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SUMMARY

Identifying genetic and environmental factors that
impact complex traits and common diseases is a
high biomedical priority. Here, we developed, vali-
dated, and implemented a series of multi-layered
systems approaches, including (expression-based)
phenome-wide association, transcriptome-/prote-
ome-wide association, and (reverse-) mediation
analysis, in an open-access web server (systems-
genetics.org) to expedite the systems dissection of
gene function. We applied these approaches to
multi-omics datasets from the BXD mouse genetic
reference population, and identified and validated as-
sociations between genes and clinical and molecular
phenotypes, including previously unreported links
between Rpl26 and body weight, and Cpt1a and
lipid metabolism. Furthermore, through mediation
and reverse-mediation analysis we established regu-
latory relationsbetweengenes, such as the co-regula-
tionofBCKDHAandBCKDHBprotein levels, and iden-
tified targets of transcription factors E2F6, ZFP277,
and ZKSCAN1. Our multifaceted toolkit enabled the
identification of gene-gene and gene-phenotype links
that are robust and that translate well across popula-
tions and species, and can be universally applied to
any populations with multi-omics datasets.

INTRODUCTION

Unraveling the genetic basis of complex traits is crucial to under-

stand the pathogenesis of disease and to develop effective
90 Cell Systems 6, 90–102, January 24, 2018 ª 2017 The Author(s). P
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therapies. Genetic studies using human populations have suc-

cessfully discovered many gene-to-phenotype (G2P) associa-

tions, but this approach falls short in controlling for environ-

mental influences and is constrained by limited access to

relevant deep tissue samples for mechanistic validation studies

(Altshuler et al., 2008; Williams and Auwerx, 2015). Genetically

diverse cohorts of model organisms, ranging from yeast, Caeno-

rhabditis elegans, Drosophila melanogaster, to mouse and rat,

can model the complex genetics of human populations, while

providing tight control over environmental factors to study

gene-by-environmental interactions (GXE), and allowing access

to deep tissues at different ages and treatments (Aitman et al.,

2011; Cook et al., 2017; Ehrenreich et al., 2010; Flint and

Mackay, 2009; Williams and Auwerx, 2015).

In principle, systems genetics approaches for complex trait

analysis employ either forward or reverse genetic strategies. For-

ward genetic tools, such as genome-wide association studies

(GWAS) and quantitative trait loci (QTL) linkage studies have

been successfully applied to dissect complex traits (Flint and Es-

kin, 2012; McCarthy et al., 2008). To reveal potential pleiotropic

phenotypes associated with gene variants and QTLs, phenome-

wide association studies (PheWAS) have emerged as a viable

reverse genetic strategy in humans (Bush et al., 2016; Denny

et al., 2016). We recently applied PheWAS in the BXDs, enabling

the discovery of novel G2P associations, which were then vali-

dated in independent human cohorts or by experimental ap-

proaches (Wang et al., 2016). These early approaches, however,

do not exploit the full spectrum of possible relationships between

genotypes, intermediate phenotypes, and clinical phenotypes

(see Figures 1A and 1B). Furthermore, exploring this space

is difficult in humans because of limited availability of popula-

tions with deep genome, transcriptome, proteome, and

phenome data. This is, however, less of an issue in populations

of model organisms, such as the BXD mouse, the DGRP

fly, or the 1001 Genomes A. thaliana genetic reference
ublished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Overview of Multi-omic Data from the BXD Population, and the Scheme of Applied Systems Approaches

(A) Multi-omic data of the BXD population. Genome: genotype data were collected for 6,800 markers. Transcriptome: levels of �25,000 transcripts have been

measured from 34 tissues (see also Figure S1B, Table S2). Proteome: expression of �2,600 proteins were quantified in livers by mass spectrometry (Williams

et al., 2016). Metabolome: �980 metabolites have been measured in both liver and muscle (Williams et al., 2016). Phenome: �5,000 clinical phenotypes have

been collected by more than 200 research groups (see also Figure S1A, Table S1).

(B) Systems approaches that can be applied using themulti-omic data in BXDs. Approaches developed in this study are highlightedwith red arrows and the same

colors as corresponding text in (H).

(C) Circular dendrogram showing the genetic relatedness among BXD strains. Sister strains with over 80% identical by descent are highlighted in red, and

parental strains (C57BL/6J and DBA/2J) are in bold.

(D) An overview of BXD phenome. Phenotypes were aligned (vertical) based on the groups where the phenotypes were measured. Red blocks indicate that

phenotypic data of the particular strain are available, while white blocks show that data are missing or not measured.

(E) Distribution of transcriptome datasets across 34 tissues. Blue blocks indicate that transcript data are available, while white blocks show missing or

unmeasured data.

(F) Relatedness of phenotypes. Phenotypes from (Andreux et al., 2012) were clustered based on the correlation between phenotypes. PL blocks were indicated

using black triangles.

(G) Normality of two phenotype examples, body weight (upper panel) showing normal distribution and ectromelia virus survival (lower panel) showing non-normal

distribution, were represented using histogram and Q-Q plot.

(H) Flowchart for the systems approaches using the multi-omic BXD data. The gene-of-interest is first inspected on three aspects in the BXD GRP, i.e., the

existence of genetic variations, e(p)QTLs, and its expression across strains. PheWAS can be applied on genes that possess high-impact variants or cis-QTLs to

identify the associated traits. Genes that have cis- or trans-QTLs can be analyzed to reveal the regulatory mechanism of gene expression through (reverse-)

mediation analysis. ePheWAS investigates the association between gene expression and phenotypic traits.

See also Figure S1 and Tables S1 and S2.
populations (GRPs), where such data are readily available. We

hence exploited the full complexity of G2P relationships in the

BXDs, one of themost widely usedmouseGRPs, and developed

an easy-to-use resource (systems-genetics.org) for the research

community.
First, we systematized and improved the PheWAS method

both to detect G2P links and validate putative associations

from independent studies. We also developed a set of methods

to analyze the different layers of omics data that contribute to

complex traits. In particular, intermediate phenotypes, including
Cell Systems 6, 90–102, January 24, 2018 91
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transcripts, proteins, and metabolites (Gagneur et al., 2013; Wil-

liams et al., 2016; Wu et al., 2014) were exploited to consolidate

G2P and GXE connections. Despite their potential, transcrip-

tome-/proteome-wide association studies (T/PWAS), which

test the associations between a phenotype and all transcripts

or proteins of a given tissue, have not been fully explored (Gusev

et al., 2016; Okada et al., 2016), largely because of the limited

availability of cohorts with such data (see above). With transcrip-

tome/proteome data from over 30 tissues available, the BXD

cohort serves as a perfect resource for such analysis. Similarly,

reversal of such T/PWAS approaches, i.e., expression-based

PheWAS (ePheWAS), may help in revealing pleiotropic functions

of intermediate phenotypes across multiple tissues. In addition,

some intermediate phenotypes are controlled by distant genetic

variants, so-called trans-QTLs. Here we have also implemented

mediation analysis to identify mediators (genes within the locus

of the trans-QTLs) that potentially modulate downstream gene

expression (Chick et al., 2016), and proposed reverse-mediation

analysis to reveal potential transcriptional targets.

