
Northumbria Research Link

Citation: Maji, Kamal Jyoti, Namdeo, Anil and Bramwell, Lindsay (2023) Driving factors
behind the continuous increase of long-term PM2.5-attributable health burden in India
using  the  high-resolution  global  datasets  from  2001  to  2020.  Science  of  the  Total
Environment, 866. p. 161435. ISSN 0048-9697 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.scitotenv.2023.161435
<https://doi.org/10.1016/j.scitotenv.2023.161435>

This  version  was  downloaded  from  Northumbria  Research  Link:
https://nrl.northumbria.ac.uk/id/eprint/51234/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Science of the Total Environment
 

Driving factors behind the continuous increase of long-term PM2.5-attributable health
burden in India using the high-resolution global datasets from 2001 to 2020

--Manuscript Draft--
 

Manuscript Number: STOTEN-D-22-19099R2

Article Type: Research Paper

Keywords: India;  Long-term PM2.5-exposure;  Fine-resolution data;  Premature deaths;
Contributing Factor

Corresponding Author: Kamal Jyoti Maji
Georgia Institute of Technology
Atlanta, UNITED STATES

First Author: Kamal Jyoti Maji

Order of Authors: Kamal Jyoti Maji

Anil Namdeo

Lindsay Bramwell

Abstract: Air pollution is the fourth leading global risk factor, whereas in India air pollution is
reported as the highest risk factor with millions of premature deaths every year.
Despite implementation of several air pollution control plans, PM2.5 levels over India
have not noticeably reduced. PM2.5-associated health burdens in India have increased
significantly in past decades. A fine resolution (0·01° × 0·01°) analysis of PM2.5-
attribulable premature deaths (rather than the coarse-level analysis) may elucidate the
reason for this increase and inform and effective start-of-the-art state-level and national
emission control strategies. This study quantified the spatiotemporal dynamics of
PM2.5-attributable premature deaths from 2001 to 2020 and applied a decomposition
analysis to dissect the contribution of various associated parameters, such as PM2.5
concentration, population distribution and disease-specific baseline death rate. Results
show significant spatiotemporal variations of PM2.5 and associated health burden in
India. During the study period, population weighted PM2.5 value increased from 46.0
to 59.5µg/m3 and associated non-communicable death increased around 87.6%, from
1,050 [95% (CI): 880-1,210] thousand to 1,970 (95% CI: 1,658-2,259) thousand. The
states of Uttar Pradesh, Bihar, West Bengal, Maharashtra, Rajasthan, and Madhya
Pradesh had the highest PM2.5-attributable deaths. In these states, non-accidental
deaths increased from 232.1, 112.7, 81.4, 79.1, 66.3 and 58.5 thousand in 2001 to
424.1, 226.7, 156.2, 154.5, 123.3 119.7 thousand in 2020. In per capita population
(/105 population), the highest PM2.5-attributable deaths were observed in Delhi, Uttar
Pradesh, Bihar, Haryana and Punjab.
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Abstract: 13 

Air pollution is the fourth leading global risk factor, whereas in India air pollution is reported 14 

as the highest risk factor with millions of premature deaths every year. Despite implementation 15 

of several air pollution control plans, PM2.5 levels over India have not noticeably reduced. 16 

PM2.5-associated health burdens in India have increased significantly in past decades. A fine 17 

resolution (0·01° × 0·01°) analysis of PM2.5-attribulable premature deaths (rather than the 18 

coarse-level analysis) may elucidate the reason for this increase and inform and effective start-19 

of-the-art state-level and national emission control strategies. This study quantified the 20 

spatiotemporal dynamics of PM2.5-attributable premature deaths from 2001 to 2020 and applied 21 

a decomposition analysis to dissect the contribution of various associated parameters, such as 22 

PM2.5 concentration, population distribution and disease-specific baseline death rate. Results 23 

show significant spatiotemporal variations of PM2.5 and associated health burden in India. 24 

During the study period, population weighted PM2.5 value increased from 46.0 to 59.5µg/m3 25 

and associated non-communicable death increased around 87.6%, from 1,050 [95% (CI): 880-26 

1,210] thousand to 1,970 (95% CI: 1,658-2,259) thousand. The states of Uttar Pradesh, Bihar, 27 

West Bengal, Maharashtra, Rajasthan, and Madhya Pradesh had the highest PM2.5-attributable 28 

deaths. In these states, non-accidental deaths increased from 232.1, 112.7, 81.4, 79.1, 66.3 and 29 

58.5 thousand in 2001 to 424.1, 226.7, 156.2, 154.5, 123.3 119.7 thousand in 2020. In per 30 

capita population (/105 population), the highest PM2.5-attributable deaths were observed in 31 

Delhi, Uttar Pradesh, Bihar, Haryana and Punjab. Throughout the study period, demographic 32 

changes outweighed the health burden and were responsible for ~62.8% increase of PM2.5-33 
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related non-accidental deaths across India, whereas the change in PM2.5 concentration 34 

influenced only 18.7%. The change in baseline mortality rate impacts differently for the 35 

estimation of disease-specific mortality changes. Our findings suggest more dynamic and 36 

comprehensive policies at state-specific level, especially for North India is very indispensable 37 

for the overall decrease of PM2.5-related deaths in India. 38 
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Highlights: 

 

 PM2.5-attribulatle deaths with finer resolution (0·01° × 0·01°) from 2001 to 2020 in India 
is analyzed.  

 The GEMM and IER health risk model used to quantify methodological result difference.  
 Population-weighted PM2.5 increased from 46.0 to 59.5µg/m3 and associated death 

increased by 87.6%. 
 Highest PM2.5-attributable deaths were in Uttar Pradesh, Bihar, West Bengal, Maharashtra 

and Rajasthan 
 Demographic changes alone responsible for ~62.8% increase of PM2.5-related non-

accidental deaths in India. 

