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Abstract

Oscillatory reconnection is a relaxation process in magnetized plasma, with an inherent periodicity that is
exclusively dependent on the properties of the background plasma. This study focuses on the seismological
prospects of oscillatory reconnection in the solar corona. We perform three sets of parameter studies (for
characteristic coronal values of the background magnetic field, density, and temperature) using the PLUTO code to
solve the fully compressive, resistive MHD equations for a 2D magnetic X-point. From each parameter study, we
derive the period of the oscillatory reconnection. We find that this period is inversely proportional to the
characteristic strength of the background magnetic field and the square root of the initial plasma temperature, while
following a square root dependency upon the equilibrium plasma density. These results reveal an inverse
proportionality between the magnitude of the Alfvén speed and the period, as well as the background speed of
sound and the period. Furthermore, we note that the addition of anisotropic thermal conduction only leads to a
small increase in the mean value for the period. Finally, we establish an empirical formula that gives the value for
the period in relation to the background magnetic field, density, and temperature. This gives us a quantified relation
for oscillatory reconnection, to be used as a plasma diagnostic in the solar corona, opening up the possibility of
using oscillatory reconnection for coronal seismology.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar magnetic reconnection (1504);
Solar coronal seismology (1994); Solar coronal waves (1995); Magnetohydrodynamical simulations (1966)
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1. Introduction

Oscillatory reconnection is a physical phenomenon char-
acterized by a series of reconnection events (Parker 1957;
Sweet 1958; Petschek 1964) that take place alongside periodic
changes in the magnetic connectivity of a perturbed magnetic
field. The process was identified for the first time in Craig &
McClymont (1991), during the study of the relaxation of a 2D
X-point. One important characteristic of oscillatory reconnec-
tion is that the periodicity is not imposed by an external driver,
rather it is an inherent property of the relaxation process.

Over recent years, a number of numerical studies have been
conducted regarding oscillatory reconnection. McLaughlin
et al. (2009) studied the mechanism for a 2D magnetic X-point
in a cold plasma, solving the fully compressible resistive MHD
equations. Using an external fast magnetoacoustic pulse, they
initiated oscillatory reconnection by perturbing a magnetic
X-point. This study identified many properties of this
mechanism, like the periodic changes in the resulting current
sheet orientation with the respective changes in connectivity,
and the formation of both fast and slow oblique magnetic
shocks. Thurgood et al. (2017) later expanded the results of the
previous study for a 3D null point, also reporting the generation
of MHD waves. Oscillatory reconnection has also been studied
for a realistic solar atmosphere, as a result of flux rope
emergence (Murray et al. 2009; McLaughlin et al. 2012b),
while other studies revolved around the effects of resistivity,
initial perturbation amplitude, and the length of the initial
current sheet on the period of the reconnection process
(McLaughlin et al. 2012a; Thurgood et al. 2018a, 2018b,
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2019). Stewart et al. (2022) reported the onset of oscillatory
reconnection and the generation of waves through the
coalescence of two cylindrical flux ropes, while Sabri et al.
(2020) reported the development of the plasmoid instability in a
magnetic O-point and the resulting manifestation of plasmoid-
mediated quasi-oscillatory magnetic reconnection. The results
of McLaughlin et al. (2009) have recently been expanded for a
hot coronal plasma in Karampelas et al. (2022a), studying the
relation between the oscillation period and the strength of the
background magnetic field, while also taking into account the
effects of anisotropic thermal conduction. A following study
(Karampelas et al. 2022b) reported for the first time the
independence between the type and strength of the perturbing
wave pulse and the frequency of the resulting oscillatory
reconnection in a hot coronal plasma. These two studies have
produced encouraging results regarding the possibility of using
oscillatory reconnection as a new tool for coronal seismology.

Magnetic reconnection can cause the dissipation of the
magnetic field and electric current, leading to the acceleration
of particles, ejection of mass, and heating through the
generation of shocks. As such, it is considered the main
mechanism behind solar flares (e.g., Shibata & Magara 2011;
Jelinek et al. 2015), while the ubiquitous null points in the solar
atmosphere (Galsgaard & Nordlund 1997; Brown &
Priest 2001; Longcope 2005; Regnier et al. 2008), where
reconnection can take place, are consequently considered
preferential locations of the manifestation of flares (e.g.,
Murawski et al. 2011). Over the years, oscillatory reconnection
has been proposed as a driving force behind observed
phenomena like quasi-periodic pulsations (QPPs) of solar
flares Kupriyanova et al. 2016; Van Doorsselaere et al. 2016;
Pugh et al. 2017; Yuan et al. 2019; Li et al. 2020a, 2020b;
Hayes et al. 2020; Clarke et al. 2021; Li et al. 2021; Li &
Chen 2022; Li et al. 2022; Shi et al. 2022) and stellar flares


https://orcid.org/0000-0001-5507-1891
https://orcid.org/0000-0001-5507-1891
https://orcid.org/0000-0001-5507-1891
https://orcid.org/0000-0002-7863-624X
https://orcid.org/0000-0002-7863-624X
https://orcid.org/0000-0002-7863-624X
https://orcid.org/0000-0002-5915-697X
https://orcid.org/0000-0002-5915-697X
https://orcid.org/0000-0002-5915-697X
https://orcid.org/0000-0001-8954-4183
https://orcid.org/0000-0001-8954-4183
https://orcid.org/0000-0001-8954-4183
mailto: kostas.karampelas@kuleuven.be
http://astrothesaurus.org/uat/1964
http://astrothesaurus.org/uat/1504
http://astrothesaurus.org/uat/1994
http://astrothesaurus.org/uat/1995
http://astrothesaurus.org/uat/1966
https://doi.org/10.3847/1538-4357/acac90
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acac90&domain=pdf&date_stamp=2023-02-02
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acac90&domain=pdf&date_stamp=2023-02-02
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL, 943:131 (13pp), 2023 February 1

