Northumbria Research Link

Citation: Menting, Stein Gerrit Paul, Post, Aylin Kim, Nijenhuis, Sebastiaan Benjamin, Koning, Ruud Hans, Visscher, Chris, Hettinga, Florentina and Elferink-Gemser, Marije Titia (2023) Pacing Behavior Development in Adolescent Swimmers: A Large-scale Longitudinal Data Analysis. Medicine \& Science in Sports \& Exercise, 55 (4). pp. 700-709. ISSN 0195-9131

Published by: Lippincott Williams \& Wilkins
URL:
https://doi.org/10.1249/MSS. 0000000000003086
https://doi.org/10.1249/MSS.0000000000003086
This version was downloaded from Northumbria Research Link: https://nrl.northumbria.ac.uk/id/eprint/50799/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

Pacing behavior development in adolescent swimmers: a large-scale longitudinal data analysis.

Stein Gerrit Paul Menting ${ }^{1}$
Aylin Kim Post ${ }^{1}$
Sebastiaan Benjamin Nijenhuis ${ }^{1}$
Ruud Hans Koning ${ }^{3}$
Chris Visscher ${ }^{1}$
Florentina Johanna Hettinga ${ }^{2}$
Marije Titia Elferink-Gemser ${ }^{1}$

1. Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
2. Department of Sport, Exercise \& Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
3. Department Economics, Econometrics and Finance, Faculty of Economics and Business, University of Groningen, The Netherlands

Corresponding author: Florentina Hettinga
Department of Sport, Exercise \& Rehabilitation
Faculty of Health and Life Sciences
Northumbria University
Room 238, Northumberland Building
Newcastle Upon Tyne
NE1 8ST
United Kingdom
E-mail: florentina.hettinga@northumbria.ac.uk
Tel: +44 (0)1912273989

Abstract

Purpose: Use a large-scale longitudinal design to investigate the development of the distribution of effort (e.g., pacing) in adolescent swimmers, specifically disentangling the effects of age and experience and differentiating between performance levels in adulthood.

Methods: Season best times and 50 m split times of 100 m and 200 m freestyle swimmers from five continents were gathered between 2000 and 2021. Included swimmers competed in a minimum of three seasons between $12-24$ years old (5.3 ± 1.9 seasons) and were categorized by performance level in adulthood (elite, sub-elite, high-competitive) (100m: $\mathrm{n}=3498$, 47% female; 200m: $\mathrm{n}=2230,56 \%$ female). Multilevel models in which repeated measures (level 1) were nested within individual swimmers (level 2) were estimated to test the effects of age, race experience, and adult performance level on the percentage of total race time spent in each 50 m section ($\mathrm{p}<0.05$).

Results: In the 100 m , male swimmers develop a relatively faster first 50 m when becoming older. This behavior also distinguishes elite from high-competitive swimmers. No such effects were found for female swimmers. Conversely, more experienced male and female swimmers exhibit a slower initial 50 m . With age and race experience, swimmers develop a more even velocity distribution in the 200 m . Adolescent swimmers reaching the elite level adopt a more even behavior compared to highcompetitive. This differentiation occurs at younger age in female (>13 years) compared to male (>16 years) swimmers.

Conclusion: Pacing behavior development throughout adolescence is driven by age-related factors besides race experience. Swimmers attaining a higher performance level during adulthood exhibit a pacing behavior which better fits the task demands during adolescence. Monitoring and individually optimizing the pacing behavior of young swimmers is an important step towards elite performance.

Key words (6/6): Sport, race analysis, competitive swimming, future performance, talent, multilevel modelling.

1. Introduction

The goal-directed decision-making process regarding effort distribution (i.e., pacing) is a decisive factor for performance in exercise tasks (1,2). The outcome of this process, the athletes' pacing behavior, is commonly quantified by registering a measure of effort (e.g., power output or velocity) during sections of an exercise task (2, 3). Pacing seems to be learned through a cyclical acquisition process, in which experience gathered during a previous task is used to inform the athlete in future iterations of the task (4). The awareness of the benefits of distributing effort to reach a set exercise goal is first observed at 5-8 years old (5) and the capability to do this effectively continues to develop during adolescence and into adulthood (6, 7). With age, the pacing behavior of children and adolescents develops to feature an increasing fit to the task demands (6,7). Previous longitudinal studies considered the pacing behavior exhibited by elite level adults as the endpoint of this development $(6,7)$. Moreover, it was revealed that athletes who reached a higher performance level in adulthood, exhibited a pacing behavior resembling that of adult athletes at an earlier stage of adolescence, compared to their less successful peers (6). Knowledge about the development of pacing behavior is therefore of great interest for both scientists and practitioners. Unfortunately, the limited amount of available research into the pacing behavior of children and adolescents consists mainly of crosssectional studies with small sample sizes, often including individuals from one specific country, region, school, club or team $(8,9)$. To provide further insights into the development of pacing behavior, more rigorous longitudinal studies with large sample sizes are needed.

