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Abstract

This studypresents #éhorough theoreticandexperimental investigation on the nonlinear dampihg
in-planemicromachined electromechanical resonators. More specifically, experiaremtsnducted

on an electrically actuated bridge resonator and the primary resonanceseegpdhe systenis
obtained at various AC and DC voltag@snonlinear theoretical modé developed using the Euler
Bernoulli beam theory while accounting foegeometrigelectrostatigincluding fringing field effect)
and dampingnonlinearities Two damping modelareconsidered in the theoretical model; the Kelvin
Voigt model, which for this system is a nonlinear damping model ddeetpresenceof geometric
nonlinearities The second damping modmnsiss of linear, quadratic, and cubdamping termsA
high-dimensional discretisation performedand the nonlinear dynamics of the resonateexamined

in detail in the primary resonancegimeby constructing the frequency response diagrams at various
AC and DC voltages. Thorough comisans areconductedbetweenthe experimentaldataandthe
theoretical results for different dampiognditions It is shown that the micro resonator displays strong
nonlinear dampingDetailed calibration procedures for the nonlinear damping models gresgchand

the advantages and disadvantages of each nonlinear damping model are discussed.

Keywords Nonlinear damping; nonlinear vibration; MEMS resonators; experimemastigation.

1. Introduction

Microelectromechanical systems (MEMR)}3] have been drawing significant attentiover the last
decadehanks to their small size, low power consumption, high sensitivity, and lowW4josthese
devices have widespread important applications in environmental monitofiig air quality
measuremdri6, 7], mass sensof8, 9], pressure sensofs0], communication$ll, 12], logic/memory

[13, 14], and energy harvestifd5-17]. Electrostatically driven resonators have been the subject of
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ongoingresearctsince the early work of Nathanson et[4B]. The use of the electrostatic forisg¢o
drive the MEMS resonators statlty or dynamially in thelinear ornonlinear regime<lectrostatically
actuated MEMS resonators were proposed for various applicatimiisagunable resonatorgl 9],
synchrongation[20], sensind21, 22], andmicromirrors[23].

Commonly, these MEMS resonators consist of a movable electrode and a fixed electrode, mainly based
on slender silicon microbeams. The movable electrodraisly modelledas a microbeanmhose

length is much higher than its width and thickness) deflecting toward the fixed electrode as applying a
bias voltag¢24]. A sudden collapse into the fixed electraalep known aghepull-in instability,occurs

if the voltage exceeds a critical value. The static and dynlaehiavioursvere investigated in depth in

the literature theoretically and experimentally due to the continuously inmesagploitation of these
microsystemq 19, 24-28]. Analysing the behaviourof these resonators is commonly based on the
classical model (EuleBernoullibeam theoryor the nonclassical mechanical model of the beam.

The main difficuly of the theoreticamodellingof these movable structuresthe accurate prediatin

of the notinear vibration of these resonators as driven electrostatically, which is crucial for various
potential applicationf29-31]. One of the key factors to be considerechimdellingMEMS resonators

is dampingwhich can béntrinsic, such athermoelasti¢32-35], or extrinsic, such asxjueeze filnj33,

36-44] damping.Dampinglowers the quality factoof MEMS resonators affectingdverselyther
performancemaking the gality factor a key parameter design for a wide range of applications such as
timing and sensingViore recently, Alcheikh et a[45] investigated the effect of air damping on the
guality factorof in-plane nano and micn@sonators actuated by two stationary electrodes (for actuation

and sensing).

Onthe other handas the oscillation amplitude increases, the energy dissipation tends to deviate from
the linear viscous dissipation and startviry nonlinealy. The nonlinear energy dissipation (or
nonlinear damping) has drawn specific attention in #st tlecadeFor instance, Amabil[46-4§]

studied the nonlinear damping in largenplitude vibrations of rectangulptates, both theoretically

and experimentallyLi and Shaw[49] examined the effect of nonlinear damping in the dynamic
response of a singldegreeof-freedom systersubjet to both direct and parametric excitatio@soy

