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Abstract
Non- random community changes are becoming more frequent in many ecosystems. 
In coral reefs, changes towards communities dominated by other than hard corals 
are increasing in frequency, with severe impacts on ecosystem functioning and pro-
vision of ecosystem services. Although new research suggests that a variety of al-
ternative communities (i.e. not dominated by hard corals) exist, knowledge on the 
global diversity and functioning of alternative coral reef benthic communities, espe-
cially those not dominated by algae, remains scattered. In this systematic review and 
meta- analysis of 523 articles, we analyse the different coral reef benthic community 
changes reported to date and discuss the advantages and limitations of the meth-
ods used to study these changes. Furthermore, we used field cover data (1116 reefs 
from the ReefCheck database) to explore the biogeographic and latitudinal patterns in 
dominant benthic organisms. We found a mismatch between literature focus on coral- 
algal changes (over half of the studies analysed) and observed global natural patterns. 
We identified strong biogeographic patterns, with the largest and most biodiverse 
biogeographic regions (Western and Central Indo- Pacific) presenting previously over-
looked soft- coral- dominated communities as the most abundant alternative commu-
nity. Finally, we discuss the potential biases associated with methods that overlook 
ecologically important cryptobenthic communities and the potential of new techno-
logical advances in improving monitoring efforts. As coral reef communities inevitably 
and swiftly change under changing ocean conditions, there is an urgent need to better 
understand the distribution, dynamics as well as the ecological and societal impacts 
of these new communities.

K E Y W O R D S
Anthropocene, benthic organisms, community turnover, coral reefs, reef changes, reef 
monitoring

www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0002-7743-8647
https://orcid.org/0000-0001-6579-7928
https://orcid.org/0000-0002-1796-6384
https://orcid.org/0000-0002-3411-3084
https://orcid.org/0000-0003-4831-2751
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mirireverter@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.16034&domain=pdf&date_stamp=2021-12-24


    |  1957REVERTER ET al.

1  |  INTRODUC TION

Growing anthropogenic and climate stressors are driving ecological 
changes with profound global consequences (Cardinale et al., 2012; 
Johnson et al., 2017; Malhi et al., 2020). As highlighted by recent 
events, biodiversity losses are not only an environmental emer-
gency, but can have widespread effects by contributing to disease 
outbreaks (Roe, 2019), and to the collapse of entire ecosystems and 
the services provided (Asch et al., 2018; IPBES, 2019). Tropical areas, 
which simultaneously exhibit low resistance/resilience to climate 
change, and mounting pressures on natural resources linked to their 
rapid economic and demographic growth, are especially vulnerable 
to ecological changes (Barlow et al., 2018; Cinner et al., 2018). As 
such, prevention of biodiversity collapse and ecological shifts is par-
amount, however, addressing key knowledge shortfalls is required 
to design effective conservation approaches (Barlow et al., 2018).

Increasing environmental degradation (e.g. eutrophication, 
pollution) and variability (i.e. related to climate change) are driving 
non- random community changes in many ecosystems (Cloern et al., 
2016; Neumann et al., 2017; Plass- Johnson et al., 2016). Changing 
environmental conditions not only push some species towards and 
beyond their physiological limits, but also modify the network of 
interactions (Diamond et al., 2012; Gilman et al., 2010). Since spe-
cies are highly interconnected, both phenomena can trigger cascade 
effects and drive large community changes (Gilman et al., 2010). 
Ecological changes can be slow and gradual (i.e. changing linearly as a 
response to continued disturbances), or abrupt and sudden (Cooper 
et al., 2020; Wernberg et al., 2016). Abrupt community changes, 
often defined as regime or phase shifts, are thought to occur when 
an ecological threshold or tipping point has been reached, in which 
a small cumulative increase of a stressor drives a much larger eco-
logical change than expected from linear effects, and results in a 
functionally different stable system (Biggs et al., 2009; Connell et al., 
2017). Some shifts can be reversed in relatively short periods of time 
(<50 years) if the drivers and disturbances are eliminated and the 
pre- shift conditions are re- established (Bestelmeyer et al., 2011). 
However, in other cases even if the initial conditions are restored, 
the system might remain in the alternate state (or ‘basin of attrac-
tion’), through a phenomena known as hysteresis (i.e. the pathway 
and rate of recovery differs from those of degradation; Beisner et al., 
2003). Alternate stable states are often a consequence of the es-
tablishment of feedback mechanisms between state variables and 
drivers that reinforce the alternate state and its persistence (Schmitt 
et al., 2019; Schröder et al., 2005).

Both abrupt and gradual community changes often lead to func-
tionally impoverished communities with profound socio- ecological 
implications (Conversi et al., 2015; Cooper et al., 2020; Scheffer & 
Carpenter, 2003). The high complexity and heterogeneity of these 
changes or shifts have resulted in a lack of agreement on criteria to 
identify and analyse community changes and have led to the devel-
opment of overlapping theories and terminologies across disciplines, 
which further hampers their detection and global understanding 
(Bestelmeyer et al., 2011; Hughes et al., 2013; Pulsford et al., 2016). 

Whilst several frameworks have been proposed that intend to fa-
cilitate the transition between theory and field observations (e.g. 
Bestelmeyer et al., 2011) and standardize the study of regime shifts 
(e.g. the Regime Shift Database, Biggs et al., 2018), the identification 
of community changes and especially the mechanisms causing them 
remains difficult.