(e.g., Guarcello et al. 2019; Broomhall et al. 2019; Notsu et al.
2019; Vida et al. 2019; Jackman et al. 2019; Mancuso et al.
2020; Ramsay et al. 2021). The mechanism is included in
reviews summarizing our current knowledge of QPPs and the
proposed mechanisms behind them, such as those of
McLaughlin et al. (2018), Kupriyanova et al. (2020), and
Zimovets et al. (2021). In particular, there are many examples
from QPP observations (see the histogram in McLaughlin et al.
2018, and its corresponding online catalog), with reported
periods close to those derived from the studies of Karampelas
et al. (2022a) and Karampelas et al. (2022b), for the plasma
conditions considered in those studies.

Connection has also been proposed between oscillatory
reconnection and quasi-periodic flows, like those associated
with spicules (e.g., De Pontieu & MclIntosh 2010; De Pontieu
et al. 2011; Samanta et al. 2019; Yurchyshyn et al. 2020), as
well as with observed periodicities in breakout current sheets at
the base of jets (Hong et al. 2019). Mandal et al. (2022)
reported a highly dynamic small-scale jet in a polar coronal
hole, and proposed oscillatory reconnection as a possible
driving mechanism behind the observed repetitive outflows.
McLaughlin et al. (2012b) were able to reproduce such
observed periodic outflows through oscillatory reconnection
in a 2D flux emergence model. The resulting periods from that
model had a very good match with those reported from wavelet
analysis in Mandal et al. (2022), although the latter showed no
significant power at the 99% confidence level, preventing them
to characterize the outflows as periodic, but merely repetitive.
Observational signatures of chromospheric jets by periodic
reconnection events have also been reported in simulations by
Heggland et al. (2009), although, the periodicity was attributed
to the continuous driving rather than being inherent to the
system. Oscillatory reconnection has also been considered as a
possible mechanism behind the creation of an observed quasi-
periodic fast-propagating (QFP) magnetosonic wave from the
eruption of a magnetic flux rope (Shen et al. 2018), as well as
behind the formation and disappearance of a small-scale
magnetic flux rope consisting of new loops formed by the
reconnection events (Xue et al. 2019). Zhang et al. (2014)
reported oscillatory (or reciprocatory) magnetic reconnection in
observations of coronal bright points (CBPs), while reversals of
an elongated current sheet in a recent numerical 2D CBP model
have been attributed to oscillatory reconnection (Nobrega-
Siverio & Moreno-Insertis 2022). Finally, recent observations
by the Parker Solar Probe could also be attributed to oscillatory
reconnection (e.g., Bale et al. 2016; Kasper et al. 2019; Bale
et al. 2019), like Alfvénic spikes (He et al. 2021) and periodi-
cities correlated with Type III radio bursts (Cattell et al. 2021).

In this paper, we further investigate oscillatory reconnection
in a hot coronal plasma and explore its potential for utilizing
oscillatory reconnection as a tool for coronal seismology. We
expand the results of Karampelas et al. (2022a) through a series
of parameter studies for different characteristic strengths of the
magnetic field, equilibrium plasma density, and initial plasma
temperature, for a 2D magnetic X-point. Like in Karampelas
et al. (2022a) and Karampelas et al. (2022b), we explore these
cases both in the absence and presence of anisotropic thermal
conduction. In Section 2, we present our physical domain, the
code used to solve the fully compressible MHD equations, and
the numerical schemes utilized, while we present the results of
the parameter studies in the respective subsection in Section 3.

Karampelas et al.

Finally, our conclusions and a general discussion are given in
Section 4.

2. Numerical Setup
2.1. Numerical Scheme

For the numerical studies below, we solve the 2D
compressible resistive MHD equations in Cartesian coordi-
nates, in the absence of gravity (see Section 2.1 in Karampelas
et al. 2022a), using the PLUTO code (Mignone et al.
2007, 2012). Like in our past studies (Karampelas et al.
2022a, 2022b), we employ the fifth-order monotonicity
preserving scheme (MP5) for the spatial integration and the
third-order Runge—Kutta method for the time integration. To
satisfy the solenoidal constraint of the magnetic field
(V-B=0), we use the Constrained Transport method
implemented in the code.

In these simulations, we also consider setups where we
introduce anisotropic thermal conduction. The values for the
parallel and perpendicular thermal conduction coefficients (in
Js7'K'm™"), as calculated from the Spitzer conductivity
(Orlando et al. 2008), are given below:

K| =56 x 10712 T3, 4))
2

K =33 x 10721 2 )

JTB*
where k), k£, , and the hydrogen number density ny, temperature
T, and magnetic field B are all given in SI units.” The effects of
saturation are also taken into account for very large temperature
gradients. The corresponding source term (V - F) in the energy
equation varies between the classical (F.p,s) and saturated
thermal conduction (Fj,):

V-E=V. (Fim) 3)

F;at + |Ezlass|
Fiass = rjb(b - VT) + 5 [VT — b(b - VT)], 4)
F;al = 5 ¢ p V_S%iso? (5)

where Vsiso = «/p/p is the isothermal speed of sound,

b=8B /|B| is the unit vector in the direction of the magnetic
field, and ¢ is a free code parameter (with a default value of
0.3). For zero magnetic field, F. reduces to F. = k) VT.

