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Abstract: This paper develops an intelligent real-time learning framework for the last-mile delivery of
mobility as a service in city planning, based upon safe infrastructure use. Through a hybrid approach
integrating statistics and supervised machine learning techniques, knowledge-driven solutions based
on the specific user rather than generalized safe mobility practices are suggested. One of the most
important aspects influencing transport mode and route selection, and safe infrastructure usage, i.e.,
the age of the user, is simulated. This is because this variable has been described in the literature as a
significant variable. Nonetheless, few works deal with such modelling or the learning system. The
learning system was applied in the Northumbria region of England’s northeast as a case study. It
comprised four building toolkits: (a) Input toolkit, (b) Safety Predictive toolkit, (c) Variable causation
toolkit, and (d) Route choice toolkit. An accurate dynamic road safety model and understanding
of the critical parameters influencing bicycle rider safety is created. The developed deep learning
model’s average distinguishing power to reliably predict the riskiest age group was 95%, with a
standard deviation of 0.02, suggesting a good prediction accuracy across all age groups. According
to the study’s findings, different infrastructural networks represent varying risks to bicycle riders
of different ages. The rider’s age impacts how other road users engage with them. The regional
diversity in trip intent and traffic flow conditions were significant elements influencing the safe use
of infrastructure for a specific age group. The study’s findings have the potential to considerably
influence infrastructure route selection, modelling, and planning. The constructed model, which
integrates the rider’s fragility, sensitivity to externalities, and the varied safety impact dependent on
its features, may even be used for the infrastructure still in the planning/design phase. It is envisaged
that this research would aid in adopting sustainable (green) transportation options and the last-mile
delivery of mobility as a service. Future work should aim to uncover the sensitivities of a rider from
different countries and make a baseline comparison scenario.

Keywords: mobility as a service; safe mobility; sustainable mobility; green and intelligent mobility;
machine learning; rider safety

1. Introduction

The current transportation system has many shortcomings. These include a higher
carbon footprint, socioeconomic inequity, longer travel times, and a detrimental impact
on air quality. Transportation is critical for a civilization to thrive and prosper. It offers
access to healthcare, education, jobs, and other services critical to human well-being and
consumption. As a result, many approaches are being investigated to make transportation
more sustainable, greener, and future-ready. This has led to exploring various mobility
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concepts, such as mega urban micro-transit and mobility as a service (MaaS), to reduce the
harmful elements associated with transportation [1].

Integrating many modes of transportation into a single mobility service that is available
on-demand from origin to destination is known as Mobility as a Service (MaaS). The
many modalities of transportation can be combined while concentrating on the needs
of an individual. Such a system can result in many complications for users and greater
impedances for the mode interchanges in the mode and route choice modelling. This new
mobility form was initially proposed based on the findings of the Swedish GO:SMART
project and research at Alto University [2], and UbiGo. This is an alternative to typical user
mobility based on automobile ownership. Mobility is just a commodity the user purchases
to complete his intended travel and accomplish the planned activity. It is effectively a chain
of steps. Each chain starts at the trip origin, with handover occurring between different
modes at each stage [3].

The last handover occurs for the last travel section leading users directly to their
destination. This last handover is called the Last Mile delivery Service (LMS). It is the most
critical part of the mobility-as-a-service concept and is one of the critical touchpoints of
this futurist mobility concept. To date, it is proving to be a significant challenge to design
and model MaaS for the present and future urban living spaces, especially at the end of
the journey. Global urbanization is the driving force behind the LMS. Urbanization is the
tendency of more people to move towards urban regions and megacities. By 2050, big cities
will house 70% of the world’s population, or nearly 6.3 billion people [4]. This is expected
to change the landscape of the cities. The way people live and move around is expected to
change drastically. Hence, it is essential to embark on a pathway of taking better ownership
of the roadways for all stakeholders, including vulnerable road users.

