
Northumbria Research Link

Citation: Matabuena, Marcos, Karas, Marta, Riazati, Sherveen, Caplan, Nick and Hayes,
Phil (2023) Estimating Knee Movement Patterns of Recreational Runners Across Training
Sessions Using Multilevel Functional Regression Models. The American Statistician, 77 (2).
pp. 169-181. ISSN 0003-1305 

Published by: Taylor & Francis

URL:  https://doi.org/10.1080/00031305.2022.2105950
<https://doi.org/10.1080/00031305.2022.2105950>

This  version  was  downloaded  from  Northumbria  Research  Link:
https://nrl.northumbria.ac.uk/id/eprint/49889/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


 

Estimating Knee Movement Patterns of Recreational 
Runners Across Training Sessions Using Multilevel 
Functional Regression Models 

Marcos Matabuenaa1, Marta Karasb1, Sherveen Riazatic,d, Nick Capland, Philip R. 

Hayesd 

aCentro Singular de Investigación en Tecnologías Intelixentes, Universidad de 

Santiago de Compostela, Santiago de Compostela, Spain 

bDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard 

University, Boston, MA, USA 

cDepartment of Kinesiology, San José State University, CA 

dDepartment of Sport Exercise and Rehabilitation, Faculty of Health and Life 

Sciences, Northumbria University, Newcastle upon Tyne, UK 

 

Corresponding author: MM (email: marcos.matabuena@usc.es) 

1MM and MK joint first co-authorship. 

ABSTRACT 

Modern wearable monitors and laboratory equipment allow the recording of high-

frequency data that can be used to quantify human movement. However, currently, 

data analysis approaches in these domains remain limited. This paper proposes a 

new framework to analyze biomechanical patterns in sport training data recorded 

across multiple training sessions using multilevel functional models. We apply the 

methods to subsecond-level data of knee location trajectories collected in 19 

recreational runners during a medium-intensity continuous run (MICR) and a high-

intensity interval training (HIIT) session, with multiple steps recorded in each 

participant-session. We estimate functional intra-class correlation coefficient to 

evaluate the reliability of recorded measurements across multiple sessions of the 

same training type. Furthermore, we obtained a vectorial representation of the three 

hierarchical levels of the data and visualize them in a low-dimensional space. Finally, 

we quantified the differences between genders and between two training types using 
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functional multilevel regression models that incorporate covariate information. We 

provide an overview of the relevant methods and make both data and the R code for 

all analyses freely available online on GitHub. Thus, this work can serve as a helpful 

reference for practitioners and guide for a broader audience of researchers 

interested in modeling repeated functional measures at different resolution levels in 

the context of biomechanics and sports science applications. 

keywords: Biomechanics; Knee movement; Multilevel functional data analysis; 

Patterns; Subsecond-level data; Wearable sensors. 

1 Introduction 

Recent advances in technology have led to the ever-increasing popularity of 

wearable technology in health research [54]. Modern sensors can monitor an 

individual’s motor activity with great accuracy and measure various physiological and 

biomechanical variables in a near-continuous manner. This provides an opportunity 

to have a detailed assessment of an athlete’s physical capability and performance 

[32], and to schedule optimal interventions [29, 6]. Promising fields for implementing 

these novel strategies are sports training and biomechanics [21, 55]. 

1.1 Wearable Sensors: Opportunities in Sports and 
Biomechanics 

Although we are in the early stages of this technological revolution, the first research 

papers are appearing that use through high-resolution data gathered with biosensors 

to answer unknown and complex questions about training load [7], daily 

biomechanical patterns [25], and injury prediction [4, 35]. Furthermore, sensor data 

may enable us to build predictive models that support decision-making and help 

optimize the performance [36, 19, 43]. For example, several recent works provide 

new epidemiological knowledge using biomechanical data of human locomotion 

[26, 62]. Other papers have tried to predict sports injuries [48] or other motor or 

neurological diseases prematurely [1], or even the impact of therapy together with 

their prognosis in the recovery phase after surgery [24]. 
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Importantly, with the boom of wearable devices, their use is increasingly common 

among professional athletes and the general population, such as amateur runners. 

Thus, the remote control of athlete training and even monitoring their daily routine 

outside of sports activity is feasible and opens a broad spectrum of opportunities in 

biomechanics applications. 

1.2 Quantifying Biomechanics Patterns in Walking and 
Running: Methodological Challenges 

In both sports and general populations, abnormal movement patterns are 

synonymous with muscular and motor problems, risk of injury, or even the 

appearance of severe neurological diseases such as Parkinson’s [38]. Therefore, 

characterizing movement patterns and detecting their abnormalities in biological 

activities such as walking and running, are essential. 

The predominant data analysis practice in gait biomechanics is to summarize the 

curve recorded for each stride using several statistical metrics and apply standard 

multivariate techniques. However, this traditional approach yields a substantial loss 

of information given that gait data recorded is functional, such as a cycle of gait 

movement. 

