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On the tree-depth and tree-width in heterogeneous random graphs

By Yilun Shang

Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UK

Email:yilun.shang@northumbria.ac.uk

Abstract: In this note, we investigate the tree-depth and tree-width in a heterogeneous
random graph obtained by including each edge eij (i 6= j) of a complete graph Kn over n vertices
independently with probability pn(eij). When the sequence of edge probabilities satisfies some
density assumptions, we show both tree-depth and tree-width are of linear size with high probabil-
ity. Moreover, we extend the method to random weighted graphs with non-identical edge weights
and capture the conditions under which with high probability the weighted tree-depth is bounded
by a constant.
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1. Introduction For a simple connected
graph G, an elimination tree T of G is a rooted tree
on the vertices of G in which G has no edges connect-
ing two different branches in T . Note that T and G

have the same sets of vertices but T does not need
to be a subgraph of G. Elimination tree, firstly used
by Duff [7], is one of the most important concepts
in scientific computing and numerical linear algebra.
It plays a pivotal role in areas including Cholesky
factorization of sparse matrices, combinatorial opti-
mization algorithms, and data structures [5, 16, 23].
Equivalently, a rooted tree T on the sets of vertices of
G becomes an elimination tree of G if G is a subgraph
of the closure of T , where the closure of a rooted
tree T is obtained from T by adding all (and only)
edges between an ancestor and its descendant. The
height of a rooted tree is the number of vertices on
the longest path between the root and a leaf. Tree-
depth of G, denoted by td(G), is the minimum height
of an elimination tree of G. If G is not connected,
td(G) is defined as the maximum tree-depth among
its connected components. It is known that the max-
imum tree-depth for a graph over n vertices is only
attained by the complete graph Kn with td(Kn) =
n and td(T ) ≤ blog2 nc + 1 for a tree T . Moreover,
the path Pn attains the upper bound among all tree
graphs [8]. An example is shown in Fig. 1.

A related concept is the tree-width, denoted by
tw(G), which captures the closeness of a graph rela-

2010 Mathematics Subject Classification. Primary 05C80,
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Fig. 1. Path graph G = P11 has tree-depth
td(G) = blog2 11c + 1 = 4. (a) The path G; (b) The
elimination tree T of G, which has height 4; (c) The closure
of T .

tive to a tree while tree-depth captures the closeness
of a graph relative to a star. Tree-width, put forward
by Robertson and Seymour [20] in 1986, is a useful
parameter in the parameterized complexity analysis
of many graph algorithms [1, 11, 22]. A graph G

has tree-width tw(G) = k if it is a subgraph of a
k-tree with minimum k. Here, a k-tree is obtained
by beginning with the complete graph Kk+1 and re-
peatedly adding vertices so that each newly added
vertex is adjacent to every vertex of an existing k-
clique. By definition, it is clear that tw(Kn) = n− 1
and tw(T ) = 1 for any tree T . However, determining
tree-width for a general graph is NP-complete. Tree-
width is related to tree-depth through the following
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inequality [2, 11]

(1.1) tw(G) ≤ td(G) ≤ (1 + log2 n) tw(G).

Here, we are interested in the two graph invari-
ants td(G) and tw(G) in the context of heterogeneous
random graphs. Consider a complete graph Kn over
the vertex set V = {1, 2, · · · , n}. Let eij = eji denote
the edge connecting vertices i and j for i 6= j. Given
a set of edge probabilities pn = {pn(eij)}1≤i<j≤n,
the heterogeneous random graph model G(n,pn) can
be defined by including each edge eij of Kn indepen-
dently with edge probability pn(eij). Clearly, when
pn(eij) ≡ pn for all i and j (i 6= j), we reproduce
the ordinary Erdős-Rényi random graph G(n, pn). A
closely related model is called the uniform random
graph G(n,mn), where each graph with mn edges
occurs with the same probability. Many results of
random graphs can be transferred equivalently be-
tween G(n, pn) and G(n,mn) via the mapping pn =
mn

(
n
2

)−1. In the past few decades, heterogeneous
random graphs are gaining traction as they well un-
derpin complex network models [18], which often
have non-trivial topological structures (such as het-
erogeneous degree distributions, community struc-
ture and hierarchy) eliciting fascinating phenomena
in nature and technology. For a recent survey of
varied random graph models and their mathemati-
cal results, we refer readers to the monograph [10].
In particular, the majority dynamics over G(n,pn)
has been studied in [21].