A better understanding, modelling, and design of the LMS can significantly help
decongest urban areas, as more expansive areas will be accessible for residents and shoppers.
New shopping districts/centres have sprung up in the past decade, which has led to a
change in shopping habits from the traditional high street to more systemized globalized
shopping patterns in the form of mega shopping centres. Some of these entities have
excellent transportation connectivity, which is critical for successful business development.
These may have their own bus station, parking or even a train station. Such a centre
can be spread over miles, with multiple car parks. The proximity to the transportation
system drives the market potential of a particular commercial space. The same can be valid
for a residential area. This has sometimes resulted in social inequity within the general
population, as areas with better connectivity can access the services better while paying the
price equally for the bad air quality and traffic congestion. Therefore, a proper last-mile
delivery system must be explored. As the present problems cannot be solved through the
thinking that created them, an out-of-the-box solution must be explored. Such a system
should not pollute the environment, provide accessibility, and be based on technological
advancements. This system can be a critical steppingstone for a smart, sustainable, and
green transportation system.

In smart cities, the shared economy is expected to emerge as a sustainable consump-
tion model, promoting servicing rather than traditional car ownership [5]. Modelling for
future-ready smart cities is further complicated by the concepts of shared living/living
streets, which are being promulgated to improve urban living and social interactions, both
with the built environment and the associated geographies. Bicycles are being explored in
the LMS literature with the broader MaaS. These include studies on bicycles in Belgium
(Antwerp) [6], Austria (Vienna) [7], and the UK (Cambridge) [8]. The fundamental ad-
vantage of such bike networks is that they may reach users even in places with restricted
access, such as pedestrian zones and regions with limited parking [7]. Another advantage
is that, compared to other modes, these tend to improve the required degree of physical
fitness. Therefore, such a system can lead to a sustainable transportation system, and an
improved healthy lifestyle for the user.
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In the current literature, the last mile delivery is primarily focused on providing e-
commerce logistic support. The COVID-19 pandemic has enhanced this need. However,
this should not let us lose sight of the potential benefits of the LMS in providing intelligent,
sustainable, and greener mobility. Such mobility form can ensure that our cities are future-
ready, and those future generations can continue to reap the benefits of globalization
while minimizing its associated harmful impact. Consequently, given how swiftly and
unpredictably last-mile logistics are evolving to meet customer demand for on-demand
logistic systems, transportation planners must develop quantifiable network indicators.
The age of the bicycle rider is a crucial criterion influencing a rider’s safe infrastructure use.
A trip maker’s route selection is influenced by both personal attributes and the behaviour
of other road users [9]. Personal characteristics include age, gender, and experience [10].
Pucher and Buehler (2008) promoted cycling for the future by urging that cycling be made
safe, convenient, and feasible for people of all ages and genders, while building a case for
American municipalities to learn from European countries and embrace cycling [11]. The
naturalistic investigation of cyclists discovered that the rider’s age group directly impacts
the safe use of the infrastructure. The naturalistic investigation conducted on British
roadways [12] revealed that motorists exhibit behavioural sensitivity to the appearance of
bicyclists. As a result, age is commonly documented in the literature as a crucial road safety
variable for cyclists, which functions in conjunction with cyclist flow and other road users’
behavioural sensitivity to affect safety in terms of crash frequency and perceived safety.
Therefore, the research aims to develop a green intelligent real-time learning framework for
the last-mile delivery of mobility as a service, based on a user’s safe infrastructure usage.
This aim will be achieved through the following set of objectives:

(a) Develop an intelligent real-time learning system for the delivery of the last-mile delivery
(b) Develop a hybrid methodology that can model the safety of a particular bicyclist.
(c) Create a predictive dynamic safety model that includes age as an output variable.
(d) Develop a statistical variable interaction model for a rider’s age and safety.

Through a hybrid approach integrating statistics and supervised machine learning
techniques, a knowledge-driven solution based on the specific user rather than generalized
safe mobility practices is suggested. One of the most important aspects influencing travel
mode and route selection, and safe infrastructure use, is the age of the user (see [13–15]).
Still, relatively few studies deal with such modelling or the learning system.

The envisioned learning system will include both hardware and software components.
Consequently, a hybrid system will be developed that can continually gather data and
model it to provide policymakers/city planners with the final needed output that is ready
to use. A proactive strategy like this is necessary to achieve the 2030 goal of zero road traffic
deaths and to chart a route toward a future-ready, sustainable, integrated transportation
system. Intelligent embedded systems must be integrated into transportation research and
practice. The suggested intelligent real-time modelling system is explained in the following
section, followed by findings and discussion in Section 3, and conclusions in Section 4.