A more detailed and meaningful analysis can be attained by using a complete stride 

cycle with functional data analysis (FDA) techniques [16, 62]. In FDA applications for 

biomechanics, the general procedure is to normalize data curves collected at a fixed 

body location for each step into the [ 0 ,1]  interval, compute the mean of the multiple 

curves recorded, and create an average functional curve for analysis. However, this 

procedure can be suboptimal because the constructed mean representation ignores 

the individual variability between the distinct steps of the same individual – a crucial 

feature in evaluating the movement patterns in some settings. In addition, the mean 

curve statistic can be very sensitive to outliers that are frequently observed in 

biomechanical data. This is particularly true in measuring movements performed at 

high or low speed, where sensor and human variability often increase. Moreover, we 

often need to compare the effect of interventions along with the different training 

sessions on different days, and for this, we have several repeated measures per 

individual in different periods. In such cases, a more suitable approach might be to 
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employ multilevel functional data analysis (MFDA) models that allow accounting for a 

natural hierarchy in data [33]. For example, using MFDA models, we can estimate 

biomechanical patterns using data curves from multiple gait cycles, using data from 

a significant fraction of or even from a complete training session. MFDA methods 

also capture the variations in different periods at an intra-inter individual level and 

evaluate the changes produced along with relevant outcomes at different resolution 

levels among individuals. 

Surprisingly, there is little use of FDA techniques within the applications literature, 

either in sports or other clinical areas [56]. This might be partially due to FDA being a 

relatively novel modeling approach and, consequently, a lack of broader knowledge 

about the value of using the FDA for biomedical and biomechanics data. 

1.3 This Paper’s Contributions 

This work demonstrates statistical modeling using MFDA models to characterize 

knee biomechanical patterns along with two training type sessions. Specifically, we 

use subsecond-level data of a knee location, recorded in three dimensions, collected 

in 19 recreational runners during (a) medium-intensity continuous run (MICR); (b) 

high-intensity interval training (HIIT) sessions, with 20 steps recorded during each 

participant-session. Using multilevel functional models, we estimate functional intra-

class correlation coefficients to evaluate the reliability of measurements across two 

separate HIIT sessions. We also computed the scores of different hierarchical levels 

of multilevel functional models to analyze variability patterns between individuals, 

runs, and strides, and to visually compare the scores by gender. We further quantify 

differences in knee position trajectories between genders and between the two 

intensities of exercise sessions (MICR vs. HIIT). Finally, we provide the overview of 

the relevant methods and make both data and the R code for all analyses freely 

available online on GitHub (martakarass/biomechanics-manuscript). For the 

biomechanical practitioner’s audience, this paper provides a methodological guide 

and read-and-go R code examples to address questions similar to the following we 

tackle: 
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1. What is the reliability of functional running measurements in two independent 

HIIT running sessions? 

2. What are the different modes of variability at different hierarchical levels in the 

data (e.g., individual level, session level, and a running stride level)? 

3. What are the population-level differences in knee location trajectories 

between MICR and HIIT running sessions and between genders? 

To date, several works have studied the etiology of running-related knee injuries in 

recreational runners, some even using three-dimensional time series analysis [37]. 

However, to the best of our knowledge, no previous studies have compared 

biomechanical changes during HIIT and MICR training, nor investigated the reliability 

of biomechanical measures at the knee in two or more training sessions. 

2 Methods 

2.1 Study Design and Population 

Data used in this manuscript were collected in a study that recruited 20 participants 

to complete two types of energy expenditure-matched running sessions: a medium-

intensity continuous run (MICR) and a high-intensity interval training (HIIT) session. 

Participant enrollment criteria and study design have previously been reported in 

detail in [47]. In short, 20 healthy, experienced runners (10 women and 10 men) 

were recruited. 

For HIIT sessions, athletes ran 6 × 800 meters intervals at a pace of 1 km/h below 

their maximum aerobic speed with 1 : 1  recovery time. For the MICR sessions, the 

athletes completed a continuous run halfway between the speeds at lactate 

threshold and the lactate turn point. The duration of the MICR session was 

individualized to yield the same estimated energy expenditure as the HIIT session. 

All sessions were conducted at the same time of the day to avoid diurnal variation. 

All sessions were performed in an environmentally controlled laboratory setting, with 

all the athletes using the same treadmill. Running kinematics used in this analysis 

were recorded at the start of the final minute of each run. Measurements were 

recorded in three dimensions with the Vicon Nexus motion analysis system (Vicon 

Motion Systems Ltd, Oxford, United Kingdom) at a frequency of 500 Hz. Data 
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recorded with the motion analysis system were further segmented to extract 

individual stance phases. 

This work uses data from two independent HIIT sessions and one MICR session. 

Specifically, 20 cycles of the stride stance phase for 19 participants were analyzed. 

Data for one of the participants were excluded from the analysis set due to missing 

data in some parts of running strides. Our analysis focuses on subsecond-level 

recordings of knee segment trajectories within each of the three dimensions, x, y, 

and z. 

2.2 Why use functional data analysis? 

A core element of many functional data analysis methods is to approximate the 

vector observations recorded for each individual as a through a basis of functions. 

This conceptual leap from multivariate euclidean space to functional space presents 

several advantages compared to high-dimensional multivariate data analysis 

techniques. 

