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Abstract 

This study presents a thorough theoretical and experimental investigation on the nonlinear damping of 

in-plane micromachined electromechanical resonators. More specifically, experiments are conducted 

on an electrically actuated bridge resonator and the primary resonance response of the system is 

obtained at various AC and DC voltages. A nonlinear theoretical model is developed using the Euler-

Bernoulli beam theory while accounting for the geometric, electrostatic (including fringing field effect), 

and damping nonlinearities. Two damping models are considered in the theoretical model; the Kelvin-

Voigt model, which for this system is a nonlinear damping model due to the presence of geometric 

nonlinearities. The second damping model consists of linear, quadratic, and cubic damping terms. A 

high-dimensional discretisation is performed, and the nonlinear dynamics of the resonator are examined 

in detail in the primary resonance regime by constructing the frequency response diagrams at various 

AC and DC voltages. Thorough comparisons are conducted between the experimental data and the 

theoretical results for different damping conditions. It is shown that the micro resonator displays strong 

nonlinear damping. Detailed calibration procedures for the nonlinear damping models are proposed and 

the advantages and disadvantages of each nonlinear damping model are discussed.  

Keywords Nonlinear damping; nonlinear vibration; MEMS resonators; experimental investigation. 

 

1. Introduction 

Microelectromechanical systems (MEMS) [1-3] have been drawing significant attention over the last 

decade thanks to their small size, low power consumption, high sensitivity, and low cost [4]. These 

devices have widespread important applications in environmental monitoring [5], air quality 

measurement [6, 7], mass sensors [8, 9], pressure sensors [10], communications [11, 12], logic/memory 

[13, 14], and energy harvesting [15-17]. Electrostatically driven resonators have been the subject of 
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ongoing research since the early work of Nathanson et al. [18]. The use of the electrostatic force is to 

drive the MEMS resonators statically or dynamically in the linear or nonlinear regimes. Electrostatically 

actuated MEMS resonators were proposed for various applications such as tunable resonators [19], 

synchronisation [20], sensing [21, 22], and micromirrors [23].  

Commonly, these MEMS resonators consist of a movable electrode and a fixed electrode, mainly based 

on slender silicon microbeams. The movable electrode is mainly modelled as a microbeam (whose 

length is much higher than its width and thickness) deflecting toward the fixed electrode as applying a 

bias voltage [24]. A sudden collapse into the fixed electrode, also known as the pull-in instability, occurs 

if the voltage exceeds a critical value. The static and dynamic behaviours were investigated in depth in 

the literature theoretically and experimentally due to the continuously increasing exploitation of these 

microsystems [19, 24-28]. Analysing the behaviour of these resonators is commonly based on the 

classical model (Euler-Bernoulli beam theory) or the nonclassical mechanical model of the beam. 

The main difficulty of the theoretical modelling of these movable structures is the accurate prediction 

of the nonlinear vibration of these resonators as driven electrostatically, which is crucial for various 

potential applications [29-31]. One of the key factors to be considered in modelling MEMS resonators 

is damping, which can be intrinsic, such as thermoelastic [32-35], or extrinsic, such as squeeze film [33, 

36-44] damping. Damping lowers the quality factor of MEMS resonators affecting adversely their 

performance, making the quality factor a key parameter design for a wide range of applications such as 

timing and sensing. More recently, Alcheikh et al. [45] investigated the effect of air damping on the 

quality factor of in-plane nano and micro-resonators actuated by two stationary electrodes (for actuation 

and sensing). 

On the other hand, as the oscillation amplitude increases, the energy dissipation tends to deviate from 

the linear viscous dissipation and start to vary nonlinearly. The nonlinear energy dissipation (or 

nonlinear damping) has drawn specific attention in the last decade. For instance, Amabili [46-48] 

studied the nonlinear damping in large-amplitude vibrations of rectangular plates, both theoretically 

and experimentally. Li and Shaw [49] examined the effect of nonlinear damping in the dynamic 

response of a single-degree-of-freedom system subject to both direct and parametric excitations. Croy 

et al. [50] proposed and studied a microscopic mechanism for energy dissipation in electrically actuated 

nanomechanical resonators; they found that the coupling between flexural modes and in-plane phonons 

results in nonlinear damping for out-of-plane oscillations. An in-depth theoretical and experimental 

investigation highlighting the effect of different damping sources (e.g., thermoelastic, anchor losses, 

and Akhiezer) on the quality factor of MEMS Silicon resonators was conducted by Kenny and co-

authors [51-53]. More recently, nonlinear damping in graphene nanoresonators motivated several 

interesting studies [50, 54-58]. For instance, Eichler et al. [56] studied the damping of mechanical 

resonators based on graphene membranes and carbon nanotubes and found that damping strongly and 



nonlinearly depends on the amplitude of motion. Keşkekler et al. [58] studied experimentally nonlinear 

damping in graphene nanoresonators; they investigated the parametric resonance tuning of a graphene 

nanodrum by monitoring nonlinear dissipation over a wide frequency range. Furthermore, Dolleman et 

al. [57] investigated multimode parametric resonance in opto-thermally excited graphene membranes 

and showed that nonlinear damping is essential for examining their large-amplitude parametric 

resonance. Nonlinear damping was used recently for different applications in sensing [59], energy 

harvesting [60], vibration isolation  [61, 62], and was shown experimentally for graphene [58]. 

