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Graphical Abstract
A Type 2 Wavelet Brain Emotional Learning Network with Double Recurrent Loops based
Controller for Nonlinear Systems
Zi-Qi Wang,Li-Jiang Li,Fei Chao,Chih-Min Lin,Longzhi Yang,Changle Zhou,Xiang Chang,Changjing Shang,Qiang
Shen
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Highlights
A Type 2 Wavelet Brain Emotional Learning Network with Double Recurrent Loops based
Controller for Nonlinear Systems
Zi-Qi Wang,Li-Jiang Li,Fei Chao,Chih-Min Lin,Longzhi Yang,Changle Zhou,Xiang Chang,Changjing Shang,Qiang
Shen

• Integrating a type-2 wavelet function to a brain emotional network to improve the nonlinear function learning
performance.

• Introducing a double-loop structure to a brain emotional network to improve the ability of historical information
extraction from dynamic systems.
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A B S T R A C T
Conventional controllers for nonlinear systems often suffer from co-existences of non-linearity
and uncertainty. This paper proposes a novel brain emotional neural network to address such
challenges. The proposed network integrates a Type 2 wavelet neural network into a conventional
brain emotional learning network which is further enhanced by the introduction of a recurrent
structure. The proposed network, therefore, combines the advantages of the Type 2 wavelet
function, recurrent mechanism, and brain emotional learning system, so as to obtain optimal
performance under uncertain environments. The proposed network works with a compensator
to mimic an ideal controller, and the parameters of both the network and compensator are up-
dated based on laws derived from the Lyapunov stability analysis theory. The proposed system
was applied to a z-axis microelectromechanical system gyroscope. The experimental results
demonstrate that the proposed system outperformed other popular neural-network-based control
systems, indicating the superiority of the proposed network-based controller.

1. Introduction
Dynamic control systems such as robots have received extensive attention in recent years [2, 3, 15, 22, 27, 29, 30,

32]. Traditional control methods such as proportional–integral–differential controllers and sliding mode controllers
are not very effective for robots to deal with complex and unknown nonlinear systems. However, sliding mode control
schemes with embedded neural networks can lead better performances on robots [7, 13, 14, 25, 28]. In addition, self-
adaptive control methods can dynamically adjust their parameters according to the characteristics of the controlled
systems [9, 12, 18, 31, 35], so as to obtain further enhanced control performance.

Feed-forward neural networks do not acquire and utilize the historical information of dynamic systems. Thus
various feedback structures have been integrated into recurrent neural networks for obtaining the historical information
of a system under operation, in an effort to allow adaptive parameter adjustment of the control systems [4, 8, 24].
The traditional single feedback structure, such as [5, 8], takes the external signals into consideration, but it does not
consider the internal signals. This has led to the development of a double loop recurrent neural network for the control
of nonlinear systems with the improved ability of obtaining dynamic information [11]. Such a double loop structure
effectively handles both external and internal signals [10, 11], using Gaussian functions as the membership functions.
However, these studies did not consider complicated uncertainties and unexpected noises. In contrast, we notice that
brain emotional learning neural networks with better nonlinear approximate capabilities has been used in many neural
controllers [6, 20]; in addition, the type-2 wavelet structure has been used widely in recent investigations [1, 17, 19,
23, 26], such as the integration of a type-2 wavelet structure into a CMAC network [21]. Inspired by this, this paper
introduces the type-2 wavelet as the membership function for better uncertainly handling.

This paper reports a new neural network structure, i.e. a double loop Type-2 wavelet brain emotional learning
recurrent neural network (T2WBD), by addressing the key challenge of learning ability in the dynamic system control,
so as to make the controller converge to nonlinear function efficiently. In the proposed network, input signals are first
fed into the upper and lower channels of a Type-2 wavelet fuzzy structure and then relayed to the sensory and emotional
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Figure 1: Schematic Diagram of FBEL Structure

channels of a fuzzy brain emotional neural network. The final output of the neural network is an aggregation of the
output values of the two channels. In addition, two recurrent loops are created inside the network to improve the
ability to acquire dynamic information of unknown controlled objects. The contributions of this paper are summarized
as follows: 1) integrating a type-2 wavelet neural network to a brain emotional network for enhanced nonlinear function
learning ability under uncertain environments with unexpected noise, and 2) introducing a double looped structure to
a brain emotional network for improving the ability of historical information extraction and utilization in dynamic
systems.

This remainder of this paper is organized as follows: Section 2 introduces the underpinning of brain emotional
learning network; Section 3 presents the proposed network; Section 4 introduces a class of dynamic systems using
mathematical expressions, and the structure of the proposed network-based controller; Section 5 specifies comparative
experiments and ablation experiments on a z-axis microelectromechanical system gyroscope with experimental results
analysis, and Section 6 concludes the work and points out important future work.

2. Background and Related Work
A brain emotional learning neural network (BEL) imitating judgments and emotions of a human brain, consists

of two channels, each of which is implemented by a network. Thus, the two networks work independently in the
association memory layer and weight memory layer, which then jointly produce the final outputs. In addition, a fuzzy
brain emotional learning neural network (FBEL) involving an extra fuzzy inference layer is widely applied in many
network-based controllers.

The FBEL network as shown in Fig. 1 consists of the following four layers:
1) Input Layer: Each element in this layer receives one input signal and the input layer is defined as:
𝑖 = {𝑖1, 𝑖2, … , 𝑖𝑚} ∈ 𝑅𝑚, (1)

where 𝑖 is a signal and 𝑚 is the length of 𝑖.
2) Association Memory Layer: The output of the input layer is passed to the upper and lower channels. The outputs

of these two channels are respectively denoted as 𝑓 and ℎ:
𝑓 = {𝑓11, 𝑓12,… , 𝑓1𝑛, 𝑓21, 𝑓22,… , 𝑓2𝑛,⋯ , 𝑓𝑚1, 𝑓𝑚2,… , 𝑓𝑚𝑛, } ∈ 𝑅𝑚𝑛, (2)
ℎ = {ℎ11, ℎ12,… , ℎ1𝑛, ℎ21, ℎ22,… , ℎ2𝑛,… , ℎ𝑚1, ℎ𝑚2,… , ℎ𝑚𝑛, } ∈ 𝑅𝑚𝑛, (3)

Wang et al.: Preprint submitted to Elsevier Page 2 of 18
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where 𝑓 and ℎ are two vectors; 𝑚 is the dimension of the input vector; 𝑛 is the number of fuzzy rules corresponding to
each element of the input vector. In other words, in the lower and upper channel, each element of the input corresponds
to a vector, which represents 𝑛 fuzzy rules. Each element 𝑓𝑖𝑗 representing the 𝑖-th input through the 𝑗-th fuzzy rule,
thus 𝑓𝑖𝑗 is defined as:

𝑓𝑖𝑗 = exp
(

−
(

𝐼𝑖−𝜇𝑖𝑗
)2

𝜎𝑖𝑗2

)