This multi-layered toolkit is easily accessible through

systems-genetics.org, and will expedite the systems dissection

of gene function. This will not only provide full leverage of the

large historical and rapidly expanding datasets available in the

BXD mouse GRP, but will also be universally applicable to any

other population.

RESULTS

Structure and Pre-processing of Multi-layer Data from
BXD Population
Over the past decades, hundreds of studies on the BXD popula-

tion have created a wealth of multi-layered omics data, ranging

from genomic, transcriptomic, proteomic, metabolomic, to phe-

nomic data (Figure 1A). All the data have been archived and are

publicly available in GeneNetwork (www.genenetwork.org/).

We focus here on data from 93 BXD strains (including BXD1–

BXD102), the parental C57BL/6J and DBA/2J strains, and recip-

rocal F1 hybrids (i.e., B6D2F1 and D2B6F1), that collectively

encompass the vast majority of all BXD data.

Genome

Five million sequence variants segregate in the BXD family

(Wang et al., 2016). A phylogenetic tree of the 97 BXD strains, in-

ferred from whole-genome SNP analysis, was used to evaluate

family substructure. Several strains have strong genetic similar-

ities, such as BXD48 and BXD48a, which are 93.2% identical by

descent (Figure 1C). There is also more subtle genetic similarity

among those BXDs (BXD43–BXD102) that were produced by

inbreeding advanced intercross progeny (Peirce et al., 2004).

We compensated for this kinship in our statistical analyses.

Phenome

Since the first publication on the BXDs (Taylor et al., 1973), well

over 200 research groups have generated behavioral, neurolog-

ical, pharmacological, immunological, and, more recently, meta-

bolic phenotypes, for this family. The size and variety of the BXD

phenome has increased exponentially since 2010, to �5,000

quantitative clinical phenotypes as of December 2016 (Fig-

ure S1A; Table S1). We identified three confounding factors

that require correction to improve phenome-wide analyses.

(1) Since different groups worked with different subsets of the
92 Cell Systems 6, 90–102, January 24, 2018
BXDs, variable overlap of strains across traits (missing pheno-

typic data for subset of strains) is a general problem (Figure 1D).

Therefore, data from different groups were analyzed separately.

(2) The BXD phenome contains batches of strongly correlated

phenotypes, a phenomenon we termed as ‘‘phenome linkage’’

(PL). As an example, multiple measurements of body weight

and blood glucose levels over time formed two big PL blocks

(Figure 1F) (Andreux et al., 2012). Therefore, the effective number

of independent phenotypes (Neff) was used to estimate the

significance of phenome-wide association. (3) Although most

phenotypes follow an approximately normal distribution (Fig-

ure 1G, top), others do not and contain outliers (Figure 1G, bot-

tom). To establish a robust analysis pipeline, we transformed the

phenotypes into a standard normal distribution.

Transcriptome, Proteome, and Metabolome

Approximately 200 transcriptome datasets from 34 BXD tissues

existed (Figures 1E and S1B; Table S2). One or two datasets

were selected to represent the transcript profiles in each tissue

(yellow labeled in Table S2). Furthermore, other molecular data

in our analyses include �2,600 liver proteins quantified by

SWATH-MS, and �980 metabolites measured in liver (Williams

et al., 2016) and muscle, released with the current study at

systems-genetics.org, as well as at GeneNetwork.

In combination, we employed deep phenome data consisting

of �5,000 phenotypic traits, and more than 200 transcriptome,

proteome, and metabolome datasets for the BXD GRP (by far

the largest coherent multi-omics data assembled for any animal

population) as the foundation to identify the genetic architecture

underlying complex traits and diseases. Here we integrated

these multi-omic data collected over the last decades, and

assembled a series of state-of-the-art systems tools (Figure 1B)

into a streamlined workflow (Figure 1H) to identify gene function.

In the prioritization of PheWAS candidate genes, we included not

only genes with high-impact variants (Wang et al., 2016), but also

genes that had cis-QTLs for transcripts and proteins, since func-

tional effects of genetic variants on phenotypic traits are medi-

ated through both coding and non-coding sequences (Alexander

et al., 2010). Geneswith trans- or cis-QTLs could be analyzed us-

ing mediation or reverse-mediation analysis, to determine the

regulatory mechanisms of gene expression. With expression

patterns of target genes in various BXD tissues, it is practical

to carry out ePheWAS to reveal associated phenotypic traits.

This analytical toolkit and its power to identify potential gene

functions are described in detail below.

PheWAS Reveals G2P Associations and Facilitates the
Detection of Pleiotropic Effects
Linkage analysis and GWAS have successfully identified gene

variants and QTLs associated with complex traits. The same

data can also be analyzed in a reverse fashion, i.e., testing the

phenotypes that are associated with the gene of interest, using

PheWAS (Bush et al., 2016; Denny et al., 2016) enabling the

detection of pleiotropic effects of genetic variants (Figure S2A).

We recently applied PheWAS to the BXDs using Pearson’s cor-

relation (Wang et al., 2016), but this analysis did not account for

the non-normality or outliers in the data, or the population sub-

structure among strains. To improve PheWAS, we: (1) trans-

formed all phenotypes to a normal distribution; (2) used linear

mixed models to correct for kinship; and (3) adjusted for the PL

http://www.systems-genetics.org/
http://www.genenetwork.org/
http://www.systems-genetics.org/
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Figure 2. Phenome-wide Association Analysis

(A) Flowchart explaining the steps for PheWAS in the BXD GRP (see text).

(B) Whole-genome PheWAS with genes arranged horizontally based on their genetic locations and phenotypes arranged vertically based on phenotypic

categories as defined in the STAR Methods. Significance of the G2P associations is reflected by the color of the dots.

(C) GWAS of prepulse inhibition detected Pten as a top candidate gene. Genome-wide significance threshold (0.05/6,800 = 7.4 3 10�6) was corrected by the

number of tested SNPs.

(D) PheWAS on Pten unveiled its association with a list of phenotypes, including prepulse inhibition and heart rate. Phenotypes were arranged and colored

according to respective phenotypic categories. Phenome-wide significance was determined based on Bonferroni correction using the total number (0.05/

4,784 = 1.0 3 10�5, red dashed line) as well as the effective number (0.05/2,754 = 1.8 3 10�5, dark red dashed line) of phenotypes.

(E) Circos plot showing all the significant associations of prioritized genes in themulti-layered PheWAS. Genomic positions of genes on chromosomes are labeled

on the outer edge, with multi-layered PheWAS data of transcripts (turquoise), proteins (periwinkle), metabolites (orange), and clinical phenotypes (brown)

assigned from the outmost to the innermost tracks.

(F) Comparison of the PheWAS results on Tlr5 from Pearson’s correlation (top) and mixed model (bottom), the method employed in this paper. A q value of 0.01

after false discovery rate correction was used as the phenome-wide significance threshold for results fromPearson’s correlations. Phenome-wide significance for

results from mixed model was determined by Bonferroni correction for the total and effective numbers of phenotypes.

(G and H) Simple correlation results in false-positives. Some significant associations obtained by Pearson’s correlation, e.g., C3 dicarboxylylcarnitine levels, are

not significant with the mixed model (G), because of the failure in controlling for the population structure, as indicated by the inflated observed p values from

correlation analysis in the Q-Q plot (H).