Highlights



1 
 

Driving factors behind the continuous increase of long-term PM2.5-attributable health 1 

burden in India using the high-resolution global datasets from 2001 to 2020 2 

 3 

Kamal Jyoti Maji 1; Anil Namdeo 2; Lindsay Bramwell 2 4 

 5 
1 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 6 

Georgia 30332, United States 7 
2 Department of Geography and Environmental Sciences, Northumbria University, Newcastle 8 

upon Tyne NE1 8ST, UK 9 

Corresponding author: kmaji3@gatech.edu (K.J.M) 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

Manuscript (double-spaced and continuously LINE and PAGE
numbered)-for final publication

Click here to view linked References



2 
 

Driving factors behind the continuous increase of long-term PM2.5-attributable health 28 

burden in India using the high-resolution global datasets from 2001 to 2020 29 

 30 

 31 

Abstract: 32 

Air pollution is the fourth leading global risk factor, whereas in India air pollution is reported 33 

as the highest risk factor with millions of premature deaths every year. Despite implementation 34 
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PM2.5-associated health burdens in India have increased significantly in past decades. A fine 36 

resolution (0·01° × 0·01°) analysis of PM2.5-attribulable premature deaths (rather than the 37 

coarse-level analysis) may elucidate the reason for this increase and inform and effective start-38 

of-the-art state-level and national emission control strategies. This study quantified the 39 

spatiotemporal dynamics of PM2.5-attributable premature deaths from 2001 to 2020 and applied 40 

a decomposition analysis to dissect the contribution of various associated parameters, such as 41 

PM2.5 concentration, population distribution and disease-specific baseline death rate. Results 42 

show significant spatiotemporal variations of PM2.5 and associated health burden in India. 43 

During the study period, population weighted PM2.5 value increased from 46.0 to 59.5µg/m3 44 

and associated non-communicable death increased around 87.6%, from 1,050 [95% (CI): 880-45 

1,210] thousand to 1,970 (95% CI: 1,658-2,259) thousand. The states of Uttar Pradesh, Bihar, 46 
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1. Introduction: 62 

Particulate matter (PM2.5) (particulate matter with an aerodynamic diameter of equal to less 63 

than 2.5μm) pollution in fast-developing country like India has become an essential research 64 

topic (Pandey et al., 2021). As, a rapid increase in PM2.5 across India over the recent decade, 65 

has resulted from poorly managed rapid urban and agricultural expansion, and industrial 66 

revolution. Crop residue burning, power plants, industries, solid waste burning, landfills, 67 

vehicles, brick kilns, and diesel generator all add to India’s PM2.5 burden (Nagpure et al., 2015; 68 

Srivastava, 2021; Gulia et al., 2022). Severe air pollution events have become more frequent 69 

in urban areas in winter the (Kumari et al., 2021; Ravishankara et al., 2020). Ambient PM2.5 is 70 

one of the main constituents of air pollution and has become a critical environmental and social 71 

issue. A growing body of epidemiological evidence reports that long-term exposure to PM2.5 72 

contributes to increased risk of mortality by asthma, lung cancer, respiratory infection, 73 

respiratory disorder, diabetes, chronic respiratory disease, chronic obstructive pulmonary 74 

disease, hypertension, heart rate variability, heart attack, cardiopulmonary disease, ischemic 75 

heart disease, and stroke (Özkaynak et al., 2013; Pope et al., 2020; Sun and Zhu, 2019; 76 

Wesselink et al., 2021). Ambient PM2·5 is now the leading health burden in India and 77 

responsible for 980 thousand premature deaths in 2019 (Global Burden of Disease (GBD) study 78 

2019) (Murray et al., 2020). 79 

In most cities in India, annual mean PM2.5 concentrations are 5–25 times higher (CPCD, 2020) 80 

than the WHO Air Quality Guidelines of 5 μg/m³ (WHO, 2021). During the last decade, PM2.5 81 

over India shows a significant increase of >1 μg/m3/year (Dey et al., 2020). Similarly, 82 

Srivastava (2021) reported an increase in average PM2.5 in India of 15%/year from 1998 to 83 

2019, reporting Delhi as the state with the worst average PM2.5 and  Uttar Pradesh having the 84 

most cities with high PM2.5. Despite this increase in PM2.5 pollution, only a few studies have 85 

investigated the health impacts caused by PM2.5 exposure over a long-term timeframe. Many 86 

studies mainly rely on limited surface monitoring data (Nair et al., 2021; Saini and Sharma, 87 

2020), which may be insufficient to reproduce the long-term spatial and temporal variations of 88 

PM2.5. In India, ground-based measurements of PM2.5 are scarce and do not cover all the urban 89 

areas. Currently, India’s monitor density is 1 monitor/6.8 million people, which is well below 90 

than other highly populated countries (Brauer et al., 2019). A long-term database with high 91 
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spatial resolution is vital for effective health risk assessment in urban and rural areas and for 92 

better air quality management (Dey et al., 2020). Satellite-retrieved observations provide 93 

valuable additional information with better spatial coverage, but there are substantial 94 

uncertainties in quantifying the surface PM2.5 relevant to health (Liu et al., 2017). Chemical 95 

transport models are better for temporal and spatial coverage than observations, but long-term 96 

characterisation  of PM2.5 sources for large areas is difficult (Wang et al., 2016). For that reason, 97 

a database is needed that integrates information from satellite-retrieved aerosol optical depth, 98 

chemical transport modelling, and ground monitor data, and that is highly consistent for fine 99 

resolution surface-level PM2·5 concentrations. Hammer et al., (2020) and van Donkelaar et al., 100 

(2021) developed such a model for global estimation of monthly and annual PM2.5 101 

concentration with 0.01°×0.01° resolution for 1998–2020. We used this newly developed 102 

database, as a previous study had observed that the coarse-level (0.1°×0.1°) database would 103 

bias results whilst the finer resolution data could potentially improve the accuracy of health 104 

impact estimations (Liu et al., 2019). 105 

Quantitative PM2.5-attributable mortality has previously been assessed based on different 106 

exposure-response functions, mostly Integrated exposure-response (IER) model (Burnett et al., 107 