et al.[50] proposed and studied a microscopic mechanism for energy dissipation in electrically actuated
nanomechanical resonators; they found that the coupling between flexural modeplané phonons
results in nonlinear damping for eot-plane oscillationsAn in-depth theoretical and experimental
investigation highlighting the effect of different damping sources (e.g., thermoelastic, anchor losses,
and Akhiezer) on the quality factor of MEMS Silicon resonators was conducted by Kenny-and co
authors[51-53]. More recently, nonlinear damping in graphene nanoresonatotivated several
interesting studie$s0, 54-58]. For instanceEichler et al.[56] studied the dmping of mechanical

resonators based on graphene membranes and carbon nanotubes and found that damping strongly and



nonlinearly depergion the amplitude of motion.H U N H N O |38) stddiéd@xperimentally nonlinear
damping in graphene nanoresonators; they investigated the parametric resonagosf @igiraphene
nanodrum by monitoring nonlinear dissipation over a wide frequency.reagbermore, Dolleman et
al. [57] investigated multimode parametric resonance in-tigomally excited graphene membranes
and showed that nonlinear damping is essential for examining theirdamgi@ude parametric
resonanceNonlinear damping was used recently ifferent applicatiors in sensing[59], energy

harvestind 6Q], vibration isolation[61, 62], andwasshown experimentally for graphef&s].

Despite these valuable studies, thergtisno comprehensivetudy on nonlinear damping in-plane
MEMS resonata with relatively large gapsThe present study conducts a thorough investigation on
the nonlinear damping irn-plane micromachined electromechanical resonatosing carefully
conducted experimentnd anaccurate nonlinear theoretical madelshould be noted that the main

aim of this study is to develop a damping model that accurately captures MEMS resonators' nonlinear
response without focusing on epecifically identifyingthe sources of nonlinear dissipation (e.g.,
thermoelastic, viscoastic, anchor losses). More specifically, detailed procedures are provided for
calibrating different nonlinear damping models using minimum number of experimental frequency
responseswhich can be applied to any mi¢nancresonator irrespective of the gymf nonlinear
damping.The experimental setup is explained in Section 2, followed by a detailed nonlinear model
development in Section 3. The theoretical and experimental resufisesamntedor various cases and

discussed in detail in Section 4. Fiyath sumnary of thekey findings is presented in Section 5.

2. Experimental setup

The clampeéetlamped irplane microbeam under considerat{shown inFig. 1(a)), is fabricated from
SOl (Silicon on Insulatorvafers with a highly conductive Si device layer. The geometric parameters

of the microbeam are given in Table 1.

To excite the microbeam, the resonator is actuated electrostatically by a DC polarization 8gliage

and an AC harmonic voltage of amplitu@e cand frequencyi. The resonance frequencies and the
frequency response curves of the resonating microbeam were measured experimentally using the
stroboscopic video microscopy from Polytas,shown irFig. 1(c). Tominimizethe effect ofsqueeze

film damping, the microbeam is placed in a vacuum chamber with a pressure of 950mTorr set
throughout the experiment&ven though the microbeam is actuated by one stationary electrode, one
should note that the microbeam is sandwiched between eetredesas shown in Fig. 1(a)The
damping models are considered in a general way to capturéissigationin the system, either

structural or those associated with #igap



Fig. 1. (a) Optical image of the electrostatically actuategdlane microbeam. (b) A 3D schematic of the
microbeam. (c) Experimental setup.
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3. System model development

In this section, the nonlinear equation of motion for the MEB®natounder consideration is derived
using the EuleBernoulli beam theory. More specifically, duethke clampedclamped configuration

of the microbeam, the midplaisgretching nonlinearity is consideréthis study utilises Kelvin-Voigt



model, resulting in @onlinear damping mechanistne to presence of geometric nonlinearApart
from the KelvinVoigt damping, a general nonlinear damping mechanism (for the transverse motion) is

modelled as well. These damping mechanisms will be examined in detail ionSécti
Based on the Kelvitvoigt model, the stresstrain relationship is given by

Gel ' Ve E BV 1)
where' LV WKH PLFUREHDPYV <EXtQridiafiaPdaraoin® cosffideQtG

Denoting the longitudinal and transverse displacegmby Qand S, respectively, and accounting for
the midplanestretching nonlinearity, the axial strain can be formulated as:

. S
Y%el QQE 0:S;°F Wy ,Sa @
The variation of the potential energy of the microbeam and the virtual work wikttwis component

of the axial stress are expressed as:
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in which Us the variational operatoFhe variation of the kinetic energy of the microbeam is given by:

A
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where éis the mass density antdlis the crossectional area of the microbeam.