See also Figures S2 and S3, and Table S3.
in the phenome to improve the statistical power of detection. We

calculated the effective number of independent phenotypes

(Neff) to adjust for the redundancy and to control family-wise error

rate in the following analysis (Li and Ji, 2005) (see STAR

Methods). This correction estimated that there were �2,700

effective phenotypes from the�5,000 initial phenotypes. In total,

4,682 genes with high-impact variants and 9,558 genes with cis-

QTLs were prioritized (a total of 11,548 genes for PheWAS anal-

ysis) (Figure S2B). Associations between the genetic variants of

each gene and clinical and molecular phenotypes (transcripts,

proteins, and metabolites) were performed using EMMA (Kang
et al., 2008). A simplified flowchart representing our updated

PheWAS approach is depicted in Figure 2A.

We performed both forward (e.g., GWAS) and reverse ge-

netic approaches (e.g., PheWAS) on genome and phenome

data in the BXDs (Figure 2B). For example, GWAS on the pre-

pulse inhibition (PPI) of acoustic startle response mapped a sig-

nificant signal on Chr 19. Phosphatase and tensin homolog

(Pten), a gene known to be associated with a wide spectrum

of neurodevelopmental diseases stood out as one of the top

candidates (Figure 2C). PheWAS for Pten revealed several

associated traits, including PPI and subcutaneous white
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Figure 3. Genotype-Phenotype Associations Revealed by PheWAS

(A) QTL mapping of body weight and fat mass showed a common QTL on Chr 11, where Rpl26 locates (indicated by a blue triangle).

(B) Rpl26 possesses cis-eQTLs in the tissues listed.

(C) PheWAS reveals the genetic association between Rpl26 and metabolic traits. Phenome-wide significance was determined as in Figure 2D.

(D) Rpl26 liver transcripts correlate with a series of metabolic traits, such as body weight, fat mass, VO2, and VCO2.

(E–G) Data from CTB6F2 (E) and HMDP (F) mouse cohorts, and the HXB/BXH rat cohort (G) indicate significant negative correlations between liver Rpl26 levels

and body weight, and other metabolic traits.
adipose tissue (subWAT) mass (Figure 2D), suggesting pleio-

tropic effects of Pten. The links between Pten and neurobiolog-

ical and metabolic phenotypes have been confirmed by inde-

pendent studies (Kwon et al., 2006; Ortega-Molina et al.,

2012). Overall, PheWAS showed that 4,230 out of 11,548 genes

were associated with at least one phenotypic trait and all genes

had significant associated molecular traits after phenome-wide

correction (Figures 2E; Table S3).

We compared the performance of the original and updated

PheWAS methods (Wang et al., 2016), taking Tlr5 (Toll-like re-

ceptor 5) as an example (Figure 2F). Both methods associated

Tlr5 with T cell proliferation, befitting its known function in im-

mune response (Caron et al., 2005). However, our initial method

yielded C3 dicarboxylylcarnitine, anxiety assay, and serum

amyloid P component as false-positives (Figure 2G), due to the

failure to control for population structure, as indicated by the

inflation of p values in the Q-Q plot (Figure 2H).

A fewmore examples illustrate the use of PheWAS in revealing

G2P associations. Obesity/overweight is a global health problem

and a leading risk factor for diabetes, cardiovascular diseases,

and cancer. We found a QTL for body weight and fat mass on

Chr 11 (Figure 3A). From this region, Rpl26 (ribosomal protein
94 Cell Systems 6, 90–102, January 24, 2018
L26) stood out as a strongest candidate with cis-eQTLs in

many tissues, including liver (Figure 3B). Through PheWAS, we

identified a link between Rpl26 and body weight, fat mass, as

well as oxygen consumption (VO2) (Figure 3C). The genetic asso-

ciation was confirmed by the negative correlations of Rpl26

liver transcripts with these metabolic traits in BXDs on both

chow (CD) (GeneNetwork Accession: GN432) and high fat diet

(HFD) (GN431) (Figure 3D), and further validated in several inde-

pendent datasets, including an F2 cross between CAST/EiJ and

C57BL/6J (CTB6F2, GN172) (Schadt et al., 2008) (Figure 3E), the

Hybrid Mouse Diversity Panel (HMDP) (Bennett et al., 2015) (Fig-

ure 3F), as well as in the HXB/BXH rat cohort (Hubner et al., 2005)

(Figure 3G). The correlations of Rpl26with metabolic traits trans-

late well across populations and species, and suggest a role of

Rpl26 in regulating body weight.

Through PheWAS, we also confirmed the link betweenOprm1

(opioid receptor, mu 1) and morphine response (Uhl et al., 1999)

(Figures S3A and S3B). A nonsynonymous variant (rs8256412) in

Oprm1 associated with morphine response traits as well as the

Oprm1 expression in neural tissues, including hippocampus

(GN110) and ventral tegmental area (VTA, GN228). Further

evidence was provided by the negative correlations of Oprm1



with locomotion activity after morphine injection in the BXDs

(Figure S3C).

Expression-Based PheWAS: A Tool to Discover Gene
Functions
Despite the success of GWAS and PheWAS to uncover novel

genetic variants associated with complex traits and diseases,

these variants only explain a limited proportion of the heritability

of the phenotypic traits (Manolio et al., 2009). Intermediate phe-

notypes, including transcript and protein levels, integrate the ef-

fects from genetic factors, including those poorly captured or

hidden in common association studies (Gagneur et al., 2013),

as well as those from environmental factors. A few recent studies

have explored the use of transcriptome-/proteome-wide associ-

ation using either imputed transcript expression (Gusev et al.,

2016; Mancuso et al., 2017) or proteomic data (Okada et al.,

2016). Given that transcriptome data are available for over 30 tis-

sues, the BXDs are a perfect resource for such analysis. A linear

mixed model was applied to find associations between gene

expression and clinical phenotypes while accounting for popula-

tion structure across strains (Kang et al., 2008) (Figure 4A).

Forward genetics strategies could link phenotypes to tissue-

specific transcript levels in T/PWAS (Figure 4B, red line).

Conversely, reverse approaches starting from expression of

the gene of interest toward the phenome, i.e., ePheWAS, could

reveal the gene’s potential pleiotropic functions, especially

when considering its expression across multiple tissues (Fig-

ure 4B, blue line). The numbers of G2P associations that survive

the phenome-wide significance threshold differed across tissues

and across phenotypic categories (Figure 4C). For example,

phenotypes from the ‘‘Morphology’’ category were enriched in

brown adipose tissue and liver, while phenotypes from the

‘‘Drug response’’ and ‘‘Nervous system’’ categories were more

correlated with genes from hippocampus and hypothalamus.

These data coincide with the results from human studies (Emils-

son et al., 2008), suggesting that many phenotypic traits are

under tissue-specific regulations.