One sport in which the topic of pacing behavior has gained increasing scientific interest in the last few years, is competitive swimming $(8,10)$. Given the highly resistive properties of water compared to air, and the low mechanical efficiency of the swimming movement, it has been argued that adequate pacing might be more important in swimming compared to land-based sports $(8,10)$. Moreover, competitive swimming is a popular, global sport in which the gap
between the gold medalist and the last finisher in international competitions is decreasing (11). In light of this, optimizing pacing behavior plays an increasingly important role in elite swimming performance $(8,10)$. Systematic literature reviews have shown that pacing behavior of swimmers is primarily determined by the race distance and stroke type $(8,10)$. In races over a short distance $(50-100 \mathrm{~m})$, elite swimmers adopt an all-out pacing behavior, attempting to achieve a high velocity through rapid acceleration and trying to maintain this velocity throughout the race (12). During 200m races, elite swimmers adopt a fast start followed by an even pace (13). Comparing different strokes, it is evident that the butterfly and breaststroke events are characterized by a gradual decrease in velocity over the duration of the race, which is mostly attributed to the relative inefficiency of these strokes compared to front crawl or backstroke. Regarding pacing behavior development in swimming, one study reported that adolescent swimmers performing a 200 m front crawl trial started off too fast and therefore lacked in speed at the end of the trial (14). A second study reported that adolescent swimmers have difficulty in selecting the optimal pace, performing better in a 400 m front crawl trial when executing an externally imposed pace compared to a self-selected pace (15). It was proposed that the difference between adolescent and adult swimmers was due to the disparity in task experience $(13,17,18)$. This, however, seems to be an oversimplification as the shift of pacing behavior during adolescence is thought to originate not only from increased exercise experience but also from age-related physical maturation and cognitive development (4, 9). Additionally, as the chronology of physical maturation and cognitive development processes differ between boys and girls (19, 20), it logically follows that the timeline of pacing behavior development differs between sexes $(21,22)$. A profound understanding of the mechanisms behind the pacing behavior of adolescent swimmers, including the influence of factors such as age, experience and sex, could help coaches to guide their athletes in developing a more optimal pacing behavior.

The present study aimed to investigate the development of pacing behavior in adolescent swimmers, specifically disentangling the effects of age and experience and differentiating between performance levels in adulthood. It was hypothesized that the pacing behavior of swimmers would develop during adolescence, gradually exhibiting more resemblance to adult behavior. The demands of the task would influence the direction of the development. In short tasks, the development would present itself as a change towards a more all-out pacing behavior, characterized by a higher velocity during the initial stages. In longer tasks, the shift would be towards a more even effort distribution. Moreover, it was hypothesized that, independent of age, increased experience would facilitate a better fit with the task demands: a higher velocity in the initial stages in the shorter tasks and an overall more even distribution of effort in longer tasks. Adolescent swimmers who eventually reached a higher performance level in adulthood were hypothesized to exhibit a pacing behavior more resembling that of adult swimmers, compared to adolescent swimmers who attained a lower performance level. As females generally exhibit puberty-related physical maturation and cognitive development at an earlier age compared to their male counterparts, it was hypothesized that the split between swimmers of different future performance levels would occur earlier in females compared to males.

2. Methods

All procedures used in the study were approved by the Local Ethical Committee of the University Medical Center Groningen, University of Groningen, The Netherlands (201900334) in the spirit of the Helsinki Declaration. The requirement for informed consent of the participants was waived given the fact that the study involved the analysis of publicly available data and analyses were group-based.

2.1. Data collection

All available 100m and 200 m freestyle long course performance data (i.e., date of the race, total race time and available 50 m split times) of both male and female swimmers performing between 2000 and 2021, were collected from Swimrankings' database (www.swimrankings.net). This resulted in $2,857,181$ (100m freestyle) and $1,897,872$ (200 m freestyle) observations. The assumption was made that all swimmers chose the front crawl during the freestyle events. Performance data were collected from 113 countries across the world. The date of birth of all included swimmers was collected using the same database.

2.2. Data processing

Swim performances over 180s (100m freestyle) and 360s (200m freestyle) were excluded from the analysis to ensure a homogeneous dataset. Performance data were classified per swimming season, starting on the $1^{\text {st }}$ of September and ending on the 31st of August of the next calendar year. Data from the 1st of January 2008-2010 were excluded from analysis, because of the impact of full-body polyurethane swimsuits on swimming performance in that period (23-25). Performance data from season 2019-2020 were excluded as competitions and training opportunities were disturbed because of the COVID-19 pandemic. A total of 2,773,387 observations (100m freestyle) and 1,842,992 (200m freestyle) observations remained. For each swimmer, the Season Best Time (SBT) per swimming season was used for further analysis. Age at SBT was determined using the swimmer's date of birth. Race experience was defined as the cumulative number of races of a specific event, which the swimmers had completed before SBT.

2.3. Inclusion criteria

For the purpose of this study, it was important to outline the development of pacing behavior from a young age on toward the age of peak performance. Peak performance in competitive
swimming is on reached at $24(\pm 2)$ years for males and at $22(\pm 2)$ years for females (26). Therefore, only swimmers who had at least one swim performance in the age category of 22 years or older (male) or 20 years or older (female) were included. To ensure a dataset representing the developmental pathway of pacing behavior towards peak performance, swim performances after the swimmer's career-best swim performance were excluded. To longitudinally study pacing behavior development, included swimmers had to be between 12 and 24 years old and have performance data with 50 m split times in at least three swimming seasons. To study pacing behavior independent of current performance, split times of each 50 m section were converted into relative section times (RST), representing the percentage of the total race time spent in one section. The inclusion criteria were conducted for the 100 m and 200m events separately.