Increasing evidence suggests that most coral reefs will undergo 
compositional, structural and functional changes as ecosystem re-
silience erodes in response to local stressors, including overfishing, 
eutrophication, acidification and increasingly frequent marine heat-
waves and storms (Hughes et al., 2017a; Woodhead et al., 2019). 
In coral reefs, abrupt community changes (i.e. regime shifts) were 
initially described on Jamaican reefs in the 1980s (Hatcher, 1984; 
Hughes et al., 1987). After years of experiencing resilience erosion 
through overfishing and eutrophication, the damage caused by a 
major hurricane together with the massive mortality of the grazer ur-
chin Diadema antillarum led to a transition from a coral-  to an algae- 
dominated community on these reefs (Hughes, 1994; Hughes et al., 
1987). Since then, coral- algal shifts have been increasingly reported 
and studied, with a large body of literature investigating the drivers 
and feedback mechanisms that lead to, support, and reinforce such 
community changes (Bellwood et al., 2006a; Dinsdale & Rohwer, 
2011; Dixson et al., 2014; de Goeij et al., 2017; Haas et al., 2016; 
Hoey & Bellwood, 2011). However, the high controversy regarding 
what constitutes a coral reef regime shift (e.g. extend and timescale 
of the changes to be considered a regime shift), as well as the pres-
ence/absence of hysteresis mechanisms leading to alternate states 
(e.g. Dudgeon et al., 2010; Mumby et al., 2013; Schmitt et al., 2019; 
van de Leemput et al., 2016), have been a limiting factor in defining, 
recognizing and understanding coral reef regime shifts, especially 
towards non- algal- dominated states. This has been partially due to 
the fact that the hypothesis of alternative states suggests that more 
than one stable state (i.e. community configuration) can occur in the 
same place under the same exact environmental conditions, which 
is extremely challenging to prove experimentally in ecosystems 
with relatively slow benthic biomass dynamics, such as coral reefs 
(Dudgeon et al., 2010; Knowlton, 2004; Mumby et al., 2013). In pre-
vious reviews, community shifts were generally defined as extensive 
relative decreases in projected (i.e. 2D) reef substrate cover of hard 
corals (i.e. reef- building corals including both scleractinian corals and 
hydrocorals) in combination with a relative increase in cover of other 
benthic reef organisms that persisted at least 5 years (Norström 
et al., 2009). However, in many remote locations, long- term moni-
toring programs are either not established or not linked to research 
programmes, which results in a failure to detect community shifts 
and evaluate the persistence of non- hard- coral- dominated habitats 
(Obura et al., 2017). For example, reports of reef habitats dominated 
by organisms other than hard corals, such as soft corals or zoanthids, 
are not rare, but since many of these observations are sporadic, few 
of these studies discuss possible community shifts (e.g. Baum et al., 
2016; Lin & Denis, 2019; Wee et al., 2017).

In fact, recent research suggests that coral reefs dominated 
by invertebrates other than hard corals, such as sponges and soft 
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corals, might be becoming more frequent as a result of global change 
(Bell et al., 2018; Chaves- Fonnegra et al., 2018; Inoue et al., 2013; 
Lesser & Slattery, 2020). Yet, information regarding changes to such 
alternative communities remain highly scattered and the drivers and 
mechanisms behind the proliferation of these alternative organ-
isms remain largely unknown (Norström et al., 2009; Reverter et al., 
2021). For example, whereas some changes have been observed 
after specific pulse disturbances, such as bleaching events (Chaves- 
Fonnegra et al., 2018) or ocean acidification (Inoue et al., 2013), their 
frequency, distribution and implications for ecosystem functioning 
remain unexplored.

Here, we systematically review the literature on different tropi-
cal coral reef benthic community changes in order to identify import-
ant research gaps. The aim was to perform a broad review, including 
gradual and abrupt changes with or without hysteresis mechanisms, 
to provide a global understanding of the benthic community changes 
that coral reefs are facing, including all studies addressing coral reef 
community shifts irrespective of postulated theories and used ter-
minologies. To accomplish that, from here on, the coral reef ben-
thic communities dominated by organisms other than hard corals 
(i.e. alternative organisms) are defined as alternative communities 
for simplicity. However, to avoid new controversy, we stress out 
that this terminology is not related to the ‘alternate state’ theory 
(Beisner et al., 2003; Mumby et al., 2013), and, therefore, does not 
imply the presence or absence of hysteresis mechanisms, which was 
not possible to evaluate from the data collected. In addition, we 
collected benthic data on 1116 reefs from the ReefCheck database 
and used different meta- analytic tools to explore biogeographic 
and latitudinal patterns in dominant benthic organisms, in order to 
evaluate whether the scientific literature reflects field benthic pat-
terns. Finally, we discuss the advantages, limitations and challenges 
of the methods currently used to detect and study such community 
changes.

2  |  DATA COLLEC TION AND ANALYSIS

2.1  |  Systematic literature review

We systematically searched all peer- reviewed journals and PhD the-
ses in Web of Science (up to 15 December 2020) that investigated 
coral reef community changes or shifts. We performed our research 
following the PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta- Analyses) guidelines (Moher et al., 2009). The 
following keywords were used: (phase OR alternate OR abrupt) 
AND (change OR shifts OR regime OR state) AND (coral reefs). This 
yielded 1724 articles, of which 769 were selected for further screen-
ing after the title and abstract analysis. Full- text of the retained ar-
ticles were then reviewed to determine whether they met at least 
one of the following criteria: (1) they directly studied or reviewed 
tropical coral reef benthic community changes, (2) they examined 
coral reef communities, in which at least the cover of two response 
variables (i.e. benthic organisms) was reported, (3) they explored 