TWAS in liver (GN432) identified Slc25a10 as a potential regu-

lator for VO2 max (Figures 4B and 4D). Slc25a10 exports malo-

nate, malate, and succinate across the mitochondrial inner

membrane for fatty acid synthesis in the cytosol (Mizuarai

et al., 2005). Through ePheWAS, we found that Slc25a10 not

only associated with VO2, but also with body weight and fat

mass (Figures 4B and 4E). Furthermore, Slc25a10 liver expres-

sion correlated positively with body weight, fat mass, and sub-

WAT mass, and negatively with VO2 in both CD and HFD fed

BXDs (Figure 4F). We found comparable correlations with similar

metabolic traits in the CTB6F2 (Figure 4G) and the HMDP (Fig-

ure 4H), corroborating the role of Slc25a10 as a dicarboxylate

carrier.

Fasting is an efficient way to induce weight loss; however, its

effects vary across populations, suggesting potentially genetic

influences (Wing and Hill, 2001). There are notable differences

in weight loss after an overnight fast across the BXDs (ranging

from 0.8 to 3.9 g on CD and 0.3 to 3.5 g on HFD), although there

was no significant difference between CD and HFD cohorts (Fig-

ure 5A). However, no genetic variant was found to be associated

with fasting weight loss using QTLmapping (Figure 5B). Through

TWAS using liver transcripts, we detected Cpt1a as the top
candidate associated with fasting weight loss in both CD (Fig-

ure 5C) and HFD cohorts (data not shown). ePheWAS showed

further associations of Cpt1a with plasma acylcarnitine levels

(Figure 5D). Liver Cpt1a levels correlated positively with acylcar-

nitines (Figure 5E, upper), which corresponds to the recognized

function ofCpt1a in transferring the acyl group of long-chain fatty

acyl-CoA to carnitine for further b-oxidation in mitochondria

(Pande, 1975). Strains with higher Cpt1a expression tend to

lose more weight upon fasting, and have lower plasma triglycer-

ides (Figure 5E, bottom). Furthermore, we validated the correla-

tions between Cpt1a and metabolic phenotypes in another

independent mouse population, i.e., the HMDP (Figure 5F), and

in C. elegans, where feeding an RNAi targeting cpt-1, the

Cpt1a worm homolog, lowered lipid content (Figure 5G); this

highlights the cross-species conservation of Cpt1a’s role in lipid

metabolism.

Using ePheWAS, we also identified associations between

Cd36 liver transcripts and fat mass and acid b-glucosidase activ-

ity (Figure S4A). BXD and HMDP mouse strains, as well as HXB/

BXH rat strains, with higher Cd36 expression had increased fat

mass and body weight, as well as decreased VO2 and liver

acid b-glucosidase activity (Figures S4B and S4C), confirming

the involvement of Cd36 in metabolism (Silverstein and Feb-

braio, 2009) and suggesting a potential role in Gaucher’s dis-

ease, which results from the deficiency of acid b-glucosidase

(Grabowski, 2008). An association between Abca8a liver tran-

scripts and triglyceride levels was also revealed (Figure S4D).

Increased liver Abca8a levels correlated with the increase of

plasma triglycerides, free fatty acid, cholesterol, glucose levels,

and fat mass, as well as lower plasma acylcarnitine levels in the

BXD, HMDP, and HXB/BXH GRPs (Figures S4E and S4F). This

substantiates a role for this poorly characterized ABCA protein

in lipid transport, similar to many other ABCA transporters

(Dean et al., 2001).

Evaluation of PheWAS and ePheWAS in Detecting
Associations
We observed that datasets with a larger cohort size tend to have

more power in detecting G2P associations (Figures 6A and 6D;

TableS3). To test the influenceof cohort sizeon thenumberof sig-

nificant associations and to estimate the robustness of associa-

tions detected by PheWAS or ePheWAS, we used a subsampling

approach on the actual BXDdata. The eye transcriptomedataset,

which has the largest cohort size of 72 strains, was used as an

illustration to detect the phenome-wide association signals

against the BXD genome. We randomly sampled subset cohorts

with different sizes and then performed association analysis on

each set. Then we calculated the number of recovered hits: the

significant associations that are common between each random

subsample and the full set. The total number of detectedPheWAS

hits (blue curve, Figure 6B) linearly increased with the number of

strains sampled; so did the number of recovered hits (red curve,

Figure 6B). In all subsamples, more than �75% of the hits are

recoveredhits,which implies that theassociationsare robust (Fig-

ure 6B). We also assessed the robustness of the associations by

comparing the significant hits obtained from subsamples of the

same size. As expected, simulated cohorts with larger size had

relatively high probability to detect the sameG2P association sig-

nals (Figure 6C). Interestingly, subsamples of as few as 20 strains
Cell Systems 6, 90–102, January 24, 2018 95
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Figure 4. ePheWAS Displays Tissue-Specific Regulators

(A) Flowchart explaining the steps for ePheWAS (see text).

(B) Whole-transcriptome ePheWAS scheme showing the complementary findings of TWAS. All significant associations are displayed, with genes arranged

horizontally based on their genetic locations and phenotypes arranged vertically based on phenotypic categories. Phenotypes from each category are labeled

with the corresponding color as in (C and E). Major gaps in the plot are due to the limited numbers of phenotyped strains with expression data available.

(C) Statistical summary of significant ePheWAS associations across 16 major tissues. The number of identified significant associations in each tissue is rep-

resented by pie plots, with phenotypes from each category indicated by their respective colors. Muscle, gastrocnemius muscle; NAc, nucleus accumbens; PFC,

prefrontal cortex.

(D) TWAS identifies Slc25a10 as the best candidate to explain changes in VO2 max across the BXDs. Transcripts were arranged by their genetic location.

Transcriptome-wide significance (0.05/25,000 = 2 3 10�6) was adjusted by the number of transcripts tested in the analysis.

(E) ePheWAS of Slc25a10 reveals its pleiotropic functions on fat and body mass, as well as VO2. Phenome-wide significance was adjusted by Bonferroni

correction for the number of used tissues, 16 major tissues as listed in (B), together with the total number (0.05/4,784/16 = 6.5 3 10�7), as well as the effective

number of phenotypes (0.05/2,754/16 = 1.1 3 10�6), indicated by red and dark red dashed line, respectively.

(F–H)LiverSlc25a10 transcriptscorrelatewith relevantmetabolicphenotypes, suchasbodyweight, fatmass,VO2, in theBXD(F),CTB6F2 (G), andHMDP (H)cohorts.

See also Figure S4.
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Figure 5. ePheWAS Reveals Cpt1a as a Regulator of Fasting Weight Loss

(A) Body weight loss upon fasting across the BXDs fed with either chow (CD, dark red) or high fat diet (HFD, red). Error bars represent mean ± SEM.

(B) Genetic mapping failed to detect significant QTLs for fasting weight loss in both CD and HFD cohorts.

(C) TWAS for fasting weight loss in liver in CD fed BXD mice. Transcriptome-wide significance was adjusted as in Figure 4D.

(D) ePheWAS for Cpt1a identified its association with carnitine levels and fasting weight loss. Same as Figure 4E, phenome-wide significance was adjusted by

Bonferroni correction for the numbers of used tissues and phenotypes.

(E and F) Correlations between liverCpt1a expression andmetabolic phenotypes, including carnitine levels, fasting weight loss, triglycerides, and fat mass, in the

BXD (E) and HMDP (F) populations.

