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1 Do Weather Conditions Drive China’s Carbon-Coal- 

2 Electricity Markets Systemic Risk? A Muti-Timescale 

3 Analysis 

4 

5 Abstract: This paper uses the wavelet coherency method to reveal the timescale- 

6 varying driving mechanism of 12 different types of weather conditions data on risk 

7 measures of China's Carbon-Coal-Electricity (CCE) system. First, we find that 

8 temperature may be a major factor influencing the co-movement pattern of China's CCE 

9 system on a long-term timescale, but cannot affect information spillover pattern of the 

10 CCE system. Second, snowfall, cloud, and wind levels could influence the long-term 

11 variation of the CCE system's risk measurement. Third, none of the selected weather 

12 condition indicators could influence the short- and medium-run CCE systemic risk. 

13 
 

14 Keywords: Carbon-coal-electricity markets system; Weather conditions; Multi- 

15 timescale analysis; Wavelet coherency; Dynamic equicorrelatioin 
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19 1. Introduction 
 

 

20 Carbon, coal, and electricity markets have complex pairwise interactions (Ahonen 

21 et al., 2022; Dai et al., 2021), and China is a prime example of this phenomenon. 

22 Participants in China's carbon market are primarily from the power generation sector, 

23 which is responsible for over 40% of carbon emissions. In comparison Compared to 

24 that, 68% of China's electricity generation is derived from coal-based thermal power 

25 (China Electricity Council, 2021). As a result of the reform in China's energy and power 

 

26 sector, the government has gradually marketized the electricity and energy1 pricing 
 

27 mechanism. At the critical crossroad in recent China's "dual carbon" target, energy 

28 transition, and electricity price marketization process, these facts increase the urgency 

29 of risk management work on systemic risks of China's carbon-coal-electricity (CCE) 

30 markets system. 

31 The weather, which could affect the operation of the carbon, coal, and electricity 

32 markets simultaneously, is a potential non-negligible contributor to the systemic risk of 

33 China's CCE. Evidence suggests that extreme temperatures can impact CO2 price levels 

34 (Batten et al., 2021), and an unexpected temperature change could have the same effect 

35 (Mansanet-Bataller et al., 2011). Not only does cold weather increase oil and carbon 

36 consumption, but it also increases the price of electricity in the EU (Agnello et al., 2020; 

37 Alberola et al., 2008; Liu and Chen, 2013). In addition to temperature, wind speed 

38 substantially affects electricity prices (Mosquera-López et al., 2017). Since 2019, the 

39 La Nina phenomenon has frequently impacted China's power supply security. The 

40 complexity of the systemic risk of weather conditions in China's CCE market may 

41 exceed current understanding. 

42 The nonlinear pattern of weather conditions' influence on China's CCE markets 

43 system varies across heterogeneous timescales. The dynamic patterns of returns on the 

44 carbon, coal, and electricity markets vary on short-, medium-, and long-run timescales. 
 
 
 

1 The float has been expanded from the current upward float of no more than 10% and downward float of no more 

than 15% to no more than 20% in principle for both upward and downward floats (Sino-German Energy Partnership, 

2021). 
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45 This is because market participants hold varied opinions (Dai et al., 2020; Dai et al., 

46 2021; Dai et al., 2022; Tong et al., 2022). Further, weather conditions also have periods. 

47 In addition to the seasonal-length cycle, wind and tide fluctuations also exhibit the 

48 characteristics of a monthly-length cycle. Several studies have revealed the temporal 

49 differences in the relationship between the carbon, energy, and electricity markets (Dai 

50 et al., 2021). However, there is still a lack of comprehension regarding the multi- 

51 timescale characteristics of CCE markets' systemic risk, as well as the multi-timescale 

52 interaction between CCE market systems and weather conditions. 

53 Based on the preceding discussion, this study addresses two major issues. How 

54 might varying weather conditions impact China's CCE market system under varying 

55 risk measures? What is the impact of a multi-timescale weather pattern on China's CCE 

56 market system? We construct dynamic equicorrelation (DECO) and DY spillover index 

57 as the risk measure of China's CCE markets system. We use wavelet coherency to reveal 

58 the multi-timescale pairwise relationship between 12 types of weather conditions and 

59 CCE's DECO and DY index. 

60 The contribution of this study is two-fold. To the best of our knowledge, this is the 

61 first study to identify the exogenous risk driver of China's CCE markets system, as well 

62 as the first study to investigate the impact of weather conditions on China's CCE 

63 markets. Secondly, our findings reveal the time-varying and timescale-varying 

64 influence pattern of weather conditions on China's CCE markets system, thereby 

65 enhancing the understanding of the impact of weather conditions on economic systemic 

66 risks. 