drivers and triggers driving changes in response variables, (4) they 
investigated biotic mechanisms that could alter response variables 
or (5) they studied direct or indirect implications of changes in re-
sponse variables to ecosystem functioning or ecosystem services. 
Articles assessing any of these five criteria were included in the 
systematic literature review resulting in 523 analysed publications 
(Data S1). The following information was extracted from each of 
the retained articles: year of publication, type of benthic organisms 
studied, geographic region and methods used. The type of examined 
benthic organisms was intended to provide information about the 
kind of benthic community changes studied and included the fol-
lowing categories: benthic algae (e.g. containing both macro-  and 
turf algae), hard corals (when different coral genera or species were 
comparatively investigated, including both scleractinian and hydro-
corals), cyanobacteria, sponges, soft corals, zoanthids, ascidians, 
corallimorpharians, and ‘mixed’ benthos (for studies that assessed 
more than three of the previous categories). The geographic regions 
were classified into the main tropical geographic realms (Tropical 
Atlantic, Western Indo- Pacific, Central Indo- Pacific realm, Eastern 
Indo- Pacific and Tropical Eastern Pacific) and provinces (Caribbean, 
South West Atlantic, North Western Indian (combining Red Sea and 
Persian Gulf), Western Indian, Central Indo- Pacific province, Central 
Pacific, South West Pacific, Polynesian and Hawaiian) following 
previous works (Cowan, 2014; Kulbicki et al., 2013; Spalding et al., 
2007). The methods were classified into surveys, long- term monitor-
ing (surveys during ≥5 years), modelling, aquaria experiments, field 
experiments, benthic sample analyses and literature review. We dis-
tinguished between experiments (aquaria or field) where only obser-
vational data were collected (e.g. abundance of biological variables 
or the outcome of an interaction) and experiments where further 
sample analysis of benthic organisms was undertaken to study more 
detailed mechanisms or processes (e.g. nutrient cycling, microbial 
communities or chemical cues). The latter were first classified as 
aquaria or field experiments and further classified as benthic sample 
analyses. When a study included more than one methodology, for 
example, field experiments and benthic sample analysis, all methods 
were considered in the numerical analyses.

2.2  |  Meta- analysis from benthic cover data from 
ReefCheck Database

We additionally collected benthic cover data from 1116 tropical 
coral reefs from the ReefCheck database (http://data.reefc heck.
us/). Data were only collected for shallow reefs (≤15 m) that had 
been monitored between 2009 and 2019. For each site, we col-
lected the following information: site name, latitude, longitude, 
biogeographic region, biogeographic realm, survey date(s), survey 
depth, and (relative projected) cover (%) of hard corals (including 
both scleractinian and hydrocorals as these are often grouped as 
one category in ReefCheck), algae, soft corals, sponges and other 
benthic organisms. We then calculated the most abundant bi-
otic group, which was defined as the group displaying the largest 

http://data.reefcheck.us/
http://data.reefcheck.us/
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relative benthic cover. The log response ratio (LnRR) was calculated 
between alternative organisms (algae, soft corals and sponges) 
and hard corals at each of the biogeographic provinces using the 
escalc function from the R package ‘metafor’ (Viechtbauer, 2010). 
Nested linear regression and linear mixed models were con-
structed to examine the relationship between the LnRR (alterna-
tive organisms/hard corals) and latitude using the lme4 package 
for R (Bates et al., 2015). Absolute latitude (i.e. degrees from the 
equator) and survey depth were included as fixed effects, whilst 
nested biogeographic information (province/realm) was included 
as a random effect. Akaike's information criterion for smaller sam-
ple sizes (AICc) was used to assess the explanatory value and par-
simony of each model. Akaike weights (wi) were used to select the 
model with the best fit (model with the highest weight; Arnold, 
2010). The R package bootpredictlme4 (Duursma, 2017) was used 
to predict LnRR values and their standard errors from the chosen 
model using 500 bootstraps, and the R package visreg (Breheny & 
Burchett, 2017) was used for visualization.

3  |  T YPES OF COMMUNIT Y CHANGES 
AND BIOGEOGR APHIC HETEROGENEIT Y

Despite coral reef benthic community changes being initially re-
ported during the 1980s, the scientific interest has grown exponen-
tially during the last decade, with nearly half of the articles on the 
topic being published within the last five years, between 2015 and 
2020 (Figure 1a). We identified eight different alternative organ-
isms that can lead to non- hard- coral- dominated communities: algae, 
sponges, soft corals, zoanthids, cyanobacteria, ascidians, anemones, 
and corallimorpharians (e.g., Baum et al., 2016; Biggerstaff, Jompa, 
et al., 2017; Cruz et al., 2016; Fong et al., 2020; Ford et al., 2017; 
Tebbett et al., 2019; Tkachenko et al., 2017; Work et al., 2008). 
Changes towards alternative benthic communities can result from 
competitive replacement when a modification in environmental 
conditions changes the outcome of competitive interactions in fa-
vour of the alternative organism. For example, sponges have been 
observed to outcompete corals and dominate benthic assemblages 
at some Indonesian sites with turbid waters (Biggerstaff et al., 2015, 
Biggerstaff, Jompa, et al., 2017, Biggerstaff, Smith et al., 2017). 
Similarly, a loss of top- down (i.e. loss of predators) or bottom- up 
(i.e. increase in the nutrient) control due to anthropogenic activi-
ties, such as overfishing and coastal pollution/eutrophication, is 
also known to promote proliferation of algae and lead to coral- algal 
shifts (Cheal et al., 2010; Fong et al., 2020; McManus et al., 2000; 
Smith et al., 2010). Changes in benthic dominance can also be a re-
sult of vacant substrate recolonization after large disturbances that 
induced widespread mortalities, such as mass bleaching events, 
storms or diseases outbreaks (Cerutti et al., 2020; Doropoulos et al., 
2014; Hughes et al., 1987; Roff et al., 2015).