Swim performances of multiple generations (i.e., from 2000 through 2021) were included in the dataset, which necessitated the correction of evolution in competitive swimming. As such, swim performances were defined as a percentage of the prevailing world record (WR) of the corresponding sex, referred to as relative Season Best Time (rSBT) (27, 28). World records from 2008 and 2009 were replaced by the prevailing fastest time in a textile swimsuit. According to the event, swimmers were allocated to the elite, sub-elite or high-competitive performance group by using their event-specific all-time rSBT after 20 (female) or 22 (male) years of age (see Table 1). The elite level was defined as the average rSBT of the $50^{\text {th }}$ swimmer of the event-specific FINA World Ranking List between 2016 and 2021 (11). Sub-elite level and high-competitive level were defined as the average rSBT of the $8^{\text {th }}$ and $50^{\text {th }}$ swimmer of the event-specific National Ranking List of the Netherlands between 2016 and 2021 (11). Swimmers with a best rSBT outside the limits of the high-competitive group were excluded from further analysis. For the 100m event, this resulted in 3,498 swimmers (1,659 female) with

15,960 observations (7,384 female) with an average of 5.3 ± 1.9 observations per swimmer. For the 200 m event, this resulted in 2,230 swimmers (1,252 female) with 10,309 observations (5,412 female) with an average of 5.3 ± 1.9 observations per swimmer.

2.4. Statistical analysis

Following the methods introduced by Menting et al. (7), longitudinal multilevel models were created to describe pacing behavior as a function of age, race experience and performance group. Multilevel modelling allows for the creation of models in which repeated measures (level 1) are nested within individual swimmers (level 2), allowing the use of longitudinal data with varying number of measurements between swimmers as well as a variety in temporal spacing between measurements. Analyses were performed using the lmer4 package in R (R version $3.6 .0)(29,30)$. Statistical assumptions (e.g., multicollinearity) were checked and outliers were screened and removed (100 m : 915, 200m: 1,006). The RST per 50 m section were included as dependent variables. In contrast to split times, all RST must add up to 100%. With respect to this constraint, one out of two (100 m freestyle) and three out of four (200 m freestyle) multilevel models were created. The remaining, free section (RST 50-100m in both events) was calculated from these models. Following that the sum of 50 m sections must add up to 100%, the same predictor variables (fixed part) and variance structure (random part) had to be incorporated into each model equation. Predictor variables age and race experience were included as continuous, time-varying factors whereas performance group was included as a categorical, time-invariant factor. The power law of practice states that the effect of experience on performance decreases as the level of experience increases (31). In addition, the age effect on performance decreases as swimmers are fully matured (27). As such, the effect of a 1-year increase at age 13 will be larger than a 1-year increase at age 19 . To account for this, the variables age and race experience were log-transformed, of which the latter transformation was needed to meet the assumption of
normality. To represent the three performance groups in the statistical models, two dummy variables (sub-elite and high-competitive) were included and the elite group functioned as reference level. A random intercept model was selected as the most appropriate variance structure, allowing the inclusion of each swimmer's individual trajectory that randomly deviates from the average population trajectory. In sum, the following multilevel model was adopted:

$$
\begin{gathered}
R S T_{i s}=\alpha+\beta_{1} \times \log \left(\text { Age }_{i s}\right)+\beta_{2} \times \log \left(\text { RaceExperience }_{i s}\right)+\beta_{3} \times \text { SubElite }_{i} \\
+\beta_{4} \times \text { HighCompetitive }_{i}+u_{i}+\varepsilon_{i s} \\
u_{i} \sim N\left(0, \sigma_{0}^{2}\right) \\
\varepsilon_{i s} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

$R S T_{i s}$ was the relative split time of a 50 m section for swimming season s of swimmer i, α the intercept assigned to the elite group, Age $_{i s}$ the corresponding age value, RaceExperience ${ }_{i s}$, the corresponding race experience value, SubElite $_{i}$ the dummy variable of swimmer i assigned to the sub-elite group and HighCompetitive ${ }_{i}$ the dummy variable of swimmer i assigned to the high-competitive group. The unexplained information was the sum of u_{i} (between-subject variance) and $\varepsilon_{i s}$ (residual variance). The models were validated by using graphical tools to check violations of homogeneity, normality and independence. Predictor variables were considered significant if the estimated coefficient is greater than twice the standard error of the estimate ($\mathrm{p}<0.05$). Post-hoc analyses were performed for models with future performance group as significant predictor variable. For this analysis, swimmers were classified in age categories based on their age on the 31st of December of the swimming season. Per age category, an independent sample t-test was conducted to examine from which age onward between-group differences in pacing behavior occurred. These follow-up analyses were executed for age
categories with at least 30 observations per performance group. For all tests, p < 0.05 (twotailed) was set as significance.

3. Results

The models created can be found in Table 2. Using the fixed part of the models, predictions for the dependent variables can be made. For example, for the RST in the $100-150 \mathrm{~m}$ segment of a 200 m event performed by an 18-year-old male swimmer, with 20 previous races and an adult performance level as high-competitive, the following value will be predicted as:

$$
\begin{aligned}
\text { RST } 150 m= & 27.42+(-0.55 \times \log 18)+(-0.03 \times \log 20)+(-0.00 \times 0)+(0.09 \times 1) \\
& =25.83 \%
\end{aligned}
$$

3.1. Age

The predicted effect of age on RST is visualized in Figure 1A (100m) and Figure 2A (200m). Older male swimmers were relatively faster in the first 50 m of the 100 m . No effect of age was indicated in female 100 m swimmers. In the 200 m , older male and female swimmers were predicted to start relatively slower, have a relatively faster middle section and a relatively slower final 50 m section compared with their younger counterparts.