 The information can be represented and summarized in low-dimensional 

spaces with the same or more accuracy than with multivariate analysis 

techniques. As a consequence, functional data analysis may lead to 

inferential methods with more powerful and robust hypothesis testing, and 

more accurate predictive models. Moreover, the computational efficiency of 

the algorithms may increase. 

 The methods can also reduce noise and be more robust towards outlier data 

points. More advanced techniques exist to remove and filter the measurement 

error. 

 Functional regression models can be evaluated at any point of the continuous 

domain and not only within the finite set of domain points where the data were 

recorded. This presents opportunity for better interpretability of the results 

where the observed data is a function, recorded on a discrete grid, defined on 

some continuous domain (e.g., gait cycle). 

 Analyses can evaluate rates of change of the underlying function. 

2.3 Multilevel Functional Data Analysis (MFDA) Models 
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This subsection provides foundations and then reviews the methods used in our 

statistical data analysis. We first review frameworks for standard functional principal 

component analysis (FPCA) and multilevel FPCA, then outline several general 

formulations of multilevel functional data analysis (MFDA) models, and discuss intra-

class correlation coefficient and hypothesis testing between different levels. While 

provided for completeness, some technical parts of this presentation are kept in the 

Supplementary Material for the succinctness of the main text. 

2.3.1 Functional Principal Component Analysis (FPCA) 

Functional principal component analysis (FPCA) technique, an extension of 

multivariate principal components analysis, is widely used in FDA to describe the 

variability of a sample of curves when one curve per subject is available. In 

summary, FPCA decomposes the space of curves into principal directions of 

variation. 

To describe FPCA framework, let    , 0 ,1X t t  , be a random function with mean 

    t E X t   and covariance function            ,t s E X t t X s s      for all t, 

s    0 ,1 . The heart of many FDA models is based on calculating modes of 

variability of the random function  X t  based on the spectral decomposition of the 

covariance operator  ·,·  in a set of eigenfunctions   1
{ · }

i i
e




 and eigenvalues 

1
{ }

i i





, 

where 
1 2

   . Specifically, from the decomposition of Karhunen-Loève we have 

     
1

,
k k

k

X t t c e t





    (1) 

where     
1

0

( )
k k

c X t t e t d t   are uncorrelated random variables with mean zero 

and variance λk. These variables are usually known as scores or loading variables. 

In the real-world FDA setting, we typically consider n realizations, generally 

independent, of the process  ·X , denote    
1

· , , ·
n

X X . Also, we typically only 

observe a sample of n vectors, assume each vector of length m, denote X1,  , Xn, 

sampled in a grid 
1

{0 1}
m

t t     , where  
i i

j j
X X t  for all 1, , , 1, ,i n j m    . 
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A given functional sample can be used to estimate mean function μ and covariance 

function Σ, 

   
1

1
ˆ ,

n

i

j j

i

t X t
n





   (2) 

           
1

1
ˆ ˆ ˆ, ,

n

i i

j k j j k k

i

t t X t t X t t
n

 



     (3) 

for all , 1, ,j k m  . 

In many applications where observations are subject to a large measurement error, a 

smoothing step is taken in the above procedure to ensure the optimal performance 

of the empirical estimator ̂ . Three different smoothing strategies have been 

generally used in the literature [51, 9]: (1) smoothing of the original functional data; 

(2) introduction of a regularization term in the estimation of ̂ ; and (3) direct 

application of a smoothing procedure in the raw estimation of ̂ . 

Next, eigenvectors 
1

ˆ{ }
i m

i
e


 and eigenvalues 

1

ˆ{ }
m

i i



 can be estimated from the 

empirical covariance function ̂  via the spectral theory of linear algebra, similarly as 

in the context of classical PCA in multivariate statistics. Finally, K (K < m) 

eigenvectors 
1

ˆ{ }
i K

i
e


 and eigenvalues 

1

ˆ{ }
K

i i



 can be selected and used to provide the 

following decomposition: 

1

ˆ ˆ ˆ( ) ( )

K

i i k

j j k j

k

X t t c e



    (4) 

for 1, , , 1, ,i n j m    , and ˆˆ ˆ,
i i k

k
c X e    , where ,   denotes the usual scalar-

product, and ˆ
k

j
e  is the j-th component of the eigenvector ˆ

k
e . In applications, a small 

K < m is often sufficient to capture the important modes of variations in the elements 

of the random sample. More details of these procedures can be found in the reviews 

and general books of functional data analysis, where different estimation procedures 

of the number of components, K, are established [51, 27, 34]. 

2.3.2 Multilevel Functional Principal Component Analysis (MFPCA) 
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In the previous subsection (Sect. 2.3.1), we presented a FPCA procedure applicable 

when a random functions are measured once for n independent units (e.g., n 

individuals). In practice, it is common to have several repeated functional 

measurements for each individual in the data set. For example, in sports 

applications, functional data of an an athlete may be collected at multiple points in 

time (e.g., over the training session and/or when investigating the training load 

throughout a season). Such settings yield multiple functional observations per 

individual, and thus yield a correlation structure in data for whom the previously 

discussed FPCA procedure may be inadequate. To review the statistical framework 

for multilevel FPCA (MFPCA), we first expand the notation introduced in Sect. 2.3.1 

while employing a specific setup of our biomechanics real data example. 