We also identified two types of compositional changes within 
hard coral communities: (1) a shift towards reefs dominated by fast- 
growing hydrocorals, such as Heliopora or Millepora, and (2) a turnover 

between branching hard- coral communities (e.g. Acroporidae) to-
wards communities dominated by massive and encrusting species 
(e.g. Poritidae, Agaricidae, Faviidae), which were mostly related to 
their different sensitivities to disturbances and recovery potential 
(Adjeroud et al., 2018; Darling et al., 2019; González- Barrios et al., 
2021; Harii et al., 2014; Toth et al., 2019). Acroporidae are amongst 
the most susceptible corals to thermal stress, with acroporids show-
ing higher bleaching and mortalities after thermal stress than mas-
sive corals such as Porites, Dipsastrea and Goniastrea (Schoepf et al., 
2015; Thinesh et al., 2019). Porites corals have also been shown to 
be less susceptible and have a higher recovery potential after alle-
lopathic damage by algae whereas corals of the genus Acropora and 
Pocillopora showed no signs of recovery after the removal of aggres-
sive algal competitors (Bonaldo & Hay, 2014; Rasher et al., 2011). In 
contrast, increased abundance of hydrocorals, such as Heliopora coe-
rulea, has been attributed to enhanced growth performance under 
warmer temperatures, which allows them to colonize new substrate 
and overgrow slower- growing scleractinian corals (Guzman et al., 
2019).

Overall, the literature analysis shows that over half of the studies 
are focused on coral- algal changes (Figure 1b). However, the relative 
number of benthic- community- change studies towards non- algal or-
ganisms has increased over time from only 25% between 1980 and 
2000 to nearly half of the studies (47%) between 2015 and 2020 
(Figure 1a). This raises two questions: (1) Whether these results re-
flect natural patterns and new communities are indeed emerging as 
a result of global change and more frequent pulse disturbances (e.g. 
mass bleaching events), or other anthropogenic disturbances (e.g. 
eutrophication, pollution, overfishing)? (2) Whether non- algal com-
munity changes might have been overlooked in the past?

3.1  |  Biogeographic patterns

In order to bring some insights into whether non- algal- dominated 
reefs might have been overlooked in the literature and to compare 
field data with the found literature trends, we collected data on 
the relative benthic cover of 1116 reefs using the ReefCheck da-
tabase. Our results showed marked biogeographic differences in 
the relative abundance and type of dominant benthic organisms 
(Figure 2a). For example, the Tropical Atlantic (Caribbean and SW 
Atlantic provinces), which is the most- studied realm according to our 
literature analysis (Figure 1c), was the only region where alternative 
communities were more abundant than hard coral- dominated reefs 
(Figure 2a). In fact, the Caribbean was the only province where the 
LnRR between algae and hard coral cover was significantly higher 
than 0, which indicated that Caribbean reefs presented higher cov-
ers of algae than hard corals (Figure 3a). Caribbean reefs also dis-
played the highest sponge/hard coral LnRR, whereas SW Atlantic 
reefs presented the highest soft coral/hard coral LnRR (Figure 3a). 
These results highlight a higher relative cover in alternative organ-
isms in these regions, which might be linked to a higher susceptibility 
to changes towards non- hard coral- dominated communities.
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Reefs from the Eastern Pacific realm (Polynesian and Hawaiian 
province) also presented an important proportion (30%) of algal- 
dominated reefs, which were the most abundant alternative com-
munity in these regions (Figure 2a). After the Tropical Atlantic reefs, 
Eastern Indo- Pacific reefs presented the largest LnRR algae/hard 
coral values (Figure 3a). These results are in agreement with the 
previous works suggesting that regions with poor coral richness and 
limited coral functional redundancy (e.g. Tropical Atlantic, Eastern 
Indo- Pacific) might display lower reef resilience to external stress-
ors (McWilliam et al., 2018) and therefore a higher tendency to-
wards community changes. However, the results from the Eastern 
Pacific need to be examined carefully due to the low survey numbers 
(Figure 2a). More research needs to investigate reef resilience and 
community benthic changes in the Eastern Indo- Pacific, where pre-
vious research suggests that at least some reefs in that region (e.g. 
Moorea in French Polynesia) have repeatedly recovered from dis-
turbances and algal shifts (Adjeroud et al., 2018; Done et al., 1991; 
Mumby et al., 2016).

Hard corals dominated over 80% of the Western and Central 
Indo- Pacific reefs (Figure 2a). However, interestingly, in the NW 

Indian and the Central Indo- Pacific provinces, which includes the 
Coral Triangle, the most abundant alternative communities were 
soft- coral- dominated reefs, with the LnRR value soft coral/hard 
coral in the Central Indo- Pacific province being significantly higher 
than the LnRR algae/soft coral value (Figures 2a and 3a). These re-
sults at the hotspot of marine biodiversity contrast with the common 
assumption that algal reefs are the most common alternative com-
munity worldwide and urge to better understand how changes from 
hard to soft- coral- dominated communities might affect ecosystem 
functioning and services.

Overall, our results suggest that the focus on the Tropical 
Atlantic has directed the scientific research towards studies on 
coral- algal and coral- sponge community changes (Figures 1b,c and 
2). However, coral reef dynamics remain severely understudied in 
other biogeographic regions, such as the Central and Western Indo- 
Pacific (Figures 1c and 2a), in which a different community compo-
sition combined with specific local and regional drivers might result 
in different ecosystem functioning. Blast fishing, for example, is 
one of the main causes for coral reef degradation and community 
changes in the Indo- Pacific, especially in Southeast Asia (Burke et al., 

F I G U R E  1  Trends in the research 
literature on tropical coral reef community 
shifts. (a) Annual number of studies 
published and relative abundance 
of articles on the different benthic 
organisms. (b) Total number of community 
shift studies on each of the alternative 
benthic organisms. (c) Total number 
of community shift studies in each 
biogeographic region 

0

25

50

75

seiduts fo reb
mun latoT

275

300

0

50

100

150

200
To

ta
l n

um
be

r o
f s

tu
di

es

(a)

(b) (c)

Algae BenthosAnemones Ascidians Corallimorpharians Cyanobacteria
Hard corals Hydrocorals Soft corals Sponges Zoanthids

Community shifts towards:

0

100

200

300

400

500

600

seiduts fo reb
mun evitalu

muC



    |  1961REVERTER ET al.