2. Proposed Intelligent Real-Time Modelling System

This section details in great depth the proposed real-time intelligent learning system.
It primarily consists of four units: (a) Input Learning Unit (ILU): which continuously
collects data in real-time from a variety of sources; (b) Safety Predictive Toolkit (SPT):
which develops predictive models that can predict safety in real time; (c) Variable causation
Processing Unit (VPU); and (d) Last-Mile service Delivery Unit (LMDU): consists of a Route
Choice Unit (RCU), and a Mode Choice Unit (MCU).

2.1. Input Learning Unit

The input learning units consist of automatic data collection units that continuously
take data from a series of platforms: (a) Police database to access the crash database,
(b) TRAffic flow Database System (TRADS) to access the data from traffic cameras and
counters, (c) UK Department for Environment, Food and Rural Affairs (DEFRA), for
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lighting data, and (d) Urban observatory Newcastle for meteorological data. All the data
are combined in a single base file used as input by the further consecutive units.

2.2. Safety Predictive Toolkit (SPT)

After a base input file was constructed, the associated dataset noise was first removed
before proceeding toward data analysis. Safety Predictive models were constructed in
this toolkit by modelling the selected input variables from the literature and mapping
them with the desired output variables (Table 1). Such grouping of the output variables
is the recommended division by the Department for Transport (DfT). The modelling was
performed through the neural network classifier and deep learning. The input base file
was randomly divided in the ratio of 6.5:3.0:0.5 for Training: Validation: and Testing. This
division is advised for the network to develop accurate prediction characteristics. This
division guarantees that the network has enough data to learn correctly, evaluate the trained
model, and apply the models developed to untrained scenarios. The Bernoulli distribution
assures that the data are randomly distributed. Four types of input variables were used
for constructing the predictive model: (a) Infrastructure, (b) Spatial, (c) Personal attributes,
and (d) Environmental variables.

Table 1. Output variable for constructing the predictive model.

No. Output Variable No. Output Variable

1. 0–16 5. 45–54

2. 17–24 6. 55–64

3. 25–34 7. Over 65

4. 35–44

Twelve infrastructure variables were used for modelling: (a) road type, (b) type of
intersection, (c) type of junction control, (d) vehicle manoeuvre—the manoeuvre that the
rider was executing or purposefully conducting at the moment of the crash, (e) speed limit,
(f) carriageway hazard, (g) vehicle junction location, (h) road location of the vehicle, (i) skid-
ding and overturning, and (j) special site conditions (any infrastructure defects at crash
location). At junctions, the rider may be compelled to transfer from one hierarchical level of
road classification to another. Hence, two further variables were used for modelling: (k) first
road class, and (l) second road class. There were four spatial variables used as input variables.
These were (a) hour of the crash, (b) day of the crash, (c) month of the crash, and (d) total
number of vehicles involved in the crash. The hour, day, and month of the crash were used
as lurking variables to represent the traffic flow conditions. Three personal attributes were
used: (a) rider gender, (b) breath test, to check whether the rider was intoxicated during the
crash, and (c) purpose of the journey undertaken when the crash occurred. Three environ-
mental variables were used for modelling: (a) prevalent lighting conditions, (b) prevalent
meteorological conditions, and (c) meteorological road surface conditions.

The proposed learning system tried to mimic the working of the human brain. A
multilayer learning system was developed, with two hidden layers between the input and
output layers. The backpropagation algorithm-based four-step iterative learning process
was used to map the selected input with the output variables.

Step 1: To begin, random weights were assigned to each layer neuron, and activation
functions were employed to transmit signals between different layers.

Step 2: The second phase was error modelling. The cross-entropy error function
simulated the difference between the output of random weights and the desired output.

Step 3: The first randomly modified synaptic weights were adjusted in the third step:
Based on the error computed in step 2, the initially randomly assigned synaptic weights
were adjusted. The backpropagation algorithm was used to achieve this modification.

