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1 Abstract 

Repair technologies have been considered as sustainable approaches due to their capability to restore 
value in a damaged component and bring it to like-new condition. However, in contrast to a manufacturing 
process benefiting from an automated environment, the automation level for repair and remanufacturing 
processes remains low. With the aim of moving the repair industry towards autonomy, this study proposes 
a novel repair framework. The developed methodology presents a vision-based Robotic Laser Cladding 
Repair Cell (RLCRC) that has two features: (a) an intelligent inspection system that uses a deep learning 
model to automatically detect the damaged region in an image; (b) employing computer vision-based 
calibration and 3D scanning techniques to precisely identify the geometries of damaged area. The repair of 
fixed bends is selected as the case study.  The results obtained validate the efficacy of the proposed 
framework, enabling automatic damage detection and damaged volume extraction for worn fixed bends. 
Following the suggested framework, a time reduction of more than 63% is reported.  

Keywords: repair systems; computer vision; autonomous manufacturing; deep learning. 

1. Introduction 

A crucial strategy to achieve an environmentally conscious manufacturing sector is through 
remanufacturing. Remanufacturing is defined as a series of processes of repairing degraded components 
and bringing them to like-new condition, thus it can maintain the inherent energy of the virgin production. 
It is a well-established field that has garnered a lot of attention in research and industry due to its direct 
contribution to sustainable development by promoting product reuse [1,2].  

Remanufacturing process involves disassembly, inspection, cleaning, recovery, rework, refurbish, and 
replacement. Specifically, different operations, e.g., additive operations (welding, spraying, laser cladding, 
etc.) and subtractive operations (machining, grinding, etc.), are implemented to recover a certain shape or 
specific geometry of damaged parts [3–6]. Among these operations, laser cladding (LC) has gathered a lot 
of interest for repairing and surface modification of mechanical components in the aerospace or oil and gas 
industries due to its ability to keep the heat-affected zone very shallow, reducing the risks of distortion, 
cracking and changing the metallurgy of the origin (base) material during the repairing/surface modification 
process [7]. This well-established industrial process works by focusing a high-power laser beam to generate 
a molten pool on the substrate along with continuously directing the material through a coaxial nozzle into 
that weld pool where it solidifies [8]. The scope of this presented research is LC-based repair technology.  

Generally, the process involves identifying and locating damages on a part’s surface and then depositing 
material to restore the original geometry by the LC technique [9]. However, repairing large volumes of 
worn components with the traditional repair process in industries is a monotonous and tedious task that, 
due to human dependence, can result in the process being time-consuming with a low throughput of parts 
and yielding inconsistent results. This issue is particularly relevant nowadays, as industries operate in a 
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rapidly changing environment due to factors like new technologies and global competition, which have 
created a necessity for industries to permanently transform their structures and technologies to survive in 
this dynamic setting [10].  

As shown in Figure 1, a traditional LC-based repair process usually comprises six main preparatory 
steps: 1) the data acquisition to acquire data from the repaired part; 2) the defect detection and identification 
on the damaged part; 3) the reconstruction of the nominal model from the acquired data; 4) the registration 
of the nominal model with the damaged model; 5) the repair patch extraction using boolean operation on 
the nominal model and acquired model, and 6) the repair tool-path generation. This process relies heavily 
on human operators to acquire spatial information of the entire damaged component in the shape of three-
dimensional (3D) point clouds by either using a structured light-based system or a laser triangulation-based 
scanner [11,12]. After obtaining a digital model of the worn part, the next step is to inspect the model and 
localize the damage. To localize the damage, either a nominal CAD model must be present, or the nominal 
model must be reconstructed from the damaged model. Registration is performed to align the damaged 
model with the nominal model by finding optimal point-to-point correspondences [13]. By comparing the 
registered models, the 3D geometry of the repair patch is extracted. This step is critical to the repair process 
because the repair volume’s geometrical information is the basis on which a tool-path for deposition is 
generated [14]. By summarizing the traditional repairing process, the authors identify a few challenging 
problems that have not been addressed yet, listed as follows: 

1. 3D scanning of the large volume part is time-consuming and result in dense point clouds that contain 
large amounts of data;  

2. Reconstruction is computationally expensive and may cause some deviations between the 
reconstructed and the nominal model [15];  

3. A robust registration of point clouds is challenging to obtain.  

4. Due to tedious processes in traditional repairing processes ranging from data acquisition to tool-path 
generation, it is difficult to avoid manual operations.  

These problems generate the gap to achieve an automated repairing process. Aprilia et al. [16] concluded 
an urgent need to develop algorithms for damage detection, localization, and tool-path generation that do 
not require human involvement.   

 

Figure 1. Flowchart outlining a traditional repairing process (adapted from [17]). 