Thebridgeresonator is actuatedroughtheelectrostatic capacitance lgachich is modelled usinthe
Meijs-Fokkema formuld63] given by
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inwhich8 L 8 E 8 ..."“fi P. TheMeijs-Fokkema formula accounts for the fringing field effect via

two additional termgi.e., thesecond and third terms in E@)Y and provides reliable predictions with
less tharR% deviation from the results of a finite element moftelthe case wheb/d o DQG 8

h/d ” [63]. As such, lhe virtual work of the electrostatic load can be formulated as
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inertia, and taking into account the work of a general nonlinear cubic damping mechansm for
A
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4

yields the followingnonlinear equation governing the transverse motion of the MEMS resonator
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Defining the following dimensionless quantities
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where 6 L .65¥é# :"+; and defining the coefficient of the electrostatic load term (jsL
v ot

t'+@:; the dimensionless equation of motion of the MEMS resonator can be \astten
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To solve Eq. (1) numerically, firstit needs to be discretised in the spatial domairreddced to a set

of nonlinear ordinary differential equations (ODES). To this end, the transverse displacement is defined
as

¢
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P@b
where M,:1; denotes th&th unknown timedependent generalised coordinatetf@transvese motion
and ) : U represents the corresponding dimensionless eigenfunction for a linear clelapeed

beam. Next, the finite series expansion definedSan Eq. (12) is substituted into Eq. {J. and then
the Galerkin method is appliedsulting in:
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The discretisation procedure for the proposed MEMS model with nonlinear damping is challenging due

to the presence of terms that cannot be integrated in closed form, namely the damping term involving
0 8 and the electrostatic load term involvii®dependent componesih the denominator. Hence, to

ensure accuracy when applying the Galerkin technique, these terms are kept intact and spatial

integrations are conducted numerically while retaining sufficient number of termprobéslurdeads

to vely large discretised equations of motion, but ersaceurate results. Furthermor@js set to 10

resulting in a 1@legreeof-freedom (dof) model, ensuring converged resilke resultant discretised

10-dof model is solved numerically using a continoatmethoc¢lthe simulation results are discussed

in detail in Section 4.

4. Results and discussion

In this section, the nonlinear resonance response of the MEMS resonator is examined in detail and
extensive comparisons are conducted betwleetheoreticalind experimental results. Different linear

and nonlinear damping models are examined to detertihé@m@odelthat works besffor various DC



and AC voltage levels when calibrated only once. In other words, the goal is to find a damping model
that can be cdirated once using experimentitaat a specific level of excitation, and then used
reliably at other excitation levels and vibration amplitudes.

Two sets of experiments are conducted, on&aL WV and the other a8, gL urV. The primary
resonance response of the MEMS resonator is captured at various AC voltageiesdh case.e,
at & gL r&andnés rand trV for the case o8 gL W, and at8 gL r&wséd & dand yaV for the

case of8 gL urVv.

The geometricproperties of the fabricated microbeam are given in Table 1, resultibf Inv t& x y
and U; L s v {Hsr’®considering dlexural rigidity of z& vH s r’>®Nm? and a mass density of
2350 kg/m. These values &l to a good match with thexperimentalinear and nonlinearesponss,
and hence the residual stréss:eglectedIn the results shown in this sectiofig indicates the first
dimensionless natural frequency of the resonatbich is related to its dinmsional counterpariisvia
fis L @56 Additionally, S, denotes the midpoint transverse oscillation amplimeasured fronthe
deflectedstate caused by the DC voltageirthermore, in all the theoretical results, soliddimelicate
stableperiodicsolutiors while dashed linerepresentinstable periodic solutien

4.1 Linear viscous damping model

First, theKelvin-Voigt damping coefficientf3, and the nonlinear damping coefficients, ifzf; and

’?'x7;, are set to zero in order to examie performancef the linear viscous damping model in
predicting the peak vibration amplitude at higher excitation levels when calibrated based on the results
at relatively low excitation magnitudes. For this case, only the experimental results condutedl at
wV are usd. Two cases are considered to examine the performance of the linear viscous damping

model as discussed in detagxt.