2014), which was also used for the GBD study. The IER model has a number or uncertainties 108 

when used for the Asian countries (Lelieveld et al., 2020). A global exposure mortality model 109 

(GEMM) was developed by Burnett et al., (2018) to reduce these uncertainties. Recent studies 110 

indicate that the inclusion of global cohort studies with a large range of ambient PM2.5 111 

concentrations in the GEMM model provides improved function for highly pollution areas in 112 

Asia (Lelieveld et al., 2020).  113 

In this study, we aimed to improve to estimate trends in PM2·5-associated mortality for 36 114 

geographical units in India (28 states; three union-territory of Delhi, Jammu and Kashmir, and 115 

Ladakh, and other five small union-territories) by: (1) using finer scale PM2·5 concentration 116 

estimates [0·01° × 0·01° (approximately 1km2) compared with 0·1° × 0·1° (approximately 100 117 

km2) for GBD study], (2) using the Global Exposure Mortality Model (GEMM) compatible 118 

with Integrated Exposure-Response (IER) model used in GBD 2019 study for health risk 119 

assessment and (3) estimating the leading factors influencing the PM2.5-attributable deaths in 120 

India. The resulting PM2·5-attributable health impact estimates can inform air quality 121 

management approaches at state and national scales. 122 

2. Methodology 123 

2.1. Ambient PM2.5 concentration and population data 124 
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The GBD study provide database for ambient PM2·5 concentrations at a 0·1° × 0·1° resolution, 125 

although in the present study we used fine resolution PM2.5 concentration estimates at 126 

0.01°×0.01° resolution covering the period from 2001 to 2020, obtained from the Atmospheric 127 

Composition Analysis Group at Washington University in St. Louis 128 

(https://sites.wustl.edu/acag/datasets/surface-pm2-5/). Annual and monthly mean 129 

Global/Regional Estimates (V5.GL.02) data was selected. The PM2·5 concentrations dataset is 130 

integrated information from satellite-retrieved aerosol optical depth, chemical transport 131 

modelling, and ground monitor data. Further details on the method for estimating global 132 

ambient PM2.5 is reported in the van Donkelaar et al.,( 2021) study. The downloaded datasets 133 

were in NetCDF format data. We converted them to “Geotiff” format then cropped and masked 134 

the raster with India’s shapefile.  135 

The gridded Indian population counts data with a resolution of 1×1 km from 2001 to 2020 were 136 

obtained from the WorldPop datasets (https://www.worldpop.org/). WorldPop spatial datasets 137 

are principally produced by integrating contemporary census data, settlements mapping, 138 

bottom-up population mapping, and intra-urban population mapping, then adjusted with the 139 

United Nations (UN) population growth model (12,106,108 grid). The gridded India population 140 

was then resampled using nearest neighbour approach to match the resolution of PM2.5 data 141 

(8,889,515 grid) (Lim et al., 2020; Tan et al., 2022). Finally, the re-gridded PM2.5 data and 142 

population data were used to estimate the population-weighted exposure level of PM2.5 143 

concentration and premature deaths.  144 

2.2. Health impact function 145 

We used a health risk model to estimate mortality attributable to PM2·5, following the method 146 

used in previous studies by Castillo et al., (2021), Yin, (2021), Anenberg et al., (2019), Zhang 147 

et al., (2022) and Nansai et al., (2021). The health impact function incorporates annual average 148 

PM2·5 concentrations, population counts, baseline mortality rates, and epidemiologically 149 

derived exposure-response functions relating PM2·5 concentrations and health outcomes. The 150 

population attributable fraction ( ,i dPAF ) is the percentage of disease in a given population that 151 

is attributable to PM2·5 based on exposure-response functions, incorporating the relative risk (152 

,i dRR ) derived from the integrating cohort studies. iPAF  calculated for each grid area ( i ) for 153 

disease-specific health endpoint ( d ) is calculated using equation 1. 154 

, , ,( 1) /i d i d i dPAF RR RR                                                                                                                                          (1) 155 

The PM2·5-attributable mortality burden was then calculated using the following equation: 156 
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, ,i d i d i dPMD PAF Pop BM                                                                                                                                  (2) 157 

in which ,i dPMD  represents the PM2.5-related premature death for health endpoint d  in a grid i158 

, iPop  is the number of population with age ≥25 years in a grid i  and dBM  is the baseline 159 

mortality for the health endpoint d . 160 

The GEMM is parameterized for disease-specific incremental relative risk ( ,i dRR ) assessment 161 

(Burnett et al., 2018). The GEMM consider PM2.5 related total non-accidental mortality [non-162 

communicable disease (NCD)+lower respiratory infections (LRI)] estimation called GEMM-163 

NCD+LRI and five cause-specific mortality, ischemic heart disease (IHD), stroke (STR), 164 

chronic obstructive pulmonary disease (COPD), lung cancer (LC) and lower respiratory 165 

infections (LRI) estimation called GEMM-5COD based on the Chinese male cohort. For 166 

comparisons with past studies, the integrated exposure-response (IER) model study was also 167 

used (Burnett et al., 2014) for five cause-specific death estimations (i.e., IHD, STR, COPD, 168 

LC and LRI) (IER-5COD). More details about IER and GEMM models are reported in 169 

Supplementary Material. We present uncertainty in attributable mortality estimates from the 170 

health impact function by estimating results at a 95% confidence interval (95% CI). We 171 

obtained India-specific, age-specific, and cause-specific baseline disease rates from the GBD 172 

study data exchange platform for 2001 to 2019 (2019 values are used thereafter). The ratios of 173 

25 years old over the entire population between 2001 and 2020 were derived from the national 174 

age structure data (https://www.populationpyramid.net/india/). According to equation (2), 175 

PM2.5-attributable premature mortality is determined by three quantifiable variables and the 176 

changes in these variables contribute to the changes in PM2.5-related mortality. We quantify 177 

the impacts of the changes in each of these three factors on the changes in premature mortality 178 

during the 2001 and 2020 period.  179 

2.3. Driving factors analysis 180 

We separated the effects of baseline mortality (BM) rate, PM2.5 concentration and population 181 