Despite these valuable studies, there is still no comprehensive study on nonlinear damping in in-plane 

MEMS resonators with relatively large gaps. The present study conducts a thorough investigation on 

the nonlinear damping in in-plane micromachined electromechanical resonators using carefully 

conducted experiments and an accurate nonlinear theoretical model. It should be noted that the main 

aim of this study is to develop a damping model that accurately captures MEMS resonators' nonlinear 

response without focusing on or specifically identifying the sources of nonlinear dissipation (e.g., 

thermoelastic, viscoelastic, anchor losses). More specifically, detailed procedures are provided for 

calibrating different nonlinear damping models using minimum number of experimental frequency 

responses, which can be applied to any micro/nano-resonator irrespective of the type of nonlinear 

damping. The experimental setup is explained in Section 2, followed by a detailed nonlinear model 

development in Section 3. The theoretical and experimental results are presented for various cases and 

discussed in detail in Section 4. Finally, a summary of the key findings is presented in Section 5. 

 

2. Experimental setup 

The clamped-clamped in-plane microbeam under consideration (shown in Fig. 1(a)), is fabricated from 

SOI (Silicon on Insulator) wafers with a highly conductive Si device layer. The geometric parameters 

of the microbeam are given in Table 1. 

To excite the microbeam, the resonator is actuated electrostatically by a DC polarization voltage 𝑉DC 

and an AC harmonic voltage of amplitude 𝑉AC and frequency 𝜔. The resonance frequencies and the 

frequency response curves of the resonating microbeam were measured experimentally using the 

stroboscopic video microscopy from Polytec, as shown in Fig. 1(c). To minimize the effect of squeeze 

film damping, the microbeam is placed in a vacuum chamber with a pressure of 950mTorr set 

throughout the experiments. Even though the microbeam is actuated by one stationary electrode, one 

should note that the microbeam is sandwiched between two electrodes, as shown in Fig. 1(a). The 

damping models are considered in a general way to capture any dissipation in the system, either 

structural or those associated with the airgap. 

 



 

(a) 

 

(b) 

 

(c) 

 

Fig. 1. (a) Optical image of the electrostatically actuated in-plane microbeam. (b) A 3D schematic of the 

microbeam. (c) Experimental setup.  

 

Table 1. Geometrical properties of the silicon clamped-clamped microbeam. 

Quantity Value (μm) 

Length (𝐿) 800 

Thickness (ℎ) 3 

Width (𝑏) 25 

Gap (𝑑) 8 

 

3. System model development 

In this section, the nonlinear equation of motion for the MEMS resonator under consideration is derived 

using the Euler-Bernoulli beam theory. More specifically, due to the clamped-clamped configuration 

of the microbeam, the midplane-stretching nonlinearity is considered. This study utilises a Kelvin-Voigt 



model, resulting in a nonlinear damping mechanism due to presence of geometric nonlinearity. Apart 

from the Kelvin-Voigt damping, a general nonlinear damping mechanism (for the transverse motion) is 

modelled as well. These damping mechanisms will be examined in detail in Section 4. 

Based on the Kelvin-Voigt model, the stress-strain relationship is given by 

𝜎𝑥𝑥 = 𝐸휀𝑥𝑥 + 𝜂𝜕𝑡휀𝑥𝑥, (1) 

where 𝐸 is the microbeam’s Young’s modulus and 𝜂 is its material damping coefficient. 

Denoting the longitudinal and transverse displacements by 𝑢 and  𝑤, respectively, and accounting for 

the midplane-stretching nonlinearity, the axial strain can be formulated as: 

휀𝑥𝑥 = 𝜕𝑥𝑢 +
1

2
(𝜕𝑥𝑤)2 − 𝑧𝜕𝑥𝑥𝑤. (2) 

The variation of the potential energy of the microbeam and the virtual work of the viscous component 

of the axial stress are expressed as: 

𝛿𝛱 = ∫ ∫ 𝐸휀𝑥𝑥𝛿휀𝑥𝑥 d 𝐴
𝐴

d 𝑥
𝐿

0

, (3) 

𝛿𝑊𝑉 = − ∫ ∫ 𝜂𝜕𝑡휀𝑥𝑥𝛿휀𝑥𝑥 d 𝐴
𝐴

d 𝑥
𝐿

0

, (4) 

in which 𝛿 is the variational operator. The variation of the kinetic energy of the microbeam is given by: 

𝛿𝐾 = 𝜌𝐴 ∫ [𝜕𝑡𝑢𝛿(𝜕𝑡𝑢) + 𝜕𝑡𝑤𝛿(𝜕𝑡𝑤)]
𝐿

0

d 𝑥, (5) 

where 𝜌 is the mass density and 𝐴 is the cross-sectional area of the microbeam. 

The bridge resonator is actuated through the electrostatic capacitance load, which is modelled using the 

Meijs-Fokkema formula [63] given by  

𝑓𝑒 =
1

2
휀𝑉2 [

𝑏

(𝑑 − 𝑤)2
+ 0.265

𝑏
1
4

(𝑑 − 𝑤)
5
4

+ 0.53
ℎ

1
2

(𝑑 − 𝑤)
3
2

], (6) 

in which 𝑉 = 𝑉DC + 𝑉AC cos(𝜔𝑡). The Meijs-Fokkema formula accounts for the fringing field effect via 

two additional terms (i.e., the second and third terms in Eq. (6)) and provides reliable predictions with 

less than 2% deviation from the results of a finite element model, for the case when b/d ≥ 1 and 0.1 ≤ 

h/d ≤ 4 [63]. As such, the virtual work of the electrostatic load can be formulated as 

𝛿𝑊𝐸 = ∫
1

2
휀(𝑉DC + 𝑉AC cos(𝜔𝑡))2 [

𝑏

(𝑑 − 𝑤)2
+ 0.265

𝑏
1
4

(𝑑 − 𝑤)
5
4

+ 0.53
ℎ

1
2

(𝑑 − 𝑤)
3
2

] 𝛿𝑤 d 𝑥
𝐿

0

, (7) 

where 휀 is the medium’s permittivity. 