For the first casethe linear damping coefﬁcient?f;, is calibrated using the experimental frequency
response aB:= gL r &V, resuting in ’.{5; L r& ryThen the AC voltage is increased to 5.5 V while

keeping ?F fixed, and the resultant theoretical frequency response is constructed and compared to the
experimental one, as shown in FigaR As seen, the linear damping modeinsficantly overestimates

the peak amplitude when it is calibrated for very small oscillation ampsiturdkept intact for higher
amplitude oscillation predictions.

For the second case, the experimental frequency respon&edtr waw is used to calibrate the linear

damping model and then the frequency responsesfeyL s ris obtained while keeping?iS; intact.

The initial calibration for this case results?gj‘r’; L r & r wand the result of the comparison is shown in



Fig. 2(b). A similar behaviour is sedor this casén whichthe linear damping model overestimates the
peak oscillation amplitude fahe higherAC excitation level of 10 V. Furthermore, the comparison
between the values o?xs; for the two caseexaminedshow ttat the calibrated coefficient for the case

8 gL waw is almost three times larger than that for the case of 0.4 VV AC excitation level. This shows
that as the AC voltage is increased from 0.4 V to 5.5 V, the linear damping coefficient needs to be
increasedrom 0.1(¥ to 0305 so that the theoretical model predictions match the experimental ones,

which again shows the inaccuracy of the linear damping model.
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Fig. 2. Frequency responses of the MEMS resonatd8gfL WV, and different AC voltages (denoted on
curves). Circles: experimental data; lines: theoretical predictions using the linear damping mode
coefficient of (a)2> L r & r ycalibrated basedmothe experimental results f@& gL r&V and (b) 2> L rér
calibrated based on the experimental results8fag L wéw.



It is evident fromthe linear damping analysis that irrespective of which excitation level is chosen to
calibrate the damping moldeas the excitation magnitude is increased, the linear damping model
overestimates the peak amplitude. Hence, a nonlinear damping mechanism must be used to capture this
nonlinearly increasing energy dissipation at higher oscillation amplitudes.
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Fig. 3. Frequency responses of the MEMS resonat@,atL. WV, and different AC voltages (denoted on t
curves). Circles: experimental data; lines: theoretical predictions using the Xeligh model with a
coefficient of (a)R, L t & r H s r’8calibraed based on the experimental results8og L r &V and (b) B, L
wi r H's r’8calibrated based on the experimental results8fag L waw.



4.2 KelvinVoigt model

In this section, a comparison similar to the on&égtiond.1 is conductedwhile replacing the linear

damping model with a Kelvivoigt model; hence?.”, 2% and 2.”, are set to zero, and the value of

3 is obtained using the experimental frequency respongg gt r &V for the first case andsing

the one at8& gL wawW for the second casé. should be noted that the KelvWpoigt model has both

linear and nonlinear components; however, the coefficient of damping for both components is the same
and equal td3,, hence it does not allow for separate calibration ofitieai and the nonlinear damping

coefficients

First, the KelvinVoigt model is calibrated based on the lamplitude frequencyesponse at 0.4 AC
voltage, resulting inB, L t& rHsr’8 Then, R is kept fixed and the AC voltage is increased to 5.5

V. The result of the comparison is shown in F¢p). As seen, while the Kelvivoigt model works

better than the linear damping (i.e., as seen from comparison of8@pto Fig. Za)), it still
overestimates the peak amplitude by a large margin. To investigate whether this is due to calibration
with a very small oscillation amplitude, for the next case, the Kalgigt damping coefficient is
calibrated using the experimental frequency respons&fgil. waw, resulting in3, L we&rHs r’8
Obtaining the frequency response &t gL srusing the new value ofy, and plotting against the
experimental one in Fig3(b) shows that thé&elvin-Voigt model again overestimates the peak
amplitudes at higher ACxeitation levels. Hence, although the Kehxioigt model works better than

the linear damping model owing to its nonlinear parts, it still cannot reliably predict the peak amplitude

at excitation levels higher than the one it is calibrated for.

