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Abstract 39 

Operating construction equipment for extended periods of time may lead to mental fatigue and, as a result, an 40 

increased risk of human error-related accidents and jeopardized health problems for the operators. Therefore, to 41 

limit the risk of accidents and protect operators' wellbeing, their mental fatigue must be monitored reliably and in 42 

real time. Recently, many invasive technologies have been employed to alleviate this problem, but they entail the 43 

wearing of physical sensors, which may instigate irritation and discomfort. This study proposes a non-invasive 44 

mental fatigue monitoring method using geometric measurements of their facial features that does not require the 45 

operators to wear sensors on their body. The study further validates the proposed method by comparing it with 46 

wearable electroencephalography (EEG) technology to establish its ecological validity for construction equipment 47 

operators. To serve the purpose, a one-hour excavator operation by sixteen construction equipment operators was 48 

conducted on a construction site. Ground truth, brain activity using wearable EEG, and geometric measurements 49 

of facial features were extracted and analyzed at the baseline and every 20 min for one hour. A considerable 50 

temporal variation was found in the reported metrics (eye aspect ratio, eye distance, mouth aspect ratio, face area, 51 

and head motion) and were significantly correlated with ground truth and EEG metric. Furthermore, the brain 52 

visualization pattern obtained from EEG was also associated with the variations in the facial features. The findings 53 

of the study reveal that construction equipment operators’ mental fatigue can be monitored non-invasively using 54 

geometrical measurements of facial features. 55 

Keywords: mental fatigue, construction equipment operators, construction safety, facial features, 56 

electroencephalography 57 



1 Introduction 58 

The construction industry has reputation for its poor safety performance (Ke et al., 2021b). Despite huge positive 59 

impacts, the safety of the workforce in the construction industry is the most neglected and unresolved challenge. 60 

Globally, the construction industry has an excessively high accident rate (ILO, 2022). More specifically, about 61 

20% of fatal accidents in the United States and 40% of fatal accidents in Singapore happen in the construction 62 

industry (Feng et al., 2015, OSHA, 2019). Similarly, the Hong Kong construction industry also reported 2947 and 63 

2532 accidents in 2019 and 2020, respectively. In addition, statistics for the first three months of 2022 reveal that 64 

the construction industry in Hong Kong recorded the highest number of fatalities and accident rate among all other 65 

industrial sectors (Labor, 2022). Moreover, construction has been listed as the second most accident-prone industry 66 

in Pakistan relative to other industries, and the percentage of accidents has increased significantly over the past 67 

several years. For instance, 16.27%, 17.27%, and 19.70% in 2014-15, 2017-18, and 2020-21, respectively (PBS, 68 

2015, PBS, 2018, PBS, 2021). Besides, safety remains a key concern in the Chinese construction industry, as it 69 

accounted for over a third of all recorded incidents (CLB, 2020). Additionally, the People's Republic of China's 70 

Ministry of Emergency Management reported in 2018 that the total number of accidents had increased year-on-71 

year and has remained high. Furthermore, the accident and death rates increased by 7.8 percent in the first half of 72 

2018 to 1,732 accidents and 1.4 percent to 1,752 deaths, respectively (MEM, 2018). Among the overall 73 

construction accidents, equipment accounted for one fifth of the total accidents (Labor, 2016). Likewise, OSHA 74 

also found that struck-by accidents are among the four major causes of fatalities in the construction industry. 75 

Construction equipment is used in the construction industry to perform different complex tasks such as excavation, 76 



lifting materials, compaction, etc. Such tasks are mentally demanding and require the equipment operators to 77 

maintain a certain level of sustained attention and vigilance (Li et al., 2020b). Wagstaff and Sigstad Lie (2011) 78 

stated that such prolonged construction operations and vigilant tasks induce mental fatigue among construction 79 

equipment operators. When an operator is subjected to mental fatigue, he is unable to continue equipment 80 

operations due to prolonged attention. It hampers the equipment operators’ judgement and concentration (Das et 81 

al., 2020). They undergo a decrease in productivity and performance (Masullo et al., 2020). This makes equipment 82 

operators more vulnerable to equipment-related accidents and, subsequently, causes workplace injuries and 83 

fatalities. Therefore, prevention of construction equipment operators’ attention failure plays an important role in 84 

enhancing site safety (Han et al., 2019). Therefore, it is crucial that the mental fatigue of construction equipment 85 

operators be automatically monitored so that safety personnel can intervene immediately if necessary. 86 

Safety is a fundamental need for anyone participating in construction work. Therefore, for construction safety, 87 

many studies have attempted to assess the mental fatigue of construction equipment operators. Initially, mental 88 

fatigue was assessed by relying on the subjective assessment of operators (Turner and Lingard, 2020). Among 89 

them, the most widely utilized subjective assessment tool is NASA-TLX (Hart, 2006). As such, this assessment 90 

was not suitable for continuous monitoring of mental fatigue since it hampers the routine work of operators, it is 91 

intrusive in nature, time-consuming, and is based on biased self-reporting of workers; hence, it lacks accuracy 92 

(Umer et al., 2020, Han et al., 2019). Over the past few decades, advances in technology have made it possible to 93 

develop devices that provide objective assessments of mental fatigue. Therefore, the researchers were motivated 94 

to perform a more objective and real-time assessment of mental fatigue using physiological measurements such as 95 



electroencephalogram (Jeon and Cai, 2022, Ke et al., 2021a, Wang et al., 2019), electrodermal activity (Umer, 96 

2022, Lee et al., 2021, Choi et al., 2019), eye tracking (Noghabaei et al., 2021, Li et al., 2020b, Han et al., 2020) 97 

and electrocardiograph (Umer et al., 2022, Zhao et al., 2012). As a result of the fact that when a person's mental 98 

state changes, so do the values and parameters of physiological signals and their accompanying parameters (Dziuda 99 

et al., 2021). Even though these technologies have shown promising results in the diagnosis of mental fatigue, 100 

there are several issues with their use. The equipment operators must wear these devices on their bodies making 101 

them invasive in nature and at the same time causing annoyance while performing equipment operations (Li et al., 102 

2020b). These techniques are based on the electrical conductivity of the operator's body, and electrical signals are 103 

susceptible to harsh construction site conditions. The application of these technologies sometimes requires skin 104 

preparation for sensors and also necessitates limited physical activity to minimize artifacts (Chen et al., 2015). 105 

Some of these technologies, including electroencephalography, have poor spatial resolution (Kaur et al., 2022). 106 

Due to the fact that electrodes assess surface activity, it is unknown whether the signals originate near the surface 107 

or deep within the brain region. Also, most of the studies were conducted in simulated scenarios, such as by Liu 108 

et al. (2021) and Li et al. (2019b), which limits their applicability and reliability for construction sites and 109 

equipment operators. This significantly limits their occupational use for detection of fatigue (Shi et al., 2017). 110 

Thus, there exists a knowledge gap to automatically detect the operators’ mental fatigue by non-invasive and 111 

contact-free measurements without disrupting their ongoing equipment operations. Likewise, a low-cost, 112 

automated early warning system for the mental fatigue of construction equipment operators will help to make 113 

construction sites safer for operations. 114 



Accordingly, this study proposes geometrical measurements of construction equipment operators’ facial features 115 

as a manifestation of mental fatigue through non-invasive and contact-free measurements. As per the study by Ma 116 

et al. (2021), the human face not only shows direct personal information but also shows indirect emotions. Dziuda 117 

et al. (2021) reported that the continuous analysis of face images of drivers acquired while driving allows effective 118 

and contactless detection of fatigue. Similarly, Cheng et al. (2019) concluded that observing a person's facial 119 

expressions and indications can reveal clues to their level of stress and fatigue. Earlier studies also indicate the 120 

usefulness of facial features for fatigue detection. At the beginning of the 1990s, the percentage of time that the 121 

eyes were 80% to 100% closed was adopted to research fatigue in drivers (Daza et al., 2014, Zhang and Zhang, 122 