Substituting Eqs. (3-5) and Eq. (7) into the generalised Hamilton’s principle, neglecting the longitudinal 



inertia, and taking into account the work of a general nonlinear cubic damping mechanism for 𝑤  

𝛿𝑊𝐷 = − ∫ [𝑐1𝜕𝑡𝑤 + 𝑐2𝜕𝑡𝑤|𝜕𝑡𝑤| + 𝑐3(𝜕𝑡𝑤)3] 𝛿𝑤 d 𝑥
𝐿

0

, (8) 

yields the following nonlinear equation governing the transverse motion of the MEMS resonator 

𝜌𝐴𝜕𝑡𝑡𝑤 + 𝑐1𝜕𝑡𝑤 + 𝑐2𝜕𝑡𝑤|𝜕𝑡𝑤| + 𝑐3(𝜕𝑡𝑤)3 + 𝐸𝐼𝜕𝑥𝑥𝑥𝑥𝑤 + 𝜂𝐼𝜕𝑡𝑥𝑥𝑥𝑥𝑤 −

𝐸𝐴

2𝐿
𝜕𝑥𝑥𝑤 ∫ (𝜕𝑥𝑤)2 d 𝑥

𝐿

0
−

𝜂𝐴

2𝐿
𝜕𝑥𝑥𝑤 ∫ 2𝜕𝑥𝑤𝜕𝑡𝑥𝑤 d 𝑥

𝐿

0
−

1

2
휀(𝑉DC + 𝑉AC cos(𝜔𝑡))2 [

𝑏

(𝑑−𝑤)2 +

0.265
𝑏

1
4

(𝑑−𝑤)
5
4

+ 0.53
ℎ

1
2

(𝑑−𝑤)
3
2

] = 0.  

 

(9) 

Defining the following dimensionless quantities 

𝑥 =
𝑥

𝐿
, �̂� =

𝑤

𝑑
, 𝛼1 =

𝐴𝑑2

2𝐼
, 𝜂𝑑 =

𝜂

𝐸𝑇
, 𝜏 =

𝑡

𝑇
, Ω = 𝜔𝑇, 𝑐𝑑

(1)
=

𝑐1𝐿4

𝐸𝐼𝑇
, 𝑐𝑑

(2)
=

𝑐2𝐿4𝑑

𝐸𝐼𝑇2
, 

𝑐𝑑
(3)

=
𝑐3𝐿4𝑑2

𝐸𝐼𝑇3
, 𝛽1 =

𝑏

𝑑
, 𝛽2 =

𝑏

ℎ
 , 

(10) 

where 𝑇 = 𝐿2√𝜌𝐴/(𝐸𝐼), and defining the coefficient of the electrostatic load term as 𝛼2 =

휀𝑏𝐿4/(2𝐸𝐼𝑑3), the dimensionless equation of motion of the MEMS resonator can be written as  

𝜕𝜏𝜏�̂� + 𝑐𝑑
(1)

𝜕𝜏�̂� + 𝑐𝑑
(2)

𝜕𝜏�̂�|𝜕𝜏�̂�| + 𝑐𝑑
(3)(𝜕𝜏�̂�)3 + 𝜕𝑥�̂��̂��̂��̂� + 𝜂𝑑𝜕𝜏𝑥�̂��̂��̂��̂� −

𝛼1𝜕�̂��̂��̂� ∫ (𝜕𝑥�̂�)2 d 𝑥
1

0
− 𝛼1𝜂𝑑𝜕�̂��̂��̂� ∫ 2𝜕𝑥�̂�𝜕𝜏𝑥�̂� d 𝑥

1

0
− 𝛼2[𝑉DC + 𝑉AC cos(Ω𝜏 )]2 [

1

(1−�̂�)2 +

0.265
1

𝛽1

3
4(1−�̂�)

5
4

+ 0.53
1

𝛽1

1
2𝛽2

1
2(1−�̂�)

3
2

] = 0.  

(11) 

To solve Eq. (11) numerically, first it needs to be discretised in the spatial domain and reduced to a set 

of nonlinear ordinary differential equations (ODEs). To this end, the transverse displacement is defined 

as 

�̂�(𝑥, 𝜏) = ∑ Ξ𝑘(�̂�)𝑞𝑘(𝜏),

𝑁

𝑘=1

 (12) 

where 𝑞𝑘(𝜏) denotes the kth unknown time-dependent generalised coordinate for the transverse motion 

and Ξ𝑘(�̂�) represents the corresponding dimensionless eigenfunction for a linear clamped-clamped 

beam. Next, the finite series expansion defined for �̂� in Eq. (12) is substituted into Eq. (11) and then 

the Galerkin method is applied resulting in: 



∑ (𝜕𝜏𝜏𝑞𝑘(𝜏) + 𝑐𝑑
(1)