To move the repair industry towards autonomy, we introduce a novel damage quantification method 
that uses a camera to obtain a video feed of the worn component coupled with a laser triangulation sensor. 
This study aims to provide an overview of the intelligent robotic laser cladding repair cell while highlighting 
the important design choices made and the mathematical concepts used in the approach. As such, the 
system’s calibration is covered, including the calculation of intrinsic and extrinsic matrixes and the 
validation of the camera model. Based on the validated calibration model, two case studies are carried out, 
and their respective error analyses are presented. This is the first autonomous repair pipeline based on 
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intelligent machine learning algorithms that incorporates a 2-dimensional (2D) camera and laser 
triangulation sensor to the best of the author’s knowledge. 

The rest of the paper is structured as follows. Section 2 reviews the current studies in damage inspection. 
Section 3 describes the proposed damage localization method. The results that validate the efficiency and 
accuracy of the proposed method are presented in Section 4. Finally, Section 5 summarizes this study and 
proposes some future works. 

2. Literature Review 

Damage or defect inspection is essential to enable autonomous or automatic repair. However, it has been 
the most challenging and tedious work, especially for dealing with minor defects or defects embedded in 
complex geometries. Researchers have devoted their efforts to solve this issue in two different directions, 
developing damage identification methods by collecting 3D point clouds or 2D images from the damaged 
component. Therefore, the relevant research results of these two categories related to the damage inspection 
methods are reviewed in this section. 

2.1 Damage Inspection from Point Clouds 

Advanced point cloud acquisition technologies such as coordinate measurement machines (CMM), 
triangulator systems, structured light systems, and stereo scanning systems have been widely employed to 
transform physical objects into digital objects [18]. However, point cloud information barely provides any 
more information than the 3D coordinates of scanned points. To identify the defective and non-defective 
areas, it is important to extract higher-level information from the point cloud. Surface segmentation 
methods have been widely implemented in the application of detection defects or damages from point cloud 
data. Point cloud segmentation methods can be divided into five categories: edge-based method, region-
based method, attributes-based method, model-based method, and graph-based method [19].  

Edge-based methods segments point cloud regions by identifying target points with rapid change in 
intensity [20,21]. In a region-based approach, neighboring points with a similar feature are integrated to 
isolate and distinguish regions with different features [22–24]. The attribute-based approach is based on 
clustering the attributes of the point cloud data [25–27]. Model-based method uses primitives for grouping 
surface fitting by the random sample consensus method. Graph-based method analyzes point clouds by a 
graph where each vertex corresponds to a point, and an edge links specific pairs of neighboring points. 
Recently, researchers have implemented these general surface segmentation methods to detect defects from 
point cloud data. Hitchcox and Zhao proposed a ‘random walk’ point cloud segmentation method to 
segment surface defects directly from unorganized 3D point clouds of aerospace surfaces [28]. Jovančević 
et al. introduced a 3D point cloud analysis based on the surface normal and curvature for detecting defects 
on exterior airplane’s surfaces [29]. Since the point clouds are not smoothly continuous with the defective 
and non-defective area boundary, Gaussian curvatures analysis can reveal the discontinuity of two surface 
patches [17,30].  

In addition to segmentation methods, comparing the reference point cloud and defective point cloud is 
an alternative approach to localize and characterize defective patches. Zheng et al. introduces an algorithm 
to compare the damaged and nominal parts through point clouds to extract the additive repair and 
subtractive repair patches [31]. Li et al. designed a fine registration method based on a modified iterative 
closet point (ICP) algorithm to identify the difference between defective part and nominal part [17]. 
Similarly, Zhang et al. proposes an automated damage detection method for jet engine blade repair, though 
comparing the overlapping area of nominal and damaged blades [12]. However, these methods are 
sometimes not feasible in practice because nominal models are not always available due to confidentiality 
issues [30]. 3D point cloud-based damage detection technology is also widely used in other fields, such as 
civil and factory facilities. Kashani & Graettinger introduced a cluster-based feature segmentation method 
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for light detection and ranging (LiDAR) point cloud for building roof damage detection [32]. Shinozaki et 
al. developed an automatic detection method to find scaffolding on furnace walls and wear from large-scale 
point clouds [33]. 

2.2 Damage Inspection from Images 

An alternative damage inspection method is based on the analysis of images of damaged parts. Image-
based damage inspection methods are classified into feature-based methods, template matching methods, 
and deep learning-based methods. Feature-based methods identify defects by a designed expert system that 
extracts certain properties of images, including colors, shapes, and/or textures. Zeng et al. [34] propose a 
light and shadow feature construction algorithm to automate the non-destructive testing for weld defect. 
Iglesia et al. [35] introduce an automated inspection system for identifying defects in slate slabs based on 
feature extraction. For feature-based defect detection methods, the quality of the features strongly depends 
on the experience of the system designer. In addition, the designed feature extractor is limited by the 
application scenario, which means that if the application scenario changes, the designed feature extractor 
may not be applicable anymore [36].  