2010). Later ranges of 70% to 100% (Lin et al., 2015) and 75% to 100% (Henni et al., 2018) of eye closure were 123 

considered in other studies. Other indicators of mental fatigue were also proposed. The most measurable indicator 124 

related to eyes were eye aspect ratio (Kuwahara et al., 2022, El Kerdawy et al., 2020), blinking rate (Bachurina 125 

and Arsalidou, 2022, Zargari Marandi et al., 2018); and eye distance (Giannakakis et al., 2017). Similarly, Wang 126 

et al. (2018) reported that as much as 80% of the information our brains get originates from our eyes. Eye behavior 127 

can therefore be utilized to evaluate our mental state. Additionally, Chew et al. (2021) analyzed gaze behavior 128 

patterns to assess the perceived workload. Nevertheless, eye blinks are also considered in the latest literature on 129 

driver fatigue research (Aravind et al., 2019). Similarly, Li et al. (2021) used self-report, eye blinking rate, and R-130 

value as indicators to substantiate the driver’s fatigue state. Additional information regarding the mental fatigue 131 

can also be obtained by tracking the position of the driver’s head. It has been reported that under stressful 132 

conditions, head motions are more frequent and quicker, with a greater overall amount of head motion (Ansari et 133 



al., 2022, Giannakakis et al., 2018). Furthermore, research shows that fatigued situations have been demonstrated 134 

to have an impact on mouth-related features such as lip movement (Iwasaki and Noguchi, 2016). Similarly, 135 

Giannakakis et al. (2017) reported increased mouth activity during stressful situations. 136 

Despite the potential of automated facial features for the mental fatigue assessment of construction equipment 137 

operators, there is a scarcity of research using geometric measurements of facial features to understand equipment 138 

operators’ mental fatigue on real construction sites. Additionally, it is challenging to use findings from other 139 

occupations, such as drivers, for fatigue monitoring in excavator operators due to the substantial differences 140 

between the work patterns of drivers and excavator operators. For example, during equipment operations, 141 

excavator operators move their heads continuously to track the excavator’s bucket (Liu et al., 2021). Therefore, it 142 

remains unknown whether geometric measurements of facial traits under such circumstances can still be used to 143 

detect construction equipment operators’ mental fatigue. Thus, the ecological validity of the geometric measures 144 

of facial features for mental fatigue monitoring of construction operators is still questionable. Consequently, a 145 

research gap exists for the development and testing of an objective, automatic, and non-invasive method for 146 

assessing operators' mental fatigue. To fill this gap, firstly, the study proposes a non-invasive assessment of 147 

temporal geometric measurements of facial features to detect mental fatigue. Secondly, the study compares 148 

geometric measurements to wearable electroencephalography measurements, which is an established invasive 149 

method for mental fatigue assessment of construction workers. Many researchers have utilized it extensively to 150 

monitor the mental fatigue and stress of construction workers, for instance studies by Lee and Lee (2022), Wang 151 

et al. (2022), Jeon and Cai (2022), Ke et al. (2021a), Xing et al. (2020b), Li et al. (2019a), Wang et al. (2019), 152 



Jebelli et al. (2019), Jebelli et al. (2018a), Hwang et al. (2018), and Wang et al. (2017). This comparison serves to 153 

ecologically validate the geometric measurement of facial features in terms of their applicability to construction 154 

equipment operators' as well as their effective use during routine operations by operators without interfering with 155 

their on-site operations. As a result, the proposed study is expected to improve the current assessment of mental 156 

fatigue in a non-invasive way through contact-free measurements. 157 

2 Methodology 158 

The overview of the research process and experiment procedure is depicted in Figure 1 and Figure 2, respectively. 159 

It shows the proposed approach for identifying mental fatigue in construction equipment operators by using 160 

geometric measurements of facial features collected through video recordings. An excavator operating experiment 161 

was conducted at a construction site to collect related data for detecting the mental fatigue of construction 162 

equipment operators. On different days, the experiment was conducted at the same time, i.e., from 9:00am to 163 

11:00am (Li et al., 2019b, Zhao et al., 2012) in the morning under similar weather conditions, i.e., clear weather 164 

on all data collection days. The experiment was based on a monotonous and prolonged excavating and discharge 165 

task on a construction site. All the excavator operators were directed to complete a monotonous and prolonged 166 

excavation task for an hour, which included ground excavation and moving the material from pits to transport 167 

vehicles. Mental fatigue was induced using the time-on-task procedure. Simultaneously with their tasks, the 168 

operators were video recorded to collect data on their facial features via a mobile camera. Besides, the NASA-169 

TLX score was utilized to quantify the subjective assessment of equipment operators' mental workload. The 170 

subjective mental fatigue levels were assessed at the start as a baseline measurement and every 20 min for the one-171 



hour experiment (i.e., at 20, 40, and 60 min). Geometric measurements of facial features were then extracted from 172 

each frame, and artifacts were removed using a normalization coefficient 𝑄. It is a Euclidean distance along the 173 

nose line. Apart from visual cues, EEG data for each equipment operator was also collected for every experiment 174 

phase. For the purpose of statistical analysis, since the subjective mental fatigue levels were assessed at baseline 175 

and every 20-min experiment phase, the continuous real-time data of facial features from video frames and EEG 176 

sensor data was averaged for the respective time points (i.e., at 20, 40, and 60 min), as shown in block-B of Figure 177 

1. Mental fatigue was detected by evaluating temporal changes in facial features and through EEG sensors between 178 

the time points. Finally, the detected mental fatigue with EEG and geometric measurements of facial features were 179 

correlated to develop ecological validity for construction equipment operators. 180 

 181 

Figure 1: Overview of the research process 

               

        

                

       

   

 
 
 
 
  
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
  
 

      

 
 
 

 
 

 
 
 

 
 
 

                          

          

 
 
 
 
  
 
 
 
 
 
  

             

         

     

        

          

           

        

 
 
 
 
  
  
 
 
  
 
 

  
 
 
  

 
 
  
  

  
 
 
  
 

 
 
  
  

  
 
 
  
 

 
  

 
 
  
  
 
 
  
 
  
 
  
  
  
 

 
 
 
 
  
 
  
  
 
  
  
  

 
 
  

               

   



2.1 Participants 182 

Sixteen construction equipment operators with a mean age of 32.63 years (SD = 4.11) were included in the on-183 

field data collection. We determined the sample size of excavator operators to recruit for our research investigations 184 

based on sample sizes from previous studies. In earlier studies with similar purposes, 12 excavator operators (Li 185 

et al., 2019b), 12 crane operators (Das et al., 2020), 11 drivers (Ahn et al., 2016), 6 excavator operators (Li et al., 186 

2020b), and 5 crane operators (Liu et al., 2021) were recruited. Considering previous research in the literature, we 187 

decided that more than fifteen operators would be sufficient for our investigation and to justify our results. In 188 

addition, the results showed statistically significant differences, demonstrating that the sample size was adequate 189 

to infer valid conclusions. Furthermore, all the excavator operators who participated in the study were male. All 190 

the equipment operators were excavator operators, with prior experience of excavation operations at construction 191 

sites. The excavator operators indicated in their self-report that they were well rested and in good health. All the 192 

excavator operators reported having slept at least eight hours during the previous night and abstained from 193 

Figure 2: Experiment procedure; T1, T2, T3 and T4 represents the phases for assessments through NASA-TLX, facial 

features and EEG 
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alcoholic drinks for 24 hours before experimentation. On their assigned day, the operators were to report directly 194 

to the experiments and perform no other duties or activities prior to the commencement of the experiment. The 195 

recruited excavation operators had normal vision and provided informed consent before the data collection. The 196 

study was approved by the ethics subcommittee of the Hong Kong Polytechnic University (Reference Number: 197 

HSEARS20210927008) and conducted in accordance with the Declaration of Helsinki. Table 1 provides the 198 

demographic information of the excavation operators. 199 

Table 1: Construction equipment operators’ demographic information 200 

 Mean SD Range  Min-Ma   

Age (Years) 32.63 4.11 13 (26-39) 

Job Experience (Years) 7.44 2.90 9 (2-11) 

Height (cm) 174.50 5.06 18 (166-184) 

Weight (kg) 77.31 5.99 23 (68-91) 

Body Mass Index (kg/m²) 25.43 2.29 8.30 (21.46-29.76) 

2.2  quipment and Measurement 201 

2.2.1 Subjective assessment scales 202 

The NASA-TLX score was used for the labeling of construction equipment operators by assessing their individual 203 

subjective feelings of mental fatigue. The NASA-TLX score was utilized to quantify equipment operators' mental 204 

workload. It has been widely used in various research investigations since its development, and its reliability and 205 

sensitivity have been tested in a consistent number of independent tests (Hart, 2006). Likewise, studies by Liu et 206 

al. (2016) and Puspawardhani et al. (2016) also stated that NASA-TLX is a popular component of research studies 207 

since it is reliable and easy to use. Furthermore, temporal increase in NASA-TLX scores for the same task is 208 

considered as a subjective indicator of mental fatigue (Li et al., 2020b). The subjective assessment was used as a 209 



ground truth for construction equipment operators’ mental fatigue levels and was used to compare temporal 210 

outcomes of facial features’ geometric measurements. 211 

2.2.2 Camera-based video recording 212 

A color video camera was mounted on the inner side of the excavator to film the operators while they sat in the 213 

cabin. The approximate distance between the operator and the camera was 0.6m. The camera was installed on the 214 

windscreen of the equipment in such a manner that the operator's usual work was not disrupted by its presence. 215 