During this analysis, we work in code units U = Uy, Uy L
with Uy, being the physical quantities and Uy the normalization
unit. The constants U, are characteristic values, chosen for
solar coronal plasma. We consider the unit length Ly =1 Mm,
unit density po=10""? kg m™>, and unit velocity v,=
129 x10° m s ', equal to Vg /7 for coronal plasma at
1 MK. We also take the unit temperature 7o=1 MK. The
characteristic magnetic field and unit time are, respectively,
By = \ppyvi = 1.44 G and ty=Lo/vo =778 s.

Since we want to solve the resistive MHD equations, we take
the magnetic diffusivity in code units as 7 = R,; =107,
where R,, = (vo Lo)/n = 10° is the magnetic Reynolds number,

3 In cgs, the thermal conduction coefficients (in erg s~' K~! cm™") are given

)
as k| = 5.6 x 107773 and r;, = 3.3 x 10716 -
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Figure 1. Magnetic field lines of the unperturbed X-point, where the black
solid and dashed lines depict the regions of opposing polarity. The separatrices
(red solid lines) and the equipartition layer for a 1 MK coronal plasma (blue
circle) are also included.

assuming that the typical length and velocity scales of our
system are, respectively, Ly and vo. Due to the finite size of our
grid, our code also faces the effects of the effective numerical
diffusivity, which prevents us from using R,, values closer to
those expected in the solar corona. Through a parameter study,
this 6numegical diffusivity is estimated to be on the order of
107°-10"".

2.2. Initial Setup

This numerical study focuses on the perturbations of a 2D
magnetic X-point. Similarly to Karampelas et al. (2022a), the
equilibrium magnetic field is defined in physical units as

_B
B=10x0. ©)

In Equation (6), By is the characteristic magnetic field strength,
and L is the characteristic length scale of the magnetic field
variations. A visual depiction of the magnetic field is shown in
Figure 1, where the black solid and dashed lines depict the
magnetic field lines in the regions with opposite polarities; the
separatrices are in red. From Equation (6) we can also see that
the magnitude of the magnetic field is proportional to the
radius r = /x% + y?.

We consider uniform equilibrium values for the density and
temperature across the physical domain, obtaining a uniform
initial speed of sound

Vs = ﬁ VS,iso = \/WP/ =JYRT, @)

where y=15/3 is the ratio of the specific heat, and R is the
specific gas constant. This also results in an increasing Alfvén
speed of

B By r
NHo P Lo Jpo p ’

(o 1s the magnetic permeability of vacuum) as we move away
from the X-point. Additionally, the choice of a uniform initial
density distribution prevents the development of phase mixing
in our setups (e.g., Heyvaerts & Priest 1983). Figure 1 also

Vi =

®)

Karampelas et al.

depicts the equipartition layer, i.e., the layer where the ratio of
V4 over Vg equals 1. Given that the initial Vg is constant in our
setups, and V, is proportional to the magnitude of the magnetic
field, and thus the radius, the equipartition layer will initially be
a circle of radius, r.q, Where

_ Lo [7pRT

= 9
2 ©)

Teq

From Equation (9) we can see that the initial radius of the
equipartition layer in our setups will be defined by the values of
the initial uniform plasma temperature and density, and by the
characteristic strength of the magnetic field.

In order to initiate oscillatory reconnection at the X-point, we
use a circular fast magnetoacoustic pulse (mentioned as a Ring
driver in Karampelas et al. (2022b)) to perturb the magnetic
field from its equilibrium state. The horizontal components of
the velocity pulse, as shown in Figure 2, are calculated as
follows:

ve = (vBx + v B)) /(B? + B}), (10)
vy = (VB — v.B,) /(B + B}), (11)

where v, = (v X B) - Z is a quantity related to the velocity
component perpendicular to the magnetic field lines and
vy=v-B is a quantity related to the velocity component
parallel to the magnetic field lines. Following Karampelas et al.
(2022a), we consider a fast magnetoacoustic wave pulse (in
code units) of the form

_ 2
v(t=0) = —o.su), (12)

1
0.2V27 eXp( 0.2
V”(t =0)=0. (13)

2.3. Domain and Boundary Conditions

Our setup consists of a square domain with a structured
uniform grid with a range of (x, y) € [—10, 10] in code units,
and a resolution of 1801 x 1801 grid points. We use reflective
boundaries for the velocity components (vy, vy), so that no
flows can cross the boundary and disrupt the initial equilibrium.
To prevent the accumulation of heat at the boundaries, once
thermal conduction is switched on, we fix pressure and density
at the boundaries to their initial values. In order to keep the
current density at the edges or our domain from getting
artificial values due to boundary effects, we take zero-gradient
boundary conditions for the magnetic field components (of the
form B; — B;_; = B;_; — B,_»).

Following Karampelas et al. (2022b), we take steps to
minimize the amount of reflected waves from the boundaries
returning to the null point. Our first step is to deal with the
outward propagating velocity pulse that emerges from the
splitting of the initial velocity annulus, as can be seen in
Figure 3 at +=0.27. We do so after the start of each
simulation, by turning the value of the velocity components to
zero for a region with a radius of r > 7.

The second step is to create a numerical dissipation scheme
away from the null point, with the purpose of reducing the
kinetic energy of the waves in that region. To that end, we
divide each velocity component by a dissipation coefficient of
ng > 1, for each iteration. The relation for the coefficient is
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Figure 2. 2D profiles of the v, and v, velocity components of the initial circular pulse. The magenta-colored circle is the equipartition layer for a 1 MK coronal plasma.

All values are depicted in code units.

given in code units:
ng = 1.0005 + 0.0005 tanh(r — ry),

where ?¢ is the time that we switch off the outward propagating
pulse in the previous step and r, being the effective distance
from the null point at which the scheme starts acting. The value
for r, changes for each setup, to better accommodate the effects
of the different Alfvén speed and speed of sound profiles for
each setup and to make the dissipation of the reflective waves
more effective.