𝜕𝜏𝑞𝑘(𝜏)) (∫ Ξ𝑗(𝑥)Ξ𝑘(�̂�) d 𝑥
1

0

)

𝑁

𝑘=1

+ ∫ Ξ𝑗(�̂�) (𝑐𝑑
(2)

∑ Ξ𝑘(�̂�)𝜕𝜏𝑞𝑘(𝜏)

𝑁

𝑘=1

|∑ Ξ𝑘(�̂�)𝜕𝜏𝑞𝑘(𝜏)

𝑁

𝑘=1

|) d 𝑥
1

0

 

+𝑐𝑑
(3)

∑ ∑ ∑ 𝜕𝜏𝑞𝑘(𝜏)𝜕𝜏𝑞𝑙(𝜏)𝜕𝜏𝑞𝑚(𝜏) (∫ Ξ𝑗(�̂�)Ξ𝑘(𝑥)Ξ𝑙(�̂�)Ξ𝑚(𝑥) d 𝑥
1

0

)

𝑁

𝑚=1

𝑁

𝑙=1

𝑁

𝑘=1

+ ∑(𝑞𝑘(𝜏) + 𝜂𝑑𝜕𝜏𝑞𝑘(𝜏)) (∫ Ξ𝑗(𝑥)𝜕�̂��̂��̂��̂�Ξ𝑘(�̂�) d 𝑥
1

0

)

𝑁

𝑘=1

 

−𝛼1 ∑ ∑ ∑ 𝑞𝑘(𝜏)𝑞𝑙(𝜏)𝑞𝑚(𝜏) (∫ Ξ𝑗(𝑥)𝜕�̂��̂�Ξ𝑘(�̂�) (∫ 𝜕�̂�Ξ𝑙(𝑥)𝜕�̂�Ξ𝑚(𝑥) d 𝑥
1

0

) d 𝑥
1

0

)

𝑁

𝑚=1

𝑁

𝑙=1

𝑁

𝑘=1

− 𝛼1𝜂𝑑 ∑ ∑ ∑ 𝑞𝑘(𝜏)𝑞𝑙(𝜏)𝜕𝜏𝑞𝑚(𝜏) (∫ Ξ𝑗(𝑥)𝜕𝑥�̂�Ξ𝑘(�̂�) (∫ 2𝜕𝑥Ξ𝑙(�̂�)𝜕�̂�Ξ𝑚(�̂�) d 𝑥
1

0

) d 𝑥
1

0

)

𝑁

𝑚=1

𝑁

𝑙=1

𝑁

𝑘=1

− 𝛼2[𝑉DC + 𝑉AC cos(Ω𝜏 )]2 ∫ Ξ𝑗(𝑥) [
1

(1 − ∑ Ξ𝑘(�̂�)𝑞𝑘(𝜏)𝑁
𝑘=1 )2

1

0

+
0.265

𝛽1

3
4(1 − ∑ Ξ𝑘(�̂�)𝑞𝑘(𝜏)𝑁

𝑘=1 )
5
4

+
0.53

𝛽1

1
2𝛽2

1
2(1 − ∑ Ξ𝑘(�̂�)𝑞𝑘(𝜏)𝑁

𝑘=1 )
3
2

] d 𝑥 = 0, 

𝑗 = 1, 2, … , 𝑁. 

(13) 

The discretisation procedure for the proposed MEMS model with nonlinear damping is challenging due 

to the presence of terms that cannot be integrated in closed form, namely the damping term involving 

|𝜕𝜏�̂�| and the electrostatic load term involving 𝑤-dependent components in the denominator. Hence, to 

ensure accuracy when applying the Galerkin technique, these terms are kept intact and spatial 

integrations are conducted numerically while retaining sufficient number of terms. This procedure leads 

to very large discretised equations of motion, but ensures accurate results. Furthermore, 𝑁 is set to 10 

resulting in a 10-degree-of-freedom (dof) model, ensuring converged results. The resultant discretised 

10-dof model is solved numerically using a continuation method; the simulation results are discussed 

in detail in Section 4. 

 

4. Results and discussion 

In this section, the nonlinear resonance response of the MEMS resonator is examined in detail and 

extensive comparisons are conducted between the theoretical and experimental results. Different linear 

and nonlinear damping models are examined to determine the model that works best for various DC 



and AC voltage levels when calibrated only once. In other words, the goal is to find a damping model 

that can be calibrated once using experimental data at a specific level of excitation, and then used 

reliably at other excitation levels and vibration amplitudes.  

Two sets of experiments are conducted, one at 𝑉DC = 5 V and the other at 𝑉DC = 30 V. The primary 

resonance response of the MEMS resonator is captured at various AC voltage levels for each case, i.e., 

at 𝑉AC = 0.4, 5.5, 10, and 20 V for the case of 𝑉DC = 5 V, and at 𝑉AC = 0.5, 1.0, 2.0, and 7.0 V for the 

case of 𝑉DC = 30 V.  