Let    
, ,

, 0 ,1
i j k

X t t  , be a random function – a k-th stride for j-th race in the i-th 

individual, for 
,

1, , , 1, , , 1, ,
i i j

i n j n k K      ; for simplicity, onward, assume that 

,i j
K M  and ni = J for all 1, ,i n  . For illustration as is the model that we use in the 

study-case, we first consider the following three-way functional nested ANOVA 

model 

           
, , , , , , ,i j k i i j i j k i j k

X t t Z t W t U t t      (5) 

for 1, , , 1, , , 1, ,i n j J k M      . In Equation 1,  t  is the mean global,  
,i j

W t  is 

the residual subject- and race-specific deviation from the global mean, and  
, ,i j k

U t  

is the residual subject- race- and stride-specific deviation from the global mean. In 

this framework,  t  is treated as a fixed function, while  
i

Z t ,  
,i j

W t , and  
, ,i j k

U t  

are treated as a random function of mean zero. Moreover, with the proposal of 

identification correctly the model, we assume that    
,

,
i i j

Z t W t , and  
, ,i j k

U t , are 

random uncorrelated functions. In the literature, functions  
i

Z t ’s,  
,i j

W t ’s,  
, ,i j k

U t ’

s are known as the 1-level, 2-level and 3-level functions, respectively. We note that 

we introduce for convention a additional random error    
, , 2

~ 0 ,
i j k

t N   in terms to 

identify the model. 

Again, the MFPCA framework relies on the Karhunen-Loève decomposition. For 

example, for the model defined in Equation 1, we have 
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       
, , (1 ) , ( 2 ) , , ( 3 )

1 1 1

( )
i j k i i j i j k

r r r r r r

r r r

X t t c e t d e t f e t

  

  

       (6) 

for 1, , , 1, , , 1, ,n j J k M      . In the above, (1 ) ( 2 )

1 1
{ } , { }

r r r r
e e

 

 
, and ( 3 )

1
{ }

r r
e




, are the 

eigenfunctions related to the random functions of levels 1, 2 and 3, respectively, 

while 
1

{ }
i

r r
c




, , , ,

1 1
{ } , { }

i j i j k

r r r r
d f

 

 
 are the eigenvalues of levels 1, 2, and 3, respectively. 

The eigenfunctions and eigenvalues of the model defined in Equation 2 can be 

derived from covariance funtions:       
, , , ,

, ,
i j k i j k

T
s t C o v X s X t   – “total” covariance 

function,      
, ,

, ( , )
i j i j

W
s t C o v W s W t   – “between” covariance function (covariance 

between the units of the second level while keeping the effect of the first level fixed), 

     , ( , )
i i

Z
s t C o v Z s Z t   – “between” covariance function (covariance between the 

units of the first level). As explained in Appendix A in the Supplementary Material, a 

method of moments can be used to obtain these covariance operators. 

2.3.3 MFDA Models: More General Formulations 

Different levels of hierarchy may appear in real problems that can be nested (e.g., 

three-way functional ANOVA model presented in Sect. 2.3.2) or crossed. For 

example, following [53], Table 1 presents a number of possible data hierarchy 

scenarios corresponding model formulations. 

The models specified in Table 1 share the same model formula structure: 

     ( la te n t  p ro c e s s e s )X t t t   , where  t  is the mean curve or fixed effect 

and  t  is a white noise,    
2

~ 0 ,t N   for all  0 ,1t  . The latent processes are 

assumed to be zero-mean and square-integrable so that they are identifiable, and 

the standard statistical assumptions for scalar outcomes can be generalized to 

functional data. In this way, the total variability of a functional outcome is 

decomposed into a sum of process-specific variations plus 2
 . For these models, 

the algorithm details of estimation procedure are provided in Appendix B in the 

Supplementary Material. 

2.3.4 Intra-class correlation coefficient (ICC) 

When several repeated measurements are collected from a subject over different 

days or other periods, it is often of interest to determine how much variability is 
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explained by the subjects’ effect and how much by collecting measurements over 

different levels of the data hierarchy. This problem is known in the literature as 

estimating the coefficient of intra-class correlation (ICC) [39] that represents the 

variability arising from measuring a subject in conditions that are assumed to be 

standardized across different tests. The estimation of ICC is crucial, for example, in 

the field of clinical laboratory testing, where one often wants to use clinical variables 

that are not modified abruptly between days as a result of a device’s measurement 

error or by intra-day variability of individuals [49]. In biomechanics and exercise 

sciences, the ICC estimation is critical in searching for objective criteria to assess 

performance and control the individual’s degree of fatigue [58, 28]. For example, 

while a variable may have high variability, it may pose a helpful criterion for decision-

making. In such cases, it is necessary to make several measurements to capture 

that variable accurately and ICC can allow us to quantify how many measures need 

to be made to capture the variable’s distribution accurately. 