Finally, for some of our setups we introduce explicit physical
viscosity in the MHD equations, in addition to the previous
numerical dissipation scheme (see also Karampelas et al.
2022b), with coefficient in code units:

Nyise = 0.1 + O0.1tanh(r — ry), t > tc.

t>1c, (14)

5)

3. Results

The purpose of this study is to gain a better understanding of
the nature of oscillatory reconnection in a hot coronal plasma
and to explore its behavior under different coronal conditions.
To that end, we expand the results of Karampelas et al. (2022a)
through a series of parameter studies. For each parameter study,
we change either the characteristic strength of the magnetic
field, the equilibrium density, or the initial temperature. Studies
of different magnetic fields and densities have been performed
both in the absence and presence of anisotropic thermal
conduction, whereas the study of the parameter of the
temperature has been performed only in setups without thermal
conduction. An overview of the different cases can be found in
Table 1.

The initial velocity perturbation described by Equations (12)
and (13) splits into two counter-propagating pulses of equal
amplitude, with each traveling to opposing directions. While
we deal with the outward propagating pulse in the way that was
described in the previous section, we focus on the evolution
and effects of the pulse approaching the null point. The inward
propagating pulse focuses at the X-point due to refraction, as
shown in Figure 3 for the default setup without thermal
conduction (Bo=1, pp=1, and T=1MK, see Model 2 in

Table 1). Mode conversion takes place as the fast magnetoa-
coustic wave pulse crosses the equipartition layer, from the
region of low-3 to the region of high-G plasma (e.g.,
McLaughlin & Hood 2006; Karampelas et al. 2022a),
deforming the layer in the process due to the formation of
strong compression and rarefaction shocks in the y-direction
and x-direction, respectively (see also Gruszecki et al. 2011).

Once the pulse reaches the null point, it perturbs it from its
equilibrium, forcing it to perform a series of reconnection
events, which are characterized by a periodic manifestation of
horizontal and vertical current sheets (i.e., oscillatory reconnec-
tion). Like in the past studies, our main tool for studying
oscillatory reconnection will be the tracking of the oscillating J,
current density at the perturbed null point, as was first
performed by McLaughlin et al. (2009), and the calculation
of its period for each different case.

3.1. Magnetic Field Dependence

Our first goal is to revisit the effects of the characteristic
strength of the magnetic field (By) on the oscillatory
reconnection of an X-point in a hot coronal plasma. A first
study has been performed in Karampelas et al. (2022a), for an
X-point in the presence of anisotropic thermal conduction. Here
we repeat this analysis for the updated numerical dissipation
scheme that was first introduced in Karampelas et al. (2022b).
The latter is more efficient in dealing with the reflections
returning to the perturbed null point and thus leads to less
contamination of the J, current density signal and a cleaner
resulting spectrum. Unlike the previous parameter study on the
magnetic field strength (see Karampelas et al. 2022a), here we
expand the analysis for setups both in the presence and absence
of anisotropic thermal conduction. In total, we consider four
different values for the characteristic strength of the magnetic
field (0.5, 1, 2, and 3 B, where By = 1.44 G). We note here that
the magnitude of the magnetic field is proportional to the radius
for the X-point, and that the characteristic value of the field is
not the maximum value in our setups. As can be seen in Table 1
for Models 1-4, in these four cases the initial density and
temperature are 1 py=10"">kgm > and 1 T, = 1 MK, and we
consider both the numerical dissipation scheme and a nonzero
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Figure 3. The evolution of the absolute value of the radial velocity for Model 2 (see Table 1), and the respective vector plot (normalized). Starting from the top, from
left to right, the snapshots correspond to time =0, 0.2, 0.8, 1.4, 1.6, and 1.8 #y. All values are depicted in code units.

Table 1
An Overview of the Physical Parameters (in Code Units) for the Different
Models in Our Simulations

Model B(Bo) p(po) (Toy) K1, Ky Myise r4(Lo)
1 0.5 1.0 1.0 0, =0 =0 6
2 1.0 1.0 1.0 0, =0 =0 5
3 2.0 1.0 1.0 0, =0 =0 6
4 3.0 1.0 1.0 0, =0 =0 6
5 1.0 2.0 1.0 0, =0 =0 6
6 1.0 3.0 1.0 0, =0 =0 6
7 1.0 4.0 1.0 0, =0 =0 6
8 1.0 1.0 1.0 0 0 5
9 1.0 1.0 3.0 0 0 5
10 1.0 1.0 5.0 0 0 6
11 1.0 1.0 7.0 0 0 6
12 1.0 1.0 10.0 0 0 6

Note. Models 1-7 have been studied for both without (x,, x; = 0) and with
(k1, k) = 0) anisotropic thermal conduction.

viscosity coefficient (n,s.) away from the null, in order to deal
with the reflective waves.