Step 4: The preceding stages were iterated indefinitely until the maximum number of
iterations (epochs), or minimal training error change was reached.
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The network structure is explicitly described in Table 2, with the set-out parameters
used in the deep learning and neural network classifier. The model was trained by repeat-
edly exposing the model to input and output samples and modifying the weights to reduce
the model’s output error compared to the predicted output. The stochastic gradient descent
optimization algorithm was used for this.

Table 2. Deep learning network topography.

Topology of the Network

Hidden layers 2

Number of neurons in a hidden layer 350

First two layers’ activation function Hyperbolic Tangent

Last layer activation function Softmax

Type of error function Cross-entropy

Stopping and Memory
Criterion

Maximum steps without error change 9.9 × 105

Maximum permitted training time 9.9 × 105

Maximum number of epochs in training 9.9 × 105

Minimum relative training error change 0.000001

Minimum training error ratio change 0.000001

Maximum memory storage capacity
cases 999,999

Training

Training type Batch

Training optimisation Scaled conjugate
gradient

Training Centre 0

Training Offset ±1 × 10−9

Training Sigma 1 × 10−9

Training Lambda 1 × 10−9

Quantity of output nodes 7

2.3. Variable Causation Processing Unit (VPU)

The critical variables in the data learning model were determined through variable
importance and normalized importance of each variable concerning the most crucial
variable. This was achieved through sensitivity analysis and deep learning. The Boolean
logic then followed, presenting the outcome in the form of the single most critical variable
impacting the safety of a specific group.

2.4. Last-Mile Delivery Unit (LMDU)

For the last-mile delivery, the results were inputted into diggimap software to select
the safest infrastructure and google maps (developed API) for the final correlation. Then,
the final route for the last-mile delivery was selected. This was based on the safest route
determined by a combination of input variables of variable environmental conditions,
infrastructure variables, traffic flow conditions, and rider personal attributes.

A unique hardware system was used for modelling. The hardware included a wireless
connection and 128 gigabytes of internal memory. Future studies should look at using the
specific processor for the learning system.

2.5. Applied Area

The learning system must be applied in a real-life scenario, as the aim was to develop
a system that was applicable and can be used simultaneously by both practitioners and
theorists. Hence, the system was applied to the Northeast of England after the theoretical
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development and evaluation were performed. In the first step, partnerships were formed
with the city council, the Department for Transport (DfT), the Department for Environment,
Food, and Rural Affairs (DEFRA), and the local observatory. Lighting, collision information,
traffic cameras, and counters were accessible and modelled due to such collaborations. The
research area’s flow characteristics were gathered via the TRAffic flow Database System
(TRADS) by accessing traffic cameras and counters (Figure 1). For each crash, the precise
coordinates were collected and used as input to acquire the relevant infrastructure charac-
teristics. Digimaps is a research group-accessible online map and data delivery service run
by EDINA at the University of Edinburgh. This platform was used to collect information on
infrastructure based on specified coordinates. It provides realistic infrastructure maps that
show current and historical situations. This approach assured that correct infrastructure
characteristic were used for modelling based on the temporal conditions of the accident
rather than the current conditions. The DEFRA data were utilized to input precise meteoro-
logical and illumination conditions. These sensors continuously send data into the learning
system, transmitting it as a consolidated base input file.
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3. Results and Discussion

The following results are obtained from the application of the learning system on the
Northumbria region:

3.1. Safety Predictive Toolkit Model

The toolkit constructs a predictive model to predict the safety of each identified age
group. The features are detailed in Table 3. Model characteristics (Figure 2) depict the
ROC curve, Gain and Lift Charts as output. The obtained lift and gain values are explicitly
defined in Table 4. Table 5 displays the AUROC scores to verify the model’s believability by
measuring its distinguishable capability to forecast safety correctly. There were 3225 crashes
reported in the study area, divided into 1420, 312, 481, 422, 307, 167, 76, and 40 for the 0–16,
17–20, 21–29, 30–39, 40–49, 50–59, 60–69, and >70 age groups, respectively.
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Table 3. The model features of the predictive model.

