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Abstract

Demand response is one of the most promising tools for smart grids to integrate more renewable energy sources. One
critical challenge to overcome is how to establish pricing and control strategies for integrating more electric vehi-
cles (EVs) and renewable energy sources. This paper proposes a dynamic optimal operation of a solar-powered EV
charging station where onsite solar generation, number of EVs in the system, historical EV response to price, EV
technical specifications and EV driving behaviour vary. A bi-level optimisation approach is proposed, where pricing
tariffs ensure an economic and price responsive operation, then EV charging schedules are computed for energy bid-
ding capacity to provide balancing services. Simulations are conduced to evaluate the performance of unidirectional
and bidirectional EV charging at different charging speeds and demand elasticity. Results demonstrate the potential
of extra revenue streams coming from the participation in energy markets compared to that of EV charging alone.
Additionally, limitations of energy bidding with battery size, trip requirements and charging ratings are discussed to
show insights into the operation of charging stations.

Keywords: Smart grid, demand response, EV charging, renewable energy, optimisation.

1. Introduction

As the transportation sector moves towards the re-
placement of the combustion engine with an electric
one, the power sector also moves from high-carbon
emission energy generation sources to low-carbon emis-
sion ones, such as wind, solar and biomass energy.
However, this transition brings significant challenges to
power systems’ reliability and resilience due to the in-
creasing complexity of balancing energy demand and
supply [1]. This increasing complexity could come
from both intermittent renewable energy sources and in-
creasing power demand, for instance as a result of more
electric vehicles (EVs) [2]. Consequently, more fre-
quent control requirements and reformed ancillary ser-
vices provision are required to improve and maintain the
operations of power networks [3, 4]. The development
of EV charging technology and demand response pro-
grams bring an opportunity to aggregate EVs’ power
demand to participate in current and emerging energy

∗Corresponding author.
Email address: hongjian.sun@durham.ac.uk

(Hongjian Sun)

markets, which facilitate the transition to decarbonisa-
tion of the transportation sector [5, 6, 7].

Recent innovation projects have proposed to use the
flexibility of EV charging for participating in energy
markets to benefit from EV batteries to the grid. Ve-
hicle to grid (V2G) technology allows EVs to discharge
electricity back to the power grid given the bidirectional
power flow capability. The report [8] explored projects
with V2G technology and noted that only one project
is currently at commercialisation stage. Some ongoing
projects aim to test for the feasibility of V2G support to
the network, e.g., the new Electric Nation V2G trial in
Wales, UK [9]. There still exists research gaps for inte-
grating EVs with the power grid, for example, efficient
demand response of EVs and smart charging strategies
at charging stations.

Recent research has shown the advances in energy
bidding and pricing depending on market designs and
the business models of the charging station operator:
Sortomme et al. [10] designed a bidding mechanism
to model all possible V2G capability for frequency reg-
ulation and spinning reserves to maximise charging op-
erator revenues. Nakano et al. [11] proposed aggrega-
tion of EVs and plug-in hibrid vehicles using a home
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energy management system for residential households
to participate in a regulation market with different time
scale control mechanisms. Mizuta et al. [12] proposed
a model for balancing services at the distribution level
to mitigate voltage imbalance using ordinary differen-
tial equations to represent distribution voltage. Data un-
certainties when aggregating EVs for balancing services
have also been considered using bias measurements of
regulation signals as proposed by Cui et al. [13] and
pricing regulation predictions using seasonal auto re-
gressive integral moving average model as proposed by
[14]. These research works have provided contributions
in terms of control for energy bidding of EVs parked
in residential locations and uncertainties in the system;
however, pricing mechanisms that engage customers in
balancing services have not been considered, nor have
the stochastic behavior and demand response nature of
EVs been explored.

In order to influence customers according to grid re-
quirements, demand response programs have been used
as promising tools to enhance penetration of more re-
newable energy sources in the grid, while encouraging
certain patterns in customer energy demand [15, 16].
Following forecasting of market clearing price and an-
cillary service prices, Chandra Mouli et al. [17] pro-
posed aggregation of EVs parked in buildings integrated
with solar panels to maximise the charging operator rev-
enues. Lui et al. [18] proposed a dynamic pricing model
for an EV aggregator using a reinforcement learning al-
gorithm that considers updates from a spot market, price
elasticity from users to compute energy prices and EV
load changes. Tawfiq Masad et al. [19] proposed a
real time pricing scheme using inverse demand curve
to account for price changes when microgrids are con-
gested. Chen et al. [20] proposed pricing schemes
using cooperative and non-cooperative game formula-
tions in order to achieve market equilibria. These works
have adequately considered how EV schedules can be
adapted to pricing signals set by the charging station
operator. However, prices for auction markets have not
been explored; and pricing to influence driver behavior
and charging responses to price changes have not been
effectively considered.

To continue with research in demand side manage-
ment mechanisms that aim to influence EV user demand
and/or improve EV charging service, Li et al. [21] pro-
posed using congestion pricing and waiting time options
to EV users to model geospatial charging via a naviga-
tion system. Hou et al. [22] proposed using short term
and long term contracts, as well as time of use tariffs
and price discounts to shape EV charging scheduling.
Zhang et al. [23] proposed another pricing mechanism

to incentivise coordination in EV charging stations and
minimise service dropping rate modelled in a queuing
system. Similarly, Zhao et al. [24] modelled charg-
ing stations using queue theory to create pricing scheme
to maximise quality of service of charging stations. In
terms of EV consideration of user preferences for charg-
ing, Selim et al. [25] proposed using charging price
preferences of EV users following real time electricity
price to compute EV charging scheduling. These works
adequately modelled pricing and incentive mechanisms
to shape smart charging schemes and ensure charging
coordination. However, they did not consider pricing
mechanisms for vehicle to grid capability of EV bat-
tery integration with ancillary services and the respec-
tive pricing mechanisms for auction bids programs such
as the ones used in the UK. As described before, there
are critical research gaps in pricing schemes for balanc-
ing services offered by EV charging as there is limited
research that has integrated engaging pricing for EV dis-
charging considering EV users expected responses to
price.