The sampling frequency of the color video camera was 30 frames per second (24-bit RGB with three channels or 216 

8-bit RGB per channel), with a resolution of 1440 x 1440 pixels. Furthermore, unlike other industries where the 217 

working conditions are stable, construction is a dynamic and complex industry with distinct working 218 

circumstances (Xing et al., 2020a). In this case, variations in illumination or non-uniform lighting 219 

conditions can impair facial detection performance. As discussed in the manuscript, the performance of 220 

our method depends heavily on the accurate localization of facial landmarks, which are hard to detect in 221 

low-light environments. Furthermore, we collected data from the real construction site at the same time 222 

on separate days while keeping weather forecasts in mind to avoid the extreme impacts of illumination. 223 

As a result, the overall effect of illumination and temperature was comparable for all operators. 224 

Furthermore, on days during data collection, the average minimum and maximum temperatures were 225 

29.1°C and 30.4°C, respectively. Additionally, on all days, the weather was clear. 226 

2.2.3 Electroencephalogram (EEG) Recording 227 

We used the Muse headband, which is a flexible and easy-to-use EEG recording system, to acquire EEG signals. 228 



It is a headband with four channels and dry electrodes at AF7, AF8, TP9, and TP10. FPz, being the reference 229 

electrode, is placed at the forehead position. The material used for the electrodes is silver. The Muse headband 230 

records EEG data at a sampling rate of 256 Hz. The Muse headband was linked to a smart phone through Bluetooth 231 

so that data could be transmitted. Using an app called "Mind Monitor," EEG data was recorded on a smart phone 232 

and then sent to a PC to be processed later (Arsalan et al., 2019). 233 

2.3 Data Preprocessing 234 

2.3.1 Data Labeling and Facial Feature Extraction 235 

All the operators were video recorded for one hour while performing excavation operations at the construction site. 236 

Initially, each operator's captured video was transformed into frames using OpenCV (an open-source computer 237 

vision library in Python). This resulted in 108,000 frames for each operator during the whole experiment since the 238 

frequency of the camera was 30 frames per second. Subsequently, these frames for each operator were divided into 239 

four groups as per the experiment phases, i.e., baseline, 20, 40, and 60 min for further analysis. The frames were 240 

then denoted as 𝐹𝑜,𝑝 where 𝑜 is the excavation operator, 𝑝 represents each experiment phase and expressed as 241 

vector, 𝑝 ∈ {𝐸𝑇1, 𝐸𝑇2, 𝐸𝑇3, 𝐸𝑇4}, 1 for baseline, 2 for data at 20 min, 3 for data at 40 min and 4 for data at 242 

60 min. Hence, the pre-processing resulted in 16 segments of frames for each experiment phase, owing to the 243 

number of operators being 16 and each operator’s data being divided into four groups. Thus, the total number of 244 

frames processed was 1,728,000. Following the successful division of frames into experiment phases, the next 245 

stage was to recognize the faces in each frame and extract the respective facial features for further analysis. The 246 

facial detection process was performed on each frame from the video recording using a local constrained neural 247 



field model (Baltrušaitis et al., 2016). This model was applied to detect the operators’ face in each frame and 248 

produced a vector 𝐿 of 68 landmarks identified on the operators’ face in every frame using Dlib (King, 2009) and 249 

expressed as a vector 𝐿 = [𝑞1, 𝑞2, 𝑞3, … … … , 𝑞𝑖]𝑇 . Where 𝑞𝑖  is a detected face landmark in any frame with 250 

coordinates (𝑎𝑖 , 𝑏𝑖) , 𝑇  is the number of any frame, and 𝑖  is index of detected landmarks in any frame, i.e., 251 

between 1 to 68. Eq. 1 was then used to compute the Euclidean distance between any two landmarks. This 252 

Euclidean distance was eventually used to determine the geometric measurement of eight facial features, as in the 253 

previous studies conducted by Cech and Soukupova (2016) and Bevilacqua et al. (2018). The proposed eight facial 254 

features were computed separately from each individual frame, and the details of the eight facial features have 255 

been listed in Table 2 and shown in Figure 3. 256 

Table 2: Details of extracted facial features 257 

Feature  quation 

Eye Aspect Ratio (EAR): Ratio of height 

and width of an eye 
𝐸𝐴𝑅 =

‖𝑝42 − 𝑝38‖ + ‖𝑝41 − 𝑝39‖

2‖𝑝40 − 𝑝37‖
 

Eye Distance (ED): Sum of the distance 

between anchor and eye landmarks. 

𝐸𝐷 = ‖𝑝37 − 𝑝31‖ + ‖𝑝38 − 𝑝31‖ + ‖𝑝39 − 𝑝31‖

+ ‖𝑝40 − 𝑝31‖ + ‖𝑝41 − 𝑝31‖ + ‖𝑝42 − 𝑝31‖ 

Eyebrow Distance (EBD): Sum of the 

distance between anchor and eyebrow 

landmarks. 

𝐸𝐵𝐷 = ‖𝑝23 − 𝑝31‖ + ‖𝑝24 − 𝑝31‖ + ‖𝑝25 − 𝑝31‖

+ ‖𝑝26 − 𝑝31‖ + ‖𝑝27 − 𝑝31‖ 

Mouth Aspect Ratio (MAR): Ratio of 

height and width of mouth 
𝑀𝐴𝑅 =

‖𝑝68 − 𝑝62‖ + ‖𝑝67 − 𝑝63‖ + ‖𝑝66 − 𝑝64‖

3‖𝑝55 − 𝑝49‖
 

Nose to Jaw Ratio (NJR): Distance 

between anchor landmark and jaws 
𝑁𝐽𝑅 =

‖𝑝31 − 𝑝3‖

‖𝑝15 − 𝑝3‖
 

Nose to Chin Ratio (NCR): Distance 

between anchor landmark and chin 
𝑁𝐶𝑅 =

2‖𝑝31 − 𝑝9‖

‖𝑝22 − 𝑝8‖ − ‖𝑝23 − 𝑝10‖
 



Face Area (FA): Area of a closed 

polygon formed by joining the external 

landmarks on the face 

𝐹𝐴 =
1

𝑄
∑ (𝑆(𝑆 − 𝑑(𝑝1, 𝑝31))

2
(𝑆 − 𝑑(𝑝2, 𝑝31))

2
(𝑆

𝑁=27

𝑖=1

− 𝑑(𝑝1, 𝑝2))
2

) ,

∴ 𝑆 =
𝑑(𝑝1, 𝑝31) + 𝑑(𝑝2, 𝑝31) + 𝑑(𝑝1, 𝑝2)

2
 

Head Motion (HM): Sum of the distance 

between anchor to external landmarks of 

face, per frame 

𝐻𝑚𝑜𝑡 =
1

𝑄
∑|𝑝𝑎 − 𝑝𝑏|

𝐴

𝑖=1

 

2.3.2 Artifacts Removal 258 

The data collected even in the experimental setting contains artifacts, which are undesired variations in the 259 

collected data due to external sources (Sweeney et al., 2012). These artifacts need to be removed since their 260 

existence within the data may easily misinterpret it and create skewness in analysis (Jebelli et al., 2018b, Hwang 261 

et al., 2018). In the case of excavator operators, they undergo continuous excessive and extreme movements during 262 

ongoing excavation operations. These movements are due to equipment vibrations as well as the movements of 263 

 b  c  d  e 

 f  g  h  i 

Figure 3: Extraction of facial features; (a) 68 landmarks detection, (b) eye aspect ratio, (c) eyebrows (d) face area (e) nose-

to-chin ratio (f) eye distance (g) mouth aspect ratio (h) nose-to-jaw ratio (i) head motion 



operators when tracking bucket to excavate and dump the earth. Such movements cause artifacts that need to be 264 

removed from the collected data. In the case of facial recognition and facial feature extraction, the facial regions 265 

having stable values are used for artifact removal. As reported in the research by Bevilacqua et al. (2018) and 266 

Giannakakis et al. (2017), the length of the nose line formed by joining the nose landmarks expressed by vector 267 

𝑄 = [𝑞28, … … , 𝑞32]𝑇 was used to remove artifacts, shown in Figure 3(a). Firstly, the landmarks shown by the 268 

vector 𝑄 were used to calculate the Euclidean distance (expressed as Eq 1) of the nose line. After that, all the 269 

facial features were then divided by 𝑄 to get normalized facial features from each frame. 270 