67 The remainder of this study is as follows. Section 2 describes the data selection 

68 and model, Section 3 provides empirical results, and Section 4 draws a conclusion. 
 
 

69 2. Data and Methodology 
 
 

70 2.1 Data selection 
 

71 In this study, we select three types of China's overall weather conditions: the hot 

72 indicators, the cold indicators, and the natural conditions. Each type of weather 
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73 condition is comprised of many sub-indices, as shown in Table 1. The data sources for 

74 the weather conditions is from International Energy Agency (IEA). The rationale 

75 behind classifying the weather conditions variables into three types is threefold. First, 

76 the hot indicator represents the hot temperature that has a direct impact on energy 

77 production, transmission and demand. On one hand, the hot temperature can reduce the 

78 capacity of energy extraction and transmission lines. In particular, the thermal 

79 efficiency of power plants can be affected significantly by the hot temperature. On the 

80 other hand, the rising use of cooling devices tends to increase the electricity demand 

81 and prices due to the hot temperature. 

82 Second, the cold indicator represents the cold temperature which has extensive 

83 impacts on energy production and distribution process. Energy usage can also be driven 

84 up by the increased demand for heating during cold temperatures, which in turn impacts 

85 the prices of electricity. Third, the natural conditions weather variables impact the 

86 production of renewable energy from sources such as solar power, wind power, hydro 

87 power and tidal power. As electricity can be generated from renewable energy without 

88 giving rise to carbon dioxide emissions, which leads to reduced energy-related carbon 

89 dioxide emissions relative to fossil fuels and influences the carbon market dynamics in 

90 China. 

91 

92 Table 1 

93 Weather conditions index selection. 

Weather 
conditions 

Weather variables Definition 

Hot ➢ CDDhum CDDhum is   cooling   degree   days   from   temperature 

indicator  corrected by humidity (reference temperature 65 °F) 
 ➢ CDDThold23 CDDThold23 is cooling degree days (reference temperature 
  23 °C and threshold temperature 26 °C). 
 ➢ CDDwet CDDwet is cooling degree days from wet bulb temperature 
  (reference temperature 65 °F). 

Cold ➢ HDD HDD is heating degree days with the reference temperature 

indicator  as 18 °C. 
 ➢ HDDThold20 HDDThold20 is heating degree days (reference temperature 
  20 °C and threshold temperature 17 °C). 
 ➢ HDDwind HDDwind is the heating degree days corrected by wind 
  speed (reference temperature 14 °C). 

Nature ➢ Cloud Cloud is the proportion of a grid box covered by a cloud. 

conditions ➢ Evaporation Evaporation is the accumulated amount of water that has 
  evaporated from the earth's surface 
 ➢ Precipitation Precipitation is the accumulated liquid and frozen water, 
  comprising the rain and snow that falls to the earth’s surface. 
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➢ RH RH is the relative humidity based on 2 meters of air and dew 

temperatures. 

➢ Snowfall Snowfall is the accumulated snow that falls to the earth’s 

surface. 

➢ Wind10int Wind10int is the horizontal speed of air at the height of ten 

meters above the earth's surface. 
 

 

94 
 

95 To comprehensively evaluate the development of China's carbon market, we chose 

96 Beijing, Hubei, Guangdong, Shanghai, and Shenzhen, the provincial pilot carbon 

97 markets with the highest trading volume (Liu et al., 2021), to construct a trading volume 

98 weighted China's composite carbon market index. The carbon price data sources are 

99 from Wind database. After the launch of China's national carbon market on 16 July 2021, 

100 we will construct a weighted composite carbon market index using China's national 

101 carbon market and the five pilot carbon markets. This is done by taking the proportion 

102 of carbon quota turnover in each carbon market to the total turnover in each of the six 

103 carbon markets and multiplying the weight of each market by the average daily price 

104 of carbon quota traded in each carbon market. We use steaming coal futures as a proxy 

105 for China's coal market because China's coal accounts for the largest share of primary 

106 energy consumption and electricity production. As a proxy variable for China's 

107 electricity market, we select the Shenwan thermal power generation stock index and 

108 from Wind database. 