In random graphs, we say a graph property
holds with high probability (w.h.p.) if the prob-
ability that all graphs holding this property occur
tends to 1 as n → ∞. It is shown by Kloks [13] that
G(n,mn) with mn/n ≥ c = 1.18 has linear tree-
width tw(G(n,mn)) = Θ(n) w.h.p. This constant
c has been further improved to 1.073 in [3] and 0.5
in [14]. For G(n, pn) model, it is found in [24] that
w.h.p. tw(G(n, pn)) ≥ n−o(n) when n À npn → ∞.
In the case of npn = 1+ ε for a sufficiently small ε >

0, it is shown that tw(G(n, pn)) = nΩ(−ε3(ln ε)−1)
w.h.p. [6]. Tree-width has also been investigated for
random intersection graphs [3] and geometric ran-
dom graphs [15]. Perarnau and Serra [19] proved
that td(G(n, pn)) = n − O((n/p)1/2) when npn →
∞. Tree-depth as well as tree-width of random geo-
metric graphs has also been studied in [17].

Along the above line of research, in this short
note we first study tree-depth and tree-width for
dense heterogeneous random graph G(n,pn) in Sec-

tion 2. We then extend our approach to weighted
random graphs with non-identical weight distribu-
tions in Section 3. Standard Landau asymptotic no-
tations such as O, o, Θ and ¿ will be used through-
out the paper by convention in random graph litera-
ture; c.f. [10].

2. Tree-depth and tree-width in hetero-
geneous random graphs To begin with, we de-
fine the expected neighbor density for a vertex i ∈ V

with respect to a set of vertices. Specifically, given
S ⊆ V and i 6∈ S let dn(i, S) = |S|−1

∑
j∈S pn(eij).

It measures average number of neighbors of vertex i

within the set S.
Theorem 1. Suppose that there is a sequence
{pn}n≥1 and constants α and β satisfying pn ∈ (0, 1),
0 < α < 2

9 ln 3β, and for all n large
(2.1)

pn ≥ 1
αn

and min
i∈V

min
S: i6∈S

|S|≥n

√
α ln 3
2β

dn(i, S) ≥ βpn.

Then for any constant c = c(α, β) satisfying

3
√

α ln 3
2β < c ≤ 1 we have

P (n − bcnc ≤ td(G(n,pn)) ≤ n) ≥ 1 − e−Θ(n)

(2.2)

and similarly

P (n − bcnc ≤ tw(G(n,pn)) ≤ n) ≥ 1 − e−Θ(n)

(2.3)

for all n large. Here, Θ(n) is a function of c.
Before proving Theorem 1, we present an ex-

ample with non-trivial edge probabilities {pn}n≥1

satisfying the condition (2.1). Set α = 1, β = 10,
and pn = 1

n for n ≥ 1. For 1 ≤ i < j ≤ d n
10e, let

pn(eij) = 1
n ln n , and for any other i < j, let pn(eij) =

100
n . Since

√
α ln 3
2β > 1

5 , for any i 6∈ S and |S| ≥ n
5 ,

we have

dn(i, S) ≥ 1
|S|

(
1

n lnn

⌈ n

10

⌉
+

(
|S| −

⌈ n

10

⌉)100
n

)
≥ 5

n

(
1

n lnn
· n

10
+

( n

10
− 1

)100
n

)
=

n + 100(n − 10) ln n

2n2 lnn

≥1 + 50 ln n

2n lnn

>βpn,

for all n > 20. Therefore, (2.1) holds true and
it follows from (2.2) and (2.3) that, for example,
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P(min{td(G(n,pn)), tw(G(n,pn))} ≥ 0.29n) ≥ 1 −
e−Θ(n) for all large n.