As an alternative method for damage detection from images, the template matching method identifies 
defects by matching the images of defect-free reference and the defective part. Tsai and Lin [37] introduce 
a fast normalized cross-correlation method to identify integrated circuit defects. Later, an improved 
template-matching method is developed to search for a template position by genetic algorithm [38]. Kong 
et al. [39] propose a unified framework for defect detection for industrial products with planar features 
based on the template matching method through a geometric alignment between the template and test 
images. The template matching-based approach has demonstrated effectiveness in detecting defects because 
of the prior knowledge of the template image. However, such methods have inherent weaknesses in defect 
detection in the remanufacturing/repair context due to the lack of template images. 

In recent years, convolutional neural networks (CNN) have made substantial advances in the field of 
object detection and classification. Several researchers have implemented this algorithm in the defect 
detection problem, benefiting from this effective approach. Masci et al. [40] present a max-pooling CNN 
method to recognize and classify seven kinds of different steel defects. Wang et al. introduce a deep 
learning-based method to realize fast product inspection with guaranteed accuracy [36]. The method 
consists of three steps: Gaussian filtering, background removal based on Hough transform, and feature 
extraction by a deep neural network. A mask region-based CNN (Mask R-CNN) algorithm [41], a combined 
method to achieve object detection and instance segmentation, has been implemented for the inspection of 
casting defects from x-ray images [42]. Following that pattern, Zhang et al. [43] improve vehicle damage 
detection scenarios using Mask R-CNN.  

After a thorough review of current literature, defect detection methods from point clouds can provide 
accurate results based on surface segmentation techniques. However, these methods have limitations in 
classifying different classes of damages. Moreover, surface segmentation is challenging to perform real-
time defect detection due to the computational expense. In terms of image-based damage detection methods, 
the problem of damage detection on point cloud data can be addressed by CNN architectures. However, 
existing approaches focus on object detection or semantic segmentation of two-dimensional senses. 
Therefore, an accurate and automated damage area inspection and localization in 3D space is urgent for 
repair processes in the remanufacturing industry. 
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3. Proposed Damage Localization Framework 

3.1 Framework Overview 

This paper proposes an automated localization strategy based on deep learning and computer vision 
techniques for autonomous laser cladding repair processes. It focuses on improving the time efficiency of 
the identification and quantification of damage in piece parts, using cylindrical fixed bends as a case study. 
The localization is performed in two sequential steps: (1) a camera is used to identify the area in which the 
damage is located within the component, and (2) a laser triangulation sensor acquires an accurate volumetric 
representation of the damage for the laser cladding process to repair. Figure 2 shows a flowchart outlining 
the proposed damage localization pipeline in detail. The rationale behind the term ‘hybrid localization 
framework’ is the novel concurrent usage of a camera and a laser triangulation sensor that guide the repair 
process. Compared to current repair practices, the proposed method scans only the damaged surface 
autonomously instead of using manual inspection and scanning a larger area of the component, making it 
faster and consequently more cost-efficient while maintaining the accuracy and precision of the current 
repair process.  

 
Figure 2. Hybrid damage localization framework. 

The input to the framework is a video of the damaged component recorded by a camera. The stream of 
images is then run through a pre-trained deep learning model to automatically predict the location of the 
damage. The output from this deep learning model is a series or sequence of bounding boxes coordinates 
that represent the region of interest containing the damage. Using computer vision techniques, a damage 
localization process is carried out that uses those coordinates to obtain the location of the damage area in a 
3-dimensional global reference frame. 

A schematic of the proposed system for autonomous laser cladding repair processes is shown in Figure 
3. The laser cladding head is attached to the robotic arm as an end-effector and installed laterally to the side 
of the laser head cover are the laser triangulation sensor and the camera. As an installation guideline, the 
sensors need to be as close as possible to the laser head and facing down towards the part to be repaired. 
Also, it is important that the sensors and the laser head are installed in parallel. This last requirement greatly 
simplifies the pre-processing and measurements required to deal with image transformations, so it is 
recommended, but other camera configurations can be used following the generic instructions mentioned 
below. This study focuses on damage identification and localization on cylindrical fixed bends, more 
specifically, the damage and the pad on fixed bends. These are mechanical parts used in the oil and gas 
industry. For worn fixed bends, it is essential to distinguish the location of the pad, as it is the area that 
incurs the most damage and must be repaired. 
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Figure 3. Model schematic of the proposed autonomous laser cladding repair system. 

The following subsections describe the methods for damage identification and localization. Details of 
data acquisition and toolpath generation can be found in our previous research [9]. 