The produced time series for the J, current density of the
different cases are shown in Figure 4, where the results both
and with and without thermal conduction are shown. Upon a
visual inspection, we can see that in all cases oscillatory
reconnection has developed, as is hinted by the oscillatory J,
signal at the null. The time series reveal for a stronger, and
therefore stiffer magnetic field, the phenomenon of oscillatory
reconnection lasts for progressively shorter times, before the
oscillation is damped. This is in agreement with Karampelas
et al. (2022a), where it was shown that the decay rates of these
oscillations increase for stronger magnetic fields. On that note

and to reduce the computational costs, the simulations for 2 and
3 By are left running only up to t =40 t,, since the oscillation
decays faster than in the other cases. In the same study, it was
also shown that the period of the oscillation also decreases for
stronger, stiffer magnetic fields. This can also be derived from
Figure 4, once we focus on the calculated wavelet spectra for
each case, shown here below their respective time series. As
can be seen, there is a clear trend regarding the period of the
oscillation, with the dominant period band being shifted toward
smaller values for stronger fields. Finally, we see that for most
of the cases studied here, the dissipation scheme used to deal
with the reflected waves is working efficiently, allowing us to
produce clear spectra, where there is one clearly defined band
of periods. The only exception is for the case of 0.5 By without
anisotropic thermal conduction, where a strong secondary band
of periods is observed. In Karampelas et al. (2022a) and
Karampelas et al. (2022b) it was shown that these secondary
period bands are associated with the reflected waves returning
to the null point. This means that for this particular case, with
the 0.5 B characteristic magnetic field strength, our dissipation
scheme was less effective than in the other cases. However, the
main period band is still clearly defined and more prominent
that the other one.

In order to quantify this trend, we use the wavelet spectra to
calculate the oscillation period for each case. We do so by first
locating the coordinates (time #, and period P;) of the
maximum power for each spectrum. We then consider a time
interval At = [ty — Py, ty + 3 Py] containing the periods that
exhibit higher values of power, for which we calculate the
average value for the period, and the standard deviation, which
will act as the error in the calculation. The calculated average
values for the period of each oscillating signal are then placed
in the graph of period versus the magnetic field strength, shown
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in Figure 5. The calculated standard deviation for each value is
added as error bars for each point, although for most cases
these error bars are barely visible. The data points shown in
Figure 5 clearly hint toward an inverse proportionality relation
between the oscillation period and the magnetic field strength.
Because of this, we have fitted both sets of data points (with
thermal conduction, in orange, and without thermal conduction,
in blue) with the function F (By) = a(By)~' + b. Figure 5 also
shows the values of the coefficients for both cases, which are
a=(3.159£0.096, 3.398 £0.046) and b=(0.642£0.111,
0.671 +0.053) for the cases without and with thermal
conduction, respectively. We can see that the addition of
thermal conduction does not alter the trend in any significant
way. We can also see that the setups with thermal conduction
generally give higher values of the period than those cases
without thermal conduction, in agreement with our past studies
(Karampelas et al. 2022a, 2022b).

3.2. Density Dependence

Our next goal is to study the response of oscillatory
reconnection for different equilibrium densities. We have
considered again four different cases, where we take density
values p=1, 2, 3, and 4 py where py= 10712 kg m . In all
cases, we have taken a characteristic strength of the magnetic
field equal to 1 By = 1.44 G, and temperature 1 7, = 1 MK. All
cases are studied both in the presence and absence of
anisotropic thermal conduction. Just like before, we again
consider both the numerical dissipation scheme and a nonzero
viscosity coefficient (n;s.) away from the null, to treat the
reflections. The details of the different models (2, 5, 6, and 7)
are shown in Table 1.

The derived time series for the J, current density are shown
in Figure 6 alongside their respective wavelet spectra. Again,
the spectra of the time series reveal a prominent period band for
each case, associated with the oscillatory reconnection process,
the secondary period bands from the reflected waves being of
lower power. Again, upon a visual inspection we can see that
by increasing the value of the equilibrium density, the resulting
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period of the oscillation increases as well, again with thermal
conduction leading to higher periods.

Following the same process as in the previous case, we
derive the average values for the period, and the errors from the
standard deviation for each case and we place them in the same
oscillation period-density graph, in Figure 7. Again, we can see
a clear trend for each set of data points (with and without
thermal conduction, shown in orange and blue, respectively).
For each set of data points, we fit the function
G(py) = a(py)'/* + b, which we believe shows the best
agreement with the observed trend of the values of the period.
The values of the coefficients, as derived from the fit, are
a=(3.309+0.303, 3.352+0.190) and b =(0.484 £0.479,
0.602 £ 0.300) without and with thermal conduction, respec-
tively, and are also shown Figure 7.

3.3. Temperature Dependence

The final parameter study that we want to perform revolves
around the response of oscillatory reconnection to the initial
background temperature. In the previous subsection, we took
setups of different background densities, but we kept the
temperature the same for all cases, meaning that the speed of
sound was always the same for those cases. In this section, we
consider setups with different temperatures, and therefore
different speeds of sound as well. We have considered five
different cases, corresponding to Models 8—12 in Table 1. In all
models, we have taken a characteristic strength of the magnetic
field equal to 1By=1.44 G, and an initial density of
1 po=10"" kg m, while the temperature takes values of
1, 3, 5, 7, and 10 MK. Unlike the two previous parameter
studies, no anisotropic thermal conduction is considered in this
one. This is due to the ever-increasing computational costs
once thermal conduction is considered, caused by a combina-
tion of the increasing temperatures and the Alfvén speed profile
for our given magnetic field geometry, making these simula-
tions very costly to perform for the proper resolution.
Additionally, for these five cases viscosity has been dropped
from the artificial dissipation scheme dealing with the
reflections. The viscous scheme did not work efficiently for
the cases with higher temperatures and so we decided to drop it
from the setups with lower temperatures, for consistency.

Figure 8 shows the produced times series of the J, current
density profiles at the perturbed null point, and the corresp-
onding wavelet spectra for each profile. Unlike before, the
changes in period here seem to be more subtle from one setup
to the next. We see the gradual appearance of a secondary
period band, which becomes increasingly stronger for higher
temperatures, but without ever reaching the same power as the
main period band. Given the more uneven J, signal for higher
temperatures, it is safe to associate this secondary period band
with the reflected waves from the boundaries, polluting the null
point region and giving rise to more noisy signals.