In addition, financial modelling represents one of
the biggest barriers to the commercialisation of V2G
technology[8] even though flexibility potentials with
this technology are are higher than with G2V technol-
ogy only. To address the aforementioned challenges and
research gaps, this paper proposes a dynamic, customer
responsive pricing scheme for commercial charging sta-
tions with onsite solar generation. This pricing scheme
can be used in auction based markets, where charging
operators send price and energy bidding information to
grid operators. This paper offers the following key con-
tributions:

• A novel dynamic pricing scheme is developed to cre-
ate a tariff that changes using grid analytics from his-
torical EV user responses to price and maximisation
of revenues from the charging station. Key variables
for economical operation of the charging operator
consider onsite solar generation profitable financial
relationships and EV users charging availability to set
bid aggregation for ancillary service provision

This scheme provides an economical and customer
engaging solution that addresses the pricing dilemma
for EV charging, profitable incentives to increase or
decrease charging rate, and auction bidding prices for
participating in balancing services.

• A new bi-level optimisation approach is proposed for
managing pricing and control mechanisms for EV
charging and integration energy bids with ancillary
services. Compared to other pricing mechanisms
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such as stackelberg approaches, separation of pric-
ing and EV charging control offer a more applicable
and realistic method where price equilibrium could
be imposed externally by independent energy regu-
lator. Pricing is the first optimisation module to set
pricing from the charging station operator, aiming to
have additional revenue streams to EV charging when
participating in balancing services. Then, the EV
charging module is the second optimisation that es-
timates an optimal charging rate from the EV user’s
perspective, following the pricing signals while meet-
ing customer and charging technology restrictions.

• A new control strategy to plan the stochastic EV
charging bids combined with EV charging schedul-
ing is proposed to manage unidirectional grid to vehi-
cle (G2V) and bidirectional V2G charging technolo-
gies. It provides potential revenue streams and en-
ergy bidding capability to support balancing services.
This control strategy is able to handle probabilistic
arrivals, departures, trip requirements, EV user avail-
ability, battery size restrictions and varying charging
rates.

The remaining parts of this paper are organised as fol-
lows. The proposed model is introduced in Section 2,
including the dynamic pricing scheme and EV charg-
ing control compliant with V2G and G2V technologies.
Section 3 shows simulation setup, and then the simula-
tion results of proposed schemes are evaluated. Discus-
sions and conclusions are presented in Section 4.

2. Proposed Model

The proposed model consists of an EV aggregator or
charging station operator of a group of EVs with con-
nection to the transmission or distribution system oper-
ator. Figure 1 summarises the activities and exchange
of messages for the operation of the charging station
participating in balancing services when using EVs as
flexible loads. It also presents the bi-level optimisation
approach used by the charging operator. The EV aggre-
gator could be the owner of the charging station that is
capable of buying electricity from the grid, of produc-
ing onsite solar generation, of selling/buying electricity
to EV users and of selling energy to the grid for balanc-
ing services provision. With the use of Information and
Communication Technologies, the EV aggregator can
know in advance important information for the charging
station operation such as EV drivers response to price,
arrivals, departures, trip requirements and solar power
forecast.

This information is used as a data driven approach
for estimation of price strategies that maximise revenues
based on historical customer response to price during
a day. Given the price optimisation, energy bidding
coming from EVs is estimated using a control optimisa-
tion that evaluates demand response of EV drivers. Fi-
nally, the potential revenues from V2G and G2V charg-
ing technology are presented to comprehend EV driver
response to prices given a predetermined dynamic pric-
ing strategy.

The business model of the charging station opera-
tor proposed in this paper is applicable for big park-
ing lots such as the ones in office buildings or super-
markets. The revenues of the charging station opera-
tor come from charging of EVs and from participating
in balancing grid services. The three stakeholders in-
volved are charging station operator, grid operator and
EV customers, as shown in Figure 1. One example of
the grid operator is National Grid which is the transmis-
sion system operator in the UK. Firstly, the charging sta-
tion process expected estimates; response to price from
EVs, EV driver profile and solar power for the following
day. Secondly, this information is then used in the first
optimisation; dynamic time of use pricing which uses
a regression analysis of price and charging quantities
for EV charging to maximise revenue curves by using
Calculus, a popular approach used in microeconomics.
This optimisation uses cost, demand response estimates,
and economic boundaries to estimate pricing for EV
charging and for ancillary services. Thirdly, the charg-
ing operator uses the second optimisation that is the EV
charging, formulated with linear programming. This
optimisation estimates EV charging scheduling charg-
ing strategies assuming customers will respond to price
signals by charging when energy is cheaper and as long
as restrictions, e.g., charging availability, driving re-
quirements, charging and battery limits, are ensured. Fi-
nally, the outputs from the second optimisation are then
used by the charging operator to charge EVs and aggre-
gate energy bids for ancillary services. The two mod-
ules in the bi-level optimisation are explained in more
detail in the following subsections.