To prove Theorem 1, we need the following
lemma with regard to balanced separators [13, Lem
5.3.1, Lem 6.1.2].
Lemma 1. Let G be a graph over the vertex set V

with |V | = n. For any number k ∈ [tw(G), n − 4], G

has a balanced k-partition (S,A,B) in the following
sense.

Mutually exclusive sets S, A and B satisfy S ∪
A ∪ B = V , |S| = k + 1, 1

3 (n − k − 1) ≤ |A| ≤ |B| ≤
2
3 (n−k−1), where S forms a separator in G meaning
that no edges run between A and B.
Proof of Theorem 1. Fix any constant c >

3
√

α ln 3
2β . The assumption 0 < α < 2

9 ln 3β en-
sures c < 1. If G(n,pn) has a balanced k-partition
(S,A,B) as described in Lemma 1 with |S| = k +
1 ≤ (1 − c)n, then |B| ≥ |A| ≥ 1

3 (n − k − 1) ≥ cn
3 .

Hence, we have

(2.4) |A||B| ≥ |A|(cn − |A|) ≥ 2
9
c2n2.

Define E(S,A,B) to be the event that G(n,pn)
admits a balanced k-partition (S,A,B) with |S| =
k + 1 ≤ (1 − c)n. We obtain

P(E(S,A,B)) =
∏

i∈A,j∈B

(1 − pn(eij))

≤e
−

∑
i∈A,j∈B

pn(eij)

=e
−

∑
i∈A

|B|dn(i,B)

≤e−pnβ|A|·|B|

≤e−
2
9 pnβc2n2

,(2.5)

where in the second inequality above we used the
estimate |B| ≥ cn

3 ≥ n
√

α ln 3
2β and (2.1), and in the

last inequality we applied (2.4).
Let C be the collection of all balanced k-

partitions (S,A,B) with |S| = k + 1 ≤ (1 − c)n. A
simple upper bound is given by |C| ≤ 3n since each
vertex is allowed for three options in a balanced k-
partition. In the light of (2.5) we can bound the
probability of existing such a partition as

P
(
∪(S,A,B)∈CE(S,A,B)

)
≤

∑
(S,A,B)∈C

P(E(S,A,B))

≤3ne−
2
9 pnβc2n2

≤en
(

ln 3− 2βc2

9α

)
,(2.6)

where in the last inequality the assumption pn ≥

1
αn in (2.1) is utilized. Recall that c > 3

√
α ln 3
2β .

Therefore, the probability in (2.6) is tantamount to
e−Θ(n). Consequently, it follows from Lemma 1 that

P(tw(G(n,pn)) ≤b(1 − c)nc)

≤P
(
∪(S,A,B)∈CE(S,A,B)

)
≤ e−Θ(n),

which yields (2.3). Combining it with (1.1), we know
that the result (2.2) also holds. ¤

By taking β = 1, 0 < α < 2
9 ln 3 , and pn(eij) =

pn for all i < j in Theorem 1, we obtain the following
result for homogeneous random graph G(n, pn).
Corollary 1. Suppose that pn ≥ 1

αn with α ∈(
0, 2

9 ln 3

)
. For any constant c > 3

√
α ln 3

2 and all
n large, we have

P (n − bcnc ≤ td(G(n, pn)) ≤ n) ≥ 1 − e−Θ(n)

and

P (n − bcnc ≤ tw(G(n, pn)) ≤ n) ≥ 1 − e−Θ(n).