3.2. Race experience

Race experience significantly impacted RST in all segments except for the final segment in the male 200m event, as visualized in Figure 1B (100m) and Figure 2B (200m). In the 100 m , more experienced male and female swimmers were relatively slower in the first half of the race. In the 200 m , male swimmers with more race experience were relatively slower in the first 50 m
section, but faster in the 150 m section. More experienced female swimmers were relatively slower in the first 50 m section and relatively faster in the 150 m and 200 m sections.

3.3. Performance level

Elite male swimmers were faster in the first 50 m of the 100 m , compared to the high-competitive group. Post hoc analysis revealed that the male swimmers of the elite group started differentiating themselves at 17 years old $\left(\mathrm{t}_{(99.6)}=-2.21, \mathrm{p}<0.05\right)$. No difference was found between female swimmers of differing performance groups. In the 200 m , elite male swimmers were predicted to be relatively slower in the first 50 m , but faster in the 150 m section, compared to swimmers from the high-competitive group. Swimmers from the elite group differentiated themselves as early as 16 years old $\left(\operatorname{RST} 50: t_{(51.728)}=3.10, \mathrm{p}<0.01 ;\right.$ RST150: $\mathrm{t}_{(57.699)}=3.11, \mathrm{p}$ < 0.01). Elite female swimmers were relatively slower in the first 50 m section, but faster in the 150 m and 200 m sections, compared to the high-competitive group. The difference started at 13 years of age $\left(\operatorname{RST} 50: \mathrm{t}_{(51.07)}=2.36, \mathrm{p}<0.05, \operatorname{RST150}: \mathrm{t}_{(77,62)}=4.62, \mathrm{p}<0.001 ; \operatorname{RST}\right.$ 200: $\mathrm{t}_{(97,66)}$ $=-3.065, \mathrm{p}<0.01)$. In both the 100 m and 200 m , the model predicted no significant difference in RST between the elite and sub-elite groups (Figure 1C and Figure 2C).

4. Discussion

The present study aimed to investigate the pacing behavior development of swimmers throughout adolescence, explicitly differentiating between the effects of age and experience as well as investigating its relationship to performance level in adulthood. As hypothesized, older male swimmers adopted a more all-out distribution of effort in the 100 m event, although this development was not exhibited by female swimmers. In the 200m, male and female swimmers exhibited a more even distribution of effort as they became older. Both race experience and age independently impacted the pacing behavior of adolescent swimmers, providing evidence that
experience is not the sole driver of pacing behavior development. Furthermore, adolescent swimmers who in adulthood reached the elite level (100m: male, 200m: male \& female) exhibited a pacing behavior more resembling adult swimmers compared to swimmers in the high-competitive group. As hypothesized, the distinction in pacing behavior between swimmers of differing future performance level occurred earlier in female compared to male swimmers.

4.1. Pacing behavior development in swimming

In previous literature, the effect of experience and age has often been used synonymously (13, 17, 18). However, this seems to be an oversimplification. In the 100 m , the behavior of older male swimmers moves towards a fast first 50 m , hereby paralleling the behavior of the elite swimmers in adulthood. This resemblance, however, was not observed when comparing male swimmers based on race experience. It supports the notion that pacing behavior development is driven by other age-related factors (e.g., physical maturation and cognitive development) alongside the increase in experience. Additionally, these findings suggest that race experience in itself may not be sufficient to explain the development of future elite performers. Further evidence for this view is provided by the finding that in the 200 m event, age still impacts on pacing behavior in both male and female swimmers, even with a separate variable for race experience included in the model. Moreover, the results show that in line with the hypothesis, the separation between future performance levels occurs at a younger age in females (13 years old) compared to males (16 years old). The earlier onset of pacing behavior development in females which has previously been described in a cross-sectional study (21) is thereby confirmed by the current longitudinal study and is thought to be caused by the earlier onset of physical maturation and cognitive development (21,22).

Based on previous literature, it was proposed that with experience and age, adolescent athletes adapt their pacing behavior to better fit the task demands $(6,7)$. Indeed, within the present study,
there is a difference in the development of pacing behavior in the 100 m and the 200 m events. In the 100 m event, older male swimmers adopt a more all-out pacing behavior, characterized by a relatively faster first lap. The relatively faster initial 50 m could be the result of an improved race start, including the dive and underwater phase. Alternatively, it has been established that in tasks of similar duration to the 100 m freestyle event, better-performing athletes differentiated themselves by a relatively more all-out pacing behavior (32, 33). De Koning et al proposed that for shorter events (<2min), the advantage of a higher velocity in the first part of an exercise task and the lower amount of kinetic energy left at the end of the race, outweighed the disadvantage of higher frictional losses associated with the higher average velocity (33), which was further evidenced through modelling studies in speed skating and track cycling (34, 35), though differences between sports were visible (36). Indeed, elite swimmers competing in the 100 m freestyle finals of international events exhibited an all-out pacing behavior, comparable to the one found in the current study (12). Moreover, it was reported that elite male swimmers adopted a more all-out pacing behavior (RST50m: 47.91\%, RST100m: 52.09\%) compared to female swimmers (RST 0m: 48.29\%, RST100m: 51.77\%) (12). These findings are supported by the results of the present study, as adolescent male swimmers not only presented a more all-out pacing behavior, but also continued to develop this behavior with age. The reason behind the apparent difference in pacing behavior between male and female swimmers could potentially be found in the physical and physiological differences between male and female swimmers (37). Alternatively, it has been reported that males engage more in risk-taking behavior and therefore are expected to generally adopt a more all-out pacing behavior (38).

