those suggested by artificial intelligence (AI) based methods. This pilot study investigates multiple 

segmentation models and proposes use of the PSPNet deep learning network to automate a binary indoor floor segmentation mask 

for use with wearable camera-based data (i.e., video frames). To inform the development of the AI method, a unique approach of 

mining heterogenous data from a video sharing platform (YouTube) was adopted to provide independent training data. The dataset 

contains 1973 image frames and accompanying segmentation masks. When trained on the dataset the proposed model achieved an 

Instance over Union score of 0.73 over 25 epochs in complex environments. The proposed method will inform future work within the 

field of habitual free-living gait assessment to provide automated contextual information when used in conjunction with wearable 

inertial derived gait characteristics. 

Clinical Relevance—Processes developed here will aid automated video-based free-living gait assessment. 

Keywords— Deep Learning, Gait Analysis, IMU, Terrain Classification, Floor Segmentation 

I. INTRODUCTION 

Within the field of neurological disorders such as Parkinson’s disease (PD), gait assessment has emerged as a pragmatic 

(clinical) tool for assessing disease onset and progression [1]. Typically, gait assessment is performed within a purpose-built 

environment specifically for the examination of people 

with PD or other movement disorders [2]. However, controlled facilities are not able to capture data from the person that is 

representative of their natural/habitual ability/performance [3]. Furthermore, free-living/habitual gait data capture is key to 

overcome the impact of observer phenomenon/affect [4] and could have the advantage of being able to increase the speed of 

diagnosis and improve strategies to e.g., reduce falls [5]. 

Typically, traditional approaches to gait assessment rely on direct observation (from an experienced clinician) or use of an 

instrumented walkway [6, 7]. However, contemporary approaches now focus on inertial measurement units (IMU’s), enabling 

use within the clinic and beyond (i.e., free-living) [8]. IMU’s combine accelerometers and gyroscopes to collect accurate and 

high-resolution data pertaining to the specific dynamic movements of the wearer. The measurement of gait can then be used to 

classify disturbances such as freezing [9] or to inform fall prediction based on abnormal patterns [10]. Although IMU’s provide 

objective and accurate data, they remain limited to fully inform free-living gait as they are “blind”: although IMU’s provide 

robust data, the context of the walking environment is unknown.  

Contextual insight could help better inform IMU-based gait characteristic interpretation. For example, to determine if 

high/increased step time variability is due to intrinsic (pathology) issue(s) or extrinsic environmental condition(s). Although an 

attempt to explore contextualization directly from raw (sample level) IMU data has been conducted [11], the approach is limited 

by the amount/extent of contextual information provided. Without a wearable camera, intrinsic or extrinsic factors cannot be 

absolutely determined [12].  
Contextual data from wearable cameras would provide absolute context, enabling a better understanding of gait  variations. 

However, video-based analysis is challenging, typically involving a researcher manually examining many hours of video and 
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labelling/classifying each scene [12]. That process could be streamlined using artificial intelligence (AI) to automatically classify 
video data. The AI approach could also alleviate issues relating to confidentiality as an automated classification could negate (or 
at worst greatly minimize) privacy concerns pertaining to human viewing (i.e., researcher witnessing sensitive video data from 
someone’s home).  

The fundamental requirement to better understand free-living gait centre’s on information to the ground. Accordingly, 
developing an AI approach is driven by one question: what terrain is someone is walking on? Consequently, this pilot study 
proposes a new methodology/model using available and trainable deep learning algorithms, which given their ability to train on 
more representative data including edge cases for a robust and diverse classification methodology. 

II. METHODS 

The proposed model aims to identify and produce a binary segmentation mask of any indoor terrain type within a video frame. 

The model utilizes the TensorFlow deep learning library complemented with OpenCV for image processing tasks all within a 

Python 3.8 environment. 
 

A. Dataset creation 

Given the novel application of the algorithm (i.e., extract and classify terrains from within indoor representative living 

environments), pre-existing public datasets are not available for this type of classification task. Accordingly, a new dataset was 

created for both the segmentation of just the floor within indoor environments along with the type of terrains themselves (wood, 

carpet, tile). For segmentation, the input images are needed for training but also the accompanying segmentation masks or a 

file (typically JSON) including the polygonal coordinate points for the mask. 

Gathering the required training video-based frames was completed using the unique approach of a video sharing platform 

(www.youtube.com), where videos are available under the CC-BY license [13] and useable within research projects if 

attribution is provided. The platform was mined for real estate-based (i) walkthroughs and (ii) tours, recorded from a first-

person perspective (i.e., a wearable camera view). 
 

B. Mining 

A data mining pipeline was established pertaining to the creation of a custom Python script using the YouTube-dl library. Upon 

execution a researcher inputs a link to the desired YouTube video which was downloaded in 1280×720px. The script then adds 

metadata (channel, video title, video link) to a CSV file for attribution requirements. Frames were manually filtered removing 

any not pertaining to the interior of a property or which did not have a visible terrain.  
 