In particular, w.h.p. td(G(n, pn)) = Θ(n) and
tw(G(n, pn)) = Θ(n).

These estimates are in line with previous results
in [24] and [19] for dense Erdős-Rényi random graphs
while enjoy more explicit convergence rate estimates.

It is also worth noting that Theorem 1 for
heterogeneous random graphs is non-trivial. For
instance, in the example above, we have chosen
pn(eij) = 1

n ln n ¿ 1
n , which in a homogeneous ran-

dom graph will only lead to tree-depth (and tree-
width) of Θ(ln lnn); see [19, Theorem 1.2].

3. Tree-depth in weighted random
graphs In this section, we consider weighted
heterogeneous random graphs by placing a random
weight w(eij) = w(eji) on each edge eij of Kn.
Given an elimination tree of G, for the longest
downward path between the root and a leaf P =
(i1, i2, · · · , i`), we define w(P ) :=

∑`−1
j=1 w(eijij+1) as

the weight of P , i.e., w(P ) is the weighted height of
the elimination tree. Let tdw(G) := minP w(P ) be
the minimum weighted height of an elimination tree
of G. We call tdw(G) the weighted tree-depth of
G. Tree-depth as a parameter has been intensively
studied in some graph algorithms for weighted
graphs including the fixed parameter tractable
(FPT) algorithms [4, 12]. However, most of these
works concern fixed graph and deterministic weights.

For every edge eij in Kn, let Fij be the cumu-
lative distribution function of the weight w(eij) and
set
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pn(eij) := Fij

(
1
n

)
= P

(
w(eij) ≤

1
n

)
.

By definition, we have Fij = Fji for i 6= j. The result
below shows that the weighted tree-depth is bounded
above by a constant w.h.p. It is worth noting that
the appropriate analogous version for tree-width is
assigning weight on vertices instead of edges (see e.g.
[9]), and hence is not considered here.
Theorem 2. Assume that the sequence of cumula-
tive distribution functions {Fij}1≤i<j≤n satisfies the
following two conditions:
(i) There is a sequence {pn}n≥1 and constants α

and β satisfying pn ∈ (0, 1), 0 < α < 2
9 ln 3β,

and for all n large the condition (2.1) holds.
(ii) There is a constant γ satisfying

max1≤i<j≤n Ew2(eij) ≤ γ for all n large.
Then we have

P (tdw(G(n,pn)) ≤ 1) ≥ 1 − e−Θ(n)(3.1)

and

E (tdw(G(n,pn))) ≤ 1 +
√

γe−Θ(n)(3.2)

for all n large. Here, Θ(n) is a function of α and β.
Proof. We say an edge e in Kn is occupied if the
weight of e is less than or equal to 1

n . Define An

to be the event that there exists an occupied elim-
ination tree of G(n,pn) having height at least n −
bcnc, where c = c(α, β) is determined in Theorem
1. When An occurs, each edge of the longest down-
ward rooted path in an elimination tree has weight
no more than 1

n . Therefore, the sum of the weights
is upper bounded by 1, namely, tdw(G(n,pn)) ≤ 1.
When An does not occur, the weight of any down-
ward rooted path in an elimination tree of G(n,pn)
has weight no more than

∑
1≤i<j≤n w(eij). There-

fore, we have

E(tdw(G(n,pn))) ≤ 1 · P(An) + δn ≤ 1 + δn,(3.3)

where δn := E
(∑

1≤i<j≤n w(eij)1Ac
n

)
, 1A presents

the indicator function of an event A, and Ac is the
complement of A.