To define ICC for a functional model in our setting, consider the ( 3 )N  model (see 

Table 1) given by 

           
, , , , , , ,

.
i j k i i j i j k i j k

X t t Z t W t U t t      (7) 

For a fixed  0 ,1t  , by analogy with a univariate non-functional case, the proportion 

of the total variability explained by the subjects’ effect at point t is given by 

  

        
, , , , ,

( ) ,

i

i i j i j k i j k

V a r Z t
t

V a r Z t W t U t t
 

  
 (8) 

where ( )t  is the intra-class correlation coefficient at point t. 

The ICC formula from Equation 3 can be generalized as a global measure following 

[52]. In particular, we divide the variability generated by the hierarchy associated with 

subjects by the sum of all variability sources: 

(1 )

1

(1 ) ( 2 ) ( 3 ) 2

1 1 1

.

k

k

k k k

k k k





   





  

  



  



  
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2.3.5 MFDA Models incorporating covariate information 

In many applications, together with a functional outcome variable    
,

· , 0 ,1
i j

X t  , for 

1, ,i n   and 1, ,
i

j n  , we have additional dynamic or static information available 

about a subject, e.g. demographics or a clinical condition, that we may want to 

incorporate in the model as fixed and/or random effects. Consider a multilevel 

functional regression model that incorporates information about an individual’s 

characteristics, given by 

       
, , , ,

, , ,
i j i j i j i j

i
X t M t Z u t t        (9) 

for 1, ,i n   and 1, ,
i

j n  , where ,i j m
Z   denote a random variable measure 

collected in random design, 
,

p

i j
M   denote fixed-effect terms in the model, 

   : 0 ,1
p

t t     and    : 0 ,1
m

i i
u t u t    for 1, ,i n  , denote coefficient 

functions for the fixed and random effect terms. 

Obtaining a global estimation of the Equation 4 model is challenging. Recent work by 

[12] proposes an efficient estimation strategy of such complex models using the 

following steps (see [12] for further details): 

1. For each point t of the observed functional data grid, fit a separate point-wise 

generalized linear mixed model using standard multilevel software. 

2. Smooth the model coefficients obtained at different points t with a linear 

smoother along the functional domain. 

3. Obtain a global model inference with a joint confidence band using analytics 

approach for Gaussian data or using bootstrap for Gaussian/non-Gaussian 

data. 

An important topic for practitioners is the connection between global p-value and 

pointwise confidence intervals [50, 45]. For example, following [50], for each 

covariate, we can define a natural global p-value as a minuscule level α in the joint 

confidence interval that does not contain zero. Although other alternatives exist in 

the literature [45], the [50] approach appears to us easier to apply in terms of 

interpretability. 
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2.4 Statistical Analysis 

We applied the methods outlined above to our real data in the following steps. First, 

we smoothed the raw biomechanical functional profiles with a linear smoother to 

remove potential measurement error. Then, we visualized functional biomechanics 

profiles collected during two different HIIT sessions, and inspected the differences at 

an individual level. We also computed and visualized sample mean and standard 

deviation of functional profiles across genders and races. 

We further fitted a three-level multilevel model without covariates (see model N3 in 

Table 1) to data collected during two different HIIT sessions to decompose the 

different modes of variability between the hierarchical levels and to obtain a vectorial 

representation of units that compose the model. With this decomposition, we 

visualized the scores from hierarchical levels 1,2, and 3, inspected scores 

differences by gender, computed cumulative variance explained by subsequent 

functional principal components at each hierarchical level, and visualized first two 

eigenfunctions at each hierarchical level. 

Finally, to quantify the differences in biomechanical patterns between HITT and 

MICR session types and between the genders, we fitted a multilevel functional model 

to data collected during one HIIT session and one MICR session. In that model, we 

set knee location trajectory for each stride as a functional outcome, included a fixed 

effect for gender (coded 1 for male and 0 for female), a fixed effect for run session 

type (coded 1 for HIIT and 0 for MICR), and a subject-specific random intercept and 

random slope for the run type term. Formally, the fitted model formula is given by 

,

0 i 1 i , j 2

1 i , j 2 i

,

( ) ( ) [ m a le ] ( t ) + [ H IIT ] ( t )

( ) [ H IIT ] u ( t )

( ) ,

i j

i

i j

Y t t

u t

t

   

 



 

where i denotes the participant’s index, j denotes participant’s functional observation 

index, 
i

[m ale ]  is sex indicator of i-th participant (equal to 1 for male and 0 for female), 

i , j
[ H IIT ]  is session type indicator of j-th functional observation of i-th participant 

(equal to 1 for HIIT and 0 for MICR), ,
( )

i j
Y t  is j-th functional observation of i-th 
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participant, 
0 1 2

( ), ( ), ( )t t t   is fixed effect coefficient functions, 
1 2

( ), ( )
i i

u t u t  is random-

effect coefficient functions, ,
( )

i j
t  is residual error process. 

All analyses were performed using statistical software R. The data and the R code 

used can be found on GitHub (martakarass/biomechanics-manuscript). 

3 Results 

3.1 Descriptive analysis 

Figure 1 shows knee location trajectories raw data collected from 20 running strides 

per individual during two HIIT sessions. Each plot corresponds to data of one 

participant. Measurements are shown with separate colors for data recorded from x, 

y and z dimensions of a 3D plane. By visual inspection, we can see there are 

individuals for which there is little difference in their biomechanical stride patterns 

within an axis between the two HIIT sessions (e.g., participant with ID 7). For others, 

noticeable differences are present, demonstrating higher intra-individual variability 

(e.g., participant with ID 18). In addition, the observed stride patterns exhibit a 

noticeable between-individual variability. 