C. Video data processing 

All videos were downloaded at a uniform resolution of 1280×720px at 24 frames/s with the VGG Image Annotator [14] used 

to create the accompanying binary segmentation masks. Videos were segmented into frames (every 30 frames) with the 

assumption being major terrain differentiations are unlikely to occur over a course of 30 frames (1.25s) when someone is 

walking. Equally, 30 frames were used to prevent overfitting to specific scenes given the relatively low number of training 

images. Each extracted frame was imported into the VGG Image Annotation Tool and manually labelled such that within a 

given frame a polygon containing the outline of floor was drawn and masked (Fig 1). 
 

D. Choosing system architecture 

TensorFlow deep learning library was used within a Python 3.8 Environment to create all models. Different contemporary 

approaches to image segmentation were explored, with a pragmatic train/test ratio of 80:20. The dataset was run across 4 

different segmentation models to determine an optimal approach: (i) U-Net [15], (ii) FPN [16], (iii) LinkNet [17] and (iv) 

PSPNet [18]. All models were trained on an Apple device (M1 Pro, 16GB RAM). The trained network takes in an input image 

of 1280×720px and downscaled to 256×256px utilizing the OpenCV resize function and dimensionality was also reduced to 

one color channel (grayscale). The image is then input to the model resulting in an output matching 256×256px binary 

segmentation mask utilizing the pixel wise SoftMax function (Equation 1) of the floor within the frame.  
 

𝑝𝑘(𝑋) =
exp(𝑎𝑘(x))

∑ exp(𝑎𝑘′(𝐱))
𝐾
𝑘′=1

           (1) 

where ak(x) is the activation in feature channel k at the pixel position x and K is the number of classes. 
 

http://www.youtube.com/


 
Figure 1: (i) Original input image labeled/annotated within VGG image anotator (ii) Output binary segmentation mask of the floor (white) 

 

The binary segmentation mask is then upscaled to match the original image again using the OpenCV library resize function 

(Algorithm 1). Typically, upscaling an image results in quality loss but this is not relevant here given the low-resolution 

requirement on the segmentation mask. 
 

Algorithm 1: Provide playback of segmented floor 

Require: Input Image of 1280 × 720px 

Ensure: Segmentation of floor 

1: for frame in video 

2: if frame number is divisible by 30 

3:     resize frame to 128 × 128px 

4:     convert frame to grayscale 

5:     get image mask from segmentation model 

6:     resize mask to 1280 × 720px 

7:     apply bitwise and to mask and original frame 

return bitwise and resulting image 

I. Analysis 

A standardized Intersection-over-Union (IoU) benchmark was used to evaluate object detection and tracking model 

performance, providing a percentage of overlap (i.e., how close are the labelled and predicted segmentation masks) [19]. 
 

E. Architecture evaluation  

All models were tested using the new dataset of 1973 images over a period of 25 epochs and a batch size of 16. PSPNet 

outperformed all other models with an IoU of 0.73, Table 1. This was also the case with the processing speed where PSPNet 

outperformed other comparative models at 1 FPS.  
 

F. PSPNet architecture 

First an input image (256×256×1) is input to the network with feature maps generated using a DeepLab dilated network strategy 

model [20], giving a feature map 1/8 of the size of the input image, Fig 2ii. Generated feature maps are then fed forward into a 

pyramid pooling module, pooling the feature map into a vertical chain of average pooling outputs (1×1, 2×2, 3×3 and 6×6), 

Fig. 2iii. All average pooling outputs are then convolved by 1×1 to further reduce the dimensionality of the output pooling. To 

up sample feature maps, bilinear interpolation is applied to each low dimensional feature map to match original size. All 

upscaled feature maps are concatenated and convolved to produce a final prediction. 
 

TABLE 1: PERFORMANCE COMPARISON OF COMPETING SEGMENTATION ARCHITECTURES 

Architecture IoU FPS 

U-Net 0.71 0.80 

FPN 0.72 0.73 

LinkNet 0.71 0.77 

PSPNet 0.73 1.00 

 

G. Terrain classification 

Here, the segmentation algorithm will produce a binary mask of a video frame showing the extracted region of floor, Figs. 2iv 

and 2v. The Python OpenCV library is then utilized to extract the contours of the binary mask allowing for the quantification 

of overall terrain area, Fig. 2vi. An arbitrary threshold of 2000 was set for the mask with any area below classified as the frame 

not having a terrain visible. Cases ≥2000 are then used to map a 500×500px rectangle crop from the image including only the 

terrain (Fig. 3). 

 

H. Reference and evaluation 

To evaluate the proposed method, it was compared against a rudimental un-segmented approach taking an arbitrary image crop 

defined by a generic 500×500px region taken from the bottom of all video frames to coincided with the possible floor location. 