𝑑(𝑞1, 𝑞2) = √(𝑎2 − 𝑎1)2 + (𝑏2 − 𝑏1)2          𝐸𝑞.   1 271 

The recorded EEG signals are subjected to artifact removal techniques to remove muscular artifacts, power line 272 

noise, and other artifacts. Before analyzing the EEG data, it was subjected to preprocessing in which all the 273 

possible artifacts (muscular, power line, head motion, and eye movement artifacts) that could contaminate the EEG 274 

signal were removed as follows. Firstly, the MUSE EEG headband has an on-board noise cancellation mechanism 275 

to filter out the noise based on the statistical properties of the data. The statistical properties used by the MUSE 276 

headband include amplitude, variance, and kurtosis. An EEG signal is considered clean if its statistical properties 277 

are below a predetermined threshold; otherwise, the signal is considered noisy and discarded. Furthermore, an SG 278 

filter was used to smooth out the EEG signals that were recorded while keeping the strength of the signals. The 279 

Savitzky-Golay (SG) filter is a good way to smooth out data because it is based on the least square polynomial 280 

approximation principle (Savitzky and Golay, 1964). Different frequency (delta (0–4 Hz), theta (4–7 Hz), alpha 281 

(8–12 Hz), beta (12-30 and beta-30) bands were used to translate the pre-processed EEG data into different 282 



frequency bands using the MUSE on-board signal processing module. The mechanism used in this study for 283 

the noise cancellation of the EEG signal has been found quite effective in several EEG studies in the 284 

literature (Raheel et al., 2021, Raheel et al., 2020, Abd Rahman and Othman, 2016). 285 

2.4 Data Analysis 286 

The data was analyzed using SPSS version 22 (IBM Inc., Chicago, IL) and statistical analysis was performed based 287 

on eight facial features for mental fatigue detection, including eye aspect ratio (EAR), eye distance (ED), eyebrow 288 

distance (EBD), mouth aspect ratio (MAR), Nose to Jaw ratio (NJR), Nose to Chin ratio (NCR), Face Area (FA), 289 

Head Motion (HM), NASA-TLX score, and EEG signals. Twenty-seven thousand frames were extracted from each 290 

equipment operator's face during each experiment phase, and one value of each facial feature was calculated from 291 

each frame, culminating in a dataset of twenty-seven thousand facial features for each equipment operator during 292 

any experiment phase. After that, for descriptive representation, standard deviation (SD) and mean (M) values of 293 

facial features for each phase of the experiment were computed. To analyze the variations in facial features due to 294 

mental fatigue, we used general linear models for repeated measures. Four geometric measurements of each facial 295 

feature were added as within-subjects factors: at baseline (T1), at 20 min (T2), at 40 min (T3), and at 60 min (T4). 296 

Using partial eta-squared (η²), we calculated the amount of the effect on the mean values of each characteristic and 297 

the ground truth. Within-subject repeated measures analysis of variances (ANOVAs) was used for data analysis. 298 

Consequently, the F distributions with degree of freedom was reported in the results. Furthermore, Benjamini-299 

Hochberg was also applied for multi-comparison corrections (Izmirlian, 2020) with a 5% false discovery rate (FDR) 300 

or q = 0.05. Benjamini-Hochberg procedure is the most widely used statistical tool that increases the statistical 301 



power and decreases the false discovery rate (Palejev and Savov, 2021). Pearson correlational coefficients were 302 

used to assess the associations between the mean changes in geometric measurements of facial features throughout 303 

the course of the experiment and the NASA-TLX scores to validate the proposed method. Furthermore, to develop 304 

ecological validity for construction equipment operators, pearson correlation coefficients were computed between 305 

mean values of geometric measurements of facial features and EEG metric [(θ + α) / (α + β)]. Because Tyas et al. 306 

(2020) reported that such an EEG metric is the most used for computation of mental fatigue. 307 

3 Results 308 

In the study, all 16 construction equipment operators successfully completed the experiment. Therefore, data from 309 

all operators was used for analysis. 310 

3.1 Analysis of ground truth data 311 

The NASA-TLX score was used as a ground truth for mental fatigue detection. Statistical analysis and descriptive 312 

statistics of the ground truth assessment are shown in Table 3. The NASA-TLX demonstrated a substantial rise in 313 

subjective mental fatigue, from 11.25 (SD = 2.77) at baseline (T-1) to 65.25 (SD = 4.85) at the end of the last 314 

experiment phase (T-4). Table 3 shows that as the experiment progressed, operators reported increasing levels of 315 

mental fatigue. 316 

3.2 Mental fatigue related facial metrics 317 

3.2.1 Eye aspect ratio and eye distance:  318 

The descriptive statistics and statistical analysis of eye aspect ratio and eye distance-related facial features are 319 

provided in Table 3 and Figure 4(a) and 4(b). The recorded results revealed a decrease in eye aspect ratio from 320 



experiment phase T-1 (ratio = 0.517), T-2 (ratio = 0.465), T-3 (ratio = 0.380) to T4 (ratio = 0.306), whereas an 321 

increase in eye distance feature was found from experiment phase T-1 (2.251 pixels), T-2 (2.317 pixels), T-3 (2.613 322 

pixels) to T-4 (3.114 pixels). In general, the construction equipment operators showed a significantly decreasing 323 

eye aspect ratio due to mental fatigue (GLM: F(3, 45) = 25.597, p < 0.05, partial ηp
2 = 0.631). Furthermore, 324 

significant differences in pairwise comparisons was found for eye aspect ratio, between the experiment phases i.e., 325 

T1-T2 (𝑡𝑆𝑡𝑎𝑡 = 4.040, 𝑝 = 0.001), T2-T3 (𝑡𝑆𝑡𝑎𝑡 = 2.785, 𝑝 = 0.014), T3-T4 (𝑡𝑆𝑡𝑎𝑡 = 2.917, 𝑝 = 0.011), T1-T3 326 

(𝑡𝑆𝑡𝑎𝑡  = 3.821, 𝑝  = 0.002), T1-T4 (𝑡𝑆𝑡𝑎𝑡  = 8.007, 𝑝  < 0.001), and T2-T3 (𝑡𝑆𝑡𝑎𝑡  = 8.611, 𝑝  < 0.001) using 327 

Benjamini-Hochberg corrections, shown in Table 4. Nevertheless, the pattern was increasing (F(3, 45) = 12.919, 328 

p < 0.05, partial ηp
2 = 0.463) for eye distance feature, Likewise, using Benjamini-Hochberg multi-comparison 329 

corrections, significant differences for ED were also found in pairwise comparisons between the experiment phases, 330 

i.e., T1-T4 (𝑡𝑆𝑡𝑎𝑡 = -11.635, 𝑝 < 0.001), and T2-T4 (𝑡𝑆𝑡𝑎𝑡 = -8.247, 𝑝 < 0.001), shown in Table 4. However, 331 

through paired comparisons in the rest of the experiment phases for eye distance, it was discovered that the 332 

differences were not significant. The boxplots of the data statistics for both eye aspect ratio and eye distance are 333 

shown in Figures 5(a) and 5(b), respectively. Attributable to low R2 values, the variations in these features are due 334 

to the mental fatigue of operators, as reflected by the regression analysis displayed in Figure 6 of these two facial 335 

traits with other features.  336 

3.2.2 Eyebrows 337 

Table 3 and Figure 4(c) provide the descriptive statistics and statistical analysis of eyebrow-related facial features. 338 

This feature is a sum of the Euclidean distance between the anchor landmark on the nose and the corresponding 339 



landmarks on the eyebrows. The results indicate that the average value of the eyebrow feature increased from 340 

experiment phase T-1 (5.976 pixels), T-2 (6.071 pixels), T-3 (6.276 pixels) to T4 (6.448 pixels). There were also 341 

significant main effects of time-on-task on eyebrow features (GLM: F(3, 45) = 17.636, p < 0.05, partial ηp
2 = 342 

0.540). Besides, the pairwise comparisons of eyebrow features with Benjamini-Hochberg showed significant 343 

differences for Eyebrow between the experiment phases, i.e., T1-T2 (𝑡𝑆𝑡𝑎𝑡 = -4.268, 𝑝 = 0.001), T1-T3 (𝑡𝑆𝑡𝑎𝑡 = 344 

-4.463, 𝑝 < 0.001), T1-T4 (𝑡𝑆𝑡𝑎𝑡 = -5.771, 𝑝 < 0.001), T2-T3 (𝑡𝑆𝑡𝑎𝑡 = -3.105, 𝑝 = 0.007), and T2-T4 (𝑡𝑆𝑡𝑎𝑡 = 345 