(G) Knock down of cpt-1, theC. elegans ortholog ofCpt1a, leads to the accumulation of lipid droplets, revealed by staining with oil red O or Sudan black. Data are

represented as mean ± SEM. Ev, empty vector. ***p < 0.001.
share�40%–50% of their associations. We also performed sub-

sampling analysis on ePheWAS looking for significant associa-

tions between gene expression in the eye and the clinical phe-

nome, and observed a similar influence of sample size on

performance (Figures 6E and 6F). However, there was a more

rapid reduction of true-positives with decreasing sample size

compared with PheWAS (Figure 6B), mainly due to the incom-

pleteness of the phenotype data (i.e., different laboratories sam-

pling different lines, shown in Figure 1D).

Overall, the almost linear dependence between the sample

size and number of significant hits suggests that while the current

BXD cohort sizes enable the detection of robust associations,

larger cohorts can identify even more G2P associations.
Mediation Analysis Identifies Regulatory Mechanism of
Gene Expression
The regulation of transcript and protein abundance is crucial for

cellular, and organismal homeostasis. Mediation analysis was

developed to identify themediating effects of amediator between

an independent variable and a dependent variable (MacKinnon

et al., 2007). This concept has also been applied to reveal the

mediating role of gene expression in the association between

SNPs and clinical phenotypic variations (Yao et al., 2017) or

trans-regulated genes (Chick et al., 2016; Pierce et al., 2014).

We first identified QTLs for all genes in the transcriptome

and proteome datasets across all tissues. The number of cis-

and trans-QTLs varied across tissues, gender and treatments
Cell Systems 6, 90–102, January 24, 2018 97
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Figure 6. Performance of PheWAS and ePheWAS in Detecting G2P Associations

(A and D) Correlations between cohort sizes of each omics dataset versus the numbers of significant PheWAS hits normalized per phenotype (A) or the numbers of

significant ePheWAS hits (D). BAT, brown adipose tissue. GI, gastrointestinal; Liver met, liver metabolite; Liver prot, liver protein; Muscle met, muscle metabolite.

(B, C, E, and F) Random subsampling analysis from the 72 strains of the eye transcriptome dataset to investigate the performance of PheWAS (B and C) and

ePheWAS (E and F).

(B and E) The influence of strain number on the number of total detected (triangles) as well as recovered (circles) PheWAS (B) or ePheWAS (E) hits was revealed

through random subsampling. The recovered ratio in detecting ‘‘real’’ significant associations was also indicated.

(C and F) Overlap coefficient of PheWAS (C) or ePheWAS (F) associations between subsampling subset cohorts of the same size.
(Figure 7A), suggesting that themodulation of gene expression is

tissue and environment specific (Dimas et al., 2009; Grundberg

et al., 2012). For example, the eye transcriptome shows a

trans-eQTL hotspot on Chr 1.Pou2f1, a gene involved in lens pla-

code development (Donner et al., 2007), has a strong cis-QTL in

this locus (indicated by arrow) and could explain this tissue-spe-

cific trans-eQTL hotspot (including Atf4, Faim2, Fkbp1b, Gab1,

etc.) in the eye. We applied mediation analysis on the transcrip-

tome and proteome datasets to elucidate the geneticmodulation

of gene expression. The concept of mediation allows the appli-

cation of two reciprocal approaches. Mediation starts from the

dependent variable (a gene with a trans-QTL) and aims to find

its mediator (a gene with a cis-QTL in the locus of the trans-

QTL) (Figure 7B). While, on the contrary, reverse mediation in-

vestigates the mediated variables of a potential mediator (gene

with a cis-QTL) (Figure 7I).

The power of mediation analysis was illustrated by using

the BCKDHA protein as an example. Together with BCKDHB,

BCKDHA composes the branched-chain alpha-keto acid dehy-

drogenase (BCKD) E1 complex that breaks down branched-

chain amino acids. BCKDHA protein levels in liver (GN704) map-
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ped a trans-pQTL on Chr 9, the same locus of the Bckdhb and

BCKDHB cis-pQTL (Figure 7C). Mediation analysis revealed

that BCKDHB is a potential mediator of BCKDHA protein levels

(Figure 7D). The mediation results were further confirmed in the

liver protein dataset (GN705) fromBXDs fedwithHFD (Figure S5),

as well as in the diversity outbred (DO) mouse cohort (Chick

et al., 2016) (Figures 7E and 7F). BCKDHB correlated with

BCKDHA protein levels in both BXD (Figure 6G) and DO cohorts

(Figure 6H). This demonstrates that the mediation effect of

BCKDHB on BCKDHA is independent of environmental influ-

ences (e.g., diet), conserved across populations, and most likely

the consequence of the impaired assembly of the BCKDH com-

plex when the protein abundance of BCKDHB reduces.

Mediation analysis was also performed on Rpsa and Rps2,

components of the 40S ribosomal subunits, to determine the up-

stream regulation factors (Figure S6).Rpsa and Rps2 have trans-

eQTLs on Chr 12 in many tissues, including brain and hippocam-

pus (Figures S6B and S6E), suggesting a shared regulation.

Mediation revealed Zfp277 as the potential regulator of Rpsa

and Rps2 (Figures S6C and S6F). Zfp277 strongly co-expressed

with Rpsa and Rps2 (Figures S6D and S6G). Furthermore, the
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Figure 7. Mediation and Reverse-Mediation Analysis Discovers Gene Interactions

(A) Circos plots showing theQTLs in transcriptome and proteome datasets fromBXDswith different sex (F, female; M,male) or diets (CD, chow; HFD, high fat diet)

across tissues. Each transcript dataset is represented by a single circos plot. trans-QTLs are illustrated by curves connecting the genetic loci of these genes and

their respective trans-QTLs, with arrows pointing to the trans-QTLs. The position of Pou2f1 and the trans-eQTL hotspot mapping to its location in eye tran-

scriptome data is indicated by an arrow. Hypotha, hypothalamus.

(B) Conceptual scheme of mediation analysis. The causal SNP, mediator, and dependent variable (target) are represented in rhombus, hexagon, and oval,

respectively. The mediator of the dependent variable (gene with trans-QTL) can be identified by mediation analysis. The red arrow shows the direction of

mediation analysis, i.e., from the target to find the potential mediator. As an example, the trans-pQTL of BCKDHA acts through affecting the BCKDHBprotein level

in cis.

(C and E) pQTL mapping of BCKDHA and BCKDHB in livers from CD (C) fed BXD mice, and DO mice (E). BCKDHA exhibits a trans-pQTL that maps on Chr 9,

where the BCKDHB cis-pQTL locates.

(D and F) Mediation plot of BCKDHA in liver proteomic datasets showing that BCKDHB is a mediator of BCKDHA.

(G and H) Significant correlation between BCKDHA and BCKDHB protein levels in livers of either CD or HFD fed BXDs, as well as in the DO mice (Chick

et al., 2016).

(I) Conceptual scheme of reverse-mediation analysis. The dependent variable (target) of a given mediator (gene with cis-QTL) can be detected using reverse-

mediation analysis. The red arrow shows the direction of mediation analysis, i.e., from themediator to find the potential targets. As an example, the genetic variant

underlying the cis-eQTL of E2f6 influences the expression of Cyp2j9, Fggy, and Txndc5 in trans.