Following the same methodology as before for the magnetic
field and the density, we again calculate the average values for
the period of each case, and their respective errors through the
standard deviation, and we plot them together in a graph,
showing the relation between the period of oscillation and the
background temperature. The results are shown in red in both
panels of Figure 9. In the left panel, just like before, we also fit
the function F(Ty) = a(Ty)~! + b, with the coefficients taking
the values a = 0.743 4 0.060 and b = 3.532 £ 0.029. Although
the fitted function passes through all the data points if we
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consider their error bars, we have also decided to fit the
function H(Ty) = a(Ty)"'/?> + b in our data (right panel),
with coefficients a=1.024+0.013 and b=3.241 £ 0.007.
As can be seen by comparing both panels of Figure 9, the
function H(Ty) provides a better fit on the given data, with
the coefficients presenting smaller errors in comparison to
those for F(Ty). Therefore, from now on we will use the
H(Ty) = a(Ty)"'/? + b function to describe the dependency of
the period on the background temperature. Also, it becomes
obvious that for our range of chosen temperatures that match
the coronal conditions, the variations of the period are
considerably smaller than in the other case that we have
examined.

Finally, we need to address the effects of the different
dissipation schemes used in this parameter study. As mentioned
earlier, for the cases considered in this subsection we took the
numerical dissipation scheme described by the coefficient of
Equation (14), without the supplementary viscous scheme
described by the coefficient of Equation (15). In other words,
for Models 8-12 in Table 1, we took n..=0. When
comparing the resulting periods for Model 2 (P =3.947 &+
0.022), used in the previous two subsections, and from its
equivalent Model 8 used here (P =4.259 £ 0.155), we can see
that the two produce slightly different results. It is not certain
how removing the artificial viscous scheme leads to this small
difference in period, of the order of AP~ 0.3121,=2.43s. It
is very likely that we are dealing with some code-specific
numerical effects at this point, which would be hard to properly
treat within the context of this study. However, the very small
value of this difference makes us confident to compare our current
results with those of the previous sections. To that end, we have
subtracted the difference 0.312 from the periods for all of our data
points shown in both panels of Figure 9. We do this because none
of the cases studied in this subsection had the viscous dissipation
scheme switched on and thus we have been consistent among
these five different setups. The resulting adjusted points (in black)
follow the same trend as before for each panel, with the fitted
function F(T,) having coefficients a =0.743 4+ 0.060 (same as
before) and b= (3.532 —0.312) £ 0.029 =3.219 £ 0.029, and
the fitted function H(Tp) having coefficients a =1.02 £0.013
(same as before) and b = 2.929 4 0.007. We repeat that from now
on we will be using the H(Ty) = a(Ty)"'/? + b function to
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describe the dependency of the period on the background
temperature.

4. Discussion and Conclusions
4.1. Parameter Studies

In this paper we once again revisit the mechanism of
oscillatory reconnection of a 2D X-point in hot coronal plasma,
further exploring its response to different coronal conditions.
This is needed, due to the large number of observations that can
be attributed to the process of oscillatory reconnection. The first
step was taken in Karampelas et al. (2022a) where the
periodicity and the decay rate of the mechanism were studied
in the presence of anisotropic thermal conduction in coronal
conditions, expanding past studies that focused on cold
plasma. In that same study, a clear connection was revealed
between the magnetic field strength and the period of the
oscillation. The second step was taken in Karampelas et al.
(2022b), where it was found that the period of oscillatory
reconnection of a magnetic X-point perturbed by an external
pulse is independent of the amplitude and type of the
perturbing pulse. These two studies had already hinted toward
the possibility of using oscillatory reconnection as a tool for
coronal seismology. To that end, in the current study we have
expanded upon the results of Karampelas et al. (2022a), by
considering cases with different magnetic fields, densities, and
background temperatures.

Our focus on the three quantities mentioned previously is
based on the assumption that the properties of oscillatory
reconnection, like its period, in the absence of dedicated
external driving, should be related to the conditions of the
background plasma in the vicinity of the null point. This is due
to oscillatory reconnection being a fundamental process, related
to the relaxation of a perturbed magnetic null point (here,
X-point). Therefore, we do not expect the large-scale magnetic
field topology to affect our results, as the field geometry used
here is characteristic of the field geometry in the immediate
neighborhood of an X-point. This is analogous to null
points acting as resonant cavities (see Santamaria & Van
Doorsselaere 2018) where the wave-null point interaction
properties are determined by the background plasma properties
near the null point. Here we need to note that having external
driving would lead to a dependency of the oscillation period on
the period of the driving (Heggland et al. 2009). However, our
focus in this study is on the non-driven, relaxation-based
oscillatory reconnection.

Using the PLUTO code, we have solved the compressible
and resistive 2D MHD equations, for a series of parameter
studies. The first one included four different setups, each for a
different value of the characteristic strength of the magnetic
field (0.5, 1, 2, and 3 By, where By = 1.44 G), studied both with
and without anisotropic thermal conduction. We note here that
the characteristic value of the field is not the same as its
maximum value in each setup, rather the field magnitude is
proportional to the distance from the X-point. The results
revealed an inverse proportionality between the period and
the strength of the magnetic field, as shown in Figure 5. In
the second one, we considered again four different cases,
where we took the density to be equal to p=1, 2, 3, and 4 p,,
where po = 10"'? kg m >, again studied both with and without
anisotropic thermal conduction. The results, as shown in
Figure 7, reveal a square root relation between the period and
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the equilibrium density. The third and final parameter study
involved five setups with different values of background
temperature (1, 3, 5, 7, and 10 MK), all studied in the absence
of anisotropic thermal conduction. This last parameter study,
shown in Figure 9, revealed an inverse proportional relation,
this time between the period and the square root of the
background temperature.