(Pop) on increase/decrease of PM2.5-attributable premature deaths using the decomposition 182 

approach adopted by GBD study (Cohen et al., 2017). Since the sequence of changing factors 183 

may affect the estimated contribution, we performed the decomposing process under all six 184 

possible sequences of the three factors. It is worth noting that the impact factors may interact 185 

and influence each other. For example, air pollutant emissions are strongly associated with 186 

population, and thus population would have a notable impact on the levels of PM2.5; exposure 187 

to PM2.5 itself would affect the baseline incidence rate. The decomposition method estimates 188 
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the contribution of factors by sequentially introducing each factor into the Equation 1. The 189 

difference between each consecutive step provides an estimate of the relative contribution of 190 

each factor. As the sequence of adding factors also influences the results, we estimated the 191 

results under all 6 possible sequences of the three factors The final estimation of contributions 192 

from different factors is the average value of the results for each factor (Yue et al., 2020; He et 193 

al., 2020). Detailed equations and processes are shown in Supplementary Fig. S1. 194 

3. Results and Discussions 195 

3.1. Pattern in PM2.5 concentration  196 

The annual spatial distribution of PM2.5 in 2001, 2010, 2011 and 2020 over India is shown in 197 

Figure 1 (and Fig. S2-S3). Four points are notable in these Figures: (1) ambient PM2.5 exceeds 198 

the annual NAAQS of 40 μg/m3 in 12 states in 2001 and 16 states in 2020. The highest annual 199 

average PM2.5 concentrations were observed during this period in Delhi, Uttar Pradesh, Bihar, 200 

Haryana, and Punjab. In these states, from 2001 to 2010, PM2.5 concentration increased from 201 

95.5±4.8, 77.0±18.8, 70.9±17.9, 69.1±16.1 and 61.5±12.9 µg/m3 to 127.4±5.8, 92.4±18.4, 202 

78.4±15.5, 93.1±16.2 and 79.8±14.5 µg/m3 respectively. In the same states average PM2.5 203 

concentrations reduced to 111.7±5.1, 91.6±17.7, 86.2±13.9, 85.5±13, 73.1±10.9 µg/m3 in 2020 204 

from 130.4±4.8, 98.1±18.8, 88.9±16.1, 95.4±17.9, 77.8±12.9 µg/m3 in 2011 (Table S1). In 205 

some states annual average PM2.5 concentration in 2020 was lower than in 2019, possibly due 206 

to COVID-19 lockdown restrictions (Venter et al., 2021). The lowest annual average PM2.5 207 

concentrations (<20 µg/m3) were observed in Ladakh, Arunachal Pradesh and Kerala, where 208 

the population is scattered and state is in high covered by mountains, and low number of 209 

polluting industries (Thomas et al., 2020; Dey et al., 2020). (2) All the states with the highest-210 

level PM2.5 are in the Indo-Gangetic Plain (IGP) and the western region of India. The IGP is a 211 

low-lying fertile alluvial plain bounded by the Himalayas in the north and central Indian 212 

highlands in the south. It is a densely populated region with more than 480 million people, 213 

about 40% of India’ population (Shagun, 2019). Continuous increase of emissions of primary 214 

and secondary PM2.5 coupled with unfavourable topography and meteorology leads to a large 215 

build-up of PM2.5 in this region. (3) A more severe situation is observed during winter 216 

(December to January), as due to low wind speeds, PM2.5 is trapped in the valley and does not 217 

disperse (Dey and Di Girolamo, 2010) and causing high PM2.5 (~300 µg/m3 in some places) 218 

(Fig. S1). A substantially decrease in PM2.5 was observed during the monsoon season, as 219 

particles are washed out of the air by monsoon rain. The PM2.5 concentration reduced to below 220 
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40µg/m3, except for in large cities, with the largest reduction observed over the eastern IGP 221 

and the west coast region (Fig. S2) (Dey et al., 2020). (4) There is an area in the IGP region 222 

with 2-times higher than the annual average PM2.5 NAAQS which increases significantly from 223 

2001 to 2020.  224 

 225 

 226 

Fig. 1. Spatial distributions of annual average PM2.5 averages in 2001, 2010, 2011 and 2020. 227 

 228 

 229 

3.2. PM2.5-attributable premature deaths in India 230 

Population-weighted PM2.5 concentrations increased from 46.0 to 56.0μg/m3 during 2001 to 231 

2010, then remained relatively stable during 2011 to 2020 with concentrations of 60.2 and 232 

59.5μg/m3 respectively. Figure 2 shows the increase in PM2.5 concentration in India and the 233 

two factors (i.e., demographic and baseline death rate change) that influenced the quantitative 234 

estimation of PM2.5-related deaths. India’s population increased significantly in the past 20 235 

years, from 1075 million in 2001 to 1380 million in 2020. Of these, 496 million and 770 million 236 

respectively were ≥25 years old. In 2001, around 285, 420, 485 and 494 million residents aged 237 

≥25 years were exposed to PM2.5 concentrations above proposed WHO 2021 air quality interim 238 

targets (IT) 1 to 4 (35, 25, 15 and 10 µg/m3) (WHO, 2021). This exposed population increased 239 

by 167, 163, 129 and 124% for the four ITs in 2010. In 2020, around 598, 726, 765 and 768 240 

million residents were exposed to PM2.5 concentrations above the four ITs an increase of only 241 

20 to 23% compared to 2011. Of the total population, around 57.4, 84.6, 97.8 and 99.5% of 242 

residents were exposed above IT1, IT2, IT3 and IT4 WHO guideline values in 2001, changing 243 

to 77.6, 94.2, 99.3 and 99.7% in 2020.  244 

The baseline disease incidence rates differed from each other. The sum of NCD and LRI had 245 

the highest incidence rate (791∼826 mortalities per 100,000 people) in India. At the disease-246 

specific level, IHD had the highest baseline death rate (174~201 per 100,000), while LC had 247 

the lowest baseline value (9∼12 mortalities per 100,000 people). During the study time frame, 248 

the baseline incidence rate decreased for STR (101~93 per 100,000) and was stable for COPD 249 