3.2 Damage Identification 

The damage identification part of this framework follows the current research trends of using novel 
computational technologies to detect objects in images. Typical types of damage can be classified into wear, 
erosion, crack damage [44].  Point cloud acquisition technology by 3D scanning is challenging to 
characterize the erosion and crack damage ,therefore this study will focus on the wear damage. Some 
examples of wear damage on the fixed bends are as shown in Figure 4. Based on Imam et al. [9] 
recommendations for the identification of damage with regular or irregular shape in images of fixed bends, 
the use of deep learning models, namely Faster R-CNN, provides an accurate real-time detection tool to the 
system. That study tested several models and architectures around damage identification on similar fixed-
bends and provided comparative results around the performance of deep learning models. Thus, this study 
builds upon the existing literature knowledge of applying convolutional neural networks (CNNs) for 
damage detection.  

    
Figure 4. Examples of wear damages on fix bends (annotated by red dashed rectangles). 
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Faster R-CNN is an object detection architecture that consists of a feature extraction network, a region 
proposal network (RPN), and a region of interest (ROI) network. The function of a Faster R-CNN model is 
fourfold: 1) the pre-processed images go through a pre-trained CNN (e.g., ResNet or Inception) to extract 
features and acquire a feature map; 2) the RPN generates possible regions of interest in the feature map; 3) 
the ROI pooling extracts a feature vector of a fixed size from the feature map, and 4) the fixed-size feature 
map then goes through fully connected layers that predict the class label (classification) and the bounding 
box (regression) for each ROI.  

Thus, a dataset is created to train the neural network selected. As shown in the model, the camera is 
fixed at the ‘localization home’ position during the inspection and localization process. Using that camera, 
1048 original images (resolution: 1920 x 1080 pixels) of eight different fixed bends types are captured to 
form a dataset based on real historical data of an industrial setup in Edmonton, Canada.  For this study, 
different types of geometric (horizontal flip and vertical flip) and photometric (grayscale, hue and exposure) 
augmentation techniques were applied to render the training model more robust and resilient to lighting and 
camera setting changes. Moreover, the images were resized to 416 x 416 pixels to reduce the training time. 
The dataset is then randomly split into 70% (733 images), 20% (210 images), and 10% (105 images) for 
training, validation, and testing purposes, respectively. An example of unlabeled images of the dataset can 
be found in Figure 5. 

 
Figure 5. Sample images from the dataset. 

The open-source TensorFlow object detection library version 1.5 is used in this study. Training scripts 
are carried out on Google Colaboratory (RAM ~ 12.6 GB, GPU: Tesla K80, 12 GB, Disk ~ 33GB). 
Applying the concept of transfer learning to ease computational efforts, the network is initialized with 
weights that are pretrained on the common objects in context (COCO) dataset. The feature extractors 
compared in this study are ResNet50 and Inception V2, again following Imam et al. results [9]. The training 
hyperparameters are summarized in Table 1, which are optimized to maximize prediction accuracy. 
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Table 1. List of optimized hyperparameters used during the training of the Faster R-CNN model. 

Number of Steps Batch Size Learning Rate Momentum 
Optimizer Score Threshold 

20000 12 0.001 0.9 0.2 

This study primarily evaluates model performance based on their mean average precision (mAP) scores, 
as it is an extensively used metric for object detection [45]. Another factor to consider with real-time 
implementation is the time taken for inference per image. As such, both trained models are assessed on 
their mAP scores and their detection speed, and the results are listed in Table 2. The publicly available mAP 
values resulting from the COCO dataset are also listed for reference. The resulting metric plots obtained 
from the best-performing model (ResNet 50) are illustrated in Figure 6.  

Table 2. Comparative performance analysis of the architectures on the training and validation datasets. 

Architecture ‘Fixed Bends’ mAP COCO mAP Detection speed 
(ms/image) 

ResNet50 88.7% 30% 1.48 
Inception v2 79.4% 28% 1 

 
Figure 6. Training results of the R-CNN models using the fixed bends dataset. (a) mAP @ 0.5:0.95 

IOU & (b) mAP @ 0.5 IOU; (c) validation loss and (d) training loss. 
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The application of the Faster R-CNN model provides then a classification result that confirms that the 
damage found is of interest for the repair process and a bounding box that support the localization of the 
damage in the camera image. This bounding box is defined, for each detection, by four points (𝑝𝑝1, … ,𝑝𝑝4). 
From those points, the length (𝑙𝑙𝐵𝐵𝐵𝐵) and width (𝑤𝑤𝐵𝐵𝐵𝐵) of the bounding box can be calculated. 