As expected from our previous studies, the cases with
anisotropic thermal conduction practically follow the same
trend as their respective ones without thermal conduction, their
only difference being that the former exhibit slightly higher
values of period. The only exception is for those setups in the
temperature parameter study, where thermal conduction has not
been considered, due to increased computational costs for our
given resolution. This is caused by a combination of the
increasing temperatures and the given magnetic field geometry.

Also, as explained in the previous section, the derived values
for the period from the temperature parameter study are shifted
with respect to the rest, due to the slightly different artificial
dissipation scheme, without any supplementary viscosity-based
scheme that was used throughout it. Comparing the resulting
periods of two equivalent setups, each with a version of the
dissipation scheme, we get a difference of AP~0.312¢t,=
2.43 s, which is of the order of ~8% from the value of P ~30s
that we get from the other two parameter studies. Since we
have used the same dissipation scheme when studying the
response of oscillatory reconnection to temperature, we
subtract AP from all of these results, as shown by the black
line of the adjusted fit in both panels of Figure 9. This allows
for a better comparison with the other two parameter studies
presented here. A synopsis of the fitted functions and the values
of their coefficients can be found in Table 2.

10

4.2. Period versus the Alfvén Speed and Speed of Sound

Continuing on the trend set by our analysis so far, we want to
study the evolution of the period of oscillatory reconnection in
terms of the Alfvén speed and speed of sound profiles. The
initial Alfvén speed profile is dependent both on the initial
equilibrium density and the characteristic magnetic field
strength. We then take the results from the first seven models in
Table 1, for the different values of density and characteristic
magnetic field strength, calculate the characteristic Alfvén
speed and plot them with respect to the period. This graph is
shown in the left panel of Figure 10. We again fit the function
F(Vy) = a(V,) ! + b, the coefficients of which take values of
a=(0911+0.027, 0.941 £0.020) and b= (0.574 +0.136,
0.672 £0.103) for the data sets without and with thermal
conduction, shown in blue-dashed and orange-dotted lines. This
fit for the Alfvén speed is in agreement with the previous fits for
the magnetic field and the density since the Alfvén speed is
proportional to the magnetic field and inversely proportional to
the square root of density. The right panel of the same figure,
shows the results for the speed of sound, which are derived from
those of the temperature parameter study without thermal
conduction. In that panel, we show both the original values of
the period (points in red) and the adjusted ones (points in black)
for which we subtracted the difference AP ~0.3127,=2.43s
as was mentioned in the section for the temperature parameter
study. Finally, we fitted the function F (Vs) = a(Vs)~! + b, for
the original (red-dashed line) and the adjusted data (black-dotted
line), the coefficients of which take values of a=(1.317 &+
0.016, 1.317 £0.016) b= (3.241 £ 0.007, 2.929 4+ 0.007) for
the original and adjusted data, respectively. This fit agrees with
the one of the H (7y) = a(Tp)"'/2 4+ b function for the back-
ground temperature, presented in Section 3.3, since the speed of
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Table 2
Summary of the Fitted Functions and the Values of Their Coefficients for the
Parameter Studies, as Well as for the Alfvén Speed and Speed of Sound

Study Fit a, b a, b
(without T.C.) (with T.C.)
Magnetic field F(By) 3.159, 0.642 3.398, 0.671
Density G(po) 3.309, 0.484 3.352, 0.602
Temperature H(Ty) 1.020, 3.241 1.020, 2.929
Alfvén speed F(Vy) 0.911, 0.574 0.941, 0.672
Speed of sound F(Vy) 1.317, 3.241 1.317, 2.929

Note. The three types of fitted functions are F(x) = a@) '+ b, Gx) =
a(x)]/ 24 b, and Hix) = a(x)fl/ 2 4+ b. For the temperature and speed of sound,
both pairs of coefficients are without thermal conduction, with the second pair
being for the adjusted data sets. This is indicated in italics.

sound is proportional to the square root of the temperature. This
further justifies the use of function H(7) to describe the relation
between the period of oscillatory reconnection and the plasma
temperature.

4.3. Empirical Formula

As a last step, we want to merge the derived relations from
each of the three parameter studies into one. We do this
because one of the main goals of this present study was to start
developing its capabilities as a plasma diagnostic tool. To that
end, we are aided by the results of Karampelas et al. (2022b),
which allow us to ignore the strength of the perturbing pulse
from this relation. Taking the cases without thermal conduc-
tion, we can merge the derived relations of each previous fit
into the following formula for our four key parameters:

P
T 305980 | aa09 (P00 4y 0o [0 3541 4 0434,
to Bpn Po Ton

(16)

where the penultimate term on the right-hand side comes from
solving the above equation for a known value of the period Py,
(in seconds). For this, we considered the resulting period for
Model 2 (Pp, =(3.947+0.022) ;). We also include the
maximum error in the last term on the right-hand side that is
derived from the different combinations of errors in the values
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of Py, and the coefficients of the fits. Here, the subscript “ph*
refers to the physical quantities Uy, as defined in Section 2.1.
For the quantities in physical units, we have U, = U Uy, with
U the quantities in code units and U, the normalization units.
We used the adjusted results for the temperature parameter
study, as explained earlier, while all the coefficients are given
in code units. Using the normalization units defined in
Section 2.1, we can rewrite the above formula in SI units,
except for the magnetic field which is given in Gauss:

35.39 7.94
Pp= + 2574 x 108 [pr + —== — 27.55 + 3.38,
’ ph N
a7

where we have the period Py, (in seconds) for a known
combination of By, (in Gauss), ppn (in kilograms per cubic
meters) and Ty, (in megakelvins). A similar analysis of the
cases with added thermal conduction can be found in
Appendix.