Figure 2 shows sample mean and ± 95% confidence intervals (CIs) of the mean 

computed point-wise from raw data collected from 20 running strides per individual 

during one HIIT and one MICR session. Sample statistics were computed separately 

for data collected from each measurement axis (x, y, z), in strata according to gender 

(female, male) and race type (MICR, HIIT). In this descriptive analysis, we observe 

significant differences between genders for each measurement axis data along 

whole functional domain (stride cycle). Differences between run types were 

signifcant at subsets of the functional domain for data from measurement axis x and 

y. However, this exploratory analysis does not account for repeated observations per 

individual, and does not provide a more holistic picture by simultaneously 

incorporating information from gender and race type. In addition, the functional 

nature of the recorded measurements is not exploited, leaving potential opportunities 

for increased inference efficiency unused. This is the rational for the use of the 

multilevel functional models. 
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3.2 Estimating scores and ICC with multilevel functional model 
(without covariates) 

A three-level multilevel functional (N3) model was fitted for knee location data 

collected during two HIIT sessions, separately for data from x, y and z dimensions of 

a 3D plane. Figure 3 shows values of the first two scores along the three hierarchical 

levels considered in the models: level 1 – an individual (1 value per participant), level 

2 – a run session (1 × 2 values per participant), level 3 – a running stride (1 2 2 0   

values per participant). Table 2 summarizes data from Figure 3 by providing sample 

mean and 95% CIs of the mean for scores across strata by gender (female, male). 

Figure 4 shows cumulative variance explained by subsequent functional principal 

components of level 1, 2 and 3, calculated with N3 multilevel models. In addition, 

Figure C1 in Appendix C in the Supplementary Material shows the first two 

eigenfunctions associated with each of the three hierarchical levels of the N3 

multilevel models. 

In this analysis, the first eigenvalue alone captures more than 90% of variability at 

levels 1 and 2 for models for data collected at each of three axes (x, y and z); at 

hierarchical level 3, between two to three components are needed to cross the 90% 

threshold of variability explained. 

From a visual inspection of Figure 3, we seem to observe distinct patterns in the 

distribution of scores between males (“M”) and females (“F”); for example, females’ 

scores are mostly centered at the top-left corner of the top-left plot in the Figure 3. 

Table 2 provides the numeric observations from figure 3. In general, they not we 

observe differences in point estimates of the mean of scores between genders. 

However, we are not statistically significant according to the 95% confidence 

intervals. Given the limited sample size, this marginal analysis requires more data to 

obtain enough power. A potential solution is to use a more integrated approach and 

to analyze all covariate information available in our setting simultaneously. 

Using the variability decomposition derived from the model, we estimated the 

functional ICC to be 0.55, 0.54, and 0.61 for measurements from x, y and z 

dimensions of a 3D plane, respectively. The ICC values obtained indicate that, in 
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general, the reproducibility of measurements across the two HIIT tests was 

moderate. 

3.3 Estimating the run type and gender effect with multilevel 
functional model (with covariates) 

Figure 5 shows the results of estimating knee location trajectory with a multilevel 

functional model for each stride set as functional outcome, a fixed effect of gender 

(coded 1 for male and 0 for female), a fixed effect of run type (coded 1 for HIIT and 0 

for MICR), and a subject-specific random intercept term. Smoothed coefficient 

estimates are denoted using blue dashed lines. Point-wise and joint 95% confidence 

intervals are shown as the dark and light gray shaded area, respectively. 

Following the notion of a global p-value (see Sect. 2.3.5), the results indicate 

statistically significant (at 0 .0 5  ) time-varying effect of session type for the 

measurements from x, y and z dimensions of a 3D plane. The effect is present 

despite the two different session types were performed with the same energy 

expenditure. The corresponding confidence intervals are relatively narrow – likely 

due to the fact we included participant-specific random slope for run session type. 

For the gender differences, the effect is borderline-significant for measurements from 

z dimension of a 3D plane (and is not significant for the other dimensions of 

measurement). 

Notably, our results show more differences in the extreme phases (beginning, end) 

of the biomechanic cycle than in the middle phase regarding uncertainty (gender 

effect) and value magnitude (race effect for data from measurement axis x and z). 