109 All variables are daily data, and the timespan is from 27 September 2013 to 31 

110 December 2021. This paper uses a logarithmic transformation to calculate the return 

111 series. Let the returns of China’s composite carbon price index, steaming coal price, 

 
112 112 

 
113 113 

 
and electricity stock index be 

system. 

Rt  = (rC ,t , rEn,t , rEl ,t ) , which three make up China’s CCE 

 

114 2.2 Methodology 
 

115 We calculate two systemic risk measures of China’s CCE markets. The first is 
 

116 116 dynamic equicorrelation (DECO) t of Engle and Kelly (2002) and Wang et al. (2020), 

 

117 which is an index describing the level of how each market in the CCE system co-move 
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 

118 together, and a risk measure reflecting the co-movement pattern among each market in 
 

119 119 CCE system. The value of DECO t varies between -1 and 1. If DECO is closer to 1, 

 

120 then market price returns for the CCE system exhibit a stronger linear co-movement in 
 

121 121 the same direction. If DECO t is closer to -1, there is a stronger linear co-movement 

 

122 122 

 
123 123 

in the opposite direction. If DECO t 

movement in China’s CCE system. 

is closer to 0, there is a weaker linear co- 

 

124 The second systemic risk measure calculated is the total returns information 
 

125 125 spillover index, or total DY spillover index St (Dai et al., 2021; Diebold and Yilmaz, 

 

126 126 2012). Unlike DECO t , the DY spillover index St describes the degree of pairwise 

 

127 127 influence among each market returning in China’s CCE system. The value of St varies 

 

128 128 from 0% to 100%. A high St indicates that the return fluctuations of one market in the 

 

129 CCE system significantly affect the return fluctuations of another market. 
 

130 130 DECO t reflect the co-movement effect, and DY St reflects the spillover effect 

 

131 131 in China’s CCE markets system. Our calculated measures, whether DECO t or DY 

 

132 St , are dynamic and can reflect the risk pattern of the CCE system at any time. The key 
 

133 133 factor of modeling is to determine how the weather conditions index Wt affects CCE 

 

134 134 system’s St or t at different times and timescales. More details can be found in 

 

135 supplementary data. 

136 The wavelet coherency method might satisfy our modeling requirements (Tong et 
 

 

137 137 al., 2022). Given a wavelet function  () and a timeseries yt , the continuous wavelet 

 

y 
 

1
 *  t −  * 



 

138 138 
transform of t is Wy (s, ) = y (t ) 

t   
s 

 dt , where  () is a conjugate 

−   

139 139 function of  () . The wavelet coherency between CCE systems risk measure Xt and 

140 140 weather conditions Yt can be represented as the ratio of the cross-spectrum to the 

141 product of each series spectrum which may be denoted as follows: 
6 



xy   

 

 

142 142 R2 (s, ) = (1) 

 
 

 
143 143 

 

The value of R2 (s, ) is between 0 to 1. The closer the value of R2 (s, ) is to one, 

 

144 144 the more significant the correlation relationship between CCE risk measure Xt  and 

 
145 145 weather conditions Y at timescale s . The angle x y of the Wx y (s, ) is called phase- 

 

146 146 

t 

 

difference, that is: 

t   t t  t    

 

 

 
 

 Im (S (Wx  y   (s, )))  
147 147  = arctan  t   t  

 
 

(2) 
xy  Re(S (W (s, )))  

 xt yt  
 

148 A zero phase difference indicates that the time series move together at the specified 

 
149 149 time-frequency. If xy (0, / 2), then CCE risk measure Xt 

 

and weather conditions 

 

 
150 150 Yt at timescale s move in the same direction, but Yt leads Xt . If  

 
− , − 

  
, then 

2 

 

 
151 151 

 

Xt  and Yt 

  

 

move in the opposite direction, and the weather conditions lead to CCE risk 

152 measure at timescale s . Section 3 uses arrows pointing to different directions (↗ or ↙) 

153 to represent xy . 
 