𝑖 = 1, 2,… , 𝑚; 𝑗 = 1, 2,… , 𝑛 (4)

where 𝐼𝑖 is the 𝑖-th input of the system; 𝜇𝑖𝑗 represents the center of the Gaussian function, 𝜎𝑖𝑗 indicates the width of
the Gaussian function 𝑓𝑖𝑗 . Each element ℎ𝑖𝑗 , representing the 𝑖-th input through the 𝑗-th fuzzy rule, thus ℎ𝑖𝑗 is defined
as:

ℎ𝑖𝑗 = exp
(

−
(

𝐼𝑖−𝑏𝑖𝑗
)2

𝑐𝑖𝑗2

)

𝑖 = 1, 2,… , 𝑚; 𝑗 = 1, 2,… , 𝑛 (5)

where 𝑏𝑖𝑗 represents the center of the Gaussian function, 𝑐𝑖𝑗 indicates the width of the Gaussian function ℎ𝑖𝑗 ;.3) Weight Memory Layer: The output of the upper channel, denoted as 𝑜, is expressed as:
𝑜 =

∑

𝑖
∑

𝑗 𝑓𝑖𝑗 ∗ 𝑤𝑖𝑗 𝑖 = 1, 2,… , 𝑚; 𝑗 = 1, 2,… , 𝑛 (6)
where 𝑤𝑖𝑗 is the weight of the upper channels corresponding to the output of the 𝑖-th line and 𝑗-th block in the upper
hidden layer of the sensory channel. Similarly, the output of the lower channel, denoted as 𝑎, is defined as:

𝑎 =
∑

𝑖
∑

𝑗 ℎ𝑖𝑗 ∗ 𝑣𝑖𝑗 𝑖 = 1, 2,… , 𝑚; 𝑗 = 1, 2,… , 𝑛 (7)
where 𝑣𝑖𝑗 is the weight of the lower channels corresponding to the output of the 𝑖-th line and 𝑗-th block in the lower
hidden layer of the sensory channel.

4) Output Layer:
𝑢𝐹𝐵𝐸𝐿𝐶 = 𝑜 − 𝑎 =

∑

𝑖
∑

𝑗 𝑓𝑖𝑗 ∗ 𝑤𝑖𝑗 −
∑

𝑖
∑

𝑗 ℎ𝑖𝑗 ∗ 𝑣𝑖𝑗 𝑖 = 1, 2,… , 𝑚; 𝑗 = 1, 2,… , 𝑛 (8)
where 𝑤𝑖𝑗 denotes a weight in the sensory channel, and 𝑣𝑖𝑗 denotes a weight corresponding to the emotional channel.
The difference between the outputs of the two channels makes the final output of the network. The updating rules of
𝑤 and 𝑣 are defined as:

{

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + Δ𝑤𝑖𝑗
𝑣𝑖𝑗 = 𝑣𝑖𝑗 + Δ𝑣𝑖𝑗

(9)

To be specific, Δ𝑤𝑖𝑗 and Δ𝑣𝑖𝑗 are defined by:
{

Δ𝑤𝑖𝑗 = 𝛽 ×
[

𝑓𝑖𝑗 ×
(

𝑢FBELC − 𝑑𝑖
)]

Δ𝑣𝑖𝑗 = 𝛼
[

ℎ𝑖𝑗 ×
(

max
[

0, 𝑑𝑖 − 𝑜
])] (10)

where 𝛼 and 𝛽 are the learning rates;
The 𝑑𝑖 in Eq. 10 is an adjustable parameter that is defined by:

𝑑𝑖 = 𝑝𝑖 × 𝐼𝑖 + 𝑞 × 𝑢FBELC (11)
where 𝑝 and 𝑞 are the given weight parameters.

3. Proposed Network Structure
The structure of the proposed Type 2 wavelet brain emotional learning network with double recurrent loops is

shown in Fig. 2. The network is comprised of an input layer, a hidden layer with feedback, and an output layer. The
hidden layer is divided into an upper channel and a lower channel. Each channel contains an association memory layer
and a receptive-field layer. The output of the receptive field layer is multiplied by a feedback coefficient and added to
the input of the associative memory layer. The output layer aggregates the outputs of the upper and lower channels
Wang et al.: Preprint submitted to Elsevier Page 3 of 18
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Figure 2: Schematic diagram of T2WBD structure. The channels with 𝜅 are the outloop feedback; the channels with 𝛾𝑖
are the internal feedbacks.

to produce the final output of the network. The final output of the neural network and the previous output also act as
sources of feedback used by the input of the neural network.

The structure and signal propagation of the proposed network are specified as follows:
1) Input layer: The input of this layer 𝑥𝑖 is composed of the external input and historical output of the neural network

multiplied by a certain feedback coefficient matrix 𝜅. The output of each neuron node in this layer is expressed as:
⎧

⎪

⎨

⎪

⎩

𝐼𝑖 = 𝑥𝑖 ⋅ 𝛾𝑖
𝛾 = 𝜅 ⋅ 𝑅
𝑅𝑗 =

𝑒𝑥𝑛𝑛𝑗
𝑒𝑒𝑥𝑛𝑛𝑗

𝑖 = 1, 2, 3,… , 𝑚; 𝑗 = 1, 2, 3,… , 𝑛 (12)

where 𝐼 = {𝑖1, 𝑖2,… , 𝑖𝑖,… , 𝑖𝑚} ∈ ℜ𝑚 is the output signal of the input layer; 𝑥 =
[

𝑥1, 𝑥2,… , 𝑥𝑖,… , 𝑥𝑚
]

∈ ℜ𝑚 is the
external input; 𝛾𝑖 is the feedback from the historical output of the neural network; 𝜅 is the feedback coefficient matrix
of size 𝑚 × 𝑛; 𝑛 is the number of output nodes of the neural network; m is the number of input nodes of the neural
network; 𝑒𝑥𝑛𝑛𝑗 is last output; 𝑒𝑒𝑥𝑛𝑛𝑗 is the output prior to 𝑒𝑥𝑛𝑛𝑗 .2) Association Memory layer: The input signal activates different rows by the associative memory layer. Each row
contains several blocks. In each block, the input signal is calculated by the corresponding fuzzy rules, and the generated
corresponding output is transmitted to the receptive field layer. Therefore, the outputs of this layer are defined as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ̄𝑖𝑗 = −1 ⋅ 𝐼i+𝑤𝑟𝑗𝑒𝑥𝐹 𝑗−𝜇𝑖𝑗
𝜎𝑖𝑗

⋅ exp

(

−1 ⋅

(

𝐼i+𝑤𝑟𝑗𝑒𝑥𝐹 𝑗−𝜇𝑖𝑗
)2

𝜎𝑖𝑗
2

)

ℎ𝑖𝑗 = −1 ⋅
𝐼i+𝑤𝑟𝑗𝑒𝑥𝐹 𝑗−𝜇𝑖𝑗

𝜎𝑖𝑗
⋅ exp

(

−1 ⋅

(

𝐼i+𝑤𝑟𝑗𝑒𝑥𝐹 𝑗−𝜇𝑖𝑗
)2

𝜎2𝑖𝑗

) 𝑖 = 1, 2, 3,…𝑚; 𝑗 = 1, 2, 3,… , 𝑘 (13)

where �̄� =
{

ℎ̄11, ℎ̄12,… , ℎ̄1𝑘, ℎ̄21, ℎ̄22,… , ℎ̄2𝑘,… , ℎ̄𝑚1, ℎ̄𝑚2,… , ℎ̄𝑚𝑘
}

∈ 𝑅𝑚𝑘 is the output of the associative mem-
ory layer in the upper channel; 𝐻 =

{

ℎ11, ℎ12,… , ℎ1𝑘, ℎ21, ℎ22,… , ℎ2𝑘, ℎ𝑚1, ℎ𝑚2,… , ℎ𝑚𝑘
}

∈ 𝑅𝑚𝑘 is the output of
Wang et al.: Preprint submitted to Elsevier Page 4 of 18
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Figure 3: Relationship between input and activation modules

the associative memory layer in the lower channel; 𝑚 is the dimension of the input vector for the associative memory
layer; and 𝑘 is the number of blocks in each row of the Association Memory layer.