(J) eQTL mapping of E2f6 transcript levels and some potential E2f6 transcriptional targets, including Cyp2j9, Fggy, and Txndc5 in transcriptome from BXD eye

(GN207). All these target genes map trans-QTLs in the same locus of the E2f6 cis-eQTL.

(K) Reverse-mediation plot of E2f6 showing its mediation effects on Cyp2j9, Fggy, and Txndc5, which are pulled down from the background in the plot.

(L) Correlation between the expression of E2f6 and its target genes in the eye.

(M) Binding of E2F6 on the promoter of the human orthologs of the mouse E2f6 target genes in human ENCODE (indicated in blue). Chromosome numbers relate

to human chromosomes. The predicted binding site is indicated in red.

See also Figures S5–S7.
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mediating role of Zfp277 onRpsa andRps2was confirmed using

data from prefrontal cortex (Figures S6H–S6J, GN130) and brain

(Figures S6K–S6M, GN784) of the LXS GRP (Williams et al.,

2004). As all three genes have been linked to cancer, we then

tested whether they co-express in cancer. Based on RNA

sequencing data from 35 cancer types in The Cancer Genome

Atlas (TCGA), ZNF277 positively correlated with expression of

RPSA and RPS2 and the majority of the ribosomal protein family

(Cerami et al., 2012; Gao et al., 2013) (Figure S6N), suggesting a

potential role of ZNF277-RPSA/RPS2 pathway in cancer.

Because transcription factors (TFs) regulate the expression of

distal genes,wedescribed reverse-mediation analysis, a strategy

to validate the transcriptional regulation of target genes by a given

TF in silico (Figure7I).E2f6 is a knownTFwithacis-eQTL in theeye

(GN207). A large number of genes, including Cyp2j9, Fggy, and

Txndc5, also exhibited trans-eQTLs in the locus of E2f6 on Chr

12 (Figure 7J). Reverse mediation revealed the mediating role of

E2f6 on the expression of these genes (Figure 7K). In addition,

E2f6 transcripts positively correlated with these genes in the eye

(Figure 7L). This finding led to the hypothesis that E2f6 binds to

the regulatory regions of these genes, which was confirmed by

human chromatin immunoprecipitation sequencing (ChIP-seq)

data from the Encyclopedia of DNA Elements (ENCODE)

(ENCODE Consortium, 2012) (Figure 7M), illustrating the cross-

species translational value of studies in the BXDs.

Reverse mediation also exposed the transcriptional regulation

of Zkscan1 on its potential targets, e.g.,Adam10,Atl2, Phf3, etc.,

in the hippocampus (GN110) (Figures S7A–S7C). These target

genes showed trans-eQTLs mapping to the genetic locus of

Zkscan1 (Figure S7B), and were tightly co-expressed with

Zkscan1 (Figure S7D). ENCODE ChIP-seq data confirmed the

binding of ZKSCAN1 on the promoter region of the human ortho-

logs of the identified candidates (ENCODE Consortium, 2012)

(Figure S7E).

DISCUSSION

In this study, we developed, applied, and validated a series of

systems approaches (including PheWAS, T/PWAS, ePheWAS,

mediation, and reverse-mediation analysis) using multi-omic da-

tasets from the BXDmouse population. We provide examples of

each approach to predict gene function across layers of multi-

omics data, by focusing on complex metabolic traits. All the

data and analysis tools are archived in the open-access systems

genetics resource webpage (systems-genetics.org).

Compared with the original PheWAS methodology in mouse

(Wang et al., 2016), we developed a more robust strategy by

applying a mixed-model approach on normalized phenotypic

traits and by considering high-impact genetic variants from

both coding and non-coding regions. The effective number of in-

dependent phenotypes based on PL was applied to more accu-

rately estimate the significance threshold based on permutation

testing (Sham and Purcell, 2014). However, since different

groups used different subsets of BXD strains for phenotyping,

there are missing gaps in the data, leading to an inability to fully

account for PL. Therefore, we expect the effective number of

phenotypes (Neff) to be lower than our estimate, implying that

our phenome-wide significance threshold (0.05/Neff) may be

too conservative.
100 Cell Systems 6, 90–102, January 24, 2018
mRNA and protein are the integrators of intrinsic genetic differ-

ences and external environmental factors. In many cases, such

intermediate phenotypes may be even better predictors of

complex traits than genetic variation per se, and therefore allow

the identification of G2P associations that are not evident

through classical approaches. T/PWAS were used to discover

the association between traits and transcripts or proteins levels

using a forward genetics approach. In addition, we introduced

ePheWAS, the reverse approach to T/PWAS, to identify

phenotypes associated with expression of the gene of interest.

Researchers interested in a certain gene can quickly investigate

the relationship between its expression levels in certain tissues

and a wide range of phenotypes.

e(p)QTL analyses allow the integration of genetic information

with expression levels. While they can be useful in detecting

cis- and trans-genetic associations, they cannot infer causality

between genes. We tackled this issue by implementing media-

tion analysis (Chick et al., 2016), an efficient way to determine

the mediators of genes with trans-QTLs. Reverse-mediation

analysis, as an inverse approach, investigates potential medi-

ated genes by designated mediators (genes with cis-QTLs).

One can exploit the mediating effects through (reverse-) media-

tion to infer the most probable route from genetic variants to

gene expression levels.

Despite the success in revealing gene functions through

applying our suite of systems tools on data collected from the

BXD cohort, this population possesses some inherent disad-

vantages. By a random sampling analysis, we revealed that

cohorts with larger size tend to have better performance in

detecting (e)PheWAS associations. The relatively small cohort

size and limited genetic variance and recombination across

the BXD strains are in fact limiting factors. However, this disad-

vantage is offset by the tight control of the experimental condi-

tions during phenotyping and sample collection. Moreover, our

analytical approaches will be powerful on other genetic refer-

ence panels, including those in yeast, worm, fly, mouse, rat,

and plants, where environmental confounding factors could be

well controlled.

Human cohorts or cohorts from other species, which are larger

and have a higher genetic diversity, e.g., GTEx (GTEx Con-

sortium, 2015), or TCGA (Cerami et al., 2012), or the 1001 Ge-

nomes Project for A. thaliana (1001 Genomes Consortium,

2016), may even be better suited for similar analyses. In the

case of humans, however, it is almost impossible to simulta-

neously phenotype individuals and sample multi-tissue and

multi-omic data, while controlling the environmental sources of

variation. Assessing the use of these tools may require cohorts

that have extensive multi-omics datasets available or have rele-

vant samples biobanked, e.g., the Framingham Heart Study

(Mahmood et al., 2014). Imputation of gene expression in deep

tissues from either reference transcriptome datasets (Gamazon

et al., 2015) or GWAS summary statistics (Gusev et al., 2016)

could be used to facilitate the applications of our tools, espe-

cially ePheWAS, in such human cohorts.