-5.184, 𝑝 < 0.001), shown in Table 4. However, the corrections for the rest of the comparisons were not significant. 346 

Besides, Figure 4(c) indicates that the average Euclidean distance for eyebrow characteristics rose from experiment 347 

phase T-1 at baseline to experiment phase T-4. Figure 5(c) depicts the boxplots of the data statistics for the eyebrow 348 

feature for all experiment phases. 349 

3.2.3 Mouth Aspect Ratio 350 

Table 3 and Figure 4(f) provide the descriptive statistics and statistical analysis of mouth aspect ratio related facial 351 

features. The results indicate that there was an increase in mouth aspect ratio from experiment phase T-1 (ratio = 352 

0.301), T-2 (ratio = 0.314), T-3 (ratio = 0.318) to T4 (ratio = 0.329). Considerable main effects of time on task 353 

were also found on mouth aspect ratio (GLM: F(3, 45) = 31.390, p < 0.05, partial ηp
2 = 0.677). Subsequent pairwise 354 

comparisons with Benjamini-Hochberg corrections showed notable differences in mouth aspect ratio for each of 355 

the experiment phases i.e., T1-T2 (𝑡𝑆𝑡𝑎𝑡 = -6.584, 𝑝 < 0.001), T1-T3 (𝑡𝑆𝑡𝑎𝑡 = -9.511, 𝑝 < 0.001), T1-T4 (𝑡𝑆𝑡𝑎𝑡 356 

= -7.026, 𝑝 < 0.001), T2-T3 (𝑡𝑆𝑡𝑎𝑡 = -2.516, 𝑝 = 0.024), T2-T4 (𝑡𝑆𝑡𝑎𝑡 = -4.524, 𝑝 < 0.001), and T3-T4 (𝑡𝑆𝑡𝑎𝑡 357 

= -2.686, 𝑝 = 0.017), shown in Table 4. However, the rest of the pairwise comparisons were not statistically 358 



significant. The pairwise comparison also indicated that the mean value of the mouth aspect ratio at baseline was 359 

significantly shorter than at rest of the experiment phases. As shown in Figure 4(f), all other pairwise comparisons 360 

were not statistically significant. Moreover, Figure 5(d) depicts boxplots of the mouth aspect ratio data statistics 361 

for each experiment phase. Attributable to low R2 values, it can be concluded that the variation in mouth aspect 362 

ratio is due to the mental fatigue of operators, as depicted by the regression analysis displayed in Figure 6 of this 363 

trait with other features. 364 

3.2.4 Nose to Jaw Ratio and Nose to Chin Ratio 365 

Table 3, Figures 4(d) and 4(e) provide the descriptive statistics and statistical analysis of nose-to-jaw ratio and 366 

nose-to-chin ratio related facial features. The results indicate that the variation in nose-to-jaw ratio was not 367 

monotonous during the experiment phases; T-1 (ratio = 3.272), T-2 (ratio = 3.235), T-3 (ratio = 3.249) to T4 (ratio 368 

= 3.163), whereas a decrease pattern was found in the mean value of nose-to-chin ratio during the experiment 369 

phases; T-1 (ratio = 2.119), T-2 (ratio = 2.058), T-3 (ratio = 1.897) to T-4 (ratio = 1.841). Considerable main effects 370 

of time on task on the nose-to-jaw ratio (GLM: F(3, 45) = 1.067, p > 0.05, partial ηp
2 = 0.066) was not found. 371 

Nevertheless, the construction equipment operators showed a significantly decreasing nose to chin ratio due to 372 

mental fatigue (GLM: F(3, 45) = 12.627, p < 0.05, partial ηp
2 = 0.457) with significant differences in pairwise 373 

comparisons was found using Benjamini-Hochberg corrections, between the experiment settings i.e., T1-T2 (𝑡𝑆𝑡𝑎𝑡 374 

= 3.037, 𝑝 = 0.008), T1-T3 (𝑡𝑆𝑡𝑎𝑡 = 4.836, 𝑝 < 0.001), T1-T4 (𝑡𝑆𝑡𝑎𝑡 = 4.041, 𝑝 = 0.001), and T2-T3 (𝑡𝑆𝑡𝑎𝑡 = 375 

3.949, 𝑝 = 0.001), T2-T4 (𝑡𝑆𝑡𝑎𝑡 = 3.431, 𝑝 = 0.004), shown in Table 4. However, the pairwise comparisons for 376 

NTC were not statistically significant between the last two experiment phases, i.e., T3 and T4. Furthermore, 377 



Figures 5(e) and 5(f) show boxplots of data statistics for nose to chin ratio and nose to jaw ratio across all 378 

experiment phases. 379 

3.2.5 Face Area and Head Motion 380 

Table 3, Figures 4(g) and 4(h) provides the descriptive statistics and statistical analysis of face area and head 381 

motion related facial features. The results indicate that there was an increase in the mean values of face area (FA) 382 

feature from experiment phase T-1 (8.653 pixels2), T-2 (9.077 pixels2), T-3 (10.461 pixels2) to T4 (11.705 pixels2). 383 

Besides, an increase in the mean value of head motion (HM) feature was also recorded from experiment phase T-384 

1 (5.659 pixels/frame), T-2 (5.807 pixels/frame), T-3 (6.006 pixels/frame) to T-4 (6.149 pixels/frame). During the 385 

excavation operation, a significantly increasing pattern was found in the geometrical measurements of both the 386 

facial features i.e., face area (GLM: F(3, 45) = 24.444, p < 0.05, partial ηp
2 = 0.620) and head motion (GLM: F(3, 387 

45) = 32.546, p < 0.05, partial ηp
2 = 0.685). Subsequently, pairwise comparisons with Benjamini-Hochberg 388 

corrections showed significant difference in the mean values of FA for all the experiment settings i.e., T1-T2 (𝑡𝑆𝑡𝑎𝑡 389 

= -5.238, 𝑝 < 0.001), T1-T3 (𝑡𝑆𝑡𝑎𝑡 = -5.192, 𝑝 < 0.001), T1-T4 (𝑡𝑆𝑡𝑎𝑡 = -7.215, 𝑝 < 0.001), T2-T3 (𝑡𝑆𝑡𝑎𝑡 = -390 

3.911, 𝑝 = 0.001), T2-T4 (𝑡𝑆𝑡𝑎𝑡 = -5.924, 𝑝 < 0.001), and T3-T4 (𝑡𝑆𝑡𝑎𝑡 = -2.208, 𝑝 = 0.043), shown in Table 391 

4. Similarly, using Benjamini-Hochberg multi-comparison corrections, significant differences in pairwise 392 

comparisons were found for head motions between the experiment phases, i.e., T1-T2 (𝑡𝑆𝑡𝑎𝑡 = -6.657, 𝑝 < 0.001), 393 

T1-T3 (𝑡𝑆𝑡𝑎𝑡 = -6.635, 𝑝 < 0.001), T1-T4 (𝑡𝑆𝑡𝑎𝑡 = -9.328, 𝑝 < 0.001), T2-T3 (𝑡𝑆𝑡𝑎𝑡 = -4.423, and 𝑝 < 0.001), 394 

and T2-T4 (𝑡𝑆𝑡𝑎𝑡 = -5.684, 𝑝 < 0.001). However, the rest of pairwise comparisons for both the facial features 395 

were not significant. The boxplots of the data statistics for face area and head motion during all phases of the 396 



experiment are shown in Figures 5(g) and 5(h). Due to low R2 values, it can be concluded that the changes in these 397 

traits are due to mental fatigue of operators, as demonstrated by the regression analysis showed in Figure 6. 398 

Table 3: Means and standard deviations of mental fatigue metrics in different time phases 399 

Metrics 
 ime 

Baseline         mins         mins         mins      

Subjective Assessment     

NASA-TLX Score (0-100) 11.25 (2.77) 30.81 (2.99) 45.00 (4.27) 65.25 (4.85) 

Facial Features     

Eye Aspect Ratio 0.517 (0.116) 0.465 (0.086) 0.380 (0.103) 0.306 (0.024) 

Eye Distance (pixels) 2.251 (0.523) 2.317 (0.532) 2.613 (0.783) 3.114 (0.681) 

Eyebrow (pixels) 5.976 (0.582) 6.071 (0.595) 6.276 (0.778) 6.448 (0.777) 

Mouth Aspect Ratio 0.301 (0.013) 0.314 (0.014) 0.318 (0.013) 0.329 (0.016) 

Nose to Jaw Ratio 3.272 (0.166) 3.235 (0.153) 3.249 (0.255) 3.163 (0.277) 

Nose to Chin Ratio 2.119 (0.604) 2.058 (0.576) 1.897 (0.569) 1.841 (0.478) 