Input Layer Units 172

Hidden Layer(s)

Number 2

Layer units 350

Af Hyperbolic tangent

Ef Cross-entropy

Cee 252.7

Output Layer

Layer units 7

Af SoftMax

Er Cross-entropy

Cee 1392.2
Where Af = Activation function, Er = Error function, Cee = Cross entropy error.
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Table 4. The gain and lift values for output variables.

Variable Gain (Percentage) Lift

Data Point in percentage 10 30 50 70 100 10 30 50 70 100

Under 17 22 67 96 98 100 2.2 2.2 1.9 1.4 1

17–24 58 92 95 98 100 5.8 3 1.9 1.4 1

25–34 63 91 95 98 100 6.3 3 1.9 1.4 1

35–44 82 93 96 99 100 8.2 3.1 1.9 1.4 1

55–64 88 92 95 98 100 8.8 3 1.9 1.4 1

Over 65 80 82 92 100 100 8 2.7 1.8 1.4 1

Table 5. The output variables’ area under the receiver operating curve (AUROC).

Variable AUROC Variable AUROC

<17 0.97 17–24 0.95

25–34 0.95 35–44 0.95

45–54 0.95 55–64 0.95

>65 0.91 Average 0.95

St. Dev 0.02 Median 0.95

The AUROCC values obtained for the over 65 (91 per cent), 55–64 (95 per cent), 45–54
(95 per cent), 35–44 (95 per cent), 25–34 (95 per cent), 17–24 (95 per cent), and under 17
(97 per cent) age groups indicate a high distinguishable capability between the safest and
non-safe scenarios, for each of the output variables. The overall model accuracy was 95%,
with the same median accuracy and standard deviation of 2%. The results show that the
predictive safety toolkit can be used to forecast and model safety in real time with high
accuracy. Only a few models in the current literature can distinguish between safe and
unsafe scenarios with such reasonable accuracy and efficiency. Most collision prediction
models have a forecast success rate of less than 50%, which is well documented in the
literature [16]. The model comparison with the accuracy available in the literature is shown
in Figure 3. According to Lawson et al. (2013), traditional models are designed for the
assignment of motorized modes of transportation and are insufficient for the needs of
cyclists because they are unable to quantify the influence of the bicycle safety performance
function [17]. According to a survey on safety models [15], for these reasons, more than
70% of European road authorities seldom or never use the collision prediction model in
their decision making. The developed model outperforms the current standard road safety
models in the literature. This is due to two primary elements: (a) the deep learning neural
network’s capacity to simulate the non-linear and complicated interaction between input
and output variables, and (b) the selection of suitable compounding components that
represent an actual danger to the cyclist rather than perceived or motorist bias variables.
Hence, the model created by the safety toolkit is a significant contribution to the literature.
The results show that it is possible to predict safety in real-time, contrary to the established
convention. Therefore, based on the results, it is recommended that such models are used to
model safety for the effective and efficient design of transportation networks and bespoke
infrastructure. It has an extra impetus for a vulnerable road user that is subjected to a
many-fold higher risk than a motorist (see [18–20]).
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Figure 3. Comparison of the created model to currently accessible models in the literature.

In the current literature, models are primarily probability-based, with very few works
exploring the scope outside the traditional statistical framework (see [21]). The gain and
lift charts evaluate the created model’s ability to distinguish itself from a non-model, i.e., a
probabilistic approach (baseline scenario). Such analysis helps promote and justify using
a complex modelling framework, as proposed in this work. Through the gain, lift charts
(Figure 2), and the corresponding values (Table 5), it can be concluded that the field of safety
modelling can be improved significantly by shifting to the proposed hybrid methodology.
This can result in toolkits promoting cycling as a means of transportation. All the expected
outcomes in the gain table are greater than the baseline scenario of 45 degrees, showing
the adequacy of the proposed model. The lift chart reflects this; for example, at a 10% data
interval, the lift for the <17, 17–24, 25–34, 35–44, 55–64, and over 65 age groups are 2.2, 5.8,
6.3, 8.2, 8.8, and 8, respectively. This leads to the conclusion that the constructed safety
performance functions are tailored to the specific demands of cyclists. For modelling, the
present framework does not require past crash data. Once the model is built, the numerous
input variables of infrastructural, geographical, human, and environmental factors may be
used directly to model safety. It can be used for the infrastructure still in the planning and
design stages.