Contrary to the 100 m event, older male and female swimmers adopt a relatively more even distribution of velocity in the 200 m event. This is achieved by a relatively slower first and last 50 m section and a relatively faster middle section. Swimming is a head-to-head type event, as the winner of a race is the swimmer who covers the given distance before the other swimmers,
independent of the time set by swimmers in previous races (8). Remarkably, the development of pacing behavior in swimming does not resemble that of other middle-distance head-to-head events, such as short-track speed skating. Studies in these events have reported that the athletes' pacing behavior develops towards a more conservative start and middle section of the race to facilitate the athlete to position themselves well and be relatively faster in the key final stages of the race $(7,21,22)$. The development of pacing behavior in the 200 m more resembles the one found in time-trials of a similar duration $(6,39,40)$. This development is characterized by a shift towards a more even distribution of effort, which allows for a minimization of energy loss due to acceleration and deceleration, resulting in better performance in middle- and longdistance time-trial based events (41). This resemblance to time-trials likely originates from the lane-based nature of competitive swimming (8). The lanes inhibit the interaction with other competitors, resulting in a less interactive competitive environment as is also found in timetrial events. Taken together, coaches could expect to encounter sex- and age-related differences in pacing behavior in adolescent swimmers of the same level of race experience. Additionally, as adolescent athletes get older, they adapt their pacing behavior to fit the characteristics of the task, with male swimmers adopting a more all-out behavior on the 100 m and both male and female swimmers adopting a more even distribution of effort in the 200 m event.

4.2. Future performance

The findings of the present study provide evidence that the swimmers who perform within 104% of the prevailing world record as adults (i.e., the elite group), exhibit pacing behavior that differentiates them from other adolescent swimmers (i.e., the high-competitive group). It therefore establishes that adequate pacing behavior development is an essential part of the developmental pathway towards elite swimming performance. In the 200 m event, the effect of future performance level parallels the effects of age and race experience in both males and
females. In other words, swimmers that achieve a higher level of performance in adulthood, exhibited a pacing behavior resembling that of older and more experienced swimmers during adolescence. This is different for the 100 m event. Adolescent male swimmers who reach the elite level as an adult, exhibit a pacing behavior that is more resembling the pacing behavior of the older swimmers (all-out pacing behavior) compared to that of their peers who reach the high-competitive level. However, the current findings suggest that more race experience results in a more conservative first 50 m in the 100 m instead of going more all-out. The underlying mechanism for this converse effect of race experience on pacing behavior in 100 m event remains unclear and warrants further research. In females no effect of either performance level or age was found, however the effect of race experience was equal to males.

In the present study, no distinction could be made between elite and sub-elite swimmers. A possible reason for this could be the high performance level of all included swimmers in the present study. To place it into context, for a male 200 m swimmer competing in 2022, the performance levels equal a time of $<106.18 \mathrm{~s}$ (elite), 106.18-109.75s (sub-elite) and 109.75118.93 (high-competitive). The Olympic Qualifying Time for Tokyo 2021 was set at 107.02s (42). In comparison to the current study, a previous study did report a difference in pacing behavior between three performance levels (6). However, Wiersma et al determined adult performance using the season best performance at 18-19 years of age, whereas the present study used a more appropriate measure to indicate adult performance level: all-time peak performance after 20 (female) or 22 (male) years of age expressed as a percentage of the prevailing world record. Recalculating the performance level of the athletes in the previous study, using these methods results in a much wider spectrum of performance (elite: 113.8%, sub-elite: 120.6%, non-elite: 129.7%), could explain why the previous study did find a difference in pacing behavior development between the performance levels.