2.1. Time Of Use Dynamic Pricing

The pricing module is the first part of the model
where prices is created when learning from historical
price information. This price methodology uses the
fundamentals of microeconomics of a monopoly where
the EV aggregator is able to set prices and EV users
are price takers. The model uses the information of
price and demand curves, energy costs from the grid and
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Figure 1: Proposed bi-level optimisation model with activities and
communication between stakeholders involved and variable inputs for
the pricing and EV charging optimisation modules.

stochastic onsite solar generation to use for EV charg-
ing, for every hour in a day. A time of use pricing tariff
approach is proposed to encourage EV charging behav-
ior response from price differences in time with more
expensive and cheaper prices. When looking closely at
the stochastic variables of the model, i.e., the number of
EVs in the charging station and variation of solar gen-
eration, the pricing model is able to compute a dynamic
behavior of the tariff results for both pricing to announce
to EV users and to a grid operator. Thus, a combination
of dynamic and time of use tariff is used to encourage
charging shifts to timings where ancillary services occur
and when energy is cheaper for the charging station op-
erator. These pricing outputs of the model are computed
to make the operation of charging station economically
feasible and to optimise revenues. The formulation of
the pricing module considers the study of an average
EV user i and changes in the dynamics of the charging
station in time t. The main goal of the EV aggregator
in (1) is to find the optimum values of quantity Q∗t that
will maximise utilities ut when evaluating revenues rt

and costs ct for every hour in a day as follows

Max
Qt

ut(Qt) = rt(Qt) − ct(Qt). (1)

The utilities are subject to the revenues at hour t esti-
mated by

rt(Qt) = pt(Qt) · Qt. (2)

The inputs for revenues are historical price pt and en-
ergy demand Qt. To optimise for an optimum quantity,
price is computed as a function of quantity from his-
torical EV customer response to price represented as a

linear regression by

pt(Qt) = β0t + β1t · Qt, (3)

where β0t and β1t are the corresponding coefficients
from predicted price and charging demand estimations.
The principles of this linear regression relationship
which are based on microeconomic theory [26, 27] are
key in the pricing scheme proposed to estimate bet-
ter demand response pricing strategies. Microeconomic
fundamentals are used in this paper to measure pre-
dicted customer response to price from variations of his-
torical charging demand and costs in a day.

The costs in (1) are computed from the cost of the
charging station per energy unit to buy from the grid cgt

and taking into account the available onsite solar power
generation Pst per solar panel n, that can be used for
charging available EVs at the charging station as below

ct(Qt) = cgt · (Qt − n · Pst). (4)

EV availability is studied as the available time avt. An
EV can be charged from arrival ar to departure de at
the charging station according to EV driver behaviour
in time t. Thus the availability of each EV is defined by

avt =

1, if ar ≤ t ≤ de
0, otherwise.

(5)

To find an optimal charging demand Q∗t from (1), fol-
lowing price and charging demand optimisation prin-
ciples of microeconomic theory, it is required to equal
marginal revenue r′t and marginal cost c′t as follows

Q∗t = arg(r′t − c′t = 0). (6)

With some rearrangements as detailed in the Appendix
A, we can find this optimal energy demand quantity as
below

Q∗t = (cgt − β0t)/(2 · β1t). (7)

Given the optimal charging demand, we obtain the opti-
mal price from the linear regression function estimated
from historical demand as below

p∗t = β0t + β1t · Q∗t . (8)

As the charging operator aims to have an additional
revenue stream to charging EVs which is obtained from
bidding energy for balancing services, definition of both
profitable prices and charging rating limits is key. Thus,
if we define charging ratings as charging demand turn
down as Qdt, and demand turn up as Qut, the required
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Figure 2: Mathematical relationship of variables in pricing optimisa-
tion.

charging ratings to have positive utilities must be within
the following boundaries

Qdt ≤ Q∗t −min(xt), (9)

Qut ≤ max(xt) − Q∗t , (10)

where min(xt) and max(xt) state the minimum and max-
imum energy limits so that utility function ut(Qt) is pos-
itive. Thus, these two quantity boundaries can be es-
timated from solving ut(Qt) = 0. To illustrate these
boundaries, Figure 2 shows an example of the positions
of min(xt), max(xt) and Q∗t in a price per energy unit
(p/kWh) and charging demand (kWh) graph that also
shows their relation to functions of utilities, revenues,
cost and the inverse demand curve.

To compute the demand response prices for the time
of use dynamic tariff, the same linear regression for the
optimum price is used. For practicality, energy bal-
ancing services when influencing EVs to charge more
energy are referred as energy turn up, and energy turn
down when influencing EVs to charge less energy or
discharge energy with V2G technology. Calculations
are made to find a profitable maximum and a minimum
demand relation to price to provide incentives to EV
customers. Prices for either energy turn down (pdt) or
energy turn up (put) are estimated as follows

pdt = β0t + β1t · (Q∗t − Qdt) (11)

put = β0t + β1t · (Q∗t + Qut). (12)

The pricing matrix for the time of use dynamic tariff is
computed from a combination of the optimum price and
demand response prices, whenever is more convenient
for the charging station to provide balancing services in
a day, according to a charging station utilisation param-

eter ρt. The final price matrix (p f ) is given by

p f =

[
p∗1 ... p∗ti−1 pdti ... pdt f

... put j ... pute p∗te+1 ... p∗24

]
,

(13)

which is integrated from the optimum price (p∗t ) since
the start of the day and before the time where energy
turn down starts at ti − 1, then pdt and put prices are
integrated accordingly to then go back to the optimal
tariff from the end of the energy turn up period at t f + 1,
and until the end of the day.