The geometric properties of the fabricated microbeam are given in Table 1, resulting in 𝛼1 = 42.667 

and 𝛼2 = 1.049 × 10−2 considering a flexural rigidity of 8.44 × 10−12 Nm2 and a mass density of 

2350 kg/m3. These values lead to a good match with the experimental linear and nonlinear responses, 

and hence the residual stress is neglected. In the results shown in this section, 𝜔1 indicates the first 

dimensionless natural frequency of the resonator, which is related to its dimensional counterpart �̃�1 via 

𝜔1 = �̃�1𝑇. Additionally, 𝑤𝑑 denotes the midpoint transverse oscillation amplitude measured from the 

deflected state caused by the DC voltage. Furthermore, in all the theoretical results, solid lines indicate 

stable periodic solutions while dashed lines represent unstable periodic solutions. 

 

4.1 Linear viscous damping model 

First, the Kelvin-Voigt damping coefficient 𝜂𝑑 and the nonlinear damping coefficients, i.e. 𝑐𝑑
(2)

 and 

𝑐𝑑
(3)

, are set to zero in order to examine the performance of the linear viscous damping model in 

predicting the peak vibration amplitude at higher excitation levels when calibrated based on the results 

at relatively low excitation magnitudes. For this case, only the experimental results conducted at 𝑉DC =

5 V are used. Two cases are considered to examine the performance of the linear viscous damping 

model as discussed in detail next. 

For the first case, the linear damping coefficient, 𝑐𝑑
(1)

, is calibrated using the experimental frequency 

response at 𝑉AC = 0.4 V, resulting in 𝑐𝑑
(1)

= 0.107. Then the AC voltage is increased to 5.5 V while 

keeping 𝑐𝑑
(1)

 fixed, and the resultant theoretical frequency response is constructed and compared to the 

experimental one, as shown in Fig. 2(a). As seen, the linear damping model significantly overestimates 

the peak amplitude when it is calibrated for very small oscillation amplitudes and kept intact for higher-

amplitude oscillation predictions. 

For the second case, the experimental frequency response for 𝑉AC = 5.5 V is used to calibrate the linear 

damping model and then the frequency response for 𝑉AC = 10 is obtained while keeping 𝑐𝑑
(1)

 intact. 

The initial calibration for this case results in 𝑐𝑑
(1)

= 0.305, and the result of the comparison is shown in 



Fig. 2(b). A similar behaviour is seen for this case in which the linear damping model overestimates the 

peak oscillation amplitude for the higher AC excitation level of 10 V. Furthermore, the comparison 

between the values of 𝑐𝑑
(1)

 for the two cases examined show that the calibrated coefficient for the case 

𝑉AC = 5.5 V is almost three times larger than that for the case of 0.4 V AC excitation level. This shows 

that as the AC voltage is increased from 0.4 V to 5.5 V, the linear damping coefficient needs to be 

increased from 0.107 to 0.305 so that the theoretical model predictions match the experimental ones, 

which again shows the inaccuracy of the linear damping model. 

(a) 

 

(b) 

 

Fig. 2. Frequency responses of the MEMS resonator at 𝑉DC = 5 V, and different AC voltages (denoted on the 

curves). Circles: experimental data; lines: theoretical predictions using the linear damping model with a 

coefficient of (a) 𝑐𝑑
(1)

= 0.107 calibrated based on the experimental results for 𝑉AC = 0.4 V and (b) 𝑐𝑑
(1)

= 0.305 

calibrated based on the experimental results for 𝑉AC = 5.5 V. 



It is evident from the linear damping analysis that irrespective of which excitation level is chosen to 

calibrate the damping model, as the excitation magnitude is increased, the linear damping model 

overestimates the peak amplitude. Hence, a nonlinear damping mechanism must be used to capture this 

nonlinearly increasing energy dissipation at higher oscillation amplitudes. 

 

(a) 

 

(b) 

 

Fig. 3. Frequency responses of the MEMS resonator at 𝑉DC = 5 V, and different AC voltages (denoted on the 

curves). Circles: experimental data; lines: theoretical predictions using the Kelvin-Voigt model with a 

coefficient of (a) 𝜂𝑑 = 2.10 × 10−4 calibrated based on the experimental results for 𝑉AC = 0.4 V and (b) 𝜂𝑑 =
5.80 × 10−4 calibrated based on the experimental results for 𝑉AC = 5.5 V. 



4.2 Kelvin-Voigt model 

In this section, a comparison similar to the one in Section 4.1 is conducted, while replacing the linear 

damping model with a Kelvin-Voigt model; hence, 𝑐𝑑
(1)

, 𝑐𝑑
(2)

 and 𝑐𝑑
(3)

, are set to zero, and the value of 

𝜂𝑑 is obtained using the experimental frequency response at 𝑉AC = 0.4 V for the first case and using 

the one at 𝑉AC = 5.5 V for the second case. It should be noted that the Kelvin-Voigt model has both 

linear and nonlinear components; however, the coefficient of damping for both components is the same 

and equal to 𝜂𝑑, hence it does not allow for separate calibration of the linear and the nonlinear damping 

coefficients. 

First, the Kelvin-Voigt model is calibrated based on the low-amplitude frequency-response at 0.4 AC 

voltage, resulting in 𝜂𝑑 = 2.10 × 10−4. Then, 𝜂𝑑 is kept fixed and the AC voltage is increased to 5.5 

V. The result of the comparison is shown in Fig. 3(a). As seen, while the Kelvin-Voigt model works 

better than the linear damping (i.e., as seen from comparison of Fig. 3(a) to Fig. 2(a)), it still 

overestimates the peak amplitude by a large margin. To investigate whether this is due to calibration 

with a very small oscillation amplitude, for the next case, the Kelvin-Voigt damping coefficient is 

calibrated using the experimental frequency response for 𝑉AC = 5.5 V, resulting in 𝜂𝑑 = 5.80 × 10−4. 