Altogether, this integrated systems genetics toolkit, which is

freely accessible on systems-genetics.org, can expedite in silico

hypothesis generation and testing, facilitating the identification

and validation of new gene functions and gene networks in

populations, which generally are robust and translate well across

http://www.systems-genetics.org/
http://www.systems-genetics.org/


populations and species, unlike many connections seen in

classic loss-of-function studies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

cpt-1 RNAi clone Ahringer RNAi library Y46G5A.17

Chemicals, Peptides, and Recombinant Proteins

Sudan black Sigma Cat #199664

Oil red O Sigma Cat #0625

Deposited Data

BXD mouse transcriptome data http://www.genenetwork.org/ Summarized in Table S2

DO mouse proteome data (Chick et al., 2016) http://www.nature.com/nature/journal/

v534/n7608/extref/nature18270-s1.zip

HMDP mouse liver transcriptome & phenotype data (Bennett et al., 2015) http://phenome.jax.org/

CTB6F2 mouse liver transcriptome & phenotype data http://www.genenetwork.org/ GN Accession: GN172

HXB/BXH rat liver transcriptome & phenotype data http://www.genenetwork.org/ GN Accession: GN222

LXS mouse prefrontal cortex transcriptome data http://www.genenetwork.org/ GN Accession: GN110

LXS mouse brain transcriptome data http://www.genenetwork.org/ Data provided by Richard Radcliffe

ENCODE (ENCODE Consortium, 2012) https://www.encodeproject.org/

TCGA (Cerami et al., 2012; Gao et al., 2013) http://www.cbioportal.org/

Experimental Models: Organisms/Strains

Caenorhabditis elegans Caenorhabditis Genetics Center

(Minneapolis, MN)

Bristol strain (N2)

Software and Algorithms

R The R Foundation https://www.r-project.org/

corrgram The R Foundation https://cran.r-project.org/web/packages/

corrgram/index.html

VennDiagram The R Foundation https://cran.r-project.org/web/packages/

VennDiagram/index.html

qtl (Broman et al., 2003) http://www.rqtl.org/

EMMA (Kang et al., 2008) http://mouse.cs.ucla.edu/emma/

intermediate (Chick et al., 2016) https://github.com/simecek/intermediate

Circos (Krzywinski et al., 2009) http://circos.ca/

ImageJ National Institutes of Health https://imagej.nih.gov/ij/index.html

IGV Broad Institute http://software.broadinstitute.org/

software/igv/

Other

Olympus AX70 Olympus http://www.olympusmicro.com/

Resource website for the described tools This paper http://www.systems-genetics.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Johan

Auwerx (admin.auwerx@epfl.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. elegans Lines
Wild-type Bristol N2 C. elegans were cultured at 20�C on nematode growth media (NGM) plates and sustained on the OP50 E. coli

strain. Strains were provided by the Caenorhabditis Genetics Center (University of Minnesota).
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METHOD DETAILS

BXD Multi-Omics Datasets
Data from 5,092 clinical phenotypes in BXD mouse population were retrieved from GeneNetwork database (http://www.

genenetwork.org) on November 1, 2016 (Table S1). Furthermore, molecular data include transcriptomes by microarrays from

34 tissues, �2,600 proteins quantified by Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS) in liver,

�980 metabolites measured in liver and muscle, and metagenome data that were collected in both feces and caecum of all animals.

In summary, we have assembled a deep phenome data set consisting of over 5,000 metabolic, physiological, pharmacological, and

behavioral traits, andmore than 200 transcriptomic, proteomic, andmetabolomic datasets—by far the largest coherent phenome for

any animal experimental cohort.

Data from Other Mouse and Rat Populations
Phenotype and transcription data fromCTB6F2 (Schadt et al., 2008) and LXSmouse populations (Williams et al., 2004), as well as the

HXB/BXH rat cohort (Hubner et al., 2005) were retrieved from GeneNetwork. Data from HMDP was downloaded from http://

phenome.jax.org/ and supplemental materials of (Bennett et al., 2015). Proteome data from DO population was downloaded from

the supplemental materials of (Chick et al., 2016).

The Cancer Genome Atlas Data
Expression data of ZNF277 and ribosomal protein genes in cancer samples from 46 datasets, including 35 different cancer types,

with RNA-seq available was downloaded from TCGA (http://www.cbioportal.org/) (Cerami et al., 2012; Gao et al., 2013). Datasets

with less than 30 samples were removed from the analysis.

The Encyclopedia of DNA Elements Data
Human ChIP-seq data from the Encyclopedia of DNA Elements (ENCODE) was downloaded from www.encodeproject.org. The

ENCODE track ID forZKSCAN1 is: HeLa ZKSCN1 IgR. The ENCODE track ID forE2F6 is: hESCE2F6 V11 1. The coverage histograms

were generated by using Integrative Genomics Viewer (IGV) (Robinson et al., 2011).

C. elegans RNAi and Lipid Staining
RNAi in C. elegans
RNA interference (RNAi) in worms was performed on 90 mm Petri dishes containing NGM agar. Plates were induced overnight with

1mM IPTG at room temperature and seeded with HT115 bacteria expressing either empty vector or the RNAi clones for cpt-1. RNAi

experiments were performed using L1 larvae synchronized after bleaching of adult worms.

Worm Fixation and Lipid Content Staining

N2wormswere grown on regular NGMplates at 20�C until reaching adulthood, then bleached and the eggs collected and let hatch in

M9medium. L1 larvae were then transferred to RNAi plates for cpt-1 or to empty vector control plates. At Day 1 of adulthood, worms

were collected, washed twice with 1 x PBS and then suspended in 120 ml of PBS to which an equal volume of 2X MRWB buffer

(160 mM KCl, 40 mM NaCl, 14 mM Na2EGTA, 30 mM PIPES pH 7.4, 1 mM Spermidine, 0.4 mM Spermine, 2% paraformaldehyde,

0.2% beta- mercaptoethanol) was added. The worms were taken through 3 freeze-thaw cycles between dry ice/ethanol and warm

running tap water, followed by spinning 1minute at 14,000g washing once in PBS to remove paraformaldehyde. Sudan Black and Oil

Red O stainings of stored fat were performed after fixation. For Sudan Black staining, worms were sequentially dehydrated by

washes in 25%, 50% and 70% ethanol. Saturated Sudan Black solution was prepared fresh in 70% ethanol. The fixed worms

were incubated overnight in 250 ml of Sudan Black, on a shaker at room temperature. Wormswere washed twice in 70% ethanol after

staining. For Oil Red O staining, worms were re-suspended and dehydrated in 60% isopropanol. 250 ml of 60% Oil Red O stain was

added to each sample, and samples were incubated overnight at room temperature. Worms were washed twice in 60% isopropanol

solution after Oil Red O staining. The region immediately behind the pharynx of each animal was used for imaging of the lipid droplets

(Yen et al., 2010).

Statistical Analysis
BXD Multi-Omics Data Preprocessing

Clinical phenotypes that were measured in less than 15 BXD strains were removed, resulting in 4,784 phenotypes for further analysis

in this paper. The clinical phenome has been subdivided into 13 categories based on general biological ontologies through manual

inspection.