This can be as explained as follows: the middle of the stride is the ground contact 

phase, i.e., the foot is in contact with the ground, and it is, therefore, unlikely to differ 

between the two-run types. However, stride mechanics vary with running speed. As 

running speed increases, there is an increasing reliance on forces generated at the 

hip rather than the ankle [14]. The net result is an increased range of movement with 

a higher knee lift and longer back swing. The differences at the extremes of the 

stride found in this study can be hence explained by the difference in running speed 

between the two-run types. 
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4 Discussion 

Knee injuries are one of the most frequent problems faced by recreational runners 

[57]. Therefore, an accurate characterization of the biomechanical changes that 

occur in typical training sessions can be critical in identifying the etiology of injuries 

[13] and developing predictive models to detect injury risk [10]. Here, we have 

illustrated how to use multilevel functional models to exploit functional information 

from running strides to: (i) examine the different modes of variability of data at 

different levels of hierarchical structure and obtain a specific vector-valued data 

representation; (ii) measure the reliability between two training sessions of the same 

type; (iii) analyze the biomechanical differences between HIIT vs. MICR race types 

and the gender effect, an unexplored research topic in biomechanics literature. In 

particular, we believe we are the first to employ functional multilevel models with 

covariate information in biomechanics literature, which we did to address the issue 

(iii). The data and R code to reproduce all presented results are publically available 

on GitHub (martakarass/biomechanics-manuscript). 

The complete analysis of each cycle through functional analysis techniques that 

analyze the curve in its totality has led to more nuanced findings [13]. Traditional 

techniques that analyze either fixed angles, the average angle, the range of 

movement or other measures summarized, result in the loss of information that its 

use entails. Complementary, interesting problems can be identified when using more 

informative gait points. Recent statistical methodologies can be used to address this 

problem [3, 46]. 

Functional multilevel models are an essential weapon in the challenge to exploit 

information from monitoring athletes or patients, to optimize decision-making using 

different sources of information and measurements, made at different resolution 

levels. These tools can help integrate and analyze the information together, obtain a 

representation of the individuals along with different levels of hierarchy, and establish 

the different forms of variability in the different levels considered. These tools are 

remarkable if we want to analyze all training records or physiological variables of a 

group of athletes over a season or different micro-macro-cycles [31, 18]. For 

example, there is not yet a sufficiently good methodology to represent the 
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information inherently as proposed by these models [36, 43, 23]. Despite being an 

exciting research topic with high relevance, we believe that there are not many 

methodologies to address relevant problems in biomechanics to date. For example, 

a specific need of this field could be to build a multilevel model that considers the 

different time lengths of a step, and does not lose the information on the step 

geometry with the standardization of all the strides to the  0 ,1  interval. 

The multilevel models have allowed us to calculate the intraclass correlation 

coefficient between the two interval training sessions taking into account the 20 

steps recorded in each session. To the best of our knowledge, this is a novel 

approach in this area since the traditional approaches previously used to measure 

reliability rely on the compression of information in the average curve and only 

between two conditions [44]. This constitutes an important analytic advance, since 

with the inclusion of the 20 steps in the model in each test, we have more 

information, and with the new procedure, we can see if there are statistical 

differences between the different levels of hierarchy or groups of patients/athletes 

taking into account the potential differences in the study design. 

An important aspect to consider in analyzing the results is that the individuals’ 

movement patterns seem unique. This is not new, and several papers have 

exempted the individuality of human walking and running [20]. In this sense, since 

the biomechanical patterns are probably grouped in clusters [41, 22], standard 

hypothesis tests applied to the whole sample are not the best way to establish 

biomechanical differences. There are some discrepancies between studies when 

examining these issues. Also, in the biomechanics literature, as in other biomedical 

literature areas, there is some controversy about the use of p-value [2], and the use 

of other approaches such as effect size [5] or e-values [61] may be recommended. 

A limitation of this study is a relatively small sample size (19 participants), together 

with the fact that we are analyzing the biomechanical variations of the knee, without 

taking into account the possible multivariate structure of knee movement. Recently, 

some papers have emerged about this topic in another application [40, 8]. However, 

the literature with the multilevel model is sparse [60]. The present importance of 

computational and methodological limitations (see the discussion about the additive 
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model for [50]) In this paper, due to the reduced number of data, we think that we 

can gain a greater interpretation in this type of study of a more exploratory character 

with this procedure. Moreover, this work’s main purpose is to illustrate the use of 

classical multilevel models with biomechanical data. 

The rise of biosensors [17, 42, 54] in the area of biomechanics and medicine is 

causing an unprecedented revolution in the evaluation of athletes and patients care. 

It is likely that in the coming years, many of the clinical decisions will also be 

supported by the values predicted from the algorithms in many contexts, such as the 

prediction of injuries [11, 59] or optimal surgery recovery [24, 30] so in sport and 

general populations. Undoubtedly, the introduction of the data analysis techniques 

discussed here will help practitioners analyze objects that vary in a continuum 

repeatedly and that appear more and more frequently in biomedical data [15]. 
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Fig. 1 Knee location trajectories in recorded along 20 strides in two HIIT sessions 

for 19 participants. Each plot shows data for one participant from both HIIT sessions. 