4.3 Modified Kelvin-Voigt model with two damping coefficients

In the previous section, it was shown that the KeWmigt model cannot be used to predict peak
amplitudes at different excitation levels reliably with a fixed damping coeffiéaroth linear and
nonlinear termsMore specifically, even though the Kelwifoigt model used in this study is a nonlinear
damping modelit still underestimates the energy dissipation at higher oscillation amplitetiésh
indicates the presence ofsaong nonlinear damping in the MEMS resonaktence, to have more
flexibility in adjusting the nonlinear damping in the Kelioigt model, a modified version is

examined in this section with two damping coefficients. More specifically, the coeffi¢idre bnear
damping termin theKelvin-Voigt model is replaced by&;& and that of the nonlinear damping term is

replacedby B;é;. This allowsfor adjusing each coefficient separateiynd provides more flexibility in

modelling the damping for both siif and largeamplitude oscillationgs explained in the following
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For such a damping model, two experimental frequency responses are rieecilibrate the
coefficients, one at very low excitation level where the response is mostly linear, and one at larger
excitation level where the system clearly shows a nonlinear bemawvio this end, the frequency
responseat & L r&and wéw (for the case withg, ;L w) are used to calibrate th&o coefficients

of themodified KelvinVoigt model. The calibration procedure is as follows: first, an initial estimate

of the value of linear damping coefficient, i.&:ﬁ, is obtained by settingg:f‘; to zero and calibrating

B;G using the resonance respordeSz oL r&V. This provides a relatively accurate initial estimate

for B;G as the response of the system is mostly linear at this low excitation level. Then, while keeping
RS fixed, the value of 8% is chosen such that a match is obtained betwkerheoretical and
experimental frequency responses at 5.5 V AC excitéosl. Since the addition dﬂ;é; will slightly

affect the oscillation amplitude for the caBegL r &V, both R° and R’ coefficients are slightly

modified until good matches are obtained at both 0.4 V and 5.5 V AC excitation levels.

This calibation procedure results i8® L t4& Hs 1?8 and 8% L zavH s 1?7, The values of}" and

B;é; are then kept fixed while the AC voltage is increased to 10tl20 V. The result of the
comparison between experimental and theoretical frequency respomarious AC voltage levels is
shown in Fig.4. The good fit between the results 8 L r&V and 5.5 V is expected, as the
experimental results at these excitation levels were used to calibrate the dampingHoeeskr as

seen in the figure, theeww modified KelvinVoigt model doesan excellent job at predicting correct



peak oscillation amplitudes at larger AC voltageitations even thougtboth damping coefficients
were kepffixed. Hence, Fig4 shows that the procedure used for calibratirgdamping coefficients

is robust, as it uses a very srrathplitude frequency response to almost eliminates the nonlinear effects
and calibrate the linear part; the nonlinear part can then be calibratet wsiy relatively large
amplitude experimental frequency response.

To further examine the reliability of the proposed modified KeWaoigt model, another set of
experimentatiatais considered, which was conducteddtg L u rV and several AC voltages, naiy

8 L réy sd t& andyaV. The material damping coefficients, i.8" and B, are kept fixed and

the frequency responses of the MEMS resonator at these AC voltage levels are constructed numerically.
A comparison between the numerical and experimental results is shown5nAsgseen, even though

the modified KelvinVoigt modelwas calibrated using a completely different set of experimental
results, it still workserywell in capturing the primary resonance response and peak amplitudes at these
new DCGAC excitation levels. It is noticed that the modified Kelnigt model predits generally
smaller peak amplitudes compared to the experimental results; the maximum error in estimating the
peak amplitude is less th& and the average percentage error in estimating the peak amplitude for
all AC voltage levels i$.5%.
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Fig. 5. Frequency responses of the MEMS resoratt@; L u rV, andfor various AC voltages (denoted on
curves). Circles: experimentdatg lines: theoretical predictions using the modified KelVioigt model with th:
same damping coefficients as the ones used iMFig.

4.4 Cubic nonlinear damping model

In this section, the performance of the cubic nonlinear damping model is examiretdiinT this



end, the Kelvinvoigt damping is removed from the MEMS modal as to examine only the cubic
damping model. Two formulations of the cubic damping model are investigated: one with the linear
and cubic terms (i.eneglecting the quadratic taj and one with all linear, quadratic, and cubic terms
being considered. The former is referred to as the cubic model and the latter as the general quadratic
cubic model.