Utilisation parameter from the hourly capacity (ρt)
of the charging station is considered in order to decide
which timings are better for either providing energy turn
down or energy turn up. The utilisation is classified in
high (ht), medium (mt) and low (lt) based on the charg-
ing availability between arrival and departure of EVs
regardless of their charging status. Balancing services
are provided only when capacity at the charging sta-
tion is at high levels because the availability of EVs at
the charging station is key to provide the correspond-
ing flexibility services. The number of hourly periods at
high level is divided by two periods with priority of pro-
viding cheaper tariffs to customer. For instance if there
are 7 periods of time where there are parking spaces oc-
cupied with capacity greater than 2/3, then there are 3
time periods for energy turn down (higher prices) and
4 time periods for energy turn up (lower prices). Thus
utilisation at the charging station is estimated by

2/3 · ρt ≤ ht ≤ ρt (14)
1/3 · ρt ≤ mt ≤ ρt · 2/3 (15)
0.1 · ρt ≤ lt ≤ ρt · 1/3. (16)

The next stage for pricing calculation is the computa-
tion of prices for participation in balancing services in
auction mechanisms, for instance the ones to announce
to National Grid in the UK. Flexibility service compa-
nies are expected to provide price, capacity and timings
for energy turn down or energy turn up provision [28].
Given the structure of the market, the EV aggregator
is able to provide prices and bidding quantities. The
expectation is that balancing services are used as addi-
tional revenue streams. Consequently, the utilities ob-
tained from Grid Operator should balance the loss of
revenues of EV charging when using the demand re-
sponse prices pdt and put, in other words when devi-
ating from the optimum price and quantity. Therefore,
prices to announce to Grid Operator are computed based
on equivalent revenue deviations from the optimal rev-
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enue from EV charging. The price estimation is com-
puted from making equal optimum utilities (u∗t ) and ex-
pected utilities to obtained from Grid Operator for en-
ergy turn down (u1t) and energy turn up (u2t) as below

u∗t = u1t (17)

u∗t = u2t, (18)

where utility functions for energy demand turn down
and turn up can be given by

u1t =

pgdt · |Qdt | − pdt · |Qdt |, if Qdt ≤ 0
pgdt · Qdt − cgt · (Qdt − n · Pst), otherwise

(19)
u2t = pgut · Qut − cgt · (Qut − n · Pst). (20)

The costs for energy turn down in (19) vary when it is
economically possible to discharge an EV, in this case
the corresponding costs are energy paid to EV users. In
the case when the charging rate is positive, costs are
estimated according to grid energy costs and available
solar power at the charging station.

Thus, the prices for bidding energy for balancing ser-
vices of energy turn down pgdt and energy turn up pgut

are computed as follows

pgdt =


ut(Q∗t )+pdt ·|Qdt |

|Qdt |
(1 + δ), if Qdt ≤ 0

ut(Q∗t )+cgt ·(Qdt−n·Pst)
Qdt

(1 + δ), otherwise
(21)

pgut =
ut(Q∗t ) + cgt · (Qut − n · Pst)

Qut
(1 + δ). (22)

The calculations of these prices are obtained when solv-
ing for pgdt and pgut from the substitution of (19) and
(20), in (17) and (18). To allow a profit from participat-
ing in balancing services, a margin of utility δ is added
to Grid Operator prices pgdt and pgut to cover for ad-
ditional complexities of management control. This is a
reasonable addition to pricing because the charging sta-
tion sets prices for bidding in an auction market consid-
ering a cost based strategy.

2.2. EV’s charging control

The control strategy which is used for planning of en-
ergy bids to submit to the grid operator (e.g., National
Grid), is constructed to follow pricing signals received
from the charging station operator in a day ahead time-
line, by minimising costs from charging an EV. The con-
trol strategy, which was initially inspired by the work of
Sortomme et al. [29], has been adapted to be able to
work with different charging rates limits, battery state

of charge (SOC) restrictions and stochastic variables
for EV requirements. These additions allow accurate
simulations of driver behavior during a day with dif-
ferent charging capabilities. The objective function of
the charging control is the minimization of costs (ci) for
the complete charging period the ith EV parked at the
charging station given by

Min
q∗i,t

ci =

T∑
t=1

p f · qi,t, (23)

where the charging rate q∗t is the decision variable in
the formulation that determines the charging schedule
of each EV every hour. This decision variable can be-
come negative and discharge the EV battery when the
charging station aims to provide balancing services to
the grid and when the EV is conveniently available for
discharging. It is expected that EVs will get not only
positive values from the costs in the objective function
but also negative values (EV revenues) when getting
paid for V2G provision if allowed.

To meet technology constraints of the charging sta-
tion and the EV, we define the charging rate limits for
the charging schedule with at, as the maximum charg-
ing rate and bt, as the minimum charging rate of qt when
evaluating the charging rate of an EV (yt) and charging
rate of the charging station pole (zt) as below

ai,t = min(yi,t, zi,t), (24)

bi,t = max(−yi,t,−zi,t). (25)

The state of charge of the EV is also considered, where
soci,t is i-th EV’s battery state of charge at time t that
considers charging efficiency e f when charging rate is
positive q+

i,t or negative q−i,t as follows

soci,t = soci,t−1 + q+
i,t · e f + q−i,t · (2 − e f ) (26)

Note that efficiency is modelled from the charging op-
erator perspective, where it has to charge more energy,
and discharge less energy to avoid taking advantage of
EV users over payment charges, and to balance power
losses. For instance, for 7.2 kW charge with 0.9 of
charging efficiency, the charging operator should pro-
vide charging of 10% more of 7.2 kW, and for discharg-
ing, the charging rate should be 10% less charge than
the optimum charging rate metered in the charging sta-
tion pole. Consequently, charging optimisation limits
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qi,t are subject toqi,t ≥ bi,t · avi,t, if qi,t ≤ 0
qi,t ≤ ai,t · avi,t, if qi,t > 0

(27)

where avi,t = {0 or 1} is a binary matrix per EV that
states its availability (arrival to departure) at the charg-
ing station as described in the pricing optimisation. The
usage of the charging rate limits in (27) allow the model-
ing of charging and discharging constraints for specific
periods of time and thus, allow the modelling of V2G
and G2V technology. Battery size limits wi are ensured
by taking into account the state of charge of an EV by

0.01 · wi ≤ soci,t ≤ wi. (28)

EV trip requirements are formulated when calculating
state of charge (energy levels) by

tripi = soc fi − socii, (29)

where soci is the initial state of charge and soc f is the
final state of charge of an EV.