Obtaining the frequency response for 𝑉AC = 10 using the new value of 𝜂𝑑 and plotting against the 

experimental one in Fig. 3(b) shows that the Kelvin-Voigt model again overestimates the peak 

amplitudes at higher AC excitation levels. Hence, although the Kelvin-Voigt model works better than 

the linear damping model owing to its nonlinear parts, it still cannot reliably predict the peak amplitude 

at excitation levels higher than the one it is calibrated for. 

 

4.3 Modified Kelvin-Voigt model with two damping coefficients 

In the previous section, it was shown that the Kelvin-Voigt model cannot be used to predict peak 

amplitudes at different excitation levels reliably with a fixed damping coefficient for both linear and 

nonlinear terms. More specifically, even though the Kelvin-Voigt model used in this study is a nonlinear 

damping model, it still underestimates the energy dissipation at higher oscillation amplitudes, which 

indicates the presence of a strong nonlinear damping in the MEMS resonator. Hence, to have more 

flexibility in adjusting the nonlinear damping in the Kelvin-Voigt model, a modified version is 

examined in this section with two damping coefficients. More specifically, the coefficient of the linear 

damping term in the Kelvin-Voigt model is replaced by 𝜂𝑑
(𝑙)

 and that of the nonlinear damping term is 

replaced by 𝜂𝑑
(𝑛)

. This allows for adjusting each coefficient separately and provides more flexibility in 

modelling the damping for both small- and large-amplitude oscillations as explained in the following. 



 
Fig. 4. Frequency responses of the MEMS resonator at 𝑉DC = 5 V, and various AC voltages (denoted on the 

curves). Circles: experimental data; lines: theoretical predictions using the modified Kelvin-Voigt model with the 

two damping coefficients calibrated based on the experimental data for 𝑉AC = 0.4 and 5.5 V. 

 

For such a damping model, two experimental frequency responses are needed to calibrate the 

coefficients, one at very low excitation level where the response is mostly linear, and one at larger 

excitation level where the system clearly shows a nonlinear behaviour. To this end, the frequency 

responses at 𝑉AC = 0.4 and 5.5 V (for the case with 𝑉DC = 5 V) are used to calibrate the two coefficients 

of the modified Kelvin-Voigt model. The calibration procedure is as follows: first, an initial estimate 

of the value of linear damping coefficient, i.e. 𝜂𝑑
(𝑙)

, is obtained by setting 𝜂𝑑
(𝑛)

 to zero and calibrating 

𝜂𝑑
(𝑙)

 using the resonance response at 𝑉AC = 0.4 V. This provides a relatively accurate initial estimate 

for 𝜂𝑑
(𝑙)

 as the response of the system is mostly linear at this low excitation level. Then, while keeping 

𝜂𝑑
(𝑙)

 fixed, the value of 𝜂𝑑
(𝑛)

 is chosen such that a match is obtained between the theoretical and 

experimental frequency responses at 5.5 V AC excitation level. Since the addition of 𝜂𝑑
(𝑛)

 will slightly 

affect the oscillation amplitude for the case 𝑉AC = 0.4 V, both 𝜂𝑑
(𝑙)

 and 𝜂𝑑
(𝑛)

 coefficients are slightly 

modified until good matches are obtained at both 0.4 V and 5.5 V AC excitation levels.  

This calibration procedure results in 𝜂𝑑
(𝑙)

= 2.0 × 10−4  and 𝜂𝑑
(𝑛)

= 8.5 × 10−3. The values of 𝜂𝑑
(𝑙)

 and 

𝜂𝑑
(𝑛)

 are then kept fixed while the AC voltage is increased to 10, and then 20 V. The result of the 

comparison between experimental and theoretical frequency responses at various AC voltage levels is 

shown in Fig. 4. The good fit between the results at 𝑉AC = 0.4 V and 5.5 V is expected, as the 

experimental results at these excitation levels were used to calibrate the damping model. However, as 

seen in the figure, the new modified Kelvin-Voigt model does an excellent job at predicting correct 



peak oscillation amplitudes at larger AC voltage excitations, even though both damping coefficients 

were kept fixed. Hence, Fig. 4 shows that the procedure used for calibrating the damping coefficients 

is robust, as it uses a very small-amplitude frequency response to almost eliminates the nonlinear effects 

and calibrates the linear part; the nonlinear part can then be calibrated using any relatively large-

amplitude experimental frequency response. 

To further examine the reliability of the proposed modified Kelvin-Voigt model, another set of 

experimental data is considered, which was conducted at 𝑉DC = 30 V and several AC voltages, namely 

𝑉AC = 0.5, 1.0, 2.0, and 7.0 V. The material damping coefficients, i.e. 𝜂𝑑
(𝑙)

  and 𝜂𝑑
(𝑛)

, are kept fixed and 

the frequency responses of the MEMS resonator at these AC voltage levels are constructed numerically. 

A comparison between the numerical and experimental results is shown in Fig. 5. As seen, even though 

the modified Kelvin-Voigt model was calibrated using a completely different set of experimental 

results, it still works very well in capturing the primary resonance response and peak amplitudes at these 

new DC-AC excitation levels. It is noticed that the modified Kelvin-Voigt model predicts generally 

smaller peak amplitudes compared to the experimental results; the maximum error in estimating the 

peak amplitude is less than 9% and the average percentage error in estimating the peak amplitude for 

all AC voltage levels is 6.5%. 