(118~120 per 100,000) and LRI (38.7~38.8 per 100,000) related deaths.  250 

 251 

 252 
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Fig. 2. Time series of percentage of population over 25 years, total population ≥ 25 years, 253 
and disease-specific baseline mortality rate in India from 2001 to 2020. 254 

 255 

 256 

3.2.1. Country-level premature deaths 257 

Our health risk assessment focused on estimating premature deaths attributable to ambient 258 

PM2.5 exposure from 2001 to 2020 in India. Two sets of age-specific Global Exposure Mortality 259 

Model (GEMM) were used to estimate non-accidental deaths (NCD+LRI related deaths) with 260 

the GEMM-NCD+LRI model, five types of disease-specific deaths were estimated with the 261 

GEMM-5COD model, and for comparison, the same five types of disease-specific deaths were 262 

also estimated using the IER-5COD model. For each model, the same set of global databases 263 

for PM2.5 exposure and population, percentage of population ≥25 and age-specific baseline 264 

death values were used. The methodology-specific estimated premature mortalities for selected 265 

years are shown in Table 1 and Figure 3. More detailed results are reported in Table S2 266 

(Supplementary Material).  267 

In 2001, PM2.5-attributable total non-accidental deaths (GEMM-NCD+LRI model) were 1,050 268 

[95% Confidence Interval (CI): 880-1,210] thousand [GEMM-5COD: 903 (95%CI: 660-1,093) 269 

thousand and IER-5COD: 537 (279-790) thousand], increasing to 1,404 (1,181-1,613) 270 

thousand [GEMM-5COD: 1,217 (909-1,451) thousand and IER-5COD: 723 (386-1,051) 271 

thousand] in 2010. Non-accidental deaths further increased during 2011-2020 from 1,517 272 

(1,277-1,740) thousand [GEMM-5COD: 1,313 (985-1,559) thousand and IER-5COD: 780 273 

(420-1,129) thousand] to 1,970 (1,658-2,259) thousand [GEMM-5COD: 1,701 (1,277-2,021) 274 

thousand and IER-5COD: 1,007 (543-1,459) thousand]. 275 

Previously unaccounted for non-communicable diseases (other-NCD) (GEMM-NCD+LRI 276 

minus GEMM-5COD) connected to premature deaths from PM2.5 numbered 148 thousand in 277 

2001 and increased to 269 thousand in 2020. In total nonaccidental deaths, ‘other-NCD’, IHD, 278 

STR, COPD, LC and LRI contributed 13.6, 42.5, 15.6, 17.2, 1.7 and 9.5% respectively during 279 

the period studied (Table 1). In the IER-5COD model, IHD, STR, COPD, LC and LRI 280 

contributed 39.8, 29.1, 17.1, 1.9 and 12.1% respectively. The ratio of averted deaths from 281 

GEMM-5COD to GEMM-NCD+LRI and IER-5COD to GEMM-NCD+LRI was 0.51 and 282 

0.86. A slightly lower ratio of 0.46 and 0.84 was observed in 2015 by (Burnett et al., 2018), 283 

this difference is likely to be due to our use of different PM2.5 datasets. Total non-accidental 284 

deaths increased to 33.7% from 2001 to 2010 and 29.8% from 2011 to 2020, and an overall 285 
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increase of 87.6% from 2001 to 2020. The GBD and WHO studies (NHP, 2019; WHO, 2020) 286 

report 3773 thousand and 6099 thousand all-cause NCD+LRI deaths in 2001 and 2020 in India. 287 

Our study found that the contribution of PM2.5-related deaths to all-cause NCD+LRI slowly 288 

increased from 27.2% to 32.3%. The PM2.5-attributable premature mortality increased 289 

continuously from 2001-2020. With a faster increase during the first decade for more 290 

contributing health endpoints (IHD: 43.1%, STR: 26.1%, COPD: 29.9%, LC: 52.0%, LRI: 291 

21.3%) than during the second decade (IHD: 29.5%, STR: 24.7%, COPD: 30.8%, LC: 43.1%, 292 

LRI: 33.6%). We found age-standardised per capita death rate (per 105-population age ≥ 25 293 

years) increased ~21% during the 2001-2020 [GEMM-NCD+LRI: 212 to 256 and IER-5COD: 294 

108 to 131]. Southerland et al., (2022) reported a 33% increase in per capita PM2.5-attributable 295 

mortality for urban areas in India from 2000 to 2019 (Figure 4). In general, the overall 296 

increasing trend in both mortality values and percentage of total NCD+LRI in India indicates 297 

a weakness of PM2.5 related emission policies that impaired health conditions in India. 298 

 299 

 300 

Table 1. Annual PM2.5 attributed premature death (with 95% CI) in India using GEMM model 301 

and IER model. 302 

 303 

Fig. 3. (a) Annual PM2.5 attributed premature deaths in India from 2001 to 2020. The black 304 
error lines represent the 95% confidence intervals. (b) and (c) represent percentage 305 
contribution of cause-specific death in 2001 and 2020. 306 

 307 

Fig 4. Per-capita non-accidental and cause-specific premature deaths in Indian from 2001-2020 308 
based on (a) GEMM and (b) IER model. 309 

 310 

3.2.2. State-level premature deaths 311 

Figure 5 is an abstract view of state-level adverse health impacts caused by PM2.5 pollution in 312 

2001 and 2020. A wide variation in PM2.5-attributable premature deaths was observed between 313 

different the states. The highest numbers of non-accidental deaths (GEMM-NCD+LRI model) 314 

were observed in Uttar Pradesh, Bihar, West Bengal, Maharashtra, Rajasthan, and Madhya 315 

Pradesh. From 2001 to 2010, non-accidental deaths increased from 232.1 (196.3-264.9), 112.7 316 

(95.2-128.9), 81.4 (68.1-94.1), 79.1 (65.7-91.9), 66.3 (55.6-76.2), 58.5 (48.8-67.6) thousand to 317 