Finally, we show in Table 3 some examples of using the
above formula to calculate the periods of oscillatory reconnec-
tion for different combinations of parameters for a flaring
coronal plasma. One thing that needs to be stressed is that
Equation (17) has been derived from a set of values that reflect
the average conditions in the solar corona. As a result, we need
to be cautious when extrapolating the above relation for values
outside of that parameter space, as we may end up with
nonphysical results. However, the derived relation can be a
useful plasma diagnostic tool in coronal conditions, and needs
to be tested further against observational periodic signals,
which could be attributed to oscillatory reconnection. Such
periodic signals in the solar atmosphere include, but are not
limited to, QPPs of solar (e.g., Kupriyanova et al. 2016) and
stellar flares (e.g., Broomhall et al. 2019), quasi-periodic
chromospheric (e.g., De Pontieu et al. 2011) and coronal jets
(e.g., Hong et al. 2019; Mandal et al. 2022), QFP magnetosonic
wave from the eruption of a magnetic flux rope (e.g., Shen et al.
2018), and periodicities correlated with Type III radio bursts
(Cattell et al. 2021). A detailed discussion of the different
phenomena attributed to oscillatory reconnection has already
been presented in Section 1. The fundamental nature of
oscillatory reconnection in perturbed magnetic X-points
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data sets. All values are depicted in code units, unless stated otherwise.

Table 3
Examples of the Calculation of the Period of Oscillatory Reconnection through
Equation (17)

Byn(G) ppn (kg m™) T ;n(MK) Ppoi(s)
10 20 x 10712 5.0 15.9
20 20 x 10712 5.0 14.2
30 20 x 107'2 5.0 13.6
20 20 x 10712 3.0 152
20 2.0 x 10712 10.0 13.1
20 3.0 x 10712 5.0 224
20 5.0 x 10712 5.0 353
20 300 x 10712 5.0 118.8

Note. The subscript “ph” refers to the physical quantities Uy, = U Uy, with U
the quantities in code units and U, the normalization unit (see also Section 2.1).

indicates that our derived plasma diagnostic tool can be
employed to study the periodicities in the different cases of
periodic signals attributed to oscillatory reconnection.

To summarize, our series of parameter studies have explored
the effects of temperature, density, and magnetic field strength
on the periodicity of oscillatory reconnection in a hot coronal
plasma, expanding the earlier results of Karampelas et al.
(2022a). Our findings show that the period of the oscillation
depends on the underlying characteristics of the plasma near
the null point. Taking into additional account the independence
of the periodicity of oscillatory reconnection from the strength
and type of the initial, perturbing pulse (Karampelas et al.
2022b), we have now developed a first quantitative formula to
be used as a plasma diagnostic, opening the possibility of using
this mechanism within the context of coronal seismology.

All authors acknowledge the UK Science and Technology
Facilities Council (STFC) for support from grant No. ST/
T000384 /1. K.K. also acknowledges the support of an FWO
(Fonds voor Wetenschappelijk Onderzoek - Vlaanderen)
postdoctoral fellowship (1273221N). This work used the
Oswald High Performance Computing facility operated by
Northumbria University (UK).
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Appendix
Empirical Formula for Added Thermal Conduction

In Section 4.3, we derived an empirical formula (see
Equations (16) and (17)) that connects the period of oscillatory
reconnection with the characteristic strength of the magnetic
field, background density, and equilibrium plasma temperature.
We did this by merging the derived relations of each fit in the
data sets without the anisotropic conduction, discussed in
Section 3. A similar formula can be derived for the period,
magnetic field strength, and density when we include
anisotropic thermal conduction for a plasma temperature of
Ton=1 MK:

ki) = 3.398ﬂ + 3.352
fo By

pph

Po

where we used the period of Model 2 (see Table 1) with
thermal conduction switched on (Pp, = (4.049 £0.311)) in
order to calculate the penultimate term on the right-hand side.
Similarly to Equation (16), we also include the maximum error
derived from the different combinations of errors in the values
of Py, and the coefficients of the fits. When written in SI units,
except the magnetic field, which is in Gauss, the previous
relation takes the form

38.07

ph

— 2701 £ 0547, (A1)

By = +26.08 x 10° [Pon — 21.01 £4.26, (A2)

where we again take By, in Gauss and ppy, in kilograms per
cubic meter, for T, =1 MK.

One drawback of the current study is the fact that, due to
numerical reasons, implementing thermal conduction for the
setups with high coronal temperatures (>1 MK) leads to very
costly and slow-to-perform simulations for our resolution of
choice. That means that Equations (Al) and (A2) lack the
temperature term of Equations (16) and (17) and can only be
valid for plasma with temperatures near 1 MK. However, that
might not necessarily hinder our analysis. By comparing the
two sets of equations, we can see that the respective
coefficients for each independent variable are very close in
value to each other, when considering either the dimensionless
or dimensionalized expressions, respectively. Also, from our
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past studies (Karampelas et al. 2022a, 2022b) and the results of
the parameter studies for the magnetic field and density, we
know that the addition of thermal conduction only increases the
values of the oscillation period by a small amount. Given that
for T=1MK, the parallel to the magnetic field thermal
conduction coefficient x is already many orders of magnitude
larger than the perpendicular one ~, it is unlikely that an
increased temperature will significantly change the response of
our setups to anisotropic thermal conduction. We thus conclude
that our empirical formula without anisotropic thermal
conduction (see Equations (16) and (17)) are accurate for solar
coronal plasma.
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