4.3. Limitations and future directions

Although the models created in the present study provide novel insights into the relationship between age, experience and pacing behavior, the models do not account for all the variance in a swimmers' pacing behavior. Pacing is a complex, psychophysiological process and even when the task characteristics are set, it is influenced by a multitude of factors relating to the individual (i.e., physical maturity, cognitive development, muscle fiber type distribution) and environment (i.e., coaching culture, training opportunities) $(1,9,43,44)$. The absence of these factors has potentially led to the lower explained variance of the models. For example, there was no effect for age or performance level on pacing behavior in female swimmers competing in the 100 m event. In males, the effect of age and performance group was also more pronounced in the 200m event compared to the 100 m event. It could be that 100 m freestyle performance is predominantly driven by the development of physical characteristics, such as muscle fiber type distribution, whereas in the 200 m event the distribution of effort is a larger determination factor in the outcome of the race. However, another reason might be that the 100 m freestyle is often contested by both 50 m and 200 m specialists. The energetic system requirements between the 50 m and 200 m freestyle events differ significantly and therefore swimmers who compete in these events are adapted to physiologically very different tasks (37), therefore exhibiting a different pacing behavior. The coming together of these two types of specialized swimmers might have impacted the results of the present study. It should be pointed out that previous studies have evidenced that swimming performance is impacted by velocity in free swimming sections, but also by turns and underwater phases (45). Quantification using 25 m or even 5 m and 10 m sections has previously been demonstrated to reveal more detailed definitions of impact of these factors on a swimmers' performance $(18,45)$. However, these data have to be gathered using camera set-ups and specialized software, which drastically decreases practicality and would have reduced the sample size greatly. In the end, the present study aimed to create
models which could provide insight into the relation between age, experience and future performance level, not precisely predict each individual swimmers' pacing behavior. The large sample size, consisting of swimmers from five continents, and the strong longitudinal nature of the data are of key importance to the rigidity of the present study's design, not in the first place because more large scale longitudinal studies on pacing behavior development are needed (4, 22). Consequently, the decision was made to use publicly available 50 m split times. The choice for this approach does allow for future studies, using more detailed quantifications of pacing behavior and the inclusion of more individual and environmental factors, to provide additional insights into the development of pacing behavior in the 100 m and 200 m freestyle events.

4.4. Practical application

The effect of age and race experience on pacing behavior as reported in the present study are relatively small compared to that of task defining characteristics such as race duration or stroke type (8). However, in a 200 m freestyle, an average 0.16% difference in velocity distribution per 50 m section (the difference between a 12 and 18 -year-old male swimmer as calculated using the models in the present study) constitutes 0.20 s . In a sport where 0.01 of a second can be the difference between winning and losing, a 0.20 s difference in velocity distribution in every 50 m section can indeed have a very real impact on competition performance. Using the formula provided in the present study, coaches could determine whether their swimmers are on track of developing the pacing behavior necessary to achieve the elite performance level. One point of notice should be made to this approach: the road to elite performance is not always linear and pacing is only a part of the skillset necessary to reach the top (46). In addition, it has been established that to pace adequately, athletes need to match their personal performance capacities to the task demands. Seeing as there is variation in each swimmer's performance capacities, a slightly different pacing behavior could be optimal for each swimmer. It is therefore important
to take the outcomes of the formula from the present study as a starting point and take an individualized approach to the development of each swimmer. Within this approach, coaches are advised to provide the swimmers with opportunities to experiment with variants of their established pacing behavior (4). Introducing variability would provide swimmers with the opportunity to discover a more optimal match between their personal performance capacities and the task demands (47). Coaches could induce this variation by providing augmented feedback via tools such as a stopwatch, pacer clock, wearable metronome, underwater lights or smart goggles (48). Demonstrating this method, a recent study reported that a three week training program in which adolescent swimmers were provided with feedback on their own pacing behavior was effective in increasing 400m freestyle performance (49). Subsequently, practice of the new variation of pacing behavior could be further increased by gradually taking away sources of feedback and adding environmental factors such as opponents, therefore training the swimmers to maintain their capability of decision-making regarding effort distribution in a more realistic competitive environment $(22,48)$.

5. Conclusion

The current large-scale study is the first in its kind in that it investigates the pacing behavior of swimmers from five continents over a period spanning the last twenty years. The rigorous multilevel modelling approach with corrections for prevailing world records revealed insights on developmental patterns based on thousands of swimmers with on average five competitive seasons in adolescence. The pacing behavior of swimmers develops during adolescence, as older swimmers adopt a pacing behavior that better suits the task demands (100m: more all-out [males only], 200m: more even). Although swimming is a head-to-head type of competition, the development of pacing behavior resembles that of time-trial events, most likely due to the lane-based nature of the sport. The persistence of the effect of age on pacing behavior when
race experience was also included as predicting variable, supports the hypothesis that pacing behavior development during adolescence is driven by other factors in addition to increased experience, such as physical maturation and cognitive development. Swimmers who reach the elite performance level in adulthood, exhibit a pacing behavior better suits the task demands and that resembles that of adults (100m: more all-out [only males], 200 m : more even) during adolescence. In the 200m, this differentiation occurs earlier in females compared to males, most likely due to the earlier onset of age-related physical maturation and cognitive development in females. Coaches are advised to take notice of the complex development of pacing behavior which occurs throughout adolescence. Furthermore, coaches could use the data presented in the present study as a starting point for an individualized approach to optimize the pacing behavior development in their swimmers and better guide them on the road towards elite performance.

6. Acknowledgments

6.1. Authors' contributions

The study conception and design were done in full collaboration with all authors. SGPM and AKP contributed equally to this manuscript. All authors critically revised the work. All authors read and approved the final manuscript.

6.2. Conflict of interest

The authors do not have any conflict of interest. The authors declare that the results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. The results of the present study do not constitute endorsement by the American College of Sports Medicine. The authors received no specific funding for this work.

7. Tables and figures

Table 1. The total number of swimmers and observations according to sex, performance level and event included in the analysis.

Table 2. Multilevel models predicting relative section time per 50 m section, divided by sex and event.

Figure 1. Predicted pacing behavior for males and females in the 100 m freestyle event according to age, race experience and performance level.

Figure 2. Predicted pacing behavior for males and females in the 200 m freestyle event according to age, race experience and performance level.