Measurements from the same axis are marked with the same color. 
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Fig. 2 Sample mean and ± 95% confidence intervals (CIs) of the mean computed 

point-wise from knee location data collected from 20 running strides per individual 

during one HIIT and one MICR session. Sample statistics were computed separately 

for data collected from each measurement axis (x, y, z), in strata according to gender 

(female, male) and race type (MICR, HIIT). 
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Fig. 3 Scatterplots of functional scores 1 and 2 of level 1, 2 and 3, calculated with 

N3 multilevel models. Each horizontal plots panel corresponds to one measurement 

axis (x, y, z). Point colors denote participant ID. Point shapes denote participant 

gender (“F” for female, “M” for male). 
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Fig. 4 Cumulative variance explained by subsequent functional principal 

components of level 1, 2 and 3, calculated with N3 multilevel models. Results are 

color-coded, with three colors representing results from separate measurement axis-

specific models (x, y, z). 
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Fig. 5 Fixed effects estimates (dashed blue line), 95% point-wise confidence 

intervals (dark gray shaded area), and 95% joint confidence intervals (light gray 

shaded area) in multilevel functional regression with biomechanical profiles set as 

functional response, covariates for gender (coded 1 for male, 0 for female) and race 

type (coded 1 for HIIT, 0 for CR) and participant-specific random functions for race 

type (coded 1 for HIIT, 0 for CR). 
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Table 1 Structured functional models. For nested models, 1, 2 , ,i n  ;

1, 2 , ,
i

j n  ; 1, 2 , ,
i j

k K  ; 
21 1

1 1 2 2 1 , , ,
1, 2 , , , 1, 2 , , , , 1, 2 , ,

i r
i r r i i

i I i I i i


       . For 

crossed designs, 1, 2 , , ; 1, 2 , , ; 1, 2 , ,
i j

i n j J k n      ; (C2s) ”Two-way sub” stands 

for ”Two-way crossed design with subsampling”; (CM) contains combinations of anys 

( 1, 2 , , )s r   subset of the latent processes, as well as repeated measurements 

within each cell. 
1 2
, , ,

d
S S S  

 
1 2 1 2

1 2 , ,
{ , , : , , , 1, 2 , , , ( ,1, 2 , , ) , }

s r
k k k s i i i

i i i u k k k r u I s r


         , u is the index for 

repeated observation in cell  1 2
, , ,

k k kr
i i i .  t  is a random error  

2
0 ,N  . 

 

Model  Model formula  

Nested  (N1) One-way  ( ) ( ) ( ) ( )
i i i

X t t Z t t    

 

(N2) Two-way         
, , ,i j i i j i j

X t t Z t W t     

 

(N3) Three-way         
, , , , , , ,i j k i i j i j k i j k

X t t Z t W U t      

 

(NM) Multi-way       1 2 1 2 1 2
, , , , , ,

(1 ) ( 2 ) ( )
( )r r r

i i i i i i i i i

r
X t t R t R R t

 
        

Crossed (C2) Two-way           
, , ,i j j i i j i j

X t t t Z t W t       

 

(C2s) Two-way sub        
, , , , , , ,i j k j i i j i j k i j k

X t t Z t W U t        

 

(CM) Multi-way       1 2 2 1 2
, , , , , ,

( ) ir r r
Si i i u S S i i i u

X t t R t R R t
 

        
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Table 2 Sample mean and 95% confidence intervals (CIs) of the mean for two 

scores (score 1, score 2) along the three hierarchical levels (level 1, level 2, level 3) 

considered in the three-level multilevel functional model, summarized separately for 

females and males. 

 

Axis Score  Score  Score mean [95% CI] Score mean [95% CI] 

 
 

level  index  Female Male 

1  x  Level 1 Score 1 207.7 [183.7, 231.7] 239.0 [220.4, 257.6] 

2  x  Level 1 Score 2 -8.4 [-13.1, -3.7] -23.2 [-31.4, -14.9] 

3  x  Level 2 Score 1 104.0 [88.6, 119.4] 121.3 [106.0, 136.6] 

4  x  Level 2 Score 2 25.3 [20.9, 29.8] 23.0 [19.1, 26.8] 

5  x  Level 3 Score 1 5.0 [4.1, 6.0] 5.8 [4.7, 6.9] 

6  x  Level 3 Score 2 1.8 [1.4, 2.3] 2.0 [1.6, 2.5] 

7  y  Level 1 Score 1 -7.3 [-19.9, 5.3] -30.2 [-64.6, 4.2] 

8  y  Level 1 Score 2 -1.0 [-4.6, 2.6] -0.1 [-3.1, 3.0] 

9  y  Level 2 Score 1 -3.8 [-18.8, 11.2] -15.3 [-36.0, 5.4] 

10 y  Level 2 Score 2 0.7 [-1.1, 2.6] 0.6 [-1.8, 3.1] 

11 y  Level 3 Score 1 -0.2 [-0.5, 0.2] -0.8 [-1.3, -0.2] 

12 y  Level 3 Score 2 0.1 [-0.1, 0.2] 0.0 [-0.2, 0.3] 

13 z  Level 1 Score 1 68.1 [22.0, 114.2] 149.2 [114.8, 183.5] 

14 z  Level 1 Score 2 36.6 [27.0, 46.1] 44.8 [40.1, 49.6] 

15 z  Level 2 Score 1 36.0 [11.7, 60.2] 76.5 [46.0, 107.0] 

16 z  Level 2 Score 2 16.1 [10.1, 22.2] 15.6 [10.7, 20.5] 

17 z  Level 3 Score 1 1.6 [1.1, 2.2] 3.4 [2.9, 4.0] 

18 z  Level 3 Score 2 0.8 [0.4, 1.2] 1.8 [1.4, 2.2] 
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