3.3 Damage Localization 

3.3.1 Camera Calibration  

Calibration is an essential prerequisite for the utilization of a camera in an autonomous repair system as 
it determines the accuracy of any image-based measurement. An imprecise calibration influences all parts 
of an autonomous repair framework, leading to inaccurate localization, scanning, and laser cladding results. 
Knowledge of both intrinsic and extrinsic parameters of the camera is required for a true projection of a 3-
dimensional point in space to a 2-dimensional image point. Herein, the intrinsic parameters represent the 
internal characteristics of the camera, e.g., the optical center and the focal length, whereas the extrinsic 
parameters determine the orientation of the camera in the real-world space. Using the pinhole camera 
model, the relationship between the global coordinates and the camera coordinates is shown below: 

 �
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In this study, the camera calibration is key to transforming the bounding box points detected in the image 
to real 3-dimensional points in the fixed bend that the system can use to guide the repair process. The 
transformation of each point of the bounding box, 𝑝𝑝 = (𝑢𝑢𝐵𝐵𝐵𝐵, 𝑣𝑣𝐵𝐵𝐵𝐵), into a point in the real world, (𝑃𝑃 =
(𝑋𝑋𝐵𝐵𝐵𝐵,𝑌𝑌𝐵𝐵𝐵𝐵,𝑍𝑍𝐵𝐵𝐵𝐵), follows Equation 4. 

3.3.2 Localization in Rotating Cylindrical Parts 

To finalize the localization of the damage on the fixed bend, the system quantifies how much the area 
where the damage is certainly located encircles the cylindrical surface. For this, the fixed bend is rotated 
while the camera stores away the video feed. This is required due to two reasons: (1) doing a full rotation 
of the fixed bend, it is ensured that the damage is exposed to the camera; and (2) usually damage spans 
along the surface of the fixed bend further than the field of view of the camera, so using a single shot to 
locate all the damage is not possible.  

The video is recorded at a known frame rate (𝑓𝑓) while rotating the turntable counterclockwise at a set 
angular speed, (𝜔𝜔). The camera used in this study has a motion-capture sensor, so it automatically records 
any motion in the field of view, triggering the video recording sequence as the part rotates. If that were not 
the case, other options to add the camera recording sequence to the power-on of the part rotation should be 
explored. The part rotation is recorded by the camera, such that the first frame corresponds to a 0 degrees 
rotation and the last frame corresponds to a full 360 degrees rotation. 

Therefore, using the trained Faster R-CNN model, a series of bounding boxes are obtained overtime at 
the camera framerate. An example for the testing dataset with bounding box output is shown in Figure 7, 
and  𝑃𝑃1 to 𝑃𝑃4 are the corners for the bounding box. From those detections, the damage size can be quantified 
for each frame following Equation 5. 

∀frame, � 𝑙𝑙BB = ‖𝑃𝑃1 − 𝑃𝑃2‖ = ‖𝑃𝑃3 − 𝑃𝑃4‖
𝑤𝑤BB = ‖𝑃𝑃1 − 𝑃𝑃3‖ = ‖𝑃𝑃2 − 𝑃𝑃4‖

    (5) 

 

Figure 7. A figure from the testing dataset with bounding box output. 
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Therefore, for the whole video sequence, a range of damage lengths (𝑙𝑙𝐵𝐵𝐵𝐵) and widths (𝑤𝑤𝐵𝐵𝐵𝐵) is obtained. 
An example of the video sequence results for both parameters is illustrated in Figure 8 (false and missed 
detections are omitted in the figure). As expected, during the video sequence, each frame outputs one 
damage length and width. As the model starts to detect the damage on the part, the length measurement is 
quite a constant bar certain variance of the model, but the width measurement increases and decreases as 
the damage appears on the camera field of view. Thus, the measurements obtained cannot be taken from 
the bounding box results at face value. 

 

Figure 8. Measured length and width of the damaged pad in a fixed bend part over a full rotation. 

Let a damage of a cylindrical component be defined by its length and its angle, as shown in Figure 9. 
The length of the damage (𝐿𝐿𝐵𝐵𝐵𝐵), may be obtained as an estimation of the bounding box length results; 
however, the angle of damage (𝜃𝜃𝐷𝐷), which starts at the leading angle (𝜃𝜃𝑙𝑙) and ends at the trailing angle (𝜃𝜃𝑡𝑡) 
requires additional effort. 

 



12 
 

Figure 9. Side view and axial view demonstrating the length and angle of the damage over a cylindrical 
component. 

The angle of damage goes chronologically from (𝜃𝜃𝑙𝑙) to (𝜃𝜃𝑡𝑡). As the part rotates, the leading edge of the 
damage always appears in the image first, followed by the trailing edge. Considering that all repair 
operations occur over the symmetry axis of the cylindrical part, the leading and trailing angles need to use 
the reference frame for their localization. As such, the angles are obtained when the width of the bounding 
box accounts for the radius of the cylindrical part, satisfying Equation 6.  

 𝑁𝑁𝑖𝑖 = {𝑎𝑎,𝑚𝑚 |𝑤𝑤BB𝑖𝑖 = 𝑟𝑟}     (6) 

where (𝑎𝑎) and (𝑚𝑚) are the elapsed number of frames in the video sequence when the width of the 
bounding box is exactly the cylindrical part radius (𝑟𝑟). With that, the angles can be calculated using 
Equation 7 below. 