F I G U R E  2  Sites from which reef benthic cover was collected from ReefCheck database, with a relative abundance of reefs dominated by 
the different benthic groups at each biogeographic province and the number of reefs (n) studied 
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F I G U R E  3  (a) Log response ratio 
(LnRR) between alternative organisms 
(algae, soft coral, sponges) and hard 
coral cover for each of the biogeographic 
provinces. * indicates LnRR values that are 
significantly different (p- value <.05) from 
the other LnRR values for that province. 
(b) Predicted changes in LnRR between 
alternative organisms and hard coral in 
response to absolute latitude (°). Dots 
represent the raw data and the lines of the 
linear mixed model output with SE 
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2011; Chan & Hodgson, 2017) and East Africa (Braulik et al., 2017). 
Blast fishing creates vast unstable rubble fields that are unsuitable 
for coral settlement and thus inhibit the re- establishment of hard 
coral communities for centuries (Fox et al., 2019; Sawall et al., 2013). 
These rubble fields were observed to especially favour the prolifera-
tion of soft corals (e.g. Xeniidae) and to a lesser extent the settlement 
of sponges in sites with high currents as well as corallimorpharians in 
shallower depths (up to 6 m; Fox et al., 2003, 2005). It is well known 
that the socio- environmental context (e.g. research possibilities and 
site accessibility) has historically driven uneven geographical focus 
in ecological research, especially in the tropics (Stocks et al., 2008). 
Acknowledging such differential focus and the possible associated 
biases is extremely important to understand differences in ecosys-
tem dynamics and to define appropriate global and local conserva-
tion strategies.

A disparity in the resilience between Caribbean and Indo- Pacific 
reefs was previously hypothesized by Roff and Mumby (2012), who 
related it to specific biogeochemical differences between both ba-
sins. For example, the Caribbean region is exposed to high aeolian 
dust from the Sahara Desert, that could cause basin- wide iron- 
enrichment promoting macroalgal growth, which combined with a 
lack of fast- growing acroporid corals and lower herbivore biomass 
and diversity, may result in much lower reef resilience and hence a 
higher number of alternative reefs (Roff & Mumby, 2012). More re-
cent works have shown that species- poor biogeographic provinces 
(such as the Caribbean, SW Atlantic and Hawaii) have much lower 
coral (and probably benthic) trait diversity and redundancy, which 
in turn may translate to lower resilience (McWilliam et al., 2018, 
2020). For example, McWilliam et al. (2020) showed that the site 
with the lowest functional diversity (i.e. Jamaica vs. Great Barrier 
Reef) experienced the highest trait diversity loss following distur-
bance. A disparity in resilience between biogeographic regions and 
thus their susceptibility to benthic changes is related to multiple 
factors including their socio- environmental context, biogeochemical 
setting and the ecological functions of the different benthic organ-
isms. Therefore, as previously highlighted by other authors (Bruno 
et al., 2009; Roff & Mumby, 2012), the dominance of Caribbean liter-
ature on coral reef community changes, combined with the specific 
processes from this region that are not globally transferable, might 
have introduced a biased perception of global coral reef community 
changes. Our results not only confirm this, but also identify novel 
alternative communities (i.e. soft- coral- dominated communities) at 
the hotspot of marine biodiversity.

3.2  |  Latitudinal patterns

High- latitude reefs have been considered as a potential refuge for 
corals in the light of climate change (Beger et al., 2014; Yu et al., 
2019). However, recent works suggest that whilst these reefs might 
be more resilient to some environmental impacts (e.g. temperature 
changes), they could be strongly affected by anthropogenic local 
stressors (e.g. overfishing, eutrophication), and thus be at risk of 

benthic community changes (Cruz et al., 2018; de Bose et al., 2013; 
de Oliveira Soares, 2020). For example, Cruz et al. (2018) showed 
that high- latitude reefs in the SW Atlantic province presented a 
high susceptibility of shifting towards zoanthid and macroalgal- 
dominated communities, which was strongly related to local human 
impacts, such as proximity to human population and dredged ports.

In order to explore whether latitude might explain some of the 
previously observed biogeographic heterogeneity in the cover of 
benthic reef organisms, we analysed the relationships between the 
LnRR (between alternative organisms and hard corals) and latitude 
using nested linear mixed models (Data S2: Tables S1– S4). Our re-
sults showed that algae/hard coral LnRR do not significantly change 
with reef latitude (Figure 3b). However, soft coral/hard coral LnRR 
significantly increased with latitude, suggesting that at high latitudes 
reefs display higher relative covers of soft corals (Figure 3b). In con-
trast, a significant negative relationship was found between sponge/
hard coral LnRR and latitude (Figure 3b).

Although not many studies have explored how latitude affects 
coral reef benthic communities over large scales, previous works 
showed latitude as a strong determinant of coral reef benthic 
structure in the Western and Central Indo- Pacific realms (Bennett 
& Bellwood, 2011; McClanahan et al., 2014; Porter et al., 2013). 
Schleyer and Porter (2018) observed higher absolute abundances 
of soft corals (especially Sinularia sp.) in high- latitude South African 
reefs, which was corroborated by our results confirming that this 
trend transcended the Western Indian Province. Overall, these re-
sults show interesting previously unexplored patterns of coral reef 
benthic structuring related to latitude and highlight the need forx 
more research focused on unravelling how differential benthic com-
positions across latitudes might affect the dynamics and benthic 
community changes of coral reefs. However, we want to highlight 
that our models do not incorporate time as a variable. Therefore, 
whether temporal changes towards certain alternative organisms 
are more likely at higher/lower latitudes remains unknown.

4  |  METHODS: STATE OF THE ART, 
LIMITATIONS AND PERSPEC TIVES

4.1  |  Analysis of methods used in the literature

In order to better understand how coral reef benthic community 
changes are detected/studied and to identify possible research 
gaps, we analysed the methodology used in the scanned studies (i.e. 
excluding reviews). We classified the methods from descriptive (i.e. 
quantitative methods, such as surveys that provide an indication of 
the coral reefs status) to mechanistic (i.e. methods that explore the 
underlying mechanisms driving the changes, such as modelling and 
experimental set- ups).