The corresponding relationship between the input and activation modules, as shown in Fig. 3, illustrates that the
𝑖-th input value activates each block of the 𝑖-th row in the associative memory layer. In addition, 𝑤𝑟𝑗 and 𝑤𝑟𝑗 are the
weights of internal feedback; 𝑒𝑥𝐹 𝑗 and 𝑒𝑥𝐹 𝑗 are the outputs of receptive-field; 𝜇𝑖𝑗 is the center of the wavelet function;
and 𝜎𝑖𝑗 and 𝜎𝑖𝑗 denote the boundaries of a wavelet function.

3) Receptive-Field layer: The output of the associative memory layer is sent to the receptive field layer, and the
receptive field is defined as:

{

𝐹 𝑗 =
∏𝑚

𝑖=1 ℎ𝑖𝑗
𝐹𝑗 =

∏𝑚
𝑖=1 ℎ̄𝑖𝑗

(14)

where 𝐹 = {𝐹1, 𝐹2,⋯ , 𝐹𝑖,⋯ , 𝐹𝑘} ∈ 𝑅𝑘 and 𝐹 = {𝐹 1, 𝐹 2,… , 𝐹 𝑖,… , 𝐹 𝑘} ∈ 𝑅𝑘 are the outputs of the receptive-
field layer; 𝑘 is the size of the output of the receptive-field layer; ℎ̄𝑖𝑗 and ℎ𝑖𝑗 are the outputs of the association memory
layer of the 𝑖-th line in the 𝑗-th block.

4) Weight memory layer: This layer consists of two neural network channels, which are the sensory neural network
channel and emotional neural network channel. The output from the upper channel enters the two channels. The result
of the upper channel 𝑎 is achieved by calculating the difference between the output from the emotional neural network
channel and that from the sensory neural network channel:

𝑎 = �̄�𝐹 −𝑤𝐹 , (15)
where �̄� ∈ 𝑅𝑛×𝑘 is the amygdala memory weight; 𝑤 ∈ 𝑅𝑛×𝑘 is the prefrontal memory weight; 𝑛𝑛 ∈ 𝑅𝑛 is the final
output.

Similarly, the output from the lower channel also enters two channels, and the output of the lower channel 𝑜 is
similarly generated by subtracting the output of the emotional neural network channel from the output of the sensory
neural network channel:

𝑜 = �̄�𝐹 −𝑤𝐹 . (16)
5) Sum layer: The final output of the network is generated as the summation of the outputs of the upper and lower

Wang et al.: Preprint submitted to Elsevier Page 5 of 18
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Figure 4: Schematic Diagram of T2WBD Controller Structure. A main controller 𝑢𝑒𝑞 embedded with T2WBD and a
robust controller 𝑢𝑟𝑐 work together to produce control signals.

channels:
𝑛𝑛 = 𝑎 + 𝑜. (17)

4. Neural Network Controller
4.1. Control Problem Description

The structure of the sliding mode controller is shown in Fig. 4. The controlled object model is a class of nonlinear
systems, which can be expressed as:

�̇� = (𝑊 + ΔW)𝑋 +𝑁
(

𝑈 + 𝑓𝑏
)

+ 𝑓𝑑 , (18)
where 𝑋 ∈ ℜ𝑚 is a matrix of variables, including the displacement and speed of the control system representing the
state of the system; 𝑊 ∈ ℜ𝑚×𝑚 and 𝑁 ∈ ℜ𝑚×𝑞 are constant matrices, which are important parameters constituting
the system; 𝑈 ∈ ℜ𝑞 is a variable matrix, representing the complete control value for the system; Δ𝑊 represents the
uncertainty of 𝑊 ; 𝑓𝑏 ∈ ℜ𝑞 is a non-linear function; 𝑓𝑑 is an external disturbance. Thus, the nominal model of this
class of systems is defined as:

�̇� = 𝑊𝑋 +𝑁𝑈 + 𝐹 , (19)
where 𝐹 is a lumped formula of parameter uncertainty and external interference, which is defined by:

𝐹 = Δ𝑊𝑋 +𝑁𝑓𝑏 + 𝑓𝑑 . (20)
Assuming that the lumped equation 𝐹 is bounded, then we have ∣ 𝐹 ∣≤ 𝐹𝑑 , where 𝐹𝑑 is a positive constant. Given

the nonlinear system model as expressed above, the control task is to find a controller so that the tracking trajectory 𝑋
can track the reference trajectory 𝑋𝑑 . Therefore, the error between the tracking trajectory and the reference trajectory
is defined as: 𝑒 = 𝑋𝑑 −𝑋, and the derivative of the error is: �̇� = �̇�𝑑 − �̇�. The sliding mode surface, 𝑠, of the system
is a linear combination of the error and the derivative of the error; 𝑠 is then defined as:

𝑠 =
⎡

⎢

⎢

⎣

𝜆11 … 0 … 𝜆𝑛1 … 0
⋱ … ⋱

0 … 𝜆1𝑚 … 0 … 𝜆𝑛𝑚

⎤

⎥

⎥

⎦

[

𝑒
∫ 𝑇
0 𝑒𝑑𝑡

]

(21)

where 𝑒T = {𝑒(𝑛−1), ..., �̇�, 𝑒} is a column vector, which consists of the tracking error 𝑒 and its derivative. The coefficient
matrix on the left side can be simplified as:

𝜆 =
⎡

⎢

⎢

⎣

𝜆11 … 0 … 𝜆𝑛1 … 0
⋱ … ⋱

0 … 𝜆1𝑚 … 0 … 𝜆𝑟𝑛

⎤

⎥

⎥

⎦

=
[

𝜆1, 𝜆2
] (22)
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Eq. 21 is simplified to:

𝑠 = 𝜆1𝑒 + 𝜆2 ∫ 𝑒. (23)

Differentiate Eq. 23 with respect to time:
�̇� = 𝜆1

(

�̇�𝑑 − �̇�
)

+ 𝜆2
(

𝑋𝑑 −𝑋
)

. (24)
Substitute Eq. 19 into Eq. 24, the following can be obtained:

�̇� = 𝜆1
(

�̇�𝑑 −𝑊𝑋 −𝑁𝑈 − 𝐹
)

+ 𝜆2
(

𝑋𝑑 −𝑋
)

. (25)
If the sliding surface is reachable, the following mathematical expression must be satisfied:

1
2
𝑑
𝑑𝑡

(

𝑠2𝑖
)

≤ −
𝑖=1
∑

𝑚
𝜎𝑖 ||𝑠𝑖|| . (26)

Substitute Eq. 25 into Eq. 26, yielding:

𝑠 ⋅ �̇� = 𝑠
[

𝜆1
(

�̇�𝑑 −𝑊𝑋 −𝑁𝑈 − 𝐹
)

+ 𝜆2
(

𝑋𝑑 −𝑋
)]

≤ −
𝑖=1
∑

𝑚
𝜎𝑖 ||𝑠𝑖|| . (27)

Set �̇�= 0, then the ideal controller 𝑈𝑒𝑞 is defined as:

𝑈𝑒𝑞 =
(

𝜆1𝑁
)−1 [𝜆1

(

�̇�𝑑 −𝑊𝑋
)

+ 𝜆2
(

𝑋𝑑 −𝑋
)

− 𝜆1𝐹
]

. (28)
Based on Eq. 28, the neural network controller is defined as:

𝑈 =
(

𝜆1𝑁
)−1 [𝜆1

(

�̇�𝑑 −𝑊𝑋
)

+ 𝜆2
(

𝑋𝑑 −𝑋
)

− 𝑈𝑟𝑐
]

. (29)
where 𝑈𝑟𝑐 = 𝜎𝑠𝑔𝑛(𝑠).Then, the Lyapunov function of the control system is defined as:

𝑉 = 1
2
𝑠𝑇 𝑠. (30)

Differentiate Eq. 30 with respect to time, then substitute Eq. 25 into the derivative of the Eq. 30 leading to:
�̇� = 𝑠𝑇 �̇� = 𝑠𝑇

[

𝜆1
(

�̇�𝑑 −𝑊𝑋 −𝑁𝑈 − 𝐹
)

+ 𝜆2
(

𝑋𝑑 −𝑋
)]

. (31)
Substitute Eq. 29 into Eq. 31, we have:

�̇� = 𝑠𝑇
(

−𝜎𝑠𝑔𝑛(𝑠) − 𝜆1𝐹
)

= −𝜎|𝑠| − 𝑠𝑇 𝜆1𝐹 ≤ −𝜎|𝑠| + 𝜆1𝐹𝑑|𝑠|

= −|𝑠|
(

𝜎 − 𝜆1𝐹𝑑
)

.

(32)

Set 𝜎 > 𝜆1𝐹𝑑 , then �̇� < 0 . According to Barbalat’s lemma, 𝑠 will gradually converge to 0; this means, based on
Eq. 24, 𝑒 will gradually converge to 0. However, the parameter matrix, 𝑊 as defined in Eq. 28, in the ideal sliding
mode controller is unknown. The next section introduces how to use the proposed neural network to solve this problem.
4.2. Rule Update

This paper uses the proposed neural network, T2WBD, to approximate 𝑊 and 𝑋, then the model expressed in Eq.
19 can be rewritten as:

�̇� = 𝑓 +𝑁𝑈 + 𝐹 . (33)
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Assuming that a set of ideal parameters, �̄�∗, 𝑤∗, 𝑤𝑟∗, 𝜅∗, 𝜇∗, 𝜎∗, exist. Therefore, we have:
𝑓 ∗ = �̄�∗𝐹 ∗ −𝑤∗𝐹 ∗ + (�̄�∗𝐹 ∗ −𝑤∗𝐹 ∗) (34)

Based on Eq. 25, the neural network controller is defined as:
𝑈 =

(

𝜆1𝑁
)−1 [𝜆1

(

�̇�𝑑 −𝑊𝑋
)

+ 𝜆2
(

𝑋𝑑 −𝑋
)

− 𝜆1𝐹 − �̇�
]

. (35)
Accordingly to Eqs. 29 and 35, �̇� is defined as:

�̇� =
(

𝜆1
) (

−�̂� �̂� +𝑊 ∗𝑋∗) − 𝜆1𝐹 − 𝑈𝑟𝑐 . (36)
Thus Eq. 36 can be rewritten as:

�̇� =
(

𝜆1
) (

−𝑓 + 𝑓 ∗) − 𝜆1𝐹 − 𝑈𝑟𝑐). (37)
The lower channel is updated using an emotional learning rate. Therefore, this paper only considers the upper

channel, then the approximation error is:
𝑓 ∗ − 𝑓 = �̄�∗(𝐹 ∗ + 𝐹 ∗) − ̂̄𝑤( ̂̄𝐹 + �̂� ) + 𝜀

= ( ̂̄𝑤 + ̃̄𝑤) ∗ ( ̂̄𝐹 + ̃̄𝐹 + �̂� + �̃� ) − ̂̄𝑤( ̂̄𝐹 + �̂� ) + 𝜀

= ̂̄𝑤 ̃̄𝐹 + ̃̄𝑤 ̂̄𝐹 + ̃̄𝑤 ̃̄𝐹 + ̂̄𝑤�̃� + ̃̄𝑤�̂� + ̂̄𝑤�̃� + 𝜀

(38)

where 𝜀 is an approximation error.
Using the Taylor expansion to respectively transform ̃̄𝐹 and �̃� in Eq. 38, the following can be generated:

̃̄𝐹 = 𝜕 ̃̄𝐹
𝜕𝜇

|

|

|

|

|𝜇=�̂�

(

𝜇∗ − �̂�
)

+ 𝜕 ̃̄𝐹
𝜕�̄�

|

|

|

|

|�̄�= ̂̄𝜎

(

�̄�∗ − ̂̄𝜎
)

+ 𝜕 ̃̄𝐹
𝜕𝑤𝑟

|

|

|

|

|�̄�𝑟= ̂̄𝑤𝑟

(

�̄�𝑟∗ − ̂̄𝑤𝑟
)

+ 𝜕 ̃̄𝐹
𝜕𝜅

|

|

|

|

|𝜅=�̂�

(

𝜅∗ − �̂�
)

+ Δ1

= 𝐷𝐹 𝜇 ⋅ �̃� +𝐷𝐹 �̄� ⋅ ̃̄𝜎 +𝐷𝐹 �̄�𝑟 ⋅ ̃̄𝑤𝑟 +𝐷𝐹 𝜅 ⋅ �̃� + Δ1,

(39)

�̃� =
𝜕�̃�
𝜕𝜇

|

|

|

|

|𝜇=�̂�

(

𝜇∗ − �̂�
)

+
𝜕�̃�
𝜕𝜎

|

|

|

|

|𝜎−�̂�

(

𝜎∗ − �̂�
)

+
𝜕�̃�
𝜕𝑤𝑟

|

|

|

|

|𝑤𝑟=�̂�𝑟

(

𝑤𝑟∗ − �̂�𝑟
)

+
𝜕�̃�
𝜕𝜅

|

|

|

|

|𝜅=�̂�

(

𝜅∗ − �̂�
)

+ Δ2

= 𝐷𝐹 𝜇 ⋅ �̃� +𝐷𝐹 𝜎 ⋅ �̃� +𝐷𝐹𝑤𝑟 ⋅ �̃�𝑟 +𝐷𝐹 𝜅 ⋅ �̃� + Δ2,

(40)

where Δ1 and Δ2 are combinations of higher order terms. �̃�, ̃̄𝜎, ̃̄𝑤𝑟, �̃�, �̃� and �̃�𝑟 are respectively defined as:
�̃� =