2.3. Vehicle to Grid and Grid to Vehicle Analysis
To evaluate potential utilities from the price strategy

proposed in the time of use dynamic pricing subsection,
the responses to prices from EV drivers described in the
EV charging control subsection are evaluated against
V2G (bidirectional) and G2V (unidirectional) technol-
ogy. As described before, the EV charging control opti-
misation can evaluate charging rate restrictions for both
unidirectional and bidirectional charging. Thus, given
the different charging rate of the EVs, revenues and
costs vary as well as the interactions with the available
solar power generation at the charging station. The time
of use dynamic tariff can be used for testing EV driver
response according to current technology available in
the market.

Revenues with V2G technology capability (rvg) are
integrated from sales coming from aggregated bidding
for energy turn up (first term), energy turn down (second
term) and EV charging (third term) when the charging
rate is positive (q+

t ) by

rvg =

I∑
i=1

{ te∑
t=t j

pgut · qi,t +

t f∑
t=ti

pgdt · qi,t +

24∑
t=1

p f · q+
i,t

}
,

(30)
where I is the set of EVs to be charged by the charg-
ing station operator. Balancing service timings are de-
fined by an initial hour t j and ti, and final hour te and t f
for energy turn up and turn down periods respectively.

Costs for providing balancing services with V2G tech-
nology capability come from energy paid to EV users
when the charging rate is negative (q−i,t), and when en-
ergy must be bought from the grid (q+

i,t) when referenc-
ing to available solar power generation at the charging
station as below

cvg =

I∑
i=1

{ 24∑
t=1

p f · |q−i,t | +
24∑
t=1

cgt · (q+
i,t − Pi,t)

}
, (31)

where Pi,t is the average available solar energy that can
be used to charge an EV which can be estimated by

Pi,t = n · Pst/

I∑
i=1

avi,t. (32)

In contrast, revenues from provision of balancing ser-
vices with G2V technology capability come from sales
from energy turn up and sales from EV charging by

rgv =

I∑
i=1

{ te∑
t=t j

pgut · qi,t +

24∑
t=1

p f · qi,t

}
. (33)

Compared to V2G technology costs, G2V costs come
only from buying energy from the grid when needed as
below

cgv =

I∑
i=1

24∑
t=1

cgt · (qi,t − Pi,t). (34)

3. Case Studies and Evaluations

3.1. Simulation Setup

Table 1 summarises the simulation parameters. To
test the time of use dynamic pricing and the EV charg-
ing control optimisation algorithms, different cases are
proposed to show applicability of the model to real case
scenarios and to compare EV charging business mod-
els with balancing services. As the charging speed
rating increases with EV charging types, the price for
providing energy may also increase. In addition, cus-
tomers may respond to prices differently, for example
when there is competition in an area or when EV drivers
change charging behavior. To take into account these
possibilities, the pricing strategies are evaluated with
different different elasticities of three inverse demand
curves; an original demand from real data, a theoretical
more elastic and a more inelastic demand. The origi-
nal demand curve is also used to create demand curves
when testing for increasing charging rates. The EV
charging control strategy is used to test EV responses to
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Table 1: Simulation parameters

Parameter Value

Charging station size 35 EVs

Time periods in a day 24, for every hour

EV arrivals ar ∼ N(µ = 8, σ2 = 1)
[30]

EV sojourn time ts ∼ Logistic(µ = 0.27, s =

0.06),mn = 5,mx = 18.52
[30]

Solar panel rating 4 kW [31]

Number of solar panels 70

Initial state of charge Empirical cdf [32]

Trip requirements Empirical cdf [32]

Fast charging 1, 2 and rapid
ratings

7, 22 and 50 kW [33]

Mitsubishi Outlander
charging ratings/battery
size

3.7 and 22 kW/ 12 kWh
[34]

Nissan Leaf charging rat-
ing/battery size

6.6 and 50 kW/40 kWh
[35]

BMW 330e charging rat-
ings/battery size

3.7 kW/12 kWh [36]

Tesla 3 charging rat-
ings/battery size

11 and 100 kW/60 kWh
[37]

Electricity price 10 p/kWh [38]

Utility from balancing ser-
vices
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Figure 3: Stochastic number of EVs and average hourly solar power
generation with PV system at the charging station for workplace loca-
tion.

prices and energy bidding capacity, the results are eval-
uated comparing the capability of V2G and G2V tech-
nology.

EV driver behavior was generated from real world
projects to provide accurate simulations. Figure 3 shows
stochastic number of EVs available for charging from an
aggregated availability matrix of all EVs for the specific
case of charging at work. This figure was generated con-
sidering a total of 35 EVs. For simulation purposes, EV
profiles are created with 30, 35 and 25 EVs that arrive
at the charging station in a 24 hour period assuming de-
mand changes from an original, more elastic and more
inelastic demand curves respectively. The EV profiles
were created from EV arrivals (ar) and sojourn timings
(ts), defined as departure minus arrival time, from the
work analyzed by Develder et al. [30]. The available
onsite power generation forecast of all seasons and the
size of the solar system adopt the data from [31]. Aver-
age hourly variations of solar power variations were in-
cluded to account for intermittency of solar generation
during a day as it also can be observed in Figure 3 where
EV availability for work location overlaps considerably
with solar generation in a day. As seasonal changes of
solar power accounted for small changes in price, for
practicality, average hourly seasonal solar power gen-
eration in the Northeast of UK was analyzed. How-
ever, this paper propose to forecast EV behavior and
solar power generation with prediction algorithms such
as ARIMA, neural networks, day ahead, etc. Defini-
tions for initial state of charge of EVs and trips were es-
timated with empirical distribution functions using EV
charging data of the workplace cluster information from
“My Electric Avenue” project [32], kindly provided by
EA technology. Charging rate limits for both the charg-
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Figure 4: Inverse demand response, utilities, revenues and costs of EV charging for three different charging ratings.

ing station and EVs use two selected charging rates of
fast charging and one from rapid charging as explored
in [33]. The percentage mix of EVs in the simulation
used parameters of charging rates and battery size of
Mitsubishi Outlander PHEV (40%), Nissan leaf (30%),
BMW 330e (20%) and Tesla 3 (20%).