Face Area (pixels2) 8.653 (0.809) 9.077 (0.857) 10.461 (1.606) 11.705 (2.128) 

Head Motion (pixels per frame) 5.659 (0.166) 5.807 (0.161) 6.006 (0.295) 6.149 (0.322) 

 400 

Table 4: Significance of facial feature with respect to various timepoints 401 

Metrics 
ANOVA 

η² 
Multi-Comparison Corrections using Benjamini-Hochberg 

F P T1 vs T2 T1 vs T3 T1 vs T4 T2 vs T3 T2 vs T4 T3 vs T4 

EAR 25.597 ≤ 0.05 0.631 4.040* 3.821* 8.007* 2.785* 8.611* 2.917* 

ED 12.919 ≤ 0.05 0.463 -0.841 -2.101 -11.635* -1.359 -8.247* -2.348 

EB 17.636 ≤ 0.05 0.540 -4.268* -4.463* -5.771* -3.105* -5.184* -1.810 

MAR 31.390 ≤ 0.05 0.677 -6.584* -9.511* -7.026* -2.516* -4.524* -2.686* 

NJR 1.067 ≥ 0.05 0.066 - - - - - - 

NCR 12.627 ≤ 0.05 0.457 3.037* 4.836* 4.041* 3.949* 3.431* 0.957 

FA 24.444 ≤ 0.05 0.620 -5.238 -5.192* -7.215 -3.911* -5.924* -2.208* 

HM 32.546 ≤ 0.05 0.685 -6.657* -6.635* -9.328* -4.423* -5.684* -1.919 

EAR is Eye Aspect Ratio; ED is Eye Distance; EB is Eyebrow; MAR is Mouth Aspect Ratio; NJR is Nose to Jaw 

Ratio; NCR is Nose to Chin Ratio; FA is Face Area; HM is Head Motion; η² is effect size Partial eta-squared; *The 

𝑡𝑆𝑡𝑎𝑡 is significant at the 𝑝 < 0.05 

 402 

 403 



 404 

 405 

Figure 4: Variation in facial features due to mental fatigue with increasing Time-On-Task phases, (a) eye aspect ratio; (b) 

eye distance; (c) eyebrow; (d) nose to jaw ratio; (e) nose to chin ratio; (f) mouth aspect ratio; (g) face area; (h) head motion 
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 406 

Figure 5: Boxplots for facial features (a) eye aspect ratio (b) eye distance (c) eyebrow (d) mouth aspect 

ratio (e) nose to chin ratio (f) nose to jaw ratio (g) face area and (h) head motion 



  407 

Figure 6: Regression statistics between individual facial features at the end of experiment 



3.3 Analysis of physiological data 408 

Analysis of the physiological signals EEG was performed by applying the paired t-test on the absolute power for 409 

each frequency band of the EEG signal obtained from all the channels of the MUSE headband during the four 410 

experimental phases: baseline, at 20 min, 40 min, and 60 min. A null hypothesis and p-value were used to determine 411 

the t-test decision. The difference between the groups was considered significantly different if the p-value was less 412 

than 0.05 and the null hypothesis was 1. Table 5 shows a statistically significant difference according to the results 413 

of p- value for EEG power spectral density in different brain regions. For example, the t-test applied to EEG signals 414 

revealed that the alpha band was found to be statistically significant at right frontal channel AF8 (between all 415 

experiment phases at baseline and 20 mins; 20 mins and 40 mins) and at left frontal channel AF7, it was statistically 416 

significant between experiment phases 20 mins and 40 mins only. Likewise, the beta band was found to be 417 

statistically significant at left frontal channel AF7 (between experiment phases at 40 mins and 60 mins only) and 418 

frontal channel AF8 between all experiment phases. The Delta and gamma bands were found to be statistically 419 

significant in the left and right temporal regions. The beta band, on the other hand, showed differences that were 420 

statistically significant in both the frontal and temporal parts of the brain. The statistical analysis for all the bands 421 

in the respective channels is demonstrated in Table 5. Figure 7 shows the brain activity visualization obtained 422 

using the power spectral density of the EEG data of the construction equipment operators during the four phases 423 

of the experiment. On the brain maps, the red color shows strong cortical activity, while the orange color shows 424 

little brain activity. It can be observed from the brain maps that the alpha and beta bands of AF7 and AF8 frontal 425 

channels have visually distinct brain activity at baseline, 20 min, 40 min, and 60 min of the experiment. 426 



Table 5: p-value for EEG power spectral densities in different brain regions 427 

 ime Channels 
  G Frequency Bands  p values by t-test  

Delta  heta Alpha Beta Gamma 

T1 – T2 

(0 & 20 min) 

AF7 7.011E-09* 0.00071* 0.06148 0.62845 0.09649 

AF8 2.924E-09* 1.438E-09* 0.04877* 1.345E-05* 2.519E-05* 

TP9 3.425E-05* 0.45987 0.56974 0.00568* 1.671E-17* 

TP10 0.00167* 2.883E-07* 1.446E-10* 1.959E-12* 7.304E-13* 

T2 – T3 

(20 & 40 min) 

AF7 4.214E-05* 0.55471 0.00023* 0.76902 0.08094 

AF8 0.60858 0.00053* 0.00016* 3.219E-06* 0.13631 

TP9 0.02326* 0.52230 0.20485 1.716E-06* 0.18105 

TP10 0.01776* 0.98454 0.19671 0.12579 1.678E-11* 

T3 – T4 

(40 & 60 min) 

AF7 0.13977 0.71663 0.97207 0.00155* 0.00023* 

AF8 0.00480* 0.00295* 0.00241* 0.00026* 0.00024* 

TP9 0.00882* 0.00046* 0.01284* 0.00357* 0.00627* 

TP10 0.01746* 5.106E-05* 0.17877 0.00441* 0.00289* 

*The mean difference is significant at the 0.05 level 

 428 

Figure 7: Brain activity visualization in terms of power spectral density of different EEG bands for the four 

experiment phases 
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3.4 Validity of the facial features’ geometric measurements 429 

3.4.1 Correlations between facial features’ geometric measurements and subjective mental fatigue scores 430 

In Table 6, correlations between geometric measurements of facial features and subjective mental fatigue scores 431 

are shown. The eye aspect ratio at T-1 (r = -0.5202), T-3 (r = -0.6730), and T-4 (r = -0.5760) minutes of the 432 

experiment was significantly correlated with the corresponding subjective mental fatigue scores. Similarly, 433 

geometric measurements of eye distance facial features were significantly associated with subjective mental 434 

fatigue scores during all the experiment phases; T-1 (r = 0.7164), T-2 (r = 0.5029), T-3 (r = 0.6866) and T-4 (r = 435 

0.9264). Furthermore, across all experiment phases, the head motion face feature was substantially linked with the 436 

corresponding subjective scores. However, mouth aspect ratio was only correlated at T-4 (r = -0.5872). Also, at 437 

experiment phases T3 (r = 0.5884) and T-4 (r = 0.5078), face area feature was related. However, there was no 438 

association between the remaining facial features (e.g., eyebrows, nose to chin ratio, and nose to jaw ratio) and 439 

subjective mental fatigue. 440 

Table 6: Correlations between facial features and subjective scores of mental fatigues 441 

Parameters 
 NASA- LX Score 

 ime Baseline    min    min    min 

Eye Aspect Ratio Baseline -0.5202*    

 20 min  -0.4635   

 40 min   -0.6730**  

 60 min    -0.5760* 

Eye Distance (Pixels) Baseline 0.7164**    

 20 min  0.5029*   

 40 min   0.6866**  

 60 min    0.9264** 

Eyebrow (Pixels) Baseline 0.6318**    

 20 min  0.7327**   



 40 min   0.5695*  

 60 min    0.5967* 

Mouth Aspect Ratio Baseline 0.0075    

 20 min  0.0762   

 40 min   0.2226  

 60 min    -0.5872* 

Nose to Jaw Ratio Baseline 0.1448    

 20 min  0.0241   

 40 min   0.4504  

 60 min    0.2912 

Nose to Chin Ratio Baseline -0.6134*    

 20 min  -0.5954*   

 40 min   -0.5288*  

 60 min    -0.6011* 

Face Area (Pixels2) Baseline 0.1313    

 20 min  0.1382   

 40 min   0.5884*  

 60 min    0.5078* 

Head Motion (Pixels per frame) Baseline 0.5209*    

 20 min  0.6910**   

 40 min   0.5003*  

 60 min    0.5413* 

*Correlation is significant at 0.05; **Correlation is significant at 0.01 

3.4.2 Correlations between facial features’ geometric measurements and EEG metric 442 

The correlations between facial features and electroencephalography metric [(θ + α) / (α + β)] for mental fatigue 443 

are shown in Table 7. The eye aspect ratio was significantly correlated with EEG during all the experiment phases, 444 

i.e., at baseline (r = 0.6849), 20 min (r = 0.5008), 40 min (r = 0.5510), and 60 min (r = -0.5760) of the experiment. 445 