{

�̃�11�̃�12… �̃�1𝑘… �̃�𝑚𝑘
} (41)

̃̄𝜎 =
{ ̃̄𝜎11 ̃̄𝜎12… ̃̄𝜎1𝑘… ̃̄𝜎𝑚𝑘

} (42)
�̃� =

{

�̃�11�̃�12… �̃�1𝑘… �̃�𝑚𝑘
} (43)

̃̄𝑤𝑟 =
{ ̃̄𝑤𝑟1 ̃̄𝑤𝑟2… ̃̄𝑤𝑟𝑘

} (44)
�̃�𝑟 =

{

�̃�𝑟1�̃�𝑟2… �̃�𝑟𝑘
} (45)

�̃� =
{

�̃�11�̃�12… �̃�1𝑛… �̃�𝑚𝑛
}

. (46)
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Thus, 𝐷𝐹 𝜇 , 𝐷𝐹 �̄� , 𝐷𝐹 �̄�𝑟, 𝐷𝐹 𝜅 , 𝐷𝐹 𝜇, 𝐷𝐹 𝜎 , 𝐷𝐹𝑤𝑟 and 𝐷𝐹 𝜅 are respectively defined as:

𝐷𝐹�̄� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕 ̃̄𝐹 1
𝜕�̄�11

…
𝜕 ̃̄𝐹 1
𝜕�̄�𝑚1

𝑚(𝑘−1)
⏞⏞⏞
0…0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚(𝑖−1)
⏞⏞⏞
0…0

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕 ̃̄𝐹 𝑖
𝜕�̄�1𝑖

…
𝜕 ̃̄𝐹 𝑖
𝜕�̄�𝑚𝑖

𝑚(𝑘−𝑖)
⏞⏞⏞
0…0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚(𝑘−1)
⏞⏞⏞
0…0

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕 ̃̄𝐹 𝑘
𝜕�̄�1𝑘

…
𝜕 ̃̄𝐹 𝑘
𝜕�̄�𝑚𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(47)

𝐷𝐹�̄�𝑟 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

𝜕 ̃̄𝐹 1
𝜕 ̄𝑤𝑟1

𝑘−1
⏞⏞⏞
0…0

⎤

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎣

𝑖−1
⏞⏞⏞
0…0 𝜕 ̃̄𝐹 𝑖

𝜕�̄�𝑟𝑖

𝑘−𝑖
⏞⏞⏞
0…0

⎤

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎣

𝑘−1
⏞⏞⏞
0…0 𝜕 ̃̄𝐹𝑘

𝜕�̄�𝑟𝑘

⎤

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(48)
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𝐷𝐹𝜅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 ̃̄𝐹1
𝜕𝜅11

⋯ 𝜕 ̃̄𝐹1
𝜕𝜅𝑚1

𝜕 ̃̄𝐹2
𝜕𝜅11

⋯ 𝜕 ̃̄𝐹2
𝜕𝜅𝑚1

⋯
𝜕 ̃̄𝐹𝑘
𝜕𝜅11

⋯ 𝜕 ̃̄𝐹𝑘
𝜕𝜅𝑚1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 ̃̄𝐹1
𝜕𝜅1𝑖

⋯ 𝜕 ̃̄𝐹1
𝜕𝜅𝑚𝑖

𝜕 ̃̄𝐹2
𝜕𝜅1𝑖

⋯ 𝜕 ̃̄𝐹2
𝜕𝜅𝑚𝑖

⋯
𝜕 ̃̄𝐹𝑘
𝜕𝜅1𝑖

⋯ 𝜕 ̃̄𝐹𝑘
𝜕𝜅𝑚𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 ̃̄𝐹1
𝜕𝜅1𝑛

⋯ 𝜕 ̃̄𝐹1
𝜕𝜅𝑚𝑘

𝜕 ̃̄𝐹2
𝜕𝜅1𝑛

⋯ 𝜕 ̃̄𝐹2
𝜕𝜅𝑚𝑘

⋯
𝜕 ̃̄𝐹𝑘
𝜕𝜅1𝑛

⋯ 𝜕 ̃̄𝐹𝑘
𝜕𝜅𝑚𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(49)

𝐷𝐹 𝜇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕𝐹1
𝜕𝜇11

⋯
𝜕𝐹1
𝜕𝜇𝑚1

𝑚(𝑘−1)
⏞⏞⏞
0…0𝑚

⎤

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎣

𝑚(𝑖−1)
⏞⏞⏞
0…0

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕𝐹𝑖
𝜕𝜇1𝑖

⋯
𝜕𝐹𝑖
𝜕𝜇𝑚𝑖

𝑚(𝑘−𝑖)
⏞⏞⏞
0…0

⎤

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎣

[

𝑚(𝑘−𝑖)
⏞⏞⏞
0…0

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕𝐹𝑘
𝜕𝜇1𝑘

⋯
𝜕𝐹𝑘
𝜕𝜇𝑚𝑘

]

⎤

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(50)

𝐷𝐹 𝜎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕𝐹1
𝜕𝜎11

⋅ ⋅
𝜕𝐹1
𝜕𝜎𝑚1

𝑚(𝑘−1)
⏞⏞⏞
0…0

⎤

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎣

𝑚(𝑖−1)
⏞⏞⏞
0…0

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕𝐹 𝑖
𝜕𝜎1𝑖

⋯
𝜕𝐹 𝑖
𝜕𝜎𝑚𝑖

𝑚(𝑘−𝑖)
⏞⏞⏞
0…0

⎤

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎣

𝑚(𝑘−𝑖)
⏞⏞⏞
0…0

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕𝐹𝑘
𝜕𝜎1𝑘

⋯
𝜕𝐹𝑘
𝜕𝜎𝑚𝑘

⎤

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

Wang et al.: Preprint submitted to Elsevier Page 10 of 18



T2WBD with Double Recurrent Loops based Controller

𝐷𝐹𝑤𝑟 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

𝜕𝐹 1
𝜕�̄�𝑟1

𝑘−1
⏞⏞⏞
0…0

]

…
[

[

𝑖−1
⏞⏞⏞
0…0 𝜕𝐹 𝑖

𝜕�̄�𝑟𝑖

𝑘−𝑖
⏞⏞⏞
0…0 ]

]

…
[

[

𝑘−1
⏞⏞⏞
0…0 𝜕𝐹 𝑘

𝜕�̄�𝑟𝑘
]

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(52)