 
Fig. 5. Frequency responses of the MEMS resonator at 𝑉DC = 30 V, and for various AC voltages (denoted on the 

curves). Circles: experimental data; lines: theoretical predictions using the modified Kelvin-Voigt model with the 

same damping coefficients as the ones used in Fig. 4. 

 

4.4 Cubic nonlinear damping model 

In this section, the performance of the cubic nonlinear damping model is examined in detail. To this 



end, the Kelvin-Voigt damping is removed from the MEMS model so as to examine only the cubic 

damping model. Two formulations of the cubic damping model are investigated: one with the linear 

and cubic terms (i.e., neglecting the quadratic term) and one with all linear, quadratic, and cubic terms 

being considered. The former is referred to as the cubic model and the latter as the general quadratic-

cubic model. 

 

(a) 

 

(b) 

 

Fig. 6. Frequency responses of the MEMS resonator at (a) 𝑉DC = 5 V and (b) 𝑉DC = 30 V, and various AC 

voltages (denoted on the curves). Circles: experimental data; lines: theoretical predictions using the cubic damping 

model with the two damping coefficients calibrated based on the experimental data for 𝑉AC = 0.4 and 5.5 V (sub-

figure (a)). 



Starting with the cubic model, a procedure similar to the one used in Section 4.3 is followed here to 

calibrate the two damping coefficients, i.e. 𝑐𝑑
(1)

 and 𝑐𝑑
(3)

. More specifically, the model is calibrated 

using the experimental results conducted at 𝑉DC = 5 V, making use of the two lower-amplitude 

frequency responses. The damping coefficients are then kept fixed and the frequency responses at other 

AC and DC voltages are obtained and compared to the experimental results.  

Similar to the previous section, the cubic damping model has a linear and a nonlinear term; hence, the 

damping coefficients can be calibrated using two frequency responses, i.e. the ones conducted at 𝑉AC =

0.4 and 5.5 V. Following a calibration procedure similar to the one in Section 4.3 results in 𝑐𝑑
(1)

=

0.100 and 𝑐𝑑
(3)

= 0.038. These damping coefficients are then kept fixed and two sets of numerical 

simulations are conducted; one set at 5 V DC voltage and 𝑉AC = 10 and 20 V, and another set at 30 V 

DC voltage and 𝑉AC = 0.5, 1.0, 2.0, and 7.0 V. The comparisons between numerical and experimental 

results are shown in Fig. 6. More specifically, Fig. 6(a) shows the comparison for the set of results at 

𝑉DC = 5 V and while Fig. 6(b) shows that at 𝑉DC = 30 V. As seen in Fig. 6(a), the cubic damping model 

works well in capturing the peak amplitudes at 𝑉AC = 10 and 20 V once calibrated using the results at 

𝑉AC = 0.4 and 5.5 V. However, it is seen that the cubic damping model slightly underestimates the peak 

amplitude, and this becomes more visible at higher AC voltage levels. Nevertheless, it still does a very 

good job in capturing the nonlinear damping in the system. 

Looking at the set of results conducted at a higher level of DC voltage, Fig. 6(b), a similar behaviour is 

observed, i.e. the cubic model captures the peak amplitude correctly at relatively lower AC voltages, 

however as the AC voltage is increased, it tends to underestimate the peak amplitude. Similar to the 

modified Kelvin-Voigt model, for the case of Fig. 6(b) the maximum error is less than 9% but the 

average error is slightly lower at 5%. The underestimation of the peak amplitude at higher AC voltages 

can be attributed to the fact that the only nonlinear term in the damping model is of cubic order which 

increases very rapidly as the oscillation amplitude (and hence velocity) increases. To further study this, 

the general quadratic-cubic model will be examined next to investigate whether the addition of a 

quadratic term can improve the overall performance of the damping model. 

The general quadratic-cubic model consists of three damping coefficients, i.e., 𝑐𝑑
(1)

, 𝑐𝑑
(2)

, and 𝑐𝑑
(3)

, 

which need to be determined using the experimental data. Since there are three unknown coefficients, 

three experimental frequency responses are required to calibrate the model. It should be noted that the 

three coefficients might also be determined using, for instance, two frequency responses, but in that 

case optimum values cannot be found and hence the model might not work as intended. Hence, the 

experimental frequency responses at 𝑉AC = 0.4, 5.5, and 10 V (at 5 V DC voltage) are selected for the 

calibration process. It should be noted that the calibration procedure for this case is not as 

straightforward as the previous case and is more iterative. The goal is to achieve an optimised mix of 



quadratic and cubic terms that can lead to larger peak amplitudes at higher AC voltages, while 

maintaining accurate predictions at smaller oscillation amplitudes. To this end, first a procedure similar 

to the previous case is followed by only considering 𝑐𝑑
(1)

 and 𝑐𝑑
(2)

 (i.e. a quadratic model), using the 

curves for 𝑉AC = 0.4 and 5.5, which leads to optimum values of 0.074 and 0.100 for 𝑐𝑑
(1)

 and 𝑐𝑑
(2)

, 

respectively. We also know from the previous case that the optimum values for a cubic model are 0.100 

and 0.038 for 𝑐𝑑
(1)

 and 𝑐𝑑
(3)