∀𝑁𝑁, �
𝜃𝜃𝑙𝑙 = 𝑎𝑎𝜔𝜔 𝑓𝑓�  

𝜃𝜃𝑡𝑡 = 𝑚𝑚𝜔𝜔
𝑓𝑓�  

      (7) 

where (𝜃𝜃𝑙𝑙) and (𝜃𝜃𝑡𝑡) stand for the angular coordinates of the leading edge and trailing edge, respectively, 
and (𝜔𝜔) and (𝑓𝑓) represent the angular velocity of the rotary table and the camera framerate, respectively. 
Finally, the length of the damage (𝐿𝐿𝐷𝐷), and angle of damage (𝜃𝜃𝐷𝐷), serve as input to the laser triangulation 
sensor to scan the damaged surface of the cylinder. They determine the area’s boundaries to scan that will 
guide the robotic arm and rotary table during the scanning process. Both parameters are calculated 
following Equation 8. 

�
𝜃𝜃𝐷𝐷 =  𝜃𝜃𝑡𝑡 − 𝜃𝜃𝑙𝑙

𝐿𝐿𝐷𝐷 = max(𝑙𝑙BB) − min(𝑙𝑙BB) , if 𝑙𝑙BB ≠ 0    (8) 

4. Results 

4.1 Autonomous Robotic Laser Cladding Repair Cell 

A UVC-G3-Bullet/UVC-G3-AF camera and a Keyence IL-300 laser triangulation sensor are fitted on 
the laser head in a way that both the sensors are parallel to the laser head and are facing down at a right 
angle to the part axis. The camera operates at 30 frames per second. As stated before, this arrangement 
eliminates tedious angle measurements, simplifying the camera’s mathematical model, which is the 
author’s recommendation as to the easiest hardware setting. The origin of the global coordinate system is 
in the center of the turntable, as annotated in Figure 10. The damaged cylindrical component will be 
mounted on this turntable for damage localization and repair. 
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Figure 10. Image of the experimental setup during the calibration process with its main components 

highlighted. 

To ensure consistency, the Fanuc-R-1000iA/80F robot arm moves to a fixed position called ‘localization 
home’ before spatially localizing each damaged component. At the ‘localization home’ position, the laser 
head’s pose with respect to the turntable is set and is saved in the system’s memory. It is important to note 
here that the coordinates of the laser head with respect to the global world frame can be read off from the 
machine at this position. However, for camera calibration, the position of the camera lens with respect to 
the global origin must be known. A schematic showing the entire setup with the arrangement of the camera 
from a side view and an axial view is shown in Figure 11 (all units in that figure are in millimeters). The 
offset between the camera lens and the turntable is measured manually from the experimental setup. The 
side view shows the offset of the camera lens to the turntable in the z-direction, i.e., 499 mm, whereas the 
axial view indicates the offset in the x and y direction, which is -10 mm and 700 mm, respectively. 
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Figure 11. Camera offsets (in mm) schematics from the global coordinate origin. 

The damaged component is mounted on the turntable that rotates it along the cylinder’s longitudinal 
axis, which is aligned with the center of the turntable. This rotational motion is defined by the angular 
velocity of the turntable (𝜔𝜔), which is fixed to 41.54 degrees per second or 0.725 radians per second. To 
ensure there is no bending of the part due to only one of its ends being fixed, the straightness of its axis is 
scrutinized with a spirit level. The camera has a motion sensor that automatically records a video once it 
detects movement. Exploiting this feature, the turntable is rotated at a known angular velocity, and the video 
is recorded for one complete rotation. Figure 12 shows the perspective of the damaged part from the camera. 
Here, the camera has a top view of the part such that the length of wear is on the z axis and the width of 
wear is on the x axis. 
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Figure 12. Camera top view of the experimental case study with the tape markers with known edge 
coordinates for calibration validation. 

 

To ensure the robotic repair cell is adequately calibrated and quantifies calibration errors, a validation 
process is performed. The calibration intrinsic and extrinsic matrices are outlined in Table 3, along with the 
physical inherent projection error of the camera. A fixed bend is mounted on the turntable, and three equal 
lengths of black tape are applied to its surface. The edges of the tapes are annotated with circles in red (see 
Figure 12). The robot is moved to its ‘localization home’ position and an image is captured. The real-world 
coordinates representing the edges of the three tapes are then measured and recorded. Based on the pixel 
coordinates obtained from the image, the world coordinates of each point are calculated.  

Table 3. Algorithm for the intersection part modification problem. 