Similarly, geometric measurements of head motion facial features during experiment phases; at baseline (r = -446 

0.5042), 20 min (r = -0.6234), 40 min (r = -0.5374), and 60 min (r = -0.4985) were significantly associated with 447 

the EEG metric. Furthermore, at baseline, 20 minutes, and 60 minutes of the experiment, the eye distance facial 448 



feature was found to be significantly linked with the EEG metric. The findings also revealed that eye aspect ratio 449 

was positively associated, whereas the eye distance and head motion facial features were negatively corelated with 450 

the EEG metric. However, the correlation of rest of the facial features with EEG metric was not monotonous during 451 

all the experiment phases as shown in Table 7. 452 

Table 7: Correlation between EEG metric and facial features 453 

Facial Features 
  G Metric [ θ + α  /  α + β ] 

Baseline    mins    mins    mins 

Eye Aspect Ratio 0.6849* 0.5008* 0.5510* 0.6505* 

Eye Distance -0.6701* -0.3608 -0.5497* -0.7155* 

Eyebrow -0.5698* -0.6034* -0.4507 -0.2246 

Nose to Jaw Ratio -0.4007 -0.3472 -0.3618 -0.1323 

Nose to Chin Ratio 0.5861* 0.4915 0.4717 0.2269 

Mouth Aspect Ratio 0.1600 0.4466 0.1282 0.3830 

Face Area -0.1311 -0.3872 -0.5566* -0.5881* 

Head Motion -0.5042* -0.6234* -0.5374* -0.4985* 

*Correlation is significant at the 0.05 level 

4 Discussion 454 

The current study is the first of its kind in the construction industry because of its non-invasive methodology. 455 

According to the results of the subjective assessment and variations in geometric measurements of facial features, 456 

individuals experienced increasing mental fatigue after participating in the experiment phases. The findings are 457 

statistically significant and support the idea of monitoring mental fatigue using geometric measurements of facial 458 

features. As far as the authors know, no study has compared the proposed method to invasive methods like 459 

electroencephalography that are used to monitor mental fatigue in construction equipment operators. 460 

4.1 Variations in the facial features’ geometric measurements 461 

The findings of this research are in line with those conducted in non-construction domains that have utilized facial 462 



features for mental fatigue detection. The current study used geometric measurements of eight facial features: eye 463 

aspect ratio, eye distance, eyebrow, nose to chin ratio, nose to jaw ratio, mouth aspect ratio, and head motion. 464 

Comparable studies in non-construction domains have used eye-related variables for mental fatigue detection with 465 

similar findings. There was a statistically significant difference in eye aspect ratio and eye distance. From baseline 466 

until the end of the experiment, they demonstrated a rise in the mean values of eye distance and a decrease in the 467 

mean values of eye aspect ratio. The variation in mean values reveals that landmarks were moved closer together 468 

as mental fatigue increased among equipment operators. Therefore, such a variation pattern is suggestive of 469 

increased blinking and eye closure due to increased mental fatigue. Hence, the construction equipment operators' 470 

cognitive effort increased. Likewise, the study found an increase in the eyebrow. However, the increase was not 471 

statistically significant. The results are aligned with the previous studies that showed an increase in the blinking 472 

of eyes during fatigue states. For example, Giannakakis et al. (2017) and Norzali et al. (2014) reported an increase 473 

in the blink rate under stressful situations and concluded that blink rate and mental stress are highly correlated 474 

with each other. Nevertheless, Wenhui et al. (2005) reported that the eye blinks decreased with an increase in 475 

cognitive effort. A change in eye metrics was also found by Bevilacqua et al. (2018) in a study where subjects were 476 

subjected to stressful scenarios of a game. Likewise, Ravaja et al. (2006) also stated an increase in orbicularis oculi 477 

(a muscle associated with eyelid movement) electromyography activity in non-neutral emotional states. Our study 478 

found no statistically significant differences in eyebrow activity among operators, although the variation is 479 

consistent with earlier research. For example, a study by Kimmelman et al. (2020) stated that eyebrow positions 480 

are affected by emotional states. 481 



Mouth-related features of construction equipment operators appear to be indicators of mental fatigue. This study 482 

demonstrated an increase in the mean mouth aspect ratio from baseline to the last experiment phase. The increase 483 

was statistically significant. The increase in mean values indicates that the position of mouth landmarks strayed 484 

away from each other due to increased mental fatigue. Similarly, such a change may be indicative of frequent 485 

mouth movements with an increase in mental fatigue. For example, a study by Giannakakis et al. (2017) reported 486 

that an increased variation and median of the highest magnitude of mouth activity imply faster mouth movements 487 

during stressful conditions. Similarly, as studied by Tang et al. (2016), the mouth remains closed in a normal state 488 

while it opens when a subject is in fatigued state. Likewise, Tijs et al. (2008) reported that in emotional states, the 489 

zygomatic (a face muscle that is linked to the mouth) is more active. 490 

Mental fatigue also affects facial traits linked to construction equipment operators' dynamic body motions, such 491 

as head motion, face area, nose to chin ratio, and nose to jaw ratio. Bevilacqua et al. (2018) stated these dynamic 492 

body movements as head movement and physical posture. The operator's head moves vertically, horizontally, and 493 

rotationally while operating. Thus, the increase in the mean value of this feature demonstrates that as the 494 

experiment progressed, the operators' head motion increased due to mental fatigue. Table 3 shows the change, 495 

which is statistically significant throughout all experiment stages, indicating greater mental fatigue. Similarly, the 496 

current study analyzed nose to jaw and nose to chin ratios. The preceding was to represent the face's shift to the 497 

right or left. The latter feature reflected the operator's face tilting upward or downward. The mean nose to chin 498 

ratio decreased from the baseline to the completion of the excavation experiment. It is because the operators were 499 

advancing towards the camera, but their faces were tilted upwards, indicating they were attempting to keep their 500 



focus on the task despite fatigue. However, the differences between the phases were not statistically significant. 501 

The present study's findings accord with past research in other sectors. For example, Liao et al. (2005) and Dinges 502 

et al. (2005) found an increase in head movements during non-neutral states. Furthermore, studies by Kusano et 503 

al. (2020), Giannakakis et al. (2018), and Giannakakis et al. (2017) also reported an increased head motion under 504 

stressful situations such as watching videos. Nevertheless, results from the current study are contrary to the 505 

findings by Bevilacqua et al. (2018), where no statistical significance was reported between boring and stressful 506 

states. 507 

Additionally, the current study also studied the face area feature which was associated with the movement of 508 

equipment operators towards and away from the camera. The current study demonstrated an increase in face area, 509 

indicating the movement of operators towards the camera. The increase between the subsequent experiment phases 510 

from baseline was 4.90%, 15.24%, and 11.89%, respectively. The findings are consistent with the previous study 511 

by Bevilacqua et al. (2018) where there was an increase in the face area of subjects during a stressful state. 512 

4.2 Relationship of facial features’ geometric measurements with subjective and objective assessment 513 

During the excavation operation experiment, there were strong relationships between geometric measurements of 514 

facial features and subjective mental fatigue scores. Some variables correlated with subjective scores throughout 515 

the entire experiment, while others only correlated at one or two stages. For example, face area features were 516 

substantially linked with subjective scores during the final two experiment phases, i.e., at 40 and 60 minutes, 517 

shown in Table 6. Previous studies have found that fatigue assessments are substantially connected to eye-related 518 

cues (Sundelin et al., 2013). Likewise, a study by Hopstaken et al. (2015) also reported an increase in subjective 519 



mental fatigue and a decrease in baseline pupil diameter as a result of increasing time spent on the activity, with a 520 

corresponding decrease in cognitive performance. Similarly, a study by Dziuda et al. (2021) also found that the 521 

drivers' responses to the fatigue symptoms scale questionnaire before and after the simulator task were found to 522 

be correlated with changes in their percentage closure of eye time levels. 523 

This study found a difference between EEG bands (baseline, 20 min, 40 min, and 60 min) in the evolution of 524 

mental fatigue. After an hour of continuous operation of construction equipment, we found alterations in 525 

spontaneous brain activity. Five EEG patterns were evaluated in four brain areas: AF7, AF8, TP9, and TP10. Figure 526 