𝐷𝐹 𝜅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕�̃� 1
𝜕𝜅11

⋯
𝜕�̃� 1
𝜕𝜅𝑚1

𝜕�̃� 2
𝜕𝜅11

⋯
𝜕�̃� 2
𝜕𝜅𝑚1

⋯
𝜕�̃� 𝑘
𝜕𝜅11

⋯
𝜕�̃� 𝑘
𝜕𝜅𝑚1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕�̃� 1
𝜕𝜅1𝑖

⋯
𝜕�̃� 1
𝜕𝜅𝑚𝑖

𝜕�̃� 2
𝜕𝜅1𝑖

⋯
𝜕�̃� 2
𝜕𝜅𝑚𝑖

⋯
𝜕�̃� 𝑘
𝜕𝜅1𝑖

⋯
𝜕�̃� 𝑘
𝜕𝜅𝑚𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

…
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕�̃� 1
𝜕𝜅1𝑛

⋯
𝜕�̃� 1
𝜕𝜅𝑚𝑛

𝜕�̃� 2
𝜕𝜅1𝑛

⋯
𝜕�̃� 2
𝜕𝜅𝑚𝑛

⋯
𝜕�̃� 𝑘
𝜕𝜅1𝑛

⋯
𝜕�̃� 𝑘
𝜕𝜅𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(53)

Substitute Eqs. 39 and 40 into Eq. 38:
𝑓 ∗ − 𝑓 = ̂̄𝑤 ̃̄𝐹 + ̃̄𝑤 ̂̄𝐹 + ̃̄𝑤 ̃̄𝐹 + ̂̄𝑤𝐹 + ̃̄𝑤𝐹 + ̃̄𝑤𝐹 + 𝜀

= ̂̄𝑤(𝐷𝐹𝜇 ⋅ �̃� +𝐷𝐹𝜎 ⋅ ̃̄𝜎 +𝐷𝐹𝑤𝑟 ⋅ ̃̄𝑤𝑟 +𝐷𝐹𝜅 ⋅

�̃� + Δ1) + ̃̄𝑤 ̂̄𝐹 + ̂̄𝑤(𝐷𝐹 𝜇 ⋅ �̃� +𝐷𝐹 𝜎 ⋅ �̃� +𝐷𝐹𝑤𝑟

⋅ �̃�𝑟 +𝐷𝐹 𝜅 ⋅ �̃� + Δ2) + ̃̄𝑤𝐹 + ̃̄𝑤 ̃̄𝐹 + ̃̄𝑤𝐹 + 𝜀

= ̂̄𝑤(𝐷𝐹𝜇 ⋅ �̃� +𝐷𝐹�̄� ⋅ ̃̄𝜎 +𝐷𝐹�̄�𝑟 ⋅ ̃̄𝑤𝑟 +𝐷𝐹𝜅 ⋅ �̃�)

+ ̃̄𝑤 ̂̄𝐹 + ̂̄𝑤(𝐷𝐹 𝜇 ⋅ �̃� +𝐷𝐹 𝜎 ⋅ �̃� +𝐷𝐹𝑤𝑟 ⋅ �̃�𝑟 +𝐷𝐹 𝜅

⋅ �̃�) + ̃̄𝑤𝐹 + ̃̄𝑤 ̃̄𝐹 + ̃̄𝑤𝐹 + ̂̄𝑤Δ1 + ̂̄𝑤Δ2 + 𝜀

= ̂̄𝑤(𝐷𝐹𝜇 ⋅ �̃� +𝐷𝐹�̄� ⋅ ̃̄𝜎 +𝐷𝐹�̄�𝑟 ⋅ ̃̄𝑤𝑟 +𝐷𝐹𝜅 ⋅ �̃�)

+ ̃̄𝑤 ̂̄𝐹 + ̂̄𝑤(𝐷𝐹 𝜇 ⋅ �̃� +𝐷𝐹 𝜎 ⋅ �̃� +𝐷𝐹𝑤𝑟 ⋅ �̃�𝑟 +𝐷𝐹 𝜅

⋅ �̃�) + �̃�𝐹 + 𝜏

(54)

where 𝜏 = ̃̄𝑤 ̃̄𝐹 + ̃̄𝑤𝐹 + ̂̄𝑤Δ1 + ̂̄𝑤Δ2 + 𝜀 and we assume 𝜏 is bounded, that is: ∣ 𝜏 ∣≤ 𝜏0. Then, the Lyapunov function
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is used to analyze the asymptotic stability of the control system based on the proposed T2WBD; and the prove process
is specified in the appendix section.

5. Simulations
5.1. Simulation Setup

The simulated environment of this experiment is the dynamic model of a gyroscope, which is expressed as:
�̇� = (𝑊 +Δ𝑊 )𝑋 +𝑁

(

𝑈 + 𝑓𝑏
)

+ 𝑓𝑑 (55)
where 𝑋 is defined as:

𝑋 =
[

𝑥 �̇� 𝑦 �̇�
]𝑇 (56)

where 𝑥 and �̇� are the displacement and velocity in the 𝑥 direction; 𝑦 and �̇� are the displacement and velocity in the 𝑦
direction, respectively. Thus, 𝑈 in Eq. 55 is defined as:

𝑈 =
[

𝑢𝑥
𝑢𝑦

]

(57)

where 𝑢𝑥 and 𝑢𝑦 are the outputs of the control system. Thus, 𝑊 and 𝑁 in Eq. 55 are defined as:

𝑊 =

⎡

⎢

⎢

⎢

⎣

0 1 0 0
−𝜔2

𝑥 −𝑑𝑥𝑥 −𝜔𝑥𝑦 −
(

𝑑𝑥𝑦 − 2Ω𝑧
)

0 0 0 1
−𝜔𝑥𝑦 −

(

𝑑𝑥𝑦 + 2Ω𝑧
)

−𝜔2
𝑦 −𝑑𝑦𝑦

⎤

⎥

⎥

⎥

⎦

(58)

𝑁 =

⎡

⎢

⎢

⎢

⎣

0 0
1 0
0 0
0 1

⎤

⎥

⎥

⎥

⎦

(59)

where Δ𝑊 represents the uncertainty of 𝑊 ; the changing range of Δ𝑊 in this experiment is set to Δ𝑊 = 𝑊 ∗
(𝑟𝑎𝑛𝑑(1) ∗ 0.6 − 0.3); and 𝑓𝑏 is a non-linear function, which is defined as:

𝑓𝑏 = [10 sin(2𝑡) 5 sin(𝜋𝑡) cos(2𝜋𝑡)]𝑇 (60)
where 𝑓𝑑 is a random function that represents external interference, and 𝑓𝑑 is defined as:𝑓𝑑 = [𝑟𝑎𝑛𝑑(1) 𝑟𝑎𝑛𝑑(1)

𝑟𝑎𝑛𝑑(1) 𝑟𝑎𝑛𝑑(1)]𝑇 . 𝜆1 and 𝜆2 are system parameters, defined by: 𝜆1 =
[

0 1 0 0
0 0 0 1

]

, 𝜆2 =
[

0 240 0 0
0 0 0 300

]

. The weights,
means, and variances of the proposed network are initialized with random values.