3.2. Variable Causation Toolkit

The rider’s journey purpose was the Boolean logic result for the most significant
variable determining risk for an age group. Table 6 tabulates the importance of each variable
concerning the most critical variable. The journey’s hour, a spatial variable describing
the traffic flow regime, came next. They were followed by car manoeuvring and cycle
road positioning, which are infrastructure characteristics that define bicycle interaction
with the infrastructure. Depending on the rider’s age, the lighting conditions that cyclists
face have an impact on their safety. This is a foregone conclusion because how different
age groups react to different lighting settings is determined by their experience, physical
and cognitive capabilities. The month of the journey (a spatial variable representing a
combination of traffic flow regime and journey purpose), meteorological conditions, vehicle
junction location, junction details, breath test (intoxication), speed limit, number of vehicles,
special conditions at the site, carriageway hazard, day of the journey, road type, and first
road class were then displayed. These are primarily infrastructure-related vulnerabilities.
As a result, different age groups of cyclists interact differently with different types of road
infrastructure. The constructed deep learning model’s variable significance, risk rates, and
hotspot heat maps suggest that infrastructure, depending on its age, provides a specific
threat to the rider. The findings might substantially impact road legislation, design, and
planning. The current models do not consider the variable age; they are predicated on
the premise that road safety is age independent. The rider’s age and interaction with
the infrastructure under varied traffic flow, environmental, lighting, and meteorological
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circumstances are crucial variables that impact a cyclist’s safety. These findings provide
further encouragement for choosing the last-mile route. As a result of changing the route,
the change in time will be only a few seconds or, at most couple of minutes. However, this
can considerably improve both perceived and actual safety. This can be critical for mode
choice and additionally can be a vital step in establishing confidence in utilizing a bicycle
as a method of transportation.

Table 6. Normalized importance of the input variables.

Variable Importance Normalised Importance

Rider journey purpose 0.058 100.0%

Hour 0.054 92.8%

Vehicle Manoeuvre 0.052 88.3%

Road Location of Vehicle 0.049 83.7%

Light Conditions 0.046 78.9%

Month 0.045 76.9%

Weather 0.045 76.7%

Junction Location of Vehicle 0.045 76.3%

Junction Detail 0.044 75.6%

Breath Test 0.043 74.2%

Speed Limit 0.043 72.9%

Number of Vehicles 0.043 72.8%

Special Conditions at Site 0.042 72.1%

Carriageway Hazards 0.042 71.4%

Day 0.041 70.6%

Road Type 0.040 69.0%

1st Road Class 0.040 68.9%

2nd Road Class 0.039 67.5%

Road Surface Condition 0.037 62.5%

Skidding and Overturning 0.036 61.3%

Junction Control 0.034 58.1%

Driver Gender 0.027 46.3%

Weekday or Weekend 0.027 45.8%

3.3. Route Choice Toolkit

In the route planning toolkit, the minimum travel path algorithm is complemented by
the impendence of vehicular flow, specific junction details, and meteorological conditions.
It was applied to the city centre of Newcastle city, depicted in Figure 4. The city centre
was primarily divided into two zones. The first zone (Z1) housed two major universities
with more than 65,000 students, around 7000 staff, and the Newcastle civic centre. The
Newcastle civic centre houses all the principal government offices and the family court.
The second zone (Z2) houses the major tourist destinations and nightlife venues. Newcastle
is known for its nightlife across Europe, making it one of the most student-friendly cities in
Europe. Two main routes connect the two zones, the first route (R1) and the second route
(R2). Both have distinctive infrastructure features. The safety toolkit developed in the study
was applied to both routes. Application of the study’s findings leads to the conclusion
that the route choice for a cyclist does not only follow the minimum path algorithm; it
depends upon the perceived safety that a route may offer. The two equations were obtained
subsequently (Equations (1) and (2)). The perceived safety depends on the traffic flow, the
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number of conflicts, and infrastructure route parameters. This perceived safety was varied
and changes with changes in lighting and meteorological conditions. These results agree
with the route choice models developed for Dublin city (see [17,22]). This implies that the
regional diversity in route intent and traffic flow conditions are significant variables that
impact the safe use of infrastructure for a particular age group. This is a contribution to the
present knowledge for the delivery of the last-mile mobility service.
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Hence, while designing a last-mile delivery smart mobility system, the route selection
needs to consider such variability and choices. This is critical for promoting sustainable
mobility that can help users make better-informed decisions based on their preferences
rather than designing a system and expecting them to comply. Such a shift in policy and
decision-making is critical for a broader stakeholder engagement for better living city
spaces. The results from this study can be integrated into the new 15-min city concept that
is being explored (see [23]). Presently different electric mobility hubs are being trialled
across western Europe to estimate the benefits of such a scheme (see [24]). The variability of
a cyclist should be modelled in such a scheme and integrated with an intelligent real-time
interactive platform (with a graphical user interface) for both mode and route choices.