The majority of studies used descriptive methods reporting the 
abundance of the biological responses, with 36% of the studies using 
sporadic surveys and 21% surveying reefs at least for 5 years (long- 
term monitoring; Figure 4). Of these monitoring studies (both short 
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and long- term), only 12% considered more than three alternative 
organism categories simultaneously (displayed in Figure 4 as ben-
thos category), 47% of the studies focused on changes in hard coral 
and algal cover, 15% on changes within hard coral morphologies 
or genus, and only 6% and 9% on changes in soft coral and sponge 
cover, respectively. Changes in zoanthids, cyanobacteria, hydrocor-
als, anemones, ascidians and corallimorpharians were investigated in 
less than 5% of studies (Figure 4). Overall, these proportions were 
highly similar for both surveys (<5 years) and long- term monitoring 
studies (>5 years; Figure 4).

Less used were methodologies that examine processes/mecha-
nisms leading to changes in benthic communities. Field and aquaria 
experiments (26% in total) were mostly used to investigate the role 
of specific drivers in species succession or to investigate changes 
in biological variables under specific conditions, whereas modelling 
(10%) was used to predict biological responses under different con-
texts (e.g. drivers or triggers, species configurations). Finally, 7% of 
the studies investigated specific response and feedback mechanisms 
through coupling experiments with the collection and analysis of 
benthic samples (e.g. implications on nutrient cycling, role of micro-
bial communities or chemical cues in competition success).

Overall, studies investigating non- algal changes were mostly de-
scriptive, highlighting an important gap in mechanistic studies (e.g. 
modelling, experiments, and sample analysis). For example, 75% of 
the experimental studies investigated coral- algal changes, but only 
2% examined processes that potentially lead to soft- coral changes 
(Figure 4). Such studies are vital to shed light on the drivers of these 
changes, their implications on coral reef functioning and whether 
recovery might be possible. For example, recovery from algal phase 
shifts by restoring top- down and bottom- up control processes has 
been discussed (Hughes et al., 2010; Idjadi et al., 2010; McClanahan 
et al., 2011). However, although, such recovery has been observed 
in some instances (Idjadi et al., 2010), many studies have identified 
feedback mechanisms that reinforce algal dominance and prevent 
shift reversal towards coral- dominated communities (Johns et al., 
2018). Higher algal densities not only display direct negative effects 

on corals through more frequent interactions— which can lead to 
coral disease (Nugues et al., 2004) and tissue damage through alle-
lopathy and microbial mechanisms (Barott et al., 2012; Rasher & Hay, 
2010; Roach et al., 2020)— but can also disrupt several ecosystem- 
scale processes. For example, high algal densities can inhibit coral 
settlement (Chong- Seng et al., 2014; Webster et al., 2015), pro-
mote environmental heterotrophic bacteria (Haas et al., 2016) and 
suppress herbivory processes (Dell et al., 2016; Hoey & Bellwood, 
2011), all of which reinforce algal dominance and prevent coral reef 
recovery. Some preliminary studies suggest other alternative organ-
isms, such as cyanobacteria or soft corals, might also establish rein-
forcing mechanisms like coral settlement inhibition (Kuffner & Paul, 
2004; Maida et al., 1995). However, these feedback mechanisms re-
main highly unexplored, severely limiting our understanding of the 
persistence of these alternative communities.

4.2  |  Limitations and perspectives in studying coral 
reef benthic communities

Although surveys are key in identifying community changes, the 
use of different metrics and approaches to quantify communities 
can introduce essential biases in identifying and thus understand-
ing shifts towards certain alternative organisms. Traditionally, two- 
dimensional (2D) relative cover assessments have been mostly used 
to monitor coral reef status and changes in benthic communities. 
However, although these techniques have the advantage to be eas-
ily implemented, they have been criticized for their oversimplifica-
tion of structurally complex reefs, leading to biased quantification of 
benthic groups (Brito- Millán et al., 2019; Kornder et al., 2021). For 
example, a recent study on the island of Curaçao (Tropical Atlantic) 
showed that using ‘traditional’ 2D relative cover assessments, reefs 
were dominated by non- calcifying phototrophs (i.e. macro-  and turf 
algae, benthic cyanobacterial mats; 52%) and scleractinian corals 
(32%), with relatively low cover of sponges (1.6%). But a 3D estimate 
of these reef surfaces, including the concealed ‘cryptic’ surfaces 

F I G U R E  4  Number of studies using the different methodologies identified, with the relative proportion investigating the distinct benthic 
organisms. Long- term monitoring was considered when surveys of a site were done for at least 5 years. The category sample analysis 
represents studies where samples from benthic organisms (e.g. in field or aquaria experiments) were taken and further processed to study 
underlying processes (e.g. microbial communities, chemical cues, nutrient cycling) 
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(e.g. overhangs, crevices, cavities), which comprised approximately 
half of the total reef surface, decreased the relative dominance of 
non- calcifying phototrophs and corals to 25% and 11% respectively, 
and now showed a dominance of sponges (20%) and calcifying algae 
(19%; Kornder et al., 2021). Moreover, the largest difference com-
pared with traditional 2D cover surveys was observed in biomass 
(e.g. ash- free dry weight or organic carbon content) estimates: reefs 
were then dominated by sponges (52%) and scleractinian corals 
(27%), with only 3% of non- calcifying phototrophs (Kornder et al., 
2021).