To obtain the effective number of phenotypes, the whole phenome data was divided based on the respective groups where the

animals were raised, to avoid the problem caused by missing of overlapping phenotyped strains across different labs. Imputation

was performed to estimate the missing data within groups. Considering that observed phenotypes not necessarily have parametric

distributions, we have chosen a promising non-parametric imputation scheme (Stekhoven and Buhlmann, 2012) based on random

forests (Breiman, 2001). All phenotypes that had <20% of missing values were imputed and ones with normalized root mean squared

error (NRMSE) < 15% have been considered for further reduction (Oba et al., 2003). Based on the correlation matrix of the pheno-

types in each group, we took the first m eigenvalues that explain 99.5% of the total variance as the effective number of phenotypes
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(Neff) in this group (Li and Ji, 2005). The total number of independent phenotypes across the phenome, a sum of Neff over all studies,

was used to estimate the phenome-wide significance threshold (0.05/Neff). The same technique was applied to other omics data,

including metabolomic, proteomic, and transcriptomic datasets across all tissues. For microarrays, to reduce the burden of multiple

testing, we included only probes targeting known transcripts. For genes with multiple probes, probe sets with the highest expression

were used in subsequent analysis. This eliminates most intronic probes and those that generally have poor signal-to-noise ratios.

To avoid model misspecification, clinical and molecular phenotypes were transformed into normal shape for the following asso-

ciation analysis.

QTL Mapping

QTL mapping was performed by R/qtl package using Haley-Knott regression (Broman et al., 2003). Local or cis-QTLs were deter-

mined within a range of 2 Mb up- and down-stream of the gene position, and QTLs that located 5 Mb away from the gene were

considered as distant or trans-QTLs. A LOD score of 4 was used as the threshold of significance in trans-QTLs, and 3 was used

in cis-QTLs, because for the cis-QTLs we have no need to correct for the entire genome multiple testing.

Phenome-Wide Association Analysis

Genes that contain high-impact variants, including missense, nonsense, splice site, frameshift mutations, copy number variations

(CNVs), as well as genes that have significant cis-e(p)QTLs in the BXD transcriptome and proteome datasets were included in the

PheWAS analysis. Genetic variants of each gene are represented by the SNPs within the genes as well as their cis-QTLs. About

5,000 clinical phenotypes and over 3,000 metabolites from liver and muscle were used to study the association between genes

and phenotypes. Similarly, expression datasets representing 34 different tissues of the BXD strains were used to explore the genetic

basis of variation at protein or transcript levels. A mixed model was applied to account for the population structure of the BXD strains

(Kang et al., 2008). It is important to take into account that traits are influenced bymany genetic loci and, therefore, doing single locus

association study can be misleading. In this paper we used a multi-locus mixed-model approach (mlmm) (Segura et al., 2012) to es-

timate the associations between each gene (represented by the genetic variants of the gene) and clinical and molecular phenotypes

(transcripts, proteins and metabolites). This step-wise mixed-model regression with forward inclusion and backward elimination of

causative confounding polymorphisms along with the population structure enables to add as a covariates multiple loci, that in turn

leads to higher power and lower FDR. Kinshipmatrix of the BXD strainswas estimated using EMMA (Kang et al., 2008). Phenotype y is

modeled by mixed effect model as

y =Xb+ u+ 3;

where X represents a matrix of fixed effects (genotypes), b is a vector of the effect sizes, u is a vector of random effects due to the

population structure (its covariance matrix is estimated as s2uK) and 3is an error term which is normally distributed around zero with

the variance s2e. At each step the variances of each component are recomputed and the most significant loci are added as cofactors

until the contribution of the variance of the genetic component,
s2g

VarðyÞ , is not zero. After re-computation backward stepwise regres-

sion eliminate excessive cofactors. The correction formultiple testingwas performedwith stringent Bonferroni method using both the

total number and the effective number of tests. PheWAS results from the clinical phenome are represented as 13 categories based on

general biological ontologies, and those from transcriptome and proteome are divided according to the genetic location of the gene

across different chromosomes.

Transcriptome/Proteome-Wide Association Analysis

To reducemultiple testing burdens, only probes targeting known transcripts were included in the analysis. For the genes withmultiple

probes, the highest expressed probewas selected to represent the expression of the gene. Association between transcripts/proteins

and traits were evaluated using correlations and corrected for population structure through mixed effect model as described above.

Expression-Based Phenome-Wide Association Analysis

One or two datasets of each tissue from animals cultured in normal or challenged conditions were selected to represent the gene

expression profiles in this tissue in our analysis. Associations between transcripts/protein and phenotypic traits were estimated using

mixed model regression analysis (Kang et al., 2008). Transcript-trait pairs that had less than 15 overlapping strains were removed

from the analysis. Phenome-wide significance was performed using stringent Bonferroni correction using both the total number

and the effective number of phenotypes and the number of tissues used in the analysis.

Evaluation of PheWAS and ePheWAS in Detecting associations

The BXD eye transcriptome dataset with 72 strains was used as the molecular phenome data to estimate the performance of

PheWAS in detecting associations against the genotypes. The significant PheWAS hits were considered as the ‘‘real’’ positive

hits. We then randomly sampled subset cohorts of 20, 30, 40, 50, 60, 70 strains, and performed PheWAS using the actual phenotype

data of these cohorts. The random sampling was performed 100 times, and the significant PheWAS hits, as well as the ‘‘real’’ positive

hits recovered from these subset cohorts were recorded. Recovery ratio is defined as the ratio of the number of the ‘‘real’’ positive

hits recovered and the number of all significant hits from the subset cohort. Overlap coefficient is defined by the number of common

significant hits from two subset cohorts divided by the smaller size of significant hits from the two sets.

For ePheWAS, the eye transcriptome dataset was used to represent the gene levels to identify associations against the clinical

phenome. Random sampling of ePheWAS was performed 100 times using a similar approach as PheWAS (see above).

Mediation and Reverse-Mediation Analysis

Mediation Analysis. For transcripts that have trans-eQTLs,mediation analysis was performed to verify which of the transcripts local-

izing in the same region are more likely to be the mediators of the target trans-eQTLs (Chick et al., 2016). The basic principle is that
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each individual transcript level was included as the additive covariate in the QTL mapping of the target gene expression, and regres-

sion analysis was performed only at the peak SNP of the QTL. LOD scores of the peak SNP after taking all the transcripts as cova-

riates were used as the significance of the mediation effects of these transcripts on the target trans-eQTLs. We performed the same

analysis on the proteome datasets as well to determine the causal mediators for trans-pQTLs.

Reverse-Mediation Analysis. Using the similar principle, we reversed the mediation approach to determine whether the cis-QTL

could mediate the trans-QTLs that map to the same locus. Specifically, the transcripts/proteins that have cis-QTLs were included

as additive covariates in the QTL mapping for all transcripts/proteins, with the decrease of QTL LOD scores used as the significance

of reverse-mediation effects.

The mediation and reverse-mediation analysis were performed from the R package ‘‘intermediate’’ (Chick et al., 2016).

Quantification of Worm Lipid Content Staining

Sudan Black andOil RedO stained worm Imageswere taken using Olympus AX70 and quantifiedwith Fiji (ImageJ).Wemeasured the

average pixel intensity for an 85-pixel radius immediately behind the pharynx of each animal. In addition, we measured the pixel in-

tensity of the area without worm as background, which was later divided from the values obtained from the staining. Aminimum of 26

animals was measured for each strain. Significance was determined by Student’s t-test.

DATA AND SOFTWARE AVAILABILITY

All the strategies and data included in this paper are available from systems-genetics.org. Source codes for the analyses described in

the paper are available on github.com/auwerxlab/PheWAS.
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