, respectively. Hence, it is assumed that the optimised case for the general 

quadratic-cubic model is a linear combination of these two cases. Therefore, a weight factor 𝜇 in the 

range [0 1] is considered and the damping coefficients are defined as: 𝑐𝑑
(1)

= 𝜇 × 0.100 + (1 −

𝜇) × 0.074, 𝑐𝑑
(2)

= (1 − 𝜇) × 0.100, and 𝑐𝑑
(3)

= 𝜇 × 0.038. Knowing that the cubic model already 

provided good results, it is expected that a 𝜇 closer to 1 (than 0) would be ideal as it slightly reduces 

the effect of the cubic term and introduces a quadratic term which has less damping effect at larger 

amplitudes (since it grows at a quadratic rate rather a cubic one). Hence, different values of 𝜇 are tested 

to see which value gives best fit for all three frequency responses. Following this procedure leads to 

𝜇 = 0.765 as the optimum value, which results in the following damping coefficient values for the 

general quadratic-cubic damping model: 𝑐𝑑
(1)

= 0.094, 𝑐𝑑
(2)

= 0.024, and 𝑐𝑑
(3)

= 0.029. Similar to the 

previous case, the damping coefficients are kept fixed and the frequency responses at other AC/DC 

voltage levels are constructed and compared to the experimental results, as illustrated in Fig. 7 through 

(a) for the set of results at 𝑉DC = 5 V and (b) that at 𝑉DC = 30 V.  

Starting with Fig. 7(a), it is seen that the general quadratic-cubic damping model does an excellent job 

at predicting correct peak amplitudes at various AC voltage levels. Furthermore, the model also works 

well for the set of results at an increased DC voltage level, as seen in Fig. 7(b). In fact, for the case of 

Fig. 7(b), the maximum error in estimating the peak amplitude is less than 6% and the average error is 

3.3%, both of which are less than those of the other nonlinear damping models examined in this study. 

Hence, it is shown that once calibrated, the general quadratic-cubic damping model works best in 

predicting the primary resonance response amplitudes at various AC and DC voltages. However, 

compared to the cubic model and the modified Kelvin-Voigt model, it requires more experimental 

frequency responses for optimal calibration.  

 



(a) 

 

(b) 

 

Fig. 7. Frequency responses of the MEMS resonator at (a) 𝑉DC = 5 V and (b) 𝑉DC = 30 V, and various AC 

voltages (denoted on the curves). Circles: experimental data; lines: theoretical predictions using the general 

quadratic-cubic damping model with the three damping coefficients calibrated based on the experimental data for 

𝑉AC = 0.4, 5.5, and 10 V (sub-figure (a)). 

 

 

 

 



5. Conclusions 

This study conducted a thorough theoretical-experimental investigation on the nonlinear damping in in-

plane MEMS resonators. Precise experimental measurements were conducted to examine the primary 

resonance response of an in-plane electrically actuated clamped-clamped microbeam for various AC 

and DC voltages. More specifically, the frequency responses of the system were constructed at various 

AC voltage levels for two different statically deflected configurations (i.e., DC voltage levels). For the 

theoretical part, a nonlinear model was developed for the microbeam taking into account nonlinearities 

associated with midplane stretching, electrostatic load, and damping. In particular, two different 

damping mechanisms were considered: the general quadratic-cubic nonlinear damping model and the 

Kelvin-Voigt model. The nonlinear continuous model of the MEMS resonator was discretised utilising 

the Galerkin method while retaining 10 modes and while ensuring that the electrostatic load term with 

nonlinearities in the denominator and the damping term in the absolute function are kept intact in the 

discretisation procedure.  

Various damping models were examined and compared to experimental data including the linear 

damping model, the Kelvin-Voigt model, the modified Kelvin-Voigt model with two damping 

coefficients, the cubic model (including linear and cubic terms), and the general quadratic-cubic 

damping model. It should be highlighted that the goal was to investigate whether a damping model is 

capable of capturing correct resonance amplitudes at various excitation levels with fixed damping 

coefficients without focusing on the nonlinear damping sources. Thorough investigations were 

conducted and it was found that: 

• The linear damping model significantly overestimates the peak amplitude at higher excitation 

levels when it is calibrated using the experimental data at a lower excitation level. 

• The Kelvin-Voigt model works better than the linear damping model, but still overestimates 

the response at higher excitation levels. 

• The modified Kelvin-Voigt model with two damping coefficients (one for linear and one for 

nonlinear terms) does an excellent job at capturing the correct peak resonance amplitudes at 

various AC voltages when calibrated using the two lowest amplitude experimental data. When 

the DC voltage is increased, this model tends to slightly underestimate the peak amplitude. 

• The cubic model works well, but it slightly underestimates the peak amplitude as the AC 

voltage level is increased (at different DC voltage levels) 

• The general quadratic-cubic model works better than the other nonlinear models and captures 

the peak amplitude at various AC and DC voltage levels with minimum error. 

Hence, this study clearly shows the presence of a strong nonlinear damping in in-plane clamped-

clamped silicon MEMS resonators and proposes suitable nonlinear damping models (along with robust 

calibration procedures) to capture such a nonlinear behaviour. In summary, both quadratic-cubic and 



modified Kelvin-Voigt models work really well, noting that the former is more complicated to calibrate 

as it requires three experimental frequency responses for optimal calibration, while the modified Kelvin-

Voigt model has two coefficients and can be calibrated using only two experimental frequency 

responses.  
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