The parameters in Eqs. (66)-(72) are set as follow: 𝜂1 = 25, 𝜂3 = 1.5, 𝜂4 = 2.5, 𝜂5 = 2.5, 𝜂6 = 1.2, 𝜂7 = 1.2,
𝜂8 = 105. The learning rate 𝑏 and gain parameter 𝑐 in Eqs. (68) and (69) are set to 0.01 and 0.01, respectively.
5.2. Comparative Study

This experiment compared the efficiency of the proposed neural network against three traditional neural networks,
including the Fuzzy Brain Emotional Learning Network (FBEL) [20], Fuzzy Cerebellar Model Articulation Controller
Network (FCMAC) [16], and Double Loop Recurrent Neural Network DLRNN [11] by simulating trajectory tracking.
The objective of the controllers is to effectively track the reference trajectory. The tracking performances of these
controllers are reflected by their error converging speed and tracking accuracies. In this simulation, the reference
trajectory is a piecewise function, which is defined by:

𝑥 =
{

sin(4.17𝑡) 0 < 𝑡 ≤ 4𝜋
1.2 sin(5.11𝑡) 4𝜋 < 𝑡 ≤ 30

𝑦 =
{

1.2 sin(5.11𝑡) 0 < 𝑡 ≤ 4𝜋
sin(4.17𝑡) 4𝜋 < 𝑡 ≤ 30

(61)
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(a) (b) (c)

(d) (e) (f)

Figure 5: The simulated position responses and tracking errors led by the proposed T2WBD and compared controllers

where 𝑡 represents the 𝑡-th time step. The complete control time is set to 30 seconds. The initial state of the system is
set to [0.7 0.1 0.7 0.1].

The tracked trajectory, tracking errors, and their magnified versions in both 𝑥-direction and 𝑦-direction are shown
in Fig. 5. In this figure, lines are colour coded to distinguish the results led by different controllers; in particular,
the reference trajectory is represented by a blue line, and the tracking trajectories generated by the FBEL, FCMAC,
DLRNN, and proposed T2WBD are shown by the black line, pink line, brown line, and red line, respectively.

The overall tracking performance of the proposed and the compared approaches during the entire control process
are illustrated in Figs. 5(a) and 5(d). All the neural network-based controllers successfully followed the reference
trajectory after a settling-down term. However, the FBEL and FCMAC based controllers were not very stable during
the several peak regions. In contrast, the DLRNN and proposed T2WBD can always closely follow the reference
trajectory.

To better distinguish the performance of different controllers after the settling down period, a zoomed in presenta-
tion of the tracking in the 𝑥 direction from 13.0s to 13.6s and in the 𝑦 direction from 6.75s to 7.25s are shown in Figs.
5(b) and 5(e) respectively. As shown in Fig. 5(b), from 13.1s, all the network-based controllers generated tracking
errors in various degrees, but the errors generated by the FBEL-based controller were the most significant amongst
all the controllers; the DLRNN and FCMAC based controllers have led to smaller errors than FBEL. In contrast, the
errors led by the proposed T2WBD were the smallest within all the competing controllers, which is also confirmed by
Fig. 5(e).

Figs. 5(c) and 5(f) demonstrate the overall changing curves of the tracking errors over time. Due to the change
of reference trajectory at 4 × 𝜋𝑠, all controllers showed large errors at about 12.6𝑠. Noticeably, the proposed T2WBD
controller demonstrated the fastest converging speed and the smallest errors amongst all employed controllers in this
experiment.

The sums of the squared errors and mean square errors of the tracking trajectory led by different neural network
controllers in both the 𝑥-direction and 𝑦-direction are summarized in Tables 1 and 2, respectively. These tables also
suggest the proposed T2WBD exhibited better tracking performance than other neural network-based controllers.
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Table 1
Comparison of Approximation Performance in the 𝑥-direction in the comparative study

Neural Network (SSE) (MSE)
FBEL 98.881548 0.000329605

FCMAC 173.935847 0.005797862
DLRNN 49.114993 0.000163717
T2WBD 37.953864 0.000126513

Table 2
Comparison of Approximation Performance in the 𝑦-direction in the comparative study

Neural Network (SSE) (MSE)
FBEL 305.128964 0.001017097

FCMAC 202.423319 0.006747444
DLRNN 49.681338 0.000165604
T2WBD 36.094869 0.000120316

Table 3
Comparison of Approximation Performance in the 𝑥-direction in the ablation simulation

Neural Network (SSE) (MSE)
T2WBD w/o External 32.160703 0.000107202
T2WBD w/o Internal 76.536125 0.000255120
T2WBD w/o Type 2 44.114399 0.000147048
T2WBD w/o FBEL 46.077371 0.000153591

T2WBD 29.060304 0.000096868

Table 4
Comparison of Approximation Performance in the 𝑦-direction in the ablation simulation

Neural Network (SSE) (MSE)
T2WBD w/o External 29.137434 0.000097125
T2WBD w/o Internal 75.402097 0.000251340
T2WBD w/o Type 2 40.416374 0.000134721
T2WBD w/o FBEL 64.222966 0.000214077

T2WBD 28.395072 0.000094650

5.3. Ablation Simulation
The second experiment used three ablation simulations to show the effect of the recurrent structure, the Type 2

wavelet function, and the brain emotional structure. The reference trajectories of the second simulation was set to:
{x = sin(4.17𝑡)
𝑦 = 1.2 ⋅ sin(5.11𝑡)

(62)

where 𝑡 represents time. In this experiment, the whole control time was set to 30 seconds, and the initial state of the
system was set to [0.70.10.70.1].

Tables 3 and 4 respectively show the sum of squared errors and the mean square errors in the x-direction and y-
direction led by different network setups, including the basic structure (1) without external loop, (2) without internal
loop, (3) without Type 2 fuzzification layer, and (4) without FBEL structure. These two tables show that the inner
loop, Type 2 layer, and FBEL mechanisms played a key role in the controllers, as the values of both SSE and MSE
were increased significantly without the inclusion of these mechanisms. In contrast, the effect of the out loop structure
was not as important as those other investigated mechanisms; because both SSE and MSE led by these were close to
those of the full structure of T2WBD.
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6. Conclusion
This paper reported a new controller which integrates a type-2 wavelet function to a brain emotional network for

enhanced nonlinear function learning ability with the support of a double-loop structure to the emotional network for
effective use of historical information of dynamic systems. The stability of the controller is guaranteed by an adaptive
learning approach, which is developed based on the Lyapunov theory. The proposed network was embedded in a
network-based controller structure targeting a class of nonlinear systems. The controller was composed of a neural
network and a robust controller, to realize efficient tracking performance of nonlinear systems. The control strategy
proposed in this paper was applied to a z-axis MEMS gyroscope. Through comparative study and ablation simulations,
it is proved that the proposed neural network structure generates better precise position tracking and demonstrates more
favourable stability.

This paper can be further improved in several directions. For example, it is necessary to build a stable organizing
method [33, 34] to reduce the node number’s instability. In addition, it is also crucial to apply our system to control
real-time models and to deal with the chattering problems in real dynamic systems.

A. Appendix
The Lyapunov function is used to analyze the asymptotic stability of the control system based on the proposed

T2WBD. The Lyapunov function of the proposed controller is defined as:

𝑉 = 1
2
𝑠𝑇 𝑠 + 1

2
tr
( ̃̄𝑤𝑇 𝜂1 ̃̄𝑤

)

+ 1
2
tr
(

�̃�𝑇 𝜂3�̃�
)

+ 1
2
tr
( ̃̄𝜎𝑇 𝜂4 ̃̄𝜎

)

+ 1
2
tr
(

�̃�𝑇 𝜂5�̃�
)

+ 1
2
tr
( ̃̄𝑤𝑟𝑇 𝜂6 ̃̄𝑤𝑟

)

+ 1
2
tr
(

�̃�𝑟𝑇 𝜂7�̃�𝑟
)

+ 1
2
tr
(

�̃�𝑇 𝜂8�̃�
)

.

