Ahmadi, Amirhossein, Mohammadi-Ivatloo, Behnam, Anvari-Moghaddam, Amjad and Marzband, Mousa (2020) Optimal Robust LQI Controller Design for Z-Source Inverters. Applied Sciences, 10 (20). p. 7260. ISSN 2076-3417
|
Text
applsci-10-07260.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (1MB) | Preview |
Abstract
This paper investigates the linear quadratic integral (LQI)-based control of Z-source inverters in the presence of uncertainties such as parameter perturbation, unmodeled dynamics, and load disturbances. These uncertainties, which are naturally available in any power system, have a profound impact on the performance of power inverters and may lead to a performance degradation or even an instability of the system. A novel robust LQI-based design procedure is presented to preserve the performance of the inverter against uncertainties while a proper level of disturbance rejection is satisfied. The stability robustness of the system is also studied on the basis of the maximum sensitivity specification. Moreover, the bat algorithm is adopted to optimize the weighting matrices. Simulation results confirm the effectiveness of the proposed controller in terms of performance and robustness.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | ZSI; non-minimum phase; perturbation; robust LQI controller; bat algorithm |
Subjects: | H600 Electronic and Electrical Engineering |
Department: | Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering |
Depositing User: | Elena Carlaw |
Date Deposited: | 12 Aug 2022 08:06 |
Last Modified: | 12 Aug 2022 08:15 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/49831 |
Downloads
Downloads per month over past year