Mean projection error [mm] Intrinsic matrix Extrinsic matrix 

0.17 𝑨𝑨 = �
1284 0 950

0 1280 562
0 0 1

� [𝐑𝐑 𝐓𝐓] = �
0 0 1 −10
−1 0 0 700
0 −1 0 499

� 

The performance of the proposed calibration model is assessed by calculating the root mean square 
error, which follows Equation 9 below: 

∆= �(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2 + (𝑧𝑧𝑖𝑖 − 𝑧𝑧)2    (9) 

where (𝑥𝑥𝑖𝑖), (𝑦𝑦𝑖𝑖), (𝑧𝑧𝑖𝑖) are the estimated world coordinates of the pad locations based on the camera model; 
and (𝑥𝑥), (𝑦𝑦), and (𝑧𝑧) are the real-world coordinates taken manually by guiding the robot arm to the pad 
location. The relative error percentage is then defined by Equation 10 and the calibration results for all the 
points used in the calibration setup are listed in Table 4. 

𝑟𝑟 = ∆
�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2

      (10) 

Table 4. Validation of the calibration setup using tape markers. 

 𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖 ∆ (mm) 𝑟𝑟 𝑒𝑒𝑧𝑧 (mm) 
#1 -16.3 56.8 674.3 -13.969 59.812 682.972 9.471 1.40% 8.672 
#2 18.4 57.4 656.7 21.512 62.41 664.981 10.167 1.54% 8.281 
#3 19.1 57.2 583 21.901 61.115 591.211 9.518 1.62% 8.211 
#4 4.3 57.6 544.2 7.888 60.091 552.495 9.375 1.71% 8.295 
#5 -17.7 56.9 395.5 -15.46 59.327 406.29 11.284 2.82% 10.79 
#6 20.3 56.8 376.7 23.589 59.165 389.343 13.276 3.48% 12.643 

Mean 10.515 2.10% 9.482 
Standard Deviation 1.531 0.85% 1.834 

 

From these error values, an error margin can be calculated that needs to be added to the calculated axial 
(z) coordinate to ensure the pad is entirely represented by the coordinates and account for hardware 
measurement errors. This is illustrated in Figure 13, where (𝑒𝑒𝑧𝑧� ) and (𝑐𝑐𝑧𝑧) are the mean and the standard 
deviation of the error in the z-axis, respectively. Assuming the error values in z follow a normal distribution, 
an interval of 95% confidence is obtained adding and subtracting two times (𝑐𝑐𝑧𝑧) and (𝑒𝑒𝑧𝑧� ) to the coordinates 
of (𝐿𝐿𝐷𝐷), the damage length. 
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Figure 13. Schematic of the error tolerance introduced along the z axis to account for the calibration 
error. 

4.2 Validation Results 

This section presents two case studies that aim to validate the damage localization framework for 
autonomous robotic laser cladding repair processes. These case studies are carried out on two different parts 
with varying radii. Following are the results from the case studies and how they compare to the measured 
or actual value. It is important to note that the length of the damage is manually measured with a measuring 
tape (accuracy: 1 millimeter), and the angle was noted by reading the angular coordinate of the turntable at 
the location of the leading edge and the trailing edge (accuracy: 1 degree). 

1.1.1 Case Study 1 

The first case study is done over a fixed bend of 60 millimeters of the radius with a known pad length 
and damage angle, as shown in Figure 14a. From the inference, 262 frames are recorded while the fixed 
bend rotates. Using the proposed framework, the results for this case study are tabulated in Table 5. The 
results show a total angular displacement error of 0.408° and a length error of 9.91 mm. Considering the 
accuracy of the measurement devices, the angular error is considered negligible, and the length error is 
inferior to the tolerancing applied. Therefore, the coordinates containing the repair patch with the error 
tolerance added are sent to the laser triangulation sensor, and the equivalent point cloud is obtained, as 
shown in Figure 14b. The time it takes to acquire the point cloud of the damaged surface is 16 minutes, 
whereas obtaining the entire surface geometry would take 45 minutes. 

Table 5. List of results from case study 1. 

 𝜃𝜃𝐷𝐷 𝐿𝐿𝐷𝐷 (mm) 

Measured 120° 120 

Calculated 120.408° 129.91 

Error 0.408° (0.34%) 9.91 (8.26%) 
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(a) (b) 
Figure 14. Illustration of the results for case study 1. (a) Sample image from the camera with the pad and 

axes annotated; (b) Scanned point cloud representing the damage in the fixed bend. 

1.1.2 Case Study 2 

The second case study is done over a fixed bend of 91 millimeters of the radius with a known pad length 
and damage angle, as shown in Figure 15a. From the inference, 275 frames are recorded while the fixed 
bend rotates. Using the proposed framework, the results for this case study are tabulated in Table 6. The 
results show a total angular displacement error of 0.72° and a length error of 0.17 mm. Similarly, these 
errors are within the expected results, and the coordinates containing the repair patch with the error 
tolerance added are sent to the laser triangulation sensor. The point cloud is obtained, as shown in Figure 
15b. 

Table 6. List of results from case study 2. 