A random sample of 60 frames was selected from the dataset and supplemented with additional frames from a university 

environment during a brief walk. All frames were manually labelled. 

III. RESULTS 

A. Dataset 

Currently the dataset consists of 1973 numbers of raw training images and accompanying amount of binary segmentation 

masks. The dataset contains frames spanning many types of interior terrain types (wood, tile, carpet) and covers a range of 

lighting and video quality conditions. 
 

B. Terrain classification 

An accuracy improvement of 5% is achieved when using the proposed method compared against the rudimental approach (i.e., 

generic image cropping), Table 2.  
 

TABLE 2: ACCURACY COMPARISONS OF SEGMENTATION VS UNSEGMENTED IMAGES 

Method Accuracy 

Proposed 76% 

Rudimental 71% 

IV. DISCUSSION 

This paper has shown the viability of deep learning to produce accurate and generalizable floor segmentations and 

classifications across a range of indoor types. A network is created using readily available tools such as TensorFlow and 

OpenCV within Python, by chaining layers of down sampling convolutions and average pooling before reversing the process 

using further convolutions and concatenation. The methodology presented here could be useful to aid automated analysis of 

free-living environments to help inform habitual gait assessment as it provides terrain classification only by removing 

unnecessary clutter or noise to the full scene view. The methodology has applicability to wearable cameras which could be 

used in conjunction with wearable IMU for a more rounded and fully informed free-living gait assessment. 
 

 
Figure 2: Model flow (i) original input image (ii) downscaled (iii) downscaled image into PSPNet model (iv) PSPNet outputs predicted segmentation mask at 
288×288px (v) output segmentation mask upscaled to match original image (vi) OpenCV overlays the mask on the original image utilizing the bitwise and 

function to subtract all elements except floor. 

 

A. Toward better informed free-living IMU gait 

IMU’s are valuable tools to quantify habitual/free-living gait in those with a PD. However, current trends in IMU-based gait 

assessment beyond the lab examine all walking/gait data, inferring intrinsic assumptions with no knowledge of extrinsic factors. 

IMU gait supplemented with wearable camera data can provide a rounded and better habitual gait assessment. Current attempts 

to analyze free-living camera data broadly rely on manual, time consuming annotation. Additionally, manual annotation is 

fraught with ethical concerns given the requirements for researchers to sift through video from a person’s daily life, which may 

often be quite sensitive e.g., toilet breaks. Robust automated (AI) approaches alleviate researcher burden while protecting 

participant confidentiality. 

Design and implementation of floor segmentation algorithms have been implemented within autonomous robots using 



lightweight methods e.g., CANNY line detection [21] or Superpixels [22]. Whilst their lightweight nature is useful for edge 

computing devices in ideal environmental conditions, their application within more general (free-living, home) environments 

may not be advisable given the greater complexity (e.g., clutter on the ground or strong variations in lighting conditions) and 

the algorithms inability to learn from previous examples. Unlike the previously mentioned studies the algorithm presented here 

has an ability to further learn and improve accuracy with accumulation of further training data. 
 

 
Figure 3: Segmentation to terrain pipeline: (i) Input image (ii) image segmented to binary segmentation mask (iii) contour detection extracts terrain area and 

region to produce a cropped mask (iv) cropped mask region applied to original image to provide a crop from original frame (v) final crop is fed to terrain 

classification. 
 

B. Limitations, new opportunities, and future work 

Computational complexities and time requirements of the chosen algorithm (1 fps) are a limitation. High complexity requires 

processing to be completed off-device and on a remote server, necessitating an internet connection and no current possibility 

of on-device real time processing.  

To overcome lack of participant recruitment (COVID), an alternative source was investigated. Here we adopted a unique 

and alternative approached by mining data from a social media platform, which may be useful for other researchers in the field 

who struggle to recruit participants to grow datasets. However, mined video data may not be fully representative of the true 

conditions lived in by those with PD who may be from low socio-economic groups. Future work for the model would be to use 

of more representative environments through the capture of primary videos within homes. 
 

C. Increasing dataset 

With a wealth of available data to be mined from online video sharing platforms the only constraint on the acquisition of the 

training data is the manual labelling process (for ground truth labelling) of extracted frames. As work continues to increase the 

volume of the dataset the accuracy (IoU results) of the model proposed should increase further. 

V. CONCLUSION 

This paper presents a valid and functioning deep learning-based floor segmentation and classification model to automatically 

interpret indoor floor terrains from videos. The methodology is built upon a new dataset mined from a video sharing platform. 

The proposed model will aid increasing accuracies as it enables terrain classifiers to cover the entire floor span without including 

noise or cluttering objects within the periphery. The model will be used in conjunction with wearable IMU’s to better inform 

free-living gait.  
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