(63)

The derivation on both sides of the equation is:

�̇� = 𝑠𝑇 �̇� + tr
(

̃̄𝑤𝑇 𝜂1 ̇̄̃𝑤
)

+ tr
(

�̃�𝑇 𝜂3 ̇̃𝜇
)

+ tr
(

̃̄𝜎𝑇 𝜂4 ̇̄̃𝜎
)

+

tr
(

�̃�𝑇 𝜂5 ̇̃𝜎
)

+ tr
(

̃̄𝑤𝑟𝑇 𝜂6 ̇̄̃𝑤𝑟
)

+ tr
(

�̃�𝑟𝑇 𝜂7 ̇̃𝑤𝑟
)

+ tr
(

�̃�𝑇 𝜂8 ̇̃𝜅
)

.

(64)

Substitute Eqs. 37 and 54 into Eq. 64, we have:
�̇� = 𝑠𝑇 {𝜆1[ ̂̄𝑤(𝐷𝐹𝜇 ⋅ �̃� +𝐷𝐹�̄� ⋅ ̃̄𝜎 +𝐷𝐹�̄�𝑟 ⋅ ̃̄𝑤𝑟 +𝐷𝐹𝜅 ⋅ �̃�)

+ ̂̄𝑤(𝐷𝐹 𝜇 ⋅ �̃� +𝐷𝐹 𝜎 ⋅ �̃� +𝐷𝐹𝑤𝑟 ⋅ �̃�𝑟 +𝐷𝐹 𝜅 ⋅ �̃�)

+ ̃̄𝑤 ̂̄𝐹 + ̃̄𝑤𝐹 ] + 𝜆1𝜏 − 𝜆1𝐹 − 𝑈𝑟𝑐}

+ tr( ̃̄𝑤𝑇 𝜂1 ̇̄̃𝑤) + tr(�̃�𝑇 𝜂3 ̇̃𝜇) + tr( ̃̄𝜎𝑇 𝜂4 ̇̄̃𝜎) + tr(�̃�𝑇 𝜂5 ̇̃𝜎)

+ tr( ̃̄𝑤𝑟𝑇 𝜂6 ̇̄̃𝑤𝑟) + tr(�̃�𝑟𝑇 𝜂7 ̇̃𝑤𝑟) + tr(�̃�𝑇 𝜂8̇̃𝜅).

(65)

Therefore, set 𝑠𝑇 𝜆1 ̃̄𝑤 ̂̄𝐹 + 𝑠𝑇 𝜆1 ̃̄𝑤�̂� + 𝑡𝑟
(

̃̄𝑤𝑇 𝜂1 ̇̄̃𝑤
)

= 0, we then have:

̇̄̃𝑤 = −
𝐹 𝑇 𝑠𝑇 𝜆1

𝜂1
. (66)

Set 𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹 𝜇�̃� + 𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹 𝜇�̃� + 𝑡𝑟
(

�̃�𝑇 𝜂3 ̇̃𝜇
)=0 , the following holds:

̇̃𝜇= −
𝑠𝑇 𝜆1 ̂̄𝑤(𝐷𝐹 𝜇 +𝐷𝐹 𝜇)

𝜂3
. (67)
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Set 𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹 �̄� ̃̄𝜎 + 𝑡𝑟
(

̃̄𝜎𝑇 𝜂4 ̇̄̃𝜎
)

= 0, then we have:

̇̄̃𝜎 = −
𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹 �̄�

𝜂4
. (68)

Set 𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹 𝜎 �̃� + 𝑡𝑟
(

�̃�𝑇 𝜂5 ̇̃𝜎
)

= 0, then we have:

̇̃𝜎 = −
𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹 𝜎

𝜂5
. (69)

Set 𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹 �̄�𝑟 ̃̄𝑤𝑟 + 𝑡𝑟
(

̃̄𝑤𝑟𝑇 𝜂6 ̇̄̃𝑤𝑟
)

= 0, then we have:

̇̄̃𝑤𝑟 = −
𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹 �̄�𝑟

𝜂6
(70)

Set 𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹𝑤𝑟 ⋅ �̃�𝑟 + 𝑡𝑟
(

�̃�𝑟𝑇 𝜂7 ̇̃𝑤𝑟
)

= 0 , then we have:

̇̃𝑤𝑟 = −
𝑠𝑇 𝜆1 ̂̄𝑤𝐷𝐹𝑤𝑟

𝜂7
. (71)

Set 𝑠𝑇 𝜆1 ̂̄𝑤𝐷(𝐷𝐹𝜅 +𝐷𝐹 𝜅)�̃� + 𝑡𝑟
(

�̃�𝑇 𝜂8 ̇̃𝜅
)

= 0 , then we have:

̇̃𝜅 = −
𝑠𝑇 𝜆1 ̂̄𝑤𝐷(𝐷𝐹𝜅 +𝐷𝐹 𝜅)

𝜂8
. (72)

Substitute Eqs. (66-72) into Eq. (65), we have:
�̇� = 𝑠𝑇

[

𝜆1𝜏 − 𝜆1𝐹 − 𝑈𝑟𝑐
]

= 𝑠𝑇
[

𝜆1𝜏 − 𝜆1𝐹 − 𝜎𝑠𝑔𝑛(𝑠)
]

≤ −|𝑠|
[

𝜎 − 𝜆1𝜏0 − 𝜆1𝐹𝑑
]

.

(73)

The update rule of 𝑤 is determined by the emotional update rule:
̇̃𝑤 = 𝛼 ⋅ [max(0, 𝑑 − 𝑎) ⋅ 𝐹 ], (74)

where 𝛼 is a learning rate, and 𝑑 can be expressed as:
𝑑 = 𝑏 ⋅ 𝑠𝑠 + 𝑐 ⋅ 𝑛𝑛. (75)

where 𝑏 and 𝑐 are given parameters. In Eq. 73, 𝜎 is set to be slightly larger than 𝜆1
(

𝐹𝑑 + 𝜏0
), that is, 𝜎 ≥ 𝜆1

(

𝐹𝑑 + 𝜏0
)

+
𝜉. Then �̇� ≤ −𝜉 |

|

𝑠𝑇 |
|

≤ 0. Thus �̇� is a semi-negative definite value, which means �̇� is bounded.
From �̇� ≤ −𝜉 |

|

𝑠𝑇 |
|

, we have:

∫

𝑡

0

|

|

|

𝑠𝑇 ||
|

𝑑𝑡 ≤ (1∕𝜉)(𝑉 (0) − 𝑉 (𝑡)). (76)

Because 𝑉 (0) is bounded, and 𝑉 (𝑡) is bounded and non-incremental, ∫ 𝑡
0
|

|

𝑠𝑇 |
|

𝑑𝑡 is bounded. In addition, �̇� is bounded.
According to Barbalat’s lemma, the following equation has been proved:

lim
𝑡→∞

𝑠 = 0 (77)
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