The demand and price curves were estimated with
40 observations with results showing significant coef-
ficients with a p value close to zero of the linear regres-
sion model and an adjusted R-squared value of 0.815.
Raw data for these calculations were estimated using
real data from trial 3 of “Electric Nation” project [39],
also provided by EA Technology. To estimate elastic-
ity variations to price from EV drivers, the coefficients
in the demand curve were decreased and increased by a
third in order to create a more elastic and more inelastic
demand curves. Prices and demand data sets for differ-
ent charging rates were multiplied by 1/2 (fast charging
2), 2/3 (rapid charging) for price, and by 4 (fast charg-
ing 2), 10 (rapid charging) for demand in order to match
prices close to real data in the current market available
in [40]. The cost for energy from the grid was assumed
to be fixed at a rate of 10 p/kWh (pence per kilowatt
hour) as proposed in [38]. Once the profiles for driver
behavior, PV forecast and demand curves are created,
the pricing and EV charging optimisations are used to
compute results for the cases where demand curve elas-
ticity changes as well as charging speed varies with
V2G and G2V technology. Analysis and discussion of
results are presented in the next two subsections.

3.2. Pricing with Stochastic Variables

The merits of the pricing and EV charging algorithm
are evaluated in this subsection to show their potential
usage in different EV driver demand response behavior
with three different elasticity levels of inverse demand
curves and different charging technology with three
charging speeds and V2G/G2V capabilities. The contri-
butions towards carbon neutrality in this section can be
observed in the slight differences of dynamic time of use
tariff proposed EV charging and in the bidding potential
from low carbon technologies coming from EV batter-
ies as these are integrated in balancing services. First,
solar power contribution towards the charging station is
reflected in EV charging price, where charging sched-
ules follow pricing signals established by the charging
station. Second, carbon emissions savings coming form
participating in ancillary services could be compared to
the related carbon emissions in the technologies used
for balancing mechanisms. Being coal and gas the most
used technologies for this purpose for instance in the
UK [41], carbon emission savings can vary based on
EV availability, carbon grid factor, charging rating, and
in the technology used for balancing services. In the
best case carbon savings could be up to 573.6 CO2eq
emissions per kWh when comparing equivalence of coal
(820 CO2eq/kWh) against the lowest carbon grid factor
intensity (e.g July 3, 2022 was 222.4 CO2eq/kWh) used
for EV charging and related impact of storage CO2eq
technologies (24 CO2eq/kWh).

Figure 4 is a representation of the basic functions
used for calculation of the different pricing strategies
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that include an inverse demand curve, revenues, costs
and utilities. The original inverse demand curves for
the fast charging 1, fast charging 2 and rapid charg-
ing scenarios present the different responses to prices
from an average EV at any time. The three inverse
demand curves show that as prices increase per kWh,
EVs would respond with charging less energy and as
price decreases EVs would aim to charge more energy.
The figure also shows more average revenues and util-
ities are obtained from rapid charging compared to fast
charging 2, and more with fast charging 2 compared to
fast charging 1. An explanation of this trend is a result
of using higher prices and quantities with faster services
of EV charging. The costs for the three charging rat-
ings remain the same as the three cases assume the same
fixed energy cost per energy unit and the same available
free energy from onsite solar generation power to charge
EVs.

The proposed time of use dynamic tariff in this pa-
per includes tariffs for periods of peak, off peak and
normal hours. Peak and off peak periods during a day
are intended to be synchronized with timings for bal-
ancing services for energy turn down and energy turn
up requirements, other timings are irrelevant for bal-
ancing services purposes. Figure 5 shows that in the
cases of the original demand curve, from 9:00 to 11:00
hours energy is more expensive and from 12:00 to 14:00
hours energy is cheaper. Timings with the more elastic
curve are increased by one hour when energy is cheaper
compared to timings with the original curve. Timings
with the more inelastic curve are reduced by one hour in
both expensive and cheap timings compared to timings
with the original curve. The reason for these changes
are related to availability of demand with different EV
numbers determined by price elasticity where balanc-
ing timings are set when there is sufficient capacity at
the charging station as established by the pricing algo-
rithm. The three cases where energy is obtained with an
original curve, a more elastic and more inelastic curve
aim to represent changes from demand. This is an es-
sential consideration for demand response mechanisms,
because knowing how customers will respond to pric-
ing and by which quantity is critical to determine an ap-
propriate use of tariffs for balancing services. The dif-
ferent elasticity cases for each different inverse demand
curve could represent when EVs may be subject to sub-
stitution effects, for instance when EVs have other op-
tions in the area for charging (elastic demand), or when
EVs prefer charging from one specific day of the week
for personal preference regardless of price (inelastic de-
mand). The results of the dynamic time of use pricing
strategy illustrated in Figure 5 adapt accordingly with
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Figure 5: Dynamic time of use tariffs used to incentivise EVs based
on demand inverse curves and charging type cases.

varying requirements of demand elasticity, timings for
balancing services and charging rating. The prices dur-
ing balancing services change slightly with cost vari-
ation due to available onsite generation of energy per
each EV.