(@)

(b)

Fig. 6. Frequency responses of the MEMS resonator a8(@L wV and (b) 8,cL urV, and various At
voltages (denoted on the curves). Circles: experimental data; lines: theoretical predictions using the cubi
model with the two damping coefficients calibed based on the experimental data8og L r &and waw (sub-
figure (a)).



Starting with the cubic model, a procedure similar to the one used in Sé@&ianfollowed here to
calibrate the two damping coefficients, i.8> and 2,”. More speffically, the model is calibrated
using the experimental results conducted8t;L wV, making use of the two lowamplitude

frequency responses. The damping coefficients are then kept fixed and the frequency responses at other
AC and DC voltages are obtained and compared to the experimental results.

Similar to the previous section, the cubic damping model has a linear and a nonlinear term; hence, the

damping coefficients can be calibrated using two frequency responses, i.e stcermhected a8 L
r & and waw. Following a calibration procedure similar to the one in Secti@nresults in ?,'(5; L

rdrrand ?j; L r&u zThese damping coefficients are then kept fixed and two sets of numerical
simulations are conductednesetat 5 V DC voltage andBz gL s rand 20 V, and another set at 30 V

DC voltage and8: gL r &y sd, t & andyd V. The comparisons between numerical and experimental
results are shown in Fi§. More specifically, Fig6(a) shows the comparison for the set cules at

84 L WV and while Fig6(b) shows that a8, gL u V. As seen in Figs(a), the cubic damping model

works well in capturing the peak amplitudes8ts L s rand 20 V once calibrated using the results at

8 gL r&and 5.5 V. However, it is seen thiaetcubic damping model slightly underestimates the peak
amplitude, and this becomes more visible at higher AC voltage levels. Nevertheless, it still does a very

good job in capturing the nonlinear damping in the system.

Looking at the set of results conducted at a higher level of DC voltag&(lfjga similar behaviour is
observed, i.e. the cubic model captures the peak amplitude correctly at relatively lower AC voltages,
however as the AC voltage is increased, it settdunderestimate the peak amplitude. Similar to the
modified KelvinVoigt model, for the case of Fig(b) the maximum error is less th@k6 but the
average error islightly lower at 5%. The underestimation of the peak amplitude at higher AC voltages
can be attributed to the fact that the only nonlinear term in the damping model is of cubic order which
increases very rapidly as the oscillation amplitude (and hence velocity) increases. To further study this,
the general quadratimubic model will be examied next to investigate whether the addition of a

guadratic term can improve the overall performance of the damping model.

The general quadraticubic model consists of three damping coefficients, %, 2%, and 2.,

which need to be detmined usinghe experimentatlata Since there are three unknown coefficients,

three experimental frequency responses are required to calibrate the model. It should be noted that the
three coefficients might also be determined usiaginstancetwo frequency responses, but in that

case optimum values cannot be found and hence the model might not work as intended. Hence, the
experimental frequency responsesBat L r& wayands rV (at 5 V DC voltage) are selected for the
calibration process. It shoulbe noted that the calibration procedure for this case is not as

straightforward as the previous case and is more iterdthagoal is to achieve an optimised roix



quadratic and cubic ternthat can lead to larger peak amplitudes at higher &@tages while
maintaining accurate predictions at smaller oscillation amplitiaethis endfirst a procedure similar

. . . . 5 "6; /- . .
to the previous case is followdxy only considering?, ™~ and 2. (i.e. a quadratic modelysingthe

curves for 8 gL réaand wiy which leads to optimum values ofiy vand r & r rfor 2> and 2.%,

respectivelyWe also know from the previous case that the optimum values for a cubitaredé r r

and r & u Zor 2> and 2., respectivelyHence,jit is assumd thatthe optimised case for the general

guadratiecubic modelis a linear combination of these two casEserefore a weight factorain the
range [0 1] isconsideredand the damping coefficients are defined & L AHr&rrE:sF

& Hrayy 25 L:sF& Hr&rpand 27 L &HréuzKnowing that the cubic model already
provided good results, it is expected thaéieoser to 1 (than 0) would be ideal as it slightly reduces
the effect of the cubic term anidtroducesa quadratiderm which ha less damping effect at larger
amplitudegsince it grows at a quadratic rate rather a cubic. éie)ce, different values ddare tested

to see which value gives best fit for all three frequency responses. Following this prdeadart®
aL r§ xws he optimum valuewhich results inthe following damping coefficient values for the
general quadraticubic damping model2> L ra{y 2% L raty and 2" L rat{ Similar to the
previous case, the damping coefficients are kept fixed and the fi@quesponses at other AC/DC
voltage levels are constructed and compared to the experimental results, as illustratetithimdtigh

(a) for the set of results &, gL WV and (b) that at8, gL urV.