310.1 (263.3-352.5), 150.7 (127.6-171.9), 106.2 (89.1-122.2), 108.6 (90.5-125.7), 90.5 (76.3-318 



11 
 

103.7), 81.1 (67.9-93.4) thousand, respectively. From 2011 to 2020, non-accidental deaths 319 

increased from 331.4 (281.9-376.3), 167.3 (142.0-190.4), 119.8 (100.8-137.4), 116.4 (97.1-320 

134.6), 93.9 (79.1-107.6), 89.5 (75.1-102.9) thousand to 424.1 (360.1-482.2), 226.7 (192.3-321 

258.0), 156.2(131.7-178.9), 154.5 (129.1-178.5), 123.3 (103.8-141.3), 119.7 (100.5-137.6) 322 

thousand in Uttar Pradesh, Bihar, West Bengal, Maharashtra, Rajasthan, and Madhya Pradesh 323 

respectively. However, per capita population, there were more premature deaths in Delhi, Uttar 324 

Pradesh, Bihar, Haryana and Punjab, with approximately 325 (276-369), 288 (244-329), 280 325 

(236-320), 272 (229-311) and 250 (210-287) in 2001 and 360 (307-408), 327 (277-372), 322 326 

(274-367), 321 (272-365), 290 (245-332) in 2020, respectively. The lowest numbers of per 327 

capita deaths were in Ladakh, Arunachal Pradesh, Kerala, Nagaland and Tamil Nadu. More 328 

details on state-level and model-specific values are reported in Table S2.  329 

Rapid urbanization over the past decades has caused growing concerns about the 330 

environmental, social and health impacts on Asia’s urban population (Ravishankara et al., 331 

2020; Wu et al., 2020). India has witnessed rapid inter-state migration, a key issue of the 332 

urbanization process often considered detrimental to the urban environmental and residential 333 

energy transition. Due to the considerable gap between state-to-state energy consumption and 334 

economic investment level, large-scale migration places extra impacts on air pollutant 335 

emissions and create uncertainties for quantitative health risk assessment (Shen et al., 2017; 336 

Shi et al., 2020). Up till the 2011 Census, Maharashtra and Delhi, two states with high per 337 

capita income, had received 9.1 million and 7.2 million migrants born in other states (Census 338 

of India, 2011a). In 2001, the corresponding numbers were 7.9 million and 5.5 million, 339 

indicating a sharp rise in migration over the decade (Census of India., 2001). The Indian 340 

government predicted that in 2021, the migrating population would increase to 12.2 and 8.5 341 

million in Maharashtra and Delhi (Census of India, 2011b). Of the total migrating population, 342 

only 40% of people stay more than one year. If we assume the migrating population settled 343 

equally as per the distribution of state population, then the PM2.5-exposure attributable to non-344 

communicable premature deaths among the migration population was 7.1 (6.1-8.1) thousand 345 

and 5.0 (4.2-5.8) thousand in 2001 and 12.2 (10.4-13.9) thousand and 10.5 (8.3-11.5) thousand 346 

in 2020 in Delhi and Maharashtra.  347 

 348 

 349 

Fig. 5. State-level annual PM2.5 attributed premature deaths (GEMM model) for the years (a) 350 
2001 and (b) 2020. 351 

 352 
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 353 

3.3. Factors affecting premature deaths 354 

Variations in PM2.5-related premature deaths over India are due to the non-linear interactive 355 

changes of associated parameters. The health risk model was based on the input data for the 356 

corresponding year, including gridded annual average PM2.5 values, population aged ≥25 years, 357 

and disease-specific baseline death rate. Relative risk caused by PM2.5 is log-linearly associated 358 

in Eq. (2). This data allowed us to comprehensively assess each factor’s effect on the estimated 359 

premature mortality in order to explain trends. Figure 6 illustrates the changes for each factor 360 

to NCD+LRI-related PM2.5-attributable mortality and individual diseases specific mortality 361 

over India from 2001 to 2020. In general, the change in baseline mortality rate (BM) and PM2.5 362 

exposure, accounted for 65 (55-75) thousand (6.2%) and 196 (171-218) thousand (18.7%) 363 

increase in PM2.5-related deaths in 2020 compared to 2001. By contrast, demographic changes 364 

outweighed the health burden alone resulting in a 660 (555-758) thousand increase (62.8%) in 365 

NCD+LRI related PM2.5 exposure mortality for those years. In the absence of changes in 366 

baseline values, changes in both PM2.5 exposure and population accounted for an 81.5% 367 

increase [856 (725-976) thousand] in total PM2.5-related non-accidental deaths between 2001 368 

and 2020. Among the five diseases (GEMM-5COD model), change in baseline mortality alone 369 

increased premature deaths related to IHD by 21.4% [91 (85-96) thousand], LC by 43% [6.8 370 

(4.4-8.6) thousand], decreased by -11.6% [21 (11-27) thousand] for STR, and had minor 371 

fluctuations in COPD (2.1%) and LRI (0.3%). 372 

From 2001 to 2020, the only change of spatiotemporal increase of PM2.5 in India was 373 

responsible for 65 (63-67), 35 (22-42), 35 (21-43), 3.6 (2.6-4.2) and 12 (9-13) thousand 374 

increases in premature deaths for IHD, STR, COPD, LC and LRI, which was only about 15.4, 375 

20.2, 19.2, 23.0 and 11.3% of total addition. Changes in baseline disease rates had more impact 376 

on PM2·5-attributable mortality than the change of PM2·5 concentrations for IHD and LC. 377 

Individually, the effects of demographic changes on the disease-specific mortality were 378 

influencing above 60% increase of premature deaths during 2001-2020, and accountable for 379 