3.3. EV Response to Price

Figure 6 shows the response from EVs with V2G ca-
pability at different charging rates. Fast charging 1 lim-
itations for EV charging shows EVs discharge energy
when energy is expensive, this allows EVs to get paid
for energy provision to the grid at a high price, a reason-
able consideration for battery compensating for degra-
dation when using V2G technology. The charging rate
during energy turn down period with fast charging rate 1
is negative and therefore balancing services can be pro-
vided from 9:00 hrs to 11:00 hrs. However, this changes
with fast charging rate 2 because EVs can take more
advantage of savings when buying energy at 10:00 hrs
to then discharge power at 11:00 hrs. Similarly, rapid
charging allows EVs to charge at 10:00 hrs to then dis-
charge at 11 hrs with a greater energy bid at 9:00 hrs and
11:00 hrs compared to fast charging 1 and 2. During en-
ergy turn up periods, EVs charge energy taking advan-
tage of the cheap prices. As the charging rate increases
EVs charge with the required trip requirements faster.
Charging outside balancing services occur in case driver
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Figure 6: EV charging profiles as a response to prices with original
demand curve using different charging type cases and bidirectional
capability.

requirements were not met by the end of the turn up pe-
riod which is the case of fast charging 1 rating. Rapid
charging has the biggest bid per hour followed by fast
charging 2 and fast charging 1. It is important to point
that a smaller charging rate could maintain more aver-
age capacity for longer periods of time as it is observed
in fast charging 1 and 2 charging rate cases. However,
bidding potential occurs for fewer periods of time with
higher charging ratings as trip requirements are met at a
higher speed.

To continue with the responses results of EV drivers,
Figure 7 illustrates the EV aggregated charging sched-
ule when EVs have unidirectional charging and using
an original demand curve for pricing. EV profiles show
the majority of EV charging happens when energy is
cheaper, which is also when energy turn up provision
is needed. However, aggregated biding for every hour
is not greater than the V2G option as charging is em-
ployed to meet energy requirements without the need
to discharge EVs. The charging scheduling is concen-
trated at 12:00 hrs as availability at the charging station
indicates EVs need to be charged before expected depar-
tures. Similar to the V2G case, a greater energy bid is
performed with rapid charging, followed by fast charg-
ing 2 and 1 respectively. It can also be observed in Fig-
ure 7 that the charging schedule of fast charging 1 and
2 indicate some charging needs to happen outside turn
up periods. Thus a greater charging rate is needed to

Figure 7: EV charging profiles as a response to prices with original
demand curve using different charging type cases and unidirectional
capability.

fully take advantage of getting revenue from charging
and for participating in balancing services at the same
time. When comparing the overall charging schedules
from Figures 6 and 7 we can see that V2G offers greater
hourly bidding capacity for both energy turn down and
energy turn up. This can be attributed to the possibil-
ity to discharge an EV and charge it again when needed
at later times as opposed to just charge it to meet trip
requirements with unidirectional charging. Thus energy
bid capacity is more limited with unidirectional technol-
ogy but it is still feasible to have some bidding capacity
during turn up period.

Figure 8 was created with new stochastic EV profiles
from an average user type with a more elastic demand
curve, the aim of the pricing scheme is to attract more
EV users to the charging station, for instance when there
is competition or when the charging station aims to in-
fluence EV users to charge at a specific day of the week.
Figure 8 shows that overall energy bidding capacity for
energy turn up is greater compared to the original de-
mand curve EV profiles as there are more cars which
are influenced to arrive at the charging station. How-
ever, most periods for energy turn down of Figure 8
are smaller compared to Figure 6, this means EVs opti-
mise revenues by taking advantage of the extended turn
up periods (cheap energy). Greater bidding capacity is
achieved with rapid charging, however for less periods
of time compared to fast charging 1 and 2. The energy
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Figure 8: EV charging profiles as a response to prices with more elas-
tic demand curve using different charging type cases and bidirectional
capability.

bids for fast charging 1 and 2 overall have less capacity
than the ones with rapid charging but they are still able
to provide energy to turn up balancing services from
12:00 hrs to 15:00 hrs. The extension of cheap prices
during energy turn up periods compared with the origi-
nal curve results could mean that with the more elastic
curve results, EVs have more cost savings, however EV
revenues obtained from energy to sell to the charging
station should also be considered.

Figure 9 shows the charging profiles resulted from
using a more inelastic EV demand curve with less de-
mand compared to the previous charging figures due to
the influence of higher prices on charging station selec-
tion. Lower demand at the charging station indicates
the timings for energy turn up and energy turn down are
shorter. Therefore, Figure 9 shows more charging hap-
pens outside the peak and off peak timings compared
to Figures 6 - 8 where there are longer periods for bal-
ancing services. EVs aim to charge before the energy
turn down period if possible to discharge power at high
prices when the charging station provides energy turn
down services. Compared to previous graphs where EV
profiles during energy turn down period were positive
with fast charging 2 and rapid charging ratings during
one hour, EV profiles in Figure 9 show negative bid-
ding is feasible for the whole energy turn down period
(two consecutive hours). However more positive charg-
ing occurs outside energy turn up period as the timings

Figure 9: EV charging profiles as a response to prices with more in-
elastic demand curve using different charging type cases and bidirec-
tional capability.

of this period are not sufficient for charging most EVs to
meet EV trip requirements. Capacity bidding with the
more inelastic demand curve case is less than the capac-
ity bidding in the cases where there are more EVs ar-
riving at the charging station with an original and more
elastic EV user type demand curve. The reason for this
is fewer EV arrivals and fewer hours for making energy
exchange for energy turn up and turn down periods in
the more inelastic demand curve case in Figure 9.