Starting with Fig.7(a), it is seen that the general quadratibic damping model does an excellent job
atpredicting correct peak amplitudes at various AC voltage levels. Furthermore, the model also works
well for the set of results at an increased DC voltage level, asrsBan 7(b). In fact, for the case of

Fig. 7(b), the maximum error in estimag the peak amplitude is less than 6% and the average error is

3.3%, both of which are less than those of the other nonlinear damping models examined in this study.

Hence, it is shown that once calibrated, the general quadtdiic damping model works best in
predicting the primary resonance response amplitudes at various AC and DC voltages. However,
compared to the cubic model and the modified KeWaigt model, t requires more experimental

frequency responses for optimal calibration.



(@)

(b)

Fig. 7. Frequency responses of the MEMS resonator aB(@L wV and (b) 8,cL urV, and various At
voltages (denoted on the curves). Circles: experimental data; lines: theoretical predictions using tt
guadratiecubic damping model with the three damping coefficients calibrated based on the experimente
8 L r& wdyand s rV (subfigure (a)).



5. Conclusions

This study conducted a thorough theoretegberimental investigation on the nonlinear dampirig-in
planeMEMS resonators. Precise experimental measurements were conducted to examine the primary
resonanceeasponse of min-planeelectrically actuatedlampedclamped microbeam for various AC

and DC voltages. More specifically, the frequency responses of the system were constructed at various
AC voltage levels for two differerstaticallydeflected configuratins (i.e, DC voltage levels). For the
theoretical part, a nonlinear model was developed for the microbeam taking into account nonlinearities
associated with midplane stretching, electrostatic load, and damping. In particular, two different
damping mechanisms werertsidered: the general quadratigbic nonlinear damping model and the
Kelvin-Voigt model. The nonlinear continuous model of the MEMS resonator was discretised utilising
the Galerkin method while retaining 10 modes and while ensuring that the electioathtermwith
nonlineaities in the denominatoand the damping term in the absolute function are kept intact in the
discretisation procedure.

Various damping models were examined and compared to experindataahcluding the linear
damping model, the&Kelvin-Voigt model, the modified KelvitVoigt model with two damping
coefficients, the cubic model (including linear and cubic terms), and the general quewlbatic
damping model. It should be highlighted that the goal was to investigate whether aglamgel is
capable of capturing correct resonance amplitudes at various excitation levels with fixed damping
coefficients without focusing on thenonlinear damping sourcesThorough investigations were

conducted and it was found that:

X The linear damping odel significantly overestimates tpeakamplitude at higher excitation
levels when it is calibrated using the experimental data at a lower excitation level.

x The KelvinVoigt model works better than the linear damping model, butastérestimates
the response at higher excitation levels

X The modified KelvinVoigt model with two damping coefficients (one for linear and one for
nonlinear terms) does an excellent job at capturing the correct peak resonance amplitudes at
various AC voltages when calibratesing the two lowest amplitude experimental data. When
the DC voltage is increased, this model tends to slightly underestimate the peak amplitude.

X The cubic model works well, but it slightly underestimates the peak amplitude as the AC
voltage level isncreased (at different DC voltage levels)

X The general quadratimubic model worketter than the otheronlinearmodels and captuse

the peak amplitude at various AC and DC voltage levels with minimum error

Hence, this study clearly shows the preserfca strong nonlinear damping in-plane clamped
clamped silicon MEMS resonators and proposes suitable nonlinear damping models (along with robust

calibration procedures) to capture such a nonlinear behaWisummary, both quadratmubic and



modified KelvinVoigt models work really well, noting that the former is more complicated to calibrate
as it requires three experimental frequency respdoseptimal calibrationwhile the modified Kelvia

Voigt modé has two coefficients and can be calibrated using only two experimental frequency
responses.
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