276 (258-293), 104 (57-139), 113 (60-155), 11.3 (7.4-14.4) and 63 (38-78) thousand increase 380 

in premature deaths for IHD, STR, COPD, LC and LRI, respectively. Our results demonstrate 381 

that the driving factors on the PM2.5-attributable premature deaths varied spatially according to 382 

disease. 383 

 384 

 385 



13 
 

Fig. 6. Change in PM2.5 attributable premature deaths in India between 2001 and 2020, due to 386 

baseline mortality (BM) change, changes in exposure to PM2.5, and change of 387 

population ≥ 25 years old for PM2.5-related non-communicable disease, IHD, STR, 388 

COPD, LC and LRI.  389 

 390 

 391 

The estimated PM2.5-attributable premature deaths differ significantly between studies, mainly 392 

due to (1) use of different methods to estimate ground-level PM2.5 concentration, like spatial 393 

interpolation of ground-level measurement, satellite remote sensing data or a combination of 394 

satellite and machine learning model, chemical transport model and land-use regression model. 395 

Each model predicts incompatible results and has its advantages and disadvantages (Liang et 396 

al., 2020; Zhang et al., 2021). (2) Studies focused on spatial resolution (0.1°×0.1° or 397 

0.01°×0.01°) have dissimilar attributable values. The high spatial resolution data can sharply 398 

capture the pollution level in areas with diverse emissions, topography, green space, and 399 

demography. As such, high-resolution data are particularly beneficial for evaluating the health 400 

impacts, as the exposed concertation is not far from the overall personal-exposure value. (3) 401 

The application of non-identical health risk assessment model (linear, near-linear, log-linear, 402 

non-linear exposure-response models) estimate significant different result (Nasari et al., 2016). 403 

(4) The use of different baseline mortality rates and demographic age distribution will produce 404 

distinct results.  405 

Notably, (Liao et al., 2022) developed a random forest model to predict ambient PM2.5 406 

concentrations at a 0.1°×0.1° spatial resolution over India, which predicted a population-407 

weighted annual average PM2.5 value of 67.7µg/m3 in 2010, higher than the values reported by 408 

Hammer et al., (2020) (64.6µg/m3) and van Donkelaar et al., (2016) (50.2µg/m3). For 2017 409 

Liao et al., (2022) predicted a value of 72.3µg/m3, which stand between the predicted value by 410 

Shaddick et al., (2018) (89.9µg/m3) and van Donkelaar et al., (2021) (58.7µg/m3). Balakrishnan 411 

et al., (2019) and Stanaway et al., (2018) (GBD study 2017) used the same ambient PM2.5 412 

dataset and the IER-5COD model to estimate PM2.5-attributable premature deaths, however the 413 

results are notably different from each other, 673 (552-793) thousand and 889 (704-1,084) 414 

thousand. Balakrishnan et al., 2019) study underestimates the overall impact of PM2.5 because 415 

it did not include diseases for which the evidence is emerging but not fully established in India. 416 

In our study, we estimated higher premature deaths [925 (497-1,343) thousands] using the same 417 

IER model. Our higher estimate values are probably related to the use of a different PM2.5 418 
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database with higher resolution (0.01°×0.01°) and demographic structure. When using the 419 

same PM2.5-database for 2019, from van Donkelaar et al., (2021) and same IER-5COD model, 420 

Pandey et al., (2021) and our study estimate very similar PM2.5-attributable premature deaths, 421 

980 (770-1,192) thousand and 978 (527-1,418) thousand.  422 

Burnett et al., (2018) estimated 2,219, 1,867 and 1,022 thousand premature deaths in India with 423 

the GEMM-NCD+LRI, GEMM-5COD and IER-5COD health-risk models by employing the 424 

Shaddick et al., (2018) PM2.5-database for 2015, which was higher than our study, as the 425 

population-weighted PM2.5 was higher in Shaddick et al., (2018) study (74.0µg/m3) than van 426 

Donkelaar et al., (2021) study (56.7µg/m3). Use of a single relative risk in the non-linear 427 

exposure-response model estimated much higher premature deaths than any other health risk 428 

model (Maji et al., 2018), like Vohra et al., (2021) reported 2,458 thousand deaths attributable 429 

to PM2.5 air pollution In India from fossil fuel combustion only, for 2012. Consequently, the 430 

non-linear power-law exposure-response model generates the lowest PM2.5-attributable 431 

premature deaths as reported by Chowdhury and Dey, (2016). 432 

In the state-level studies, for 2019 using the IER-5COD model, Pandey et al., (2021) reported 433 

the highest premature deaths attributable to ambient PM2.5 in Uttar Pradesh [217 (166-273) 434 

thousand], Maharashtra [95 (74-117) thousand] and West Bengal [70 (52-89) thousand], 435 

whereas our study estimated 209 (117-291), 79 (41-118) and 75 (40-109) thousand premature 436 

deaths, respectively, for the same method category. Southerland et al., (2022) reported an 437 

increase of 17 to 30 thousand of premature deaths (76% increase) (IER-5COD model) in the 438 

National Capital Region (NCR)-Delhi from 2000 to 2019, and our study estimated a similar 439 

increase of premature deaths (78%) in Delhi [IER-5COD model; 2001: 10.5 (5.8-14.5) 440 

thousand and 2020: 18.8 (10.9-25.7)] during 2001 to 2020.  441 

In an update from previous studies, our study took advantage of newly available finer spatial 442 

scale, high-resolution PM2.5 data for total and cause-specific PM2.5-attributable deaths available 443 

for the 2001 to 2020 period. Our study also employed year-to-year population distribution data. 444 

The added spatiotemporal richness allowed us to quantitatively decompose the effects of 445 

changes in influencing factors, helping to pinpoint relevant driving forces in India’s PM2.5-446 

attributable health burden. New information has been brought to light, which enriches the 447 

understanding of “other-NCD” deaths and ageing-population effects that was previously 448 

neglected in India-specific study.  449 

Compared with previous studies, our results demonstrate that the choice of the PM2.5-related 450 

health risk model gives distinctly different PM2.5-attributable premature deaths values. We are 451 

not able to say which model most accurately predicts PM2.5-related mortality values for India, 452 
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as both models have not included any epidemiological study from India, due to not availability. 453 

The GEMM model may provide more accurate predictions, as it includes a cohort study from 454 