In order to compare the bi-level optimisation model
proposed in this paper, a simple fixed tariff of 30 p/kWh
is used to compare bidding capacity in Figure 10. This is
the closest comparison to existing research work where
a fixed tariff is used to influence driver behaviour to par-
ticipate in balancing services. It is important to men-
tion that flexibility has been used to maximise revenues
of the charging station and not EVs necessarily, which
is not convenient for EV users and the charging station
ends up taking advantage of charging and pricing as in
the work of Sortomme et al. [29]. The profiles were
created using the data inputs from the original demand
curve with V2G technology. The results show almost
lack of influence over EV charging profiles for energy
turn up periods, where charging happens only to meet
trip requirements subject to departures. Overall capac-
ity bidding is smaller compared to Figure 6 as a result
of EV users not influenced to discharge and then charge
as much energy as possible with a tariff difference. To
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Figure 10: EV charging profiles as a response to fixed prices with
original demand curve using different charging type cases and bidi-
rectional capability.

conclude, it can be observed in Figure 10 that EV charg-
ing has been modelled given a fixed tariff, which does
not provide a significant influence over charging of EV
users in order to both charge EVs and bid energy into
auction balancing service markets.

3.4. Revenues, Costs and Utilities

Figure 11 shows percentages of costs and revenues
with V2G (bidirectional) technology at different charg-
ing ratings, and three inverse demand curves. Revenues
come from energy turn down, energy turn up and EV
charging, while costs come from energy paid to EVs
(energy turn down periods only) and energy purchase
from the grid. The biggest revenue from all cases comes
from energy turn down followed by EV charging and
energy turn up, except for the fast charging 1 with the
original demand case where revenue sources from en-
ergy turn up are greater than EV charging. The biggest
costs for all cases comes from energy paid of EV drivers
for V2G provision. Overall cost percentages increase
when demand is more elastic and decrease with a more
inelastic demand. In contrast, percentage of overall rev-
enues are greatest with the more inelastic demand curve
of EVs followed by the original demand curve and then
the more elastic curve, except for the rapid charging
case where overall revenues are slightly higher in per-
centage with the more elastic curve than with the more

Figure 11: Potential revenues and costs from different charging type
cases with pricing strategies using different inverse demand curves
and bidirectional capability.

inelastic curve. This difference in percentages of costs
and revenues from Figure 11 can be attributed to pric-
ing strategies at varied demand elasticity and expected
demand at the charging station.

Having described costs and revenues in previous
paragraphs, total utilities or net profits in Figure 12 pro-
vide values in pounds (£) for a better comparison be-
tween all cases. The V2G or bidirectional cases with the
more inelastic curve are the most profitable cases, and
specifically the case of rapid charging is more profitable
than the other charging ratings, this could be a result of
the use of increasing prices and overall greater bidding
capacity to offer for balancing services compared to the
other charging ratings. The V2G case with the origi-
nal demand curve represents the second place in terms
utilities and the case with the more elastic curve is third
place. Similar to the V2G cases, G2V or unidirectional
cases with greater net profits come from the more in-
elastic curve for the charging ratings of fast charging 1
and 2, however for the case of rapid charging rating the
most profitable case is the original curve. The differ-
ences between revenues is more notorious in the V2G
cases than in the G2V cases, such differences suggest
higher prices of energy turn down provide greater rev-
enues. It is assumed however that energy markets for
instance balancing services of Grid Operator accept the
proposed bidding at the capacity, price and time speci-
fied from the EV charging station operator.
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Figure 12: Net profits with pricing using the three inverse demand
curves and charging cases.

4. Conclusions

In this paper, a bi-level optimisation is proposed for
pricing and for aggregating energy bidding of a low car-
bon charging station participating in balancing services.
First, pricing strategies are developed for energy bid-
ding to enter in Grid Operator auctions and for generat-
ing a desirable charging response from EV drivers. EV
charging prices are created to promote charging during
energy turn up timings and to promote discharging dur-
ing energy turn down timings. Second, an EV charging
optimisation control strategy is used to determine the
charging schedules with bidding quantities during the
balancing services periods. Both strategies worked to-
gether to announce bids and prices in a day ahead, given
historical information to the operation of the charging
station e.g., quantity responses to price, PV power fore-
casting, stochastic variables of EVs (arrivals, depar-
tures, trip requirements, state of charge) and charging
rate limits from both the charging station and EVs.

The proposed dynamic pricing strategies have
demonstrated that EVs can be influenced to provide
balancing service provision. Positive revenues are ob-
tained from all cases evaluated, which means the pric-
ing strategies can adequately manage to create econom-
ically feasible operations of a low carbon charging sta-
tion with participation in balancing or ancillary services
using different charging technologies. V2G technology
has been shown to be the best strategy in terms of bid-
ding capacity. Directions for future research may in-
clude consideration of competition impact on revenues,

for example EVs can be assumed to know price com-
parison of several charging stations before arriving. De-
mand curves could be explored further to create tariffs
for different customers with more elastic or more inelas-
tic demand responses.

Appendix A: Expanded calculation of Q∗t

To find an optimal charging demand Q∗t , we have

Q∗t = arg(r′t − c′t = 0).

From the derivative of revenues and costs,

p′t(Qt) · (Qt) + pt(Qt) · (Q′t) − cgt = 0.

Price terms are then substituted,

β1t · Qt + β0t + β1t · Qt − cgt = 0.

β0t + 2 · β1t · Q∗t − cgt = 0.

Solving for Qt, the optimal charging demand quantity is
obtained

Q∗t = (cgt − β0t)/(2 · β1t).
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