8. References

1. Edwards A, Polman R. Pacing in sport and exercise: a psychophysiological perspective: Nova Science Publishers; 2012.
2. Smits BLM, Pepping G-J, Hettinga FJ. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sports Medicine. 2014;44:76375.
3. Foster C, De Koning JJ, Hettinga F, Lampen J, La Clair KL, Dodge C, et al. Pattern of energy expenditure during simulated competition. Medicine \& Science in Sports \& Exercise. 2003;35(5):82631.
4. Elferink-Gemser MT, Hettinga FJ. Pacing and Self-Regulation: Important Skills for Talent Development in Endurance Sports. International Journal of Sports Physiology and Performance. 2017:1-17.
5. Micklewright D, Angus C, Suddaby J, St Clair GA, Sandercock G, Chinnasamy C. Pacing strategy in schoolchildren differs with age and cognitive development. Medicine \& Science in Sports \& Exercise. 2012;44:362-9.
6. Wiersma R, Stoter IK, Visscher C, Hettinga FJ, Elferink-Gemser MT. Development of 1500-m Pacing Behavior in Junior Speed Skaters: A Longitudinal Study. International Journal of Sports Physiology and Performance. 2017;12:1-20. doi: 10.1123/ijspp.2016-0517.
7. Menting SGP, Huijgen BC, Konings MJ, Hettinga FJ, Elferink-Gemser MT. Pacing Behavior Development of Youth Short-Track Speed Skaters: A Longitudinal Study. Medicine \& Science in Sports \& Exercise. 2020;52(5):1099-108. doi: 10.1249/mss.0000000000002239. PubMed PMID: 00005768-900000000-96433.
8. Menting SGP, Elferink-Gemser MT, Huijgen BC, Hettinga FJ. Pacing in lane-based head-tohead competitions: A systematic review on swimming. Journal of sports sciences. 2019;37(20):228799. doi: 10.1080/02640414.2019.1627989.
9. Menting SGP, Hendry DT, Schiphof-Godart L, Elferink-Gemser MT, Hettinga FJ. Optimal Development of Youth Athletes Toward Elite Athletic Performance: How to Coach Their Motivation, Plan Exercise Training, and Pace the Race. Frontiers in Sports and Active Living. 2019;1(14). doi: 10.3389/fspor.2019.00014.
10. McGibbon KE, Pyne D, Shephard M, Thompson KJSM. Pacing in swimming: a systematic review. 2018;48(7):1621-33.
11. (FINA) FIdN. International swimming rankings 2021 [cited 2021 09-09-2021]. Available from: https://www.fina.org/swimming/rankings
12. Robertson EY, Pyne DB, Hopkins WG, Anson JM. Analysis of lap times in international swimming competitions. Journal of Sports Sciences. 2009;27(4):387-95.
13. Skorski S, Faude O, Caviezel S, Meyer T. Reproducibility of pacing profiles in elite swimmers. International Journal of Sports Physiology and Performance. 2014;9(2):217-25.
14. Scruton A, Baker J, Roberts J, Basevitch I, Merzbach V, Gordon D. Pacing accuracy during an incremental step test in adolescent swimmers. Open access journal of sports medicine. 2015;6:249.
15. Skorski S, Faude O, Abbiss CR, Caviezel S, Wengert N, Meyer T. Influence of pacing manipulation on performance of juniors in simulated 400-m swim competition. International Journal of Sports Physiology and Performance. 2014;9(5):817-24.
16. !!! INVALID CITATION !!! .
17. Turner AP, Smith T, Coleman SG. Use of an audio-paced incremental swimming test in young national-level swimmers. International journal of sports physiology and performance. 2008;3(1):6879.
18. Dormehl S, Osborough C. Effect of age, sex, and race distance on front crawl stroke parameters in subelite adolescent swimmers during competition. Pediatric Exercise Science.
2015;27(3):334-44.
19. Buckler JM, Wild J. Longitudinal study of height and weight at adolescence. Archives of Disease in Childhood. 1987;62(12):1224. doi: 10.1136/adc.62.12.1224.
20. Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatric disease treatment. 2013;9:449.
21. Menting SGP, Konings MJ, Elferink-Gemser MT, Hettinga FJ. Pacing Behavior of Elite Youth Athletes: Analyzing 1500-m Short-Track Speed Skating. International Journal of Sports Physiology and Performance. 2019;14:222-31. doi: 10.1123/ijspp.2018-0285.
22. Menting SGP, Hanley B, Elferink-Gemser MT, Hettinga FJ. Pacing behaviour of middle-long distance running \& race-walking athletes at the IAAF U18 and U20 World Championship finals. European Journal of Sport Science. 2021:1-10. doi: 10.1080/17461391.2021.1893828.
23. Tiozzo E, Leko G, Ruzic L. Swimming bodysuit in all-out and constant-pace trials. Biology of Sport. 2009;26(2):149.
24. Toussaint HM, Truijens M, Elzinga MJ, de Ven AV, de Best H, Snabel B, et al. Swimming: Effect of a fast-skin ${ }^{\text {rm }}$ 'body'suit on drag during front crawl swimming. Sports Biomechanics. 2002;1(1):1-10.
25. Tomikawa M, Nomura T. Relationships between swim performance, maximal oxygen uptake and peak power output when wearing a wetsuit. Journal of Science and Medicine in Sport.
2009;12(2):317-22.
26. Allen SV, Hopkins WG. Age of peak competitive performance of elite athletes: a systematic review. Sports Medicine. 2015;45(10):1431-41.