 𝜃𝜃𝐷𝐷 𝐿𝐿𝐷𝐷 (mm) 

Measured 110° 150 

Calculated 110.72° 149.83 

Error 0.72° (0.65%) 0.17 (0.11%) 

 

 

 

Length of pad

z

x

Length of 
pad

z

x
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(a) (b) 
Figure 15. Illustration of the results for case study 2. (a) Sample image from the camera with the pad and 
axes annotated; (b) Scanned point cloud representing the damage in the fixed bend. 

4.3 Discussion 

In summary, the proposed visual system is capable of identifying the damaged area of the cylindrical 
component. Even though the neural network may fail to detect or incorrectly detects the pad, the damage 
localization relies on a sequence of images (or video), thus such outliers can be easily filtered out. 
Nonetheless, it is important to note that the final damage area estimated can be smaller than the real damage 
area, such as in case study 2, where the measured damaged damage is slightly larger than the estimated by 
the system. Indeed, the consideration of errors in the angle and length estimations are key to ensuring the 
correct registration of the entire damaged area. In this study, the errors are directly correlated to the 
algorithms and systems’ precision and accuracy. However, to support the autonomous operation of the 
robotic repair cell, a minimum error margin might be advisable, independently of the detection accuracy, 
as a safeguard. This would minimize the risk of performing a partial repair on a damaged part. Also, a post-
repair inspection process with the same system could be developed to ensure the quality of the laser cladding 
process and of the repaired unit. 

Overall, the proposed system significantly reduces the time the point cloud acquisition process takes by 
introducing an additional process and visual system. With this approach, the time for the system to capture 
the video and finally acquire the point cloud for the first and second case studies are 16 and 20 minutes, 
respectively. If it were to capture the entire surface geometry (current industrial practice), it would take 
around 45 and 54 minutes for case studies 1 and 2, respectively. Therefore, a time reduction of 64.4% (29 
minutes) and 63.0% (34 minutes) is achieved.  

In fact, analyzing the process itself, this approach is interesting for all kinds of repair processes where 
the ratio of damage area per current registered area is small. In other words, if from the current scanning 
process the usable data is a small fraction of the total scanned data, then the proposed approach might be 
worth investigating to increase productivity by reducing waste, i.e., the time it takes to generate and process 
the point cloud outside the damaged area. Also, optimizing the use of the laser scanner diminishes the 
process cost as lesser maintenance costs are expected per repaired unit. Nonetheless, further analysis on the 
cost-effectiveness and impact of these changes on a fully autonomous laser cladding repair cell is in process. 

5. Conclusions 

Repair or remanufacturing is a green manufacturing strategy that helps to reduce industrial waste by 
reducing cost, energy, and, most importantly, material consumption. Damage localization is a crucial step 
in repair that typically relies heavily on a human operator. The proposed robotic laser cladding repair system 
is able to autonomously locate and quantify the damaged areas on worn components. In order for the laser 
triangulation sensor to autonomously scan only the damaged region, the robotic system needs to be 
calibrated so that two-dimensional information from a camera can be translated into three-dimensional 
global coordinates. To achieve this, the camera in the RLCRC is calibrated, and the calibration parameters 
with respect to the global coordinate origin are found. Since the damaged region wraps around a cylindrical 
part’s surface, the main goal is to obtain the longitudinal and angular coordinates of the damaged patch.  

The damaged part is mounted on the turntable, and the robot arm is moved to the ‘localization home’ 
position. The turntable is rotated for a full 360°, and whilst it rotates, a video is recorded for the deep 
learning model to identify and localize the damaged region on 2D image data. Based on the spatial 
localization parameters presented in section 2.3, this information is converted to 3D world coordinates 
providing the axial and angular ranges of the damaged region. To corroborate the 2D to 3D conversion, a 
validation between the measured and calculated 3D coordinates is conducted that shows an average relative 
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error of 2.018%. Moreover, two case studies are presented where the calculated length and angle of wear 
are compared to the measured values. For case study 1, the results show a length error of 9.91mm and an 
angular displacement error of 0.408°, respectively. For case study 2, the length and angular displacement 
errors are 0.17 mm and 0.72°, respectively. In summary, the proposed approach reduces the time for 
localization and registration of damaged parts for repair by almost 63% and consequently increases 
productivity and decreases the cost of the laser cladding repair process. This study supports the viability of 
an autonomous laser cladding repair process for cylindrical components by the use of vision systems to 
automatically localize and optimize the registering process. 

So far, the method has only been proved effective in repairing the cylindrical part. For the general 
situation, other types of parts, especially parts with free-form surfaces should be explored in future work.  
Moreover, detection and localization of damages at different regions of the worn part should also be focused 
on in the future. Finally, other point cloud acquisition devices (e.g. profilometer, high-precise 3D camera)  
can be investigated to improve the time reduction in the scanning process. 
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