 

154 3. Empirical analysis 
 
 

155 This section presents the wavelet coherency computation result between weather 

156 conditions and two risk measures of China's CCE market systems. According to the 

157 influence period of weather conditions on China's CCE market risk measure, we 

158 categorize the timescale as short-run (period less than 64 days), medium-run (period 

159 between 64 and 256 days), and long-run (period over 256 days). Because of the cyclical 

160 nature of weather conditions change, commodity markets are all affected to some extent 

161 by seasonal cycles of one year's length(Singh et al., 2019). 256 days represents a time 

   

 

xt 
  

 

       
  

xt yt    

yt 



162 scale of one year, 64 days represents a time scale of one season. so the medium-run and 

163 long-run divisions are based on a time point of 256 days. the medium-run and short-run 
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164 divisions are based on a time point of 64 days. 

165 Figure 1 shows the The DECO index and DY index of China's CCE system. The 

166 DECO is a risk metric that reselects the price co-movement pattern among China's CCE 

167 markets. The DY index represents the price information spillover between China's 

168 markets. These two indicators show a convergence of movements, as they both reflect 

169 the movement of CEE market prices. It can be seen that both indicators show more 

170 significant fluctuations after 19 years, which could be explained by the entry of the 

171 national carbon market. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
172  

173 Figure 1. The DECO index and DY index of China's CCE system. 

174 The impact pattern of weather conditions on the DECO of China's CCE markets 

175 varies over time and scale as depicted in Figure 2. We find that the change in the hot 

176 indicator leads to the change in the DECO of China's CCE system in the long run. There 

177 are huge islands in the first row of Figure 2 over 256 days-length timescales whose 

178 arrows most point to ↙, which uncovers that the increasing (decreasing) of the hot 

179 index will improve the negative (positive) co-movement pattern among the markets in 
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180 China’s CCE system. 

181 This phenomenon occurs because a change in the hot index affects the wintertime 

182 temperature. Compared with summer, China consumes more coal and electricity in 

183 winter. If winters become colder in the long run, coal consumption for district heating 

184 will increase, and coal prices will rise. At the same time, the long-term profits of power 

185 generation companies will increase, and production activities will become more 

186 frequent, which will also contribute to the increase in carbon prices. This transformation 

187 process has led to a rise in the DECO of China's CCE system. 

188 The long-run impact of hot temperature indicators on China’s CCE markets 

189 system’s DECO mainly happens before 2020. We could find that the arrows over 256 

190 days-length in CDDhum, CDDhum23, and CDDwet in Figure 2 do not point to ↙ 

191 suddenly since 2020, given that China has experienced a series of warm winters since 

192 that year. On a long-run scale, the arrival of a warm winter will decrease electricity and 

193 coal consumption, thereby decreasing the DECO of the CCE system. Besides, we find 

194 that there are few arrows pointing to ↗ or ↙in subfigures of CDDhum, CDDhum23, 

195 and CDDwet, which implies hot indicator could not affect the DECO of China’s CCE 

196 system. 

197 According to the definition, the value of cold indicators fluctuates in the opposite 

198 direction of hot indicators. As shown in the subfigures for HDD, HDDThold20, and 

199 HDDwind, the arrows in CDDhum, CDDhum23, and CDDwet point in the opposite 

200 direction. These evidences also indicate that temperature changes affect DECO on a 

201 long-run scale, and that long-run cold temperature has a greater impact on the DECO 

202 of the Chinese CCE system than long-run hot temperature. 
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203 203 

204 Figure 2. Wavelet coherency between weather indicators and the DECO of 

205 China's CCE system. 

206 Note: In each subfigure, the horizontal and vertical axis represents the timespan and timescale, 

207 respectively. Arrows pointing up to the north-east (↗) or south-west (↙) indicate that weather conditions 

208 change drives the systemic risks change in China’s CCE markets system in the same or opposite direction. 

209 Red and orange indicate time-frequency regions with strong co-movements, whereas blue and green 

210 indicate regions with weak co-movements. 