Rc ∝ SP (1)

SP ∝ a1Ln1 a2Mn2 a1Dn1 a1Xn1 a1Pn1 a1Cn1 a1Bn1 (2)

where Rc is the route choice, SP is the perceived safety, L is the lighting conditions, M is the
meteorological conditions, D is the degree of separation of the cyclist from the vehicular
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motor flow, X is the traffic flow, P is the pedestrian conflicts, C is the cyclist flow, B is the
bespoke infrastructure parameters.

4. Conclusions

In this paper, an intelligent real-time learning framework for the last mile delivery of
mobility as a service based on safe use of infrastructure by users. A proposed intelligent
real-time modelling system was proposed and applied to the Northumbria region of
England’s northeast. It consists of four units; (a) Input Learning Unit (ILU), (b) Safety
Predictive Toolkit (SPT), (c) Variable causation Processing Unit (VPU), and d) Last-Mile
service Delivery Unit (LMDU). A knowledge-driven solution based on the specific user
rather than generalized safe mobility practices were used for modelling. This was achieved
through a hybrid approach integrating mathematics and supervised machine learning
techniques. A predictive dynamic safety model was developed, and the interaction of
various variables affecting a rider’s safety for the last-mile delivery was modelled. Users’
characteristics of age, which influence mode and route selection, were simulated.

The real-time intelligent learning system was applied as a case study on the northeast
of England. The learning model’s average distinguishing power to reliably predict the
riskiest age group was 95%, with a standard deviation of 0.02, suggesting a strong prediction
accuracy across all age groups. According to the results, different infrastructural networks
represent varying risks to riders of various ages. The rider’s age impacts how other road
users engage with them. The regional diversity in trip intent and traffic flow conditions
were significant elements influencing the safe use of infrastructure for a specific age group.
Through the application of the route choice toolkit, on the Newcastle city centre, it was
found that cyclists do not only consider the minimum path algorithm. The important
elements influencing cycling route choices include perceived safety, lighting circumstances,
meteorological conditions, degree of separation, traffic flow, pedestrian conflicts, cyclist
flow, and unique infrastructure characteristics.

The study’s findings can significantly influence road legislation, design, and planning.
The rider’s age and interaction with the infrastructure under varying traffic flow, envi-
ronmental, lighting, and meteorological conditions were important factors influencing a
cyclist’s safety. These findings provide further encouragement for choosing the last-mile
route. The time difference will be merely a few seconds or at most a couple of minutes
because of altering the route. However, this can significantly increase both perceived and
actual safety. This can be crucial for mode selection and creating confidence in using a
bicycle as a means of transportation. The constructed model, which integrated the rider’s
fragility, sensitivity to externalities, and the varied safety impact dependent on its features,
may even be used for infrastructure that is still in the planning/design phase. This work
provides an in-depth understanding of the last-mile sustainable delivery of MaaS, which
can be integrated into the presently researched concept of smart cities, mobility hubs, and
fifteen-minute cities. It is envisaged that this research would aid in adopting sustainable
(green) transportation options and the last-mile delivery of mobility as a service. Future
work should aim to uncover the sensitivities of a rider from different countries and make a
baseline comparison scenario.
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