By using the Cauchy-Schwarz inequality, we
have

δn ≤

√√√√√E

 ∑
1≤i<j≤n

w(eij)

2

·
√

P(Ac
n).(3.4)

Notice that the inequality ab ≤ (a2 + b2)/2 < a2 +
b2 holds for any real numbers a and b, we have the

estimate

E

 ∑
1≤i<j≤n

w(eij)

2

≤
(

n

2

) ∑
1≤i<j≤n

Ew2(eij)

≤
(

n

2

)2

γ

≤
(en

2

)4

γ,(3.5)

where we used the condition (ii) and the fact that(
n
k

)
≤

(
en
k

)k for any n and k (see e.g. [10, Lem
21.1]). Combining (3.4) and (3.5), we arrive at

δn ≤ e2n2

4
√

γe−Θ(n) =
√

γe−Θ(n)

by using Theorem 1. Feeding this into (3.3)
yields the desired estimate E (tdw(G(n,pn))) ≤ 1 +√

γe−Θ(n).
Another application of Theorem 1 yields

P(tdw(G(n,pn)) > 1) ≤ P(Ac
n) ≤ e−Θ(n)

for all n large. Consequently,
P (tdw(G(n,pn)) ≤ 1) ≥ 1 − e−Θ(n). ¤

For homogeneous Erdős-Rényi random graphs,
we have the following result.
Corollary 2. Let F be the common cumulative dis-
tribution function for edge weights. Assume that
there are constants a > 0, b > 0, and 0 < c < 1
satisfying F (x) ≥ axc for all x ∈ (0, b). If there ex-
ists a constant γ satisfying Ew2(e) ≤ γ for any edge
e ∈ Kn, we have

P (tdw(G(n, pn)) ≤ 1) ≥ 1 − e−Θ(n)(3.6)

and

E (tdw(G(n, pn))) ≤ 1 +
√

γe−Θ(n)(3.7)

for all n large, where pn = F
(

1
n

)
.

Proof. We have pn = F (n−1) ≥ an−c for all n >

b−1. Since c ∈ (0, 1), npn ≥ an1−c ≥ α−1 for any
α > 0 for large n. Therefore, the condition of Corol-
lary 1, i.e., (i) in Theorem 2 holds by taking β = 1
and pn(eij) ≡ pn. The condition (ii) in Theorem
2 also holds. Therefore, (3.6) and (3.7) follow from
(3.1) and (3.2), respectively. ¤

Finally, we present a example of non-trivial cu-
mulative distribution functions that satisfy the con-
ditions (i) and (ii) in Theorem 2. For 1 ≤ i < j ≤
d n

10e, we set
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Fij(x) =


0, x < 0;
x

3
2 , 0 ≤ x ≤ 1;

1, x > 1;

and for any other i < j, set

Fij(x) =


0, x < 0;
x

1
2 , 0 ≤ x ≤ 1;

1, x > 1.

Therefore, for 1 ≤ i < j ≤ d n
10e, we have pn(eij) =

Fij(n−1) = n− 3
2 , and for any other i < j, pn(eij) =

Fij(n−1) = n− 1
2 . Let α = 1, β = 10, and pn = 1

n

for all n ≥ 1. Since
√

α ln 3
2β > 1

5 , for any i 6∈ S and
|S| ≥ n

5 , we have

dn(i, S) ≥ 1
|S|

(
1

n
√

n

⌈ n

10

⌉
+

(
|S| −

⌈ n

10

⌉) 1√
n

)
≥ 5

n

(
1

n
√

n
· n

10
+

( n

10
− 1

) 1√
n

)
≥ 6

10
√

n

>βpn,

for all n ≥ 278. Therefore, (i) holds true. From
the distribution function Fij(x) it is straightfor-
ward to see that γ = 3

7 would satisfy the condi-
tion (ii). Thus, from (3.1) and (3.2) we can con-
clude that P (tdw(G(n,pn)) ≤ 1) ≥ 1 − e−Θ(n) and

E (tdw(G(n,pn))) ≤ 1 +
√

3
7 e−Θ(n) for all large n.

It is worth mentioning that in the above example
the distribution function Fij defined for 1 ≤ i < j ≤
d n

10e does not satisfy the assumption of distribution
function in Corollary 2.
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