China, where PM2.5-exposure level is similar to India. The GEMM model predicted higher 455 

premature death values than the IER model, but the relative contribution factors (i.e., by change 456 

of PM2.5, population and baseline rate) did not apparently change, indicating that that the 457 

central idea made by this study still win. 458 

Another benefit of our study was the high-resolution estimates of gridded PM2.5 values, which 459 

advanced the spatial scale of PM2.5-related deaths compared with previous low-resolution data 460 

(0.1°×0.1°) studies including the GBD study. Due to the lack of historical ground-level PM2.5 461 

observations in India before 2015, the calibration between ground-level PM2.5 measured value 462 

and satellite aerosol optical depth cannot be quantified directly and may bias historical 463 

predictions of PM2.5. Data used for large rural areas where ground-level measurements were 464 

not available and often lack of validation.  465 

The consistent growth of population ≥25 years led to an increase in PM2.5-attributable 466 

premature mortality for India in the past 20 years. In addition, the effect of population change 467 

may be partly attributable to the interstate migration of the population to the more polluted 468 

urban regions, like Maharashtra and Delhi. It is unavoidable and difficult to control population 469 

growth and natural ageing compared with other controlling factors. Thus, along with strict 470 

state/location/city specific air pollution control policies, proper health advises and strengthened 471 

medical facilities are required to lower the cause-specific baseline death rate. To reduce 472 

premature death induced by PM2.5 exposure, a joint PM2.5 pollution mitigation and health 473 

improvement policies should be developed. 474 

The cause-specific incidence rate has minimal influence on increase in PM2.5-attributed deaths 475 

in India. In the last two decades, the improvement of economic and medical conditions in India 476 

has increased life expectancy by over 7 years (WB, 2022). This improvement in health 477 

conditions has reduced the baseline death rate, somewhat hiding what would otherwise have 478 

been an even sharper increase in PM2.5-related NCD+LRI deaths. The change in disease-479 

specific baseline death rate had a complicated effect on changes in PM2.5-attributable mortality. 480 

Promoting a healthier lifestyle that reduces the disease-specific mortality rates can help reduce 481 

pollution-related deaths in India.  482 

The present study has several limitations, including our inability to fully account for 483 

uncertainties. Uncertainty was inherent in the estimates for each input in the health impact 484 

function, including the relative risk estimates, population estimates, PM2·5 concentration 485 

estimates, and baseline mortality rates. Baseline mortality rates were uncertain, one of the 486 
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reasons being because we applied country-level baseline disease rates, although urban baseline 487 

disease rates and demographics could differ from country-level or state-level averages. Poor 488 

areas may have much higher baseline mortality rate than rich areas, that have not considered 489 

due to unavailability of data. In our resampling process, we lost 0.01% population data. The 490 

resampling method cannot guarantee the total population identical to that without the 491 

resampling, that may introduce some uncertainty, although aggregation based on area weights 492 

can reduce this uncertainty (Figure S6). 493 

4. Conclusions 494 

Our study investigated the PM2.5-trend and associated premature mortality in India from 2001 495 

to 2020 and the driving factors of PM2.5-related deaths during this period. A significant 496 

spatiotemporal variation of the PM2.5-trend and attributable health impact were observed during 497 

the study period. All the states with the highest-level PM2.5 were in the Indo-Gangetic Plain 498 

and the western region of India where population density is highest. The total non-accidental 499 

deaths due to PM2.5 increased by ~87.6% during the study period, although cause-specific 500 

deaths increased around 69-137%. Uttar Pradesh, Bihar, West Bengal, Maharashtra, Rajasthan, 501 

and Madhya Pradesh were the six states with the highest number of premature deaths. Together 502 

these states contributed 61% of the total PM2.5-related accounted deaths. Delhi, Uttar Pradesh, 503 

Bihar, Haryana, and Punjab had the highest per capita mortality, as these states were exposed 504 

to high PM2.5 concentration. Overall PM2.5-attributable deaths increased in India over the study 505 

period, and our findings suggested the principal driving factor for the increase was 506 

demographical changes from 2001 to 2020, contributing ~62.8% to the total increase. The 507 

change in baseline cause-specific death rate did not bring significant changes in total premature 508 

deaths, but changes in ischemic heart disease and lung cancer increased the health burden. A 509 

comprehensive, state-of-the-art intervention strategy should be implemented to reduce 510 

spatiotemporal heterogeneity in PM2.5 and corresponding attributed deaths. Joint action is 511 

needed from central and state government pollution control boards to implement source-512 

specific policies for future reductions in PM2.5. No epidemiological study has been conducted 513 

in India that identifies the effects of long-term PM2.5 exposure for different age groups and 514 

non-accidental or cause-specific mortality. To refine the exposure-response model, a cohort 515 

study should be conducted to improve understanding and policies to reduce India-specific 516 

quantitative PM2.5-related premature deaths. 517 

 518 
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Fig. 1. Spatial distributions of annual average PM2.5 concentration (µg/m3) in 2001, 2010, 2011 and 2020.  
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Fig. 2. Time series of percentage of population over 25 years, total population ≥ 25 years, and 
disease-specific baseline mortality rate in India from 2001 to 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Fig. 3. (a) Annual PM2.5-attributed premature deaths in India from 2001 to 2020 in India. The 
black error lines represent the 95% confidence intervals. (b) and (c) represent percentage 
contribution of cause-specific death contribution in 2001 and 2020. 
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Fig 4. Per-capita non-accidental and cause-specific premature deaths in Indian from 2001-2020 

based on (a) GEMM and (b) IER model. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



 

Fig. 5. State-level annual PM2.5-attributed premature deaths (GEMM model) for the year (a) 2001 
and (b) 2020. 

 



 

 

Fig. 6. Change in PM2.5-attributable premature deaths in India between 2001 and 2020, due to baseline 
mortality (BLM) change, changes in exposure to PM2.5, and change of population ≥ 25 years old, 
for PM2.5-related non-communicable disease, IHD, STR, COPD, LC and LRI.  