4 shows the brain maps using the power spectral density of EEG data from construction equipment operators at 527 

the outset, 20 minutes, 40 minutes, and 60 minutes of the experiment. The beta band's power covers the entire 528 

brain. The temporal delta and gamma bands revealed a consistent trend. The frontal alpha band rhythm was not 529 

monotonous. Figure 4 depicts the frontal and temporal lobes of the brain becoming fatigued as the experiment 530 

progressed. In some areas, the theta band colors are redder and bluer. The p-values for statistical significance are 531 

also monotonous. The findings are consistent with previous research on fatigue (Li et al., 2020a, Eoh et al., 2005). 532 

Theta waves, which are linked to brain fatigue, appear early in the sleep cycle, making them sensitive to mental 533 

fatigue (Lal and Craig, 2005, Åkerstedt and Gillberg, 1990). Alpha rhythm indicates the condition of relaxation 534 

and wakefulness (Li et al., 2020a). In the third and fourth experiment phases of the study, alpha activity was 535 

observed in the frontal channels shown, in Figure 4, which is in line with previous research. For example, studies 536 

by Eoh et al. (2005) and Lal and Craig (2002) reported that the potency of the alpha pattern increases with an 537 

increase in mental fatigue. Similarly, another study by Sun et al. (2014) and Craig et al. (2012) also reported that 538 



with an increase in mental fatigue, the power of the alpha band increases. This is why it is considered the most 539 

reliable indication of mental fatigue (Lal and Craig, 2005). During the excavation operation experiment, there 540 

were strong relationships between geometric measurements of facial features and EEG metric. Some variables 541 

corresponded with subjective scores throughout all experiment phases, while others correlated at one or two stages 542 

only. For example, eye aspect ratio, eye distance, and head motion were substantially linked to the EEG metric 543 

during all the experiment phases. As the construction equipment operators were subjected to mental fatigue, their 544 

eye aspect ratio decreased, and their eye distance increased from the baseline. The decrease in eye aspect ratio 545 

indicates the closing of eyes, thus indicating theta band activity in the brain topography. Likewise, the increase in 546 

face area and head motion indicates that the equipment operators were trying to increase their concentration by 547 

moving close to the windscreen of the equipment and camera. However, the association of the rest of the facial 548 

features with the EEG metric was not found to be monotonous during each of the experiment phases. Overall, 549 

geometric measures of facial features produce statistical conclusions that agree with the visual representations of 550 

the brain as a result. 551 

4.3 Implications 552 

The proposed research study is expected to inspire changes in safety management practices on construction sites. 553 

Using geometric measurements of the construction equipment operators’ facial features, this study proposed a non-554 

invasive mental fatigue monitoring method that did not require the operators to wear sensors on their body. Apart 555 

from determining the effectiveness of the proposed method, the study also compared the results with 556 

electroencephalography (EEG), which is an invasive mental fatigue monitoring method. The findings of this 557 



research have both practical and theoretical repercussions for alleviating the mental fatigue of construction 558 

equipment operators. Firstly, the method being proposed herein, apart from detecting construction equipment 559 

operators’ mental fatigue, can also be useful for real-time facial features-based monitoring of mental fatigue on 560 

construction sites. Thus, the findings of this study reveal that it is feasible to use geometric measurements of facial 561 

features for mental fatigue detection during construction operations. Secondly, for construction managers, the 562 

findings can help them develop a framework for managing shifts among workers. For one hour, the researchers in 563 

the current study monitored changes in construction equipment operators' facial features and brain activity. 564 

Equipment operators can be observed by managers every 30 or 45 minutes of construction work. Breaks between 565 

shifts can be implemented to provide equipment operators a chance to rest and recuperate from the mental fatigue 566 

they've triggered. Thirdly, the current method is non-invasive. It involves the use of a remote camera as a sensor 567 

to take measurements of facial features without making physical contact. As a result, this method represents a 568 

significant shift from earlier construction worker wearable sensor techniques such as those studied by Ke et al. 569 

(2021b), Li et al. (2020b), Choi et al. (2019) and Hwang et al. (2018). Fourthly, as stated by Li et al. (2019b), the 570 

rate of accretion of mental fatigue among equipment operators may be higher than the laboratory setting. 571 

Consequently, the data collected for the study was from real construction sites. Therefore, the results advocate the 572 

ecological validity of this method for construction equipment operators. As a result, geometric measures of facial 573 

features open up new possibilities for contactless mental fatigue management among construction equipment 574 

operators. 575 

4.4 Limitations and future research 576 



This study is the first of its kind to use geometric measurements of facial and EEG to monitor mental fatigue 577 

among construction equipment operators, yet this study was subject to limitations that need to be addressed in 578 

future research work. Firstly, this study studied temporal changes in the geometric measurements of facial features 579 

at baseline, 20, 40, and 60 mins to monitor mental fatigue. The results were further validated by comparing them 580 

with statistical analysis of the power spectral density of electroencephalography of construction equipment 581 

operators. However, for future studies, a machine learning approach is advised to automatically identify the 582 

geometric measurements of facial features. Furthermore, future studies are also recommended to calculate the 583 

degree of mental fatigue by addressing its identification as a regression problem. Secondly, lighting fluctuations 584 

are believed to have an impact on the geometric measurements of face feature detection (Tran et al., 2019, Lee et 585 

al., 2018). To avoid this, we ran the experiments on the construction site at the same time each day for the 586 

subsequent days under similar weather conditions. However, in future we intend to acquire to data at various times 587 

throughout the day such as morning and evening, under varying weather conditions, to see how fluctuations in 588 

lighting on construction sites affect the results connected to facial feature geometric measures and mental fatigue 589 

monitoring. Thirdly, there may be a wide range of circumstances that can influence the appearance of a 590 

construction equipment operator’s facial features. It is imperative that future research explore the effects of age 591 

(Boutet et al., 2015), experience, and other factors on the ability to discern mental fatigue based on facial features 592 

during equipment operations. Lastly, this research only investigated geometric measurements of facial features 593 

and EEG in equipment operators. Since there is no publicly available dataset for construction equipment operators 594 

and because deep learning requires a lot of data, the current study does not apply deep learning techniques to 595 



automatically identify mental fatigue. So, in the future, researchers might use recurrent neural networks (RNNs) 596 

to track the mental fatigue of people who operate construction equipment by gathering a lot of data from real 597 

construction sites. 598 

5 Conclusions 599 

Mental fatigue led attention failure of equipment operators is associated with the collisions between construction 600 

equipment and surrounding site objects that lead to accidents causing injuries and fatalities. Therefore, the current 601 

study developed a construction site procedure to detect construction equipment operators’ mental fatigue, which 602 

is a promising approach to mitigate the risk of equipment-related accidents. As a result, we performed an automated 603 

analysis of geometric measures of facial features from video clips in conjunction with an empirical evaluation of 604 

its applicability for construction equipment operators. To achieve this objective, 16 excavator operators were 605 

engaged to record facial videos and EEG sensor data while working on an excavation activity. Eight distinct facial 606 

features (eye aspect ratio, eye distance, eyebrows, mouth aspect ratio, nose to jaw ratio, nose to chin ratio, face 607 

area, and head motion) comprised of Euclidean distance and areas were calculated from sixty-eight facial 608 

landmarks. These facial features do not rely on 6 universal predefined facial expressions. Temporal values of these 609 

facial features’ geometric measurements and EEG sensor data were compared at baseline, 20 min, 40 min, and 60 610 

min. The results indicate that there was a statistically significant difference in the mean values for all the facial 611 

features (i.e., eye aspect ratio, eye distance, eye distance mouth aspect ratio, face area and head motion) between 612 

various experiment phases at baseline, 20, 40, and 60 min. However, the results were not statistically significant 613 

for the rest of the facial features. Consequently, the brain maps obtained using the power spectral density of the 614 



EEG data recorded from construction equipment operators at the same time frames also advocate the fact that the 615 

operators’ brains were experiencing mental fatigue. The study's key contribution is to demonstrate the ecological 616 

validity of contactless measures for detecting and evaluating mental fatigue for construction equipment operators 617 

by studying their association with wearable EEG sensor data. The study found a strong association between the 618 

proposed method and the electroencephalography metric. The proposed method's deployment is non-invasive and 619 

based on video records. Furthermore, it does not require wearable sensing technology for mental fatigue 620 

monitoring. Given the dynamic and complicated nature of construction site operations, it is believed that the 621 

proposed methodology is more user-friendly, practical, and more appropriate to the construction domain for mental 622 

fatigue monitoring. It will help to reduce equipment-related accidents, injuries, and errors on construction sites 623 

through proactive monitoring of the operator’s mental fatigue. 624 
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