Concealed cavity dwelling organisms or ‘coelobites’ (Choi & 
Ginsburg, 1983; e.g. calcifying algae, (excavating) sponges, tuni-
cates, polychaetes) are tremendously underestimated in coral reef 
community surveys, as was also found for Red- Sea reefs (Richter 
et al., 2001; Wunsch et al., 2000). In addition, the relative contri-
bution of erect organisms to total reef benthos, such as massive 
sponges and soft corals are undervalued in projected surface cover 
estimates. The importance of cryptic communities has also been 
recognized within the global ARMS project (www.ocean arms.org), 
where standardized three- dimensional collectors are used to attract 
both encrusting species (corals, algae, etc.) and motile organisms. 
This approach revealed that organismal groups underrepresented in 
common surveys (i.e. Porifera, Arthropoda, Annelida) dominate coral 
reef communities across the globe (Pearman et al., 2018; Vicente 
et al., 2021). Studies exploring community changes towards many 
of these organisms are in most cases non- existent or severely inac-
curate since baseline studies on the contribution of these organisms 
to the total reef community are largely lacking. Cryptic communi-
ties are found to be important in the cycling of resources on coral 
reefs, for example, the cycling of dissolved organic matter (DOM) 
through the sponge loop (de Goeij & van Duyl, 2007; de Goeij et al., 
2013), and the regeneration of inorganic nutrients (DiSalvo, 1974; 
Tribble et al., 1988). Cryptic habitats could also serve as a refuge 
for non- coral invertebrates, which can become dominant on the reef 
following natural or anthropogenic disturbances (e.g. increase in 
cover of the sponge Mycale laevis following the reduction in sponge 
predators, Loh & Pawlik, 2009; Loh et al., 2015), eventually lead-
ing to alternative communities. However, the reported ‘flattening’ 
of reefs (Alvarez- Filip et al., 2009; Magel et al., 2019) due to a loss 
of structurally complex organisms (e.g. branching corals or algae), 
can also lead to a loss of ecological function attributed to cryptic 
organisms (Kornder et al., 2021; Newman et al., 2015). Therefore, it 
is pivotal to include cryptic communities in general benthic surveys 
to understand how reefs will develop in the future.

Emerging new technological advances have the potential to facil-
itate and increase the repeatability of coral reef monitoring efforts, 
but also to assess some of the aforementioned survey limitations 
(reviewed in Madin et al., 2019 and Obura et al., 2019). Automated 
survey platforms (e.g. Autonomous Underwater Vehicle [AUVs], 
Unmanned Airborne Vehicles [UAVs], satellite imaging) allow to ex-
pand the spatial and depth range coverage of coral reefs surveyed. 
However, the precision of these methods, although continuously im-
proving, does not yet allow the identification of benthic organisms 

up to the family level (Allen Coral Atlas, 2020; Madin et al., 2019; 
Murfit et al., 2017). In contrast, the combination of diving/snor-
kelling surveys using Structure from Motion (SfM) photogrammetry 
and underwater hyperspectral imagery allow for fine- scale (≤1 mm 
to 1– 2 cm resolution) three- dimensional (3D) investigation of ben-
thic reef communities, including previously overlooked benthic or-
ganisms (Chennu et al., 2017; d’Urban Jackson et al., 2020; Kornder 
et al., 2021; Rossi et al., 2020). The creation of 3D visualization 
models via SfM enables detailed analyses of benthic reef commu-
nity dynamics, such as changes in growth rates and the outcome of 
species competition over larger spatial scales than possible by tra-
ditional monitoring methods (Lange & Perry, 2020; Olinger et al., 
2021). Another example of new imagery technology is the so- called 
HyperDiver system that is able to gather information- rich observa-
tions of benthic communities by recording visual and hyperspectral 
imagery and collecting data on seawater chemistry, photosynthetic 
irradiance and estimations about the abundance of photopigments, 
which can provide important information on reef health (Chennu 
et al., 2017). However, the accessibility to new technologies in low-  
and middle- income countries as well as the further development of 
automated imaging processing tools will be critical to standardize 
reef monitoring methods, to include cryptic organisms, and to sup-
port faster analyses of the vast amount of generated survey data 
(Madin et al., 2019).

In order to understand the effects of external drivers on the re-
silience of coral reefs and their sensitivity to community changes, 
monitoring of coral reef benthos alone is, however, not enough. 
To unravel the drivers and feedback mechanisms behind benthic 
community changes, long- term reef observations need to be cou-
pled with monitoring environmental parameters (e.g. temperature, 
turbidity, nutrients) and mechanistic studies (e.g. modelling, exper-
iments). The Moorea Coral Reef Long- Term Ecological Research 
(MCR LTER, http://mcr.ltern et.edu), which was established in 2004 
to study the key mechanisms that modulate ecosystem processes 
and structure, is a successful example of a program to advance the 
knowledge of coral benthic community changes (Adam et al., 2021). 
The MCR LTER combines long- term monitoring of coral reefs around 
the island of Moorea (French Polynesia, Eastern Indo- Pacific) with 
modelling and experiments (both in the field and in aquaria) with the 
aim to investigate coral reef community changes in relation to differ-
ent global (e.g. climate change) and local (e.g. nutrient enrichment) 
disturbances (Donovan et al., 2020; Edmunds et al., 2020). However, 
as highlighted previously, coral reefs display high heterogeneity, and 
the mechanisms identified in the Eastern Indo- Pacific with its lower 
coral richness and coral functional redundancy might not be trans-
ferable to other regions. Therefore, more comprehensive programs 
such as the MCR LTER are urgently needed in other biogeographic 
regions, but establishing such a set- up requires vast resources, 
which might not be available in most low and Middle- Income coun-
tries where most coral reefs are located. This could be, however, 
achieved by expanding large coral reef monitoring efforts, such as 
the Global Coral Reef Monitoring Network (GCRMN, https://gcrmn.
net/) or the MERMAID Global Database (https://datam ermaid.org/) 

http://www.oceanarms.org
http://mcr.lternet.edu
https://gcrmn.net/
https://gcrmn.net/
https://datamermaid.org/


    |  1965REVERTER ET al.

to incorporate more mechanistic evaluation of the reefs studied. 
One approach could be collaborations of local scientists teaming 
up with designated expert panels and institutions strong in financial 
and human resources. Ideally, such initiatives should be established 
in the major tropical geographic realms (Tropical Atlantic, Western 
Indo- Pacific, Central Indo- Pacific, Eastern Indo- Pacific and Tropical 
Eastern Pacific) in order to evaluate coral reef benthic community 
changes on a global scale.