211 211 

212 Among the nature conditions indices, the most remarkable findings are that RH 

213 and Snowfall significantly influence the change of DECO. In the subfigure of RH, we 

214 find that there are islands where the arrows point to ↙ around at the medium-run 

215 timescale and a large island where the arrows point to ↙ at the long-run timescale, 

216 suggesting that there may be a significant negative correlation between RH and DECO. 
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217 A large number of arrows point to ↗ above the time period of 256 days-length 

218 timescales, indicating a significant positive correlation between Snowfall and DECO at 

219 the long-run timescale. However, Evaporation, Precipitation, and Wind10int have 

220 nearly no striking arrows in the 5% significance black area. 

221 There are significantly fewer regions with strong co-movements between weather 

222 conditions and CCE's DY index compared to the results of DECO as shown in Figure 

223 3. 

224 CDD, CDDThold23, and CDDwet have a few islands where the arrows point to 

225 ↙ in the time period of 16-32 days- and 64-256 days-length timescale. Besides, HDD, 

226 HDDThold20, and HDDwind have a small distribution of islands where arrows point 

227 to ↗ in the time period of 16-256 days-length timescale. All of these indicators suggest 

228 that temperature has a negligible effect on information diffusion between markets in 

229 China's CCE systems. This is primarily the mechanism for price information spillover 

230 between markets in China's CCE systems, which are complex and driven by economic 

231 growth. Temperatures are not crucial influencing variables. 

232 Considering the influence pattern of natural conditions on the DY index of China’s 

233 CCE system, both Cloud and Snowfall have islands where arrows point to ↙ at over 

234 128 days-length timescales, indicating that cloud and snow weather slightly affects the 

235 DY of China’s CCE markets and is negatively correlated with changes of DY index, 

236 other natural conditions do not show a significant risk driving effect on information 

237 spillover pattern among markets in China’s CCE system. 

238 By combining the results of DY and DECO, it is possible to conclude that the effect 

239 of weather conditions on the DECO between China's CCE markets is greater than the 

240 effect on DY. DY may be influenced by weather conditions more persistently and stably 

241 (as can be seen from the consistency of the arrow direction). When analyzing the effects 

242 of temperatures on China's CCE markets, the temperature situation should be given 

243 more consideration. Cloud, Snowfall, and RH are key risk drivers for China's CCE 

244 markets' systemic risk management work, among all the other weather conditions 

245 considered in this paper. 
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246 246 

247 Figure 3. Wavelet coherency between weather indicators and the DY of China's 

248 CCE system. 

249 Note: See Figure 2. 

 

250 4. Conclusion 
 
 

251 This paper investigates the influence pattern of weather conditions on the systemic 

252 risk of China's carbon-coal-electricity (CCE) markets. China's carbon, coal, and 

253 electricity markets are highly interdependent, and the CCE system plays a crucial role 

254 in China's current economic development, which is the primary motivation for 

255 researching this characteristic. Moreover, weather conditions are a significant factor 

256 that may affect the operation of China's CCE markets system. The following are our 
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257 conclusions. 

258 First, temperature could be a very important factor influencing the long-run co- 

259 movement pattern of China's CCE markets system. When the temperature is lower, the 

260 market returns in the CCE system co-move in a closer direction. The higher the 

261 temperature, the more likely it is that market returns in the CCE system will move in 

262 opposite directions. This influence pattern is significant in the cold winter years. 

263 However, the temperature may not impact the price information spillover pattern among 

264 markets in China’s CCE system. 

265 Secondly, nature conditions, relative humidity, and snowfall level would affect the 

266 co-movement pattern of markets in China's CCE system, while cloud and snowfall 

267 levels are long-run drivers influencing the price information spillover pattern of China's 

268 CCE markets system. We conclude that evaporation, wind speed, and precipitation may 

269 not be risk factors for China's CCE system. 

270 Thirdly, it is possible that none of the weather conditions analyzed in this study are 

271 short- or medium-run drivers of systemic risk in China's CCE markets. 

272 The study of the systemic risk of CCE can provide a new perspective for identifying 

273 market risk and financial risk, thus facilitating the improvement of the performance of 

274 regulators' duties. On the other hand, in the process of constructing relevant portfolios, 

275 understanding the information spillover between the carbon market, coal market and 

276 power companies is beneficial for investors to grasp the correlation between different 

277 markets, achieving resource allocation and adjust their business strategies in their 

278 portfolios. Focusing on the role of weather conditions in driving the CCE market can 

279 also integrate weather conditions factors into risk management, making the risk 

280 management framework more complete. 
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