27. Post AK, Koning RH, Visscher C, Elferink-Gemser MT. Multigenerational performance development of male and female top-elite swimmers-A global study of the 100 m freestyle event. Scandinavian journal of medicine \& science in sports. 2020;30(3):564-71.
28. Stoter IK, Koning RH, Visscher C, Elferink-Gemser MT. Creating performance benchmarks for the future elites in speed skating. Journal of Sports Sciences. 2019;37(15):1770-7.
29. R_Core_Team. R: A Language and Environment for Statistical Computing2021.
30. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using Ime4. Journal of Statistical Software. 2015;67(1):1-48. doi: 10.18637/jss.v067.i01.
31. Schmidt RA, Lee TD, Winstein C, Wulf G, Zelaznik HN. Motor control and learning: A behavioral emphasis: Human kinetics; 2018.
32. Hanon C, Gajer B. Velocity and stride parameters of world-class 400-meter athletes compared with less experienced runners. The Journal of Strength \& Conditioning Research. 2009;23(2):524-31.
33. de Koning JJ, Bobbert MF, Foster C. Determination of optimal pacing strategy in track cycling with an energy flow model. Journal of Science and Medicine in Sport. 1999;2(3):266-77.
34. Hettinga FJ, De Koning JJ, Schmidt LJ, Wind NA, MacIntosh BR, Foster C. Optimal pacing strategy: from theoretical modelling to reality in 1500-m speed skating. British Journal of Sports Medicine. 2011;45(1):30-5.
35. Hettinga FJ, De Koning JJ, Hulleman M, Foster C. Relative importance of pacing strategy and mean power output in 1500-m self-paced cycling. British journal of sports medicine. 2012;46(1):30-5. 36. Stoter IK, MacIntosh BR, Fletcher JR, Pootz S, Zijdewind I, Hettinga FJ. Pacing strategy, muscle fatigue, and technique in 1500-m speed-skating and cycling time trials. International Journal of Sports Physiology and Performance. 2016;11(3):337-43.
36. Almeida TA, Pessôa Filho DM, Espada MA, Reis JF, Simionato AR, Siqueira LO, et al. VO2 kinetics and energy contribution in simulated maximal performance during short and middle distance-trials in swimming. European Journal of Applied Physiology. 2020;120(5):1097-109. 38. Micklewright D, Parry D, Robinson T, Deacon G, Renfree A, St Clair Gibson A, et al. Risk perception influences athletic pacing strategy. Medicine and science in sports and exercise. 2015;47(5):1026-37.
37. Blasco-Lafarga C, Montoya-Vieco A, Martínez-Navarro I, Mateo-March M, Gallach JE. Six Hundred Meter-Run and Broken 800's Contribution to Pacing Improvement in Eight Hundred MeterAthletics: Role Of Expertise and Training Implications. The Journal of Strength \& Conditioning Research. 2013;27(9):2405-13.
38. Sollie O, Gløersen \varnothing, Gilgien M, Losnegard T. Differences in pacing pattern and sub-technique selection between young and adult competitive cross-country skiers. Scandinavian Journal of Medicine \& Science in Sports. 2021;31(3):553-63.
39. De Koning JJ, Foster C, Lucia A, Bobbert MF, Hettinga FJ, Porcari JP. Using modeling to understand how athletes in different disciplines solve the same problem: swimming versus running versus speed skating. International Journal of Sports Physiology and Performance. 2011;6(2):276-80. 42. FINA. Qualification System - Games of the XXXII Olympiad - Toyko 2020 2020. Available from: https://resources.fina.org/fina/document/2021/01/21/43ab180c-a924-44f3-8331a40ca5c99f44/final - 20200715 - tokyo 2020 - revised qualification system - swimming eng.pdf.
40. Renfree A, Casado A. Athletic races represent complex systems, and pacing behavior should be viewed as an emergent phenomenon. Frontiers in physiology. 2018;9:1432.
41. Mallett A, Bellinger P, Derave W, McGibbon K, Lievens E, Kennedy B, et al. The Influence of Muscle Fiber Typology on the Pacing Strategy of 200-m Freestyle Swimmers. International Journal of Sports Physiology and Performance. 2021;16(11):1670-5.
42. Escobar DS, Hellard P, Pyne DB, Seifert L. Functional role of movement and performance variability: Adaptation of front crawl swimmers to competitive swimming constraints. Journal of applied biomechanics. 2018;34(1):53-64.
43. Elferink-Gemser MT, Jordet G, Coelho-E-Silva MJ, Visscher C. The marvels of elite sports: how to get there? : British Association of Sport and Excercise Medicine; 2011. p. 683-4.
44. Shea CH, Kohl RM. Specificity and variability of practice. Research quarterly for exercise and sport. 1990;61(2):169-77.
45. McGibbon K, Pyne D, Shephard M, Osborne M, Thompson K. Contemporary practices of highperformance swimming coaches on pacing skill development and competition preparation.
International Journal of Sports Science \& Coaching. 2020;15(4):495-505.
46. Tijani J, Lipińska P, Abderrahman AB. 400 meters freestyle pacing strategy and race pace training in age-group swimmers. Acta of bioengineering and biomechanics. 2021;23(3):191-7.