5  |  CONCLUSIONS AND FUTURE 
DIREC TIONS

As the restructuring of tropical coral reef communities towards 
different and perhaps emergent non- hard- coral- dominated com-
munities becomes inevitable at many locations, there is an urgent 
need to better understand the dynamics, ecological functions and 
societal impacts of these new communities. The dynamics and fate 
of Anthropocene reefs are increasingly driven by the socioeco-
nomic context, which interacts with the natural biophysical setting 
(Williams & Graham, 2019; Williams et al., 2019), resulting in mul-
tiple community types, with different functional implications. Most 
of the coral reef community shift research to date has focused on 
the study of coral- algal community changes, which have been popu-
larly considered as the golden standard of a reef's ‘degraded state’. 
Here, we argue that the higher number of studies on the Tropical 
Atlantic has likely directed scientific research towards the study of 
coral- algal shifts, whilst overlooking other alternative communities. 
Furthermore, we show for the first time that soft- coral dominated 
reefs were the most abundant alternative community in different 
biogeographic regions, including the hotspot of marine biodiversity 
(Central Indo- Pacific province). This finding is particularly important, 
since knowledge on how soft- coral dominated reefs function and 
what services they provide is extremely limited, and local commu-
nities in many of these areas are amongst the most dependent on 
coral reef ecosystem services such as coral reef fisheries (Eddy et al., 
2021).

As previously highlighted by Bruno et al. (2009), most of the 
management activities to prevent and reverse coral reef benthic 
changes have been focusing on conserving or restoring top- down 
and bottom- up processes (i.e. protecting fish and especially herbi-
vore stocks and preventing nutrient enrichment). Whilst these ini-
tiatives are very important and may enable protecting key functional 
species (e.g. species that might limit algal proliferation; Bellwood 
et al., 2006b; Burkepile & Hay, 2011; Dang et al., 2020; Kuempel 
& Altieri, 2017), there is still an extremely poor understanding on 
the mechanisms that drive and reinforce non- algal alternative com-
munities (González- Rivero et al., 2012). Therefore, a better under-
standing of the drivers, reinforcing mechanisms and the persistence 
of non- algal alternative communities is urgently required to design 
appropriate conservation approaches. Mechanistic studies using 
models and experiments need to be expanded (from the classical 
triangle ‘coral- algae- fish’) to incorporate other biological organisms 

(e.g. sponges and soft corals) and their interactions. Only by under-
standing the highly multifaceted interactions amongst the different 
coral reef organisms, we will gain insights on how, where and why 
coral reefs are changing.

In order to better identify and detect the aforementioned alter-
native communities, benthic monitoring also needs to move forward 
in adopting new technologies and techniques. The most commonly 
used 2D surveys, which only consider projected percentage cover, 
overlooking cryptobenthic and underestimating erect communities, 
has important limitations and potential bias on identifying and un-
derstanding coral reef benthic changes. This is a limitation often en-
countered when studying structurally complex ecosystems (i.e. coral 
reefs, terrestrial forests), and on which researchers are currently 
working to propose alternative methods that can be widely em-
ployed and standardized to provide much more accurate community 
metrics (Ransome et al., 2017; Rossi et al., 2021). Furthermore, the 
determination of the sizes or standing stocks of coral reef organisms 
is only a part of the puzzle to understand how coral reefs function. 
Understanding the biogeochemical cycling of resources (e.g. fluxes 
of carbon, nitrogen, phosphorus or certain (in)organic substances) 
through the ecosystem is also vital. Thereto, assessing the biomass 
of reef organisms and communities is more important than the rel-
ative cover. However, the relatively easy, fast and cost- effective 
traditional 2D surveys do still provide important information on the 
‘health’ state of reefs (e.g. the relative hard coral to algae or other 
alternative organisms cover). The inclusion of so far largely ignored 
hidden or cryptic communities is also highly recommended in future 
studies, as these communities are markedly different (hence, likely 
have very different ecological functions) than visible or exposed reef 
communities (de Goeij et al., 2013; Kornder et al., 2021). The current 
‘flattening’ of reefs will have, at present largely unknown, ecologi-
cal consequences as cryptic communities, with largely understudied 
ecological functions, may disappear accordingly. Studies assessing 
coral reef trajectories and recovery after disturbances should incor-
porate a functional assessment of the communities as recent studies 
have shown that cover estimates or alpha diversity measures can 
mask important changes (McWilliam et al., 2020; Reverter et al., 
2021; Richardson et al., 2018). Furthermore, novel threats, such as 
the increase of pathogens linked to climate change or anthropogenic 
substances (e.g. emerging persistent organic pollutants, microplas-
tics) and their interactions need to be considered as they might 
also play a role in benthic community changes (Lamb et al., 2018; 
Maynard et al., 2015; Reichert et al., 2021).

Finally, it is not only vital to identify different alternative com-
munities and mechanisms that lead to alternative communities, but 
to understand how these new configurations will affect reef func-
tioning and services. For example, how sessile benthic changes will 
affect mobile organisms’ communities (e.g. vagile invertebrates or 
fish) and key processes such as larval recruitment, survival and re-
plenishment, which affect simultaneously reef functions, reef resil-
ience and the ecosystem services provided. Whilst these aspects 
have been widely studied on coral- algal shifts (Ainsworth & Mumby, 
2015; Hempson et al., 2018; Pisapia et al., 2019; Robinson et al., 
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2019), very few studies have tackled these questions in non- algal 
alternative communities (Cruz et al., 2015).
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