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Modelling and design of hierarchical fibre-graphene nanoplatelets 
reinforced elasto-viscoplastic polymer matrix composites to 

improve crashworthiness and energy absorption

Ahmed Elmasry1,*, Wiyao Azoti2 , Ahmed Elmarakbi1

Abstract

Today, light-weighting for energy efficiency without sacrificing 

safety and performance attributes has become a primary focus in the automotive industry. In 

the field of modelling graphene nanocomposites' structural applications under severe loading 

conditions, literature is limited. In addition, the existing work only employs the so-called one-

site (OS) modelling. This study develops an approach to study 3-phases hierarchical 

fibres/graphene nanoplatelets (GNPs)-reinforced polymer matrix composites utilising OS 

modelling and what is known as multi-site (MS) modelling. The MS modelling accounts for 

material anisotropy considering the interaction between neighbouring inclusions. Applicability 

of both models is then assessed for automotive components' crashworthiness response under 

combined mechanical and rate-dependent plasticity or viscoplasticity behaviours.  A coherent 

micromechanical design is employed with elastic platelets and elasto-viscoplastic matrix 

assumptions. The micromechanics modelling combines rate-dependent constitutive laws and 

thermomechanical properties for the nonlinear response of composite materials. The 

heterogeneous material problem is resolved in the first instance for a thermoelastic case. The 

thermomechanical kinematic integral equation is used to derive the strain concentration tensor. 

Using the generalised Mori–Tanaka (GMT) homogenisation  scheme, effective 

thermomechanical properties are obtained. For the nonlinear behaviour, a linearisation of the 

classical J2 rate-dependent model is considered with an isotropic hardening. Based on an 

implicit integration scheme, a consistent tangent modulus is obtained and serves as a uniform 

modulus for homogenisation of the rate-dependent thermomechanical composite material. An 

application is therefore performed on a short glass -fibres/graphene nanoplatelet/ Polyamide-

Nylon 6 (GNP/PA6) composite. The current study's archival value is to provide an auspicious 

approach for a consistent design and application of this category of materials for automotive 

structural components.

1 Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1.8ST, UK.
2 Clément Ader Institute (ICA), Federal University Toulouse Midi-Pyrénées, UMR CNRS 5312, INSA, ISAE-SUPAERO, IMT Mines Albi, UPS, 3 rue Caroline 
Aigle, 31400 Toulouse, France.
*Corresponding Author, E-mail: ahmed.elmasry@northumbria.ac.uk 
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1 Introduction

Improving fuel efficiency and vehicle performance lies with decreasing the weight of vehicle 

components while at the same time maintaining safety [1, 2, 3]. Reinforced polymer composites 

are among widely preferred form of composite that has been used for light-weighting in the 

automotive industry. They offer superior properties such as impact strength, easy moldability, 

improved aesthetics, and reduced weight compared to conventional automotive components [4, 

5, 6, 7]. However, polymer composites are susceptible to environmental factors such as 

temperature, time, exposure to liquids, gases, electrical fields, and radiation, which cause 

polymer composites' properties degradation and consequently decrease their performance [8, 

9]. 

In the realm of nanotechnology and two-dimensional materials, graphene continues to thrive on 

the horizon of materials science. With theoretical and experimental results on individual 

graphene nanosheets exhibit incredibly high values of Young’s modulus (�� 1000 GPa) [10, 11, 

12], adding graphene at lower volume fractions as a reinforcement to polymers or fibre-
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reinforced composites offers substantial property enhancements for lightweight components 

including enhancing strength, durability, flexibility, thermal and electrical conductivity [13, 14, 

15]. Thus, the study of graphene-based composites is a strategic objective for developing new 

lightweight and multifunctional structures for the automotive sector [16, 17, 18] with huge 

potentials for structural applications in the automotive industry. However, implementing 

graphene composites on commercial high-performance structural applications under severe 

loading conditions, such as automotive structural components, has been in immature stages 

requiring further investigation.

Modelling materials, predicting their behaviour under different conditions, and 

developing/designing cost-effective materials with improved or required properties are prime 

objectives in materials research and industry. Today, computational materials science has 

progressed to be realistic and become an essential paramount predictive tool for exploring 

materials' properties and behaviour and understanding complex physical phenomena observed 

in materials [19, 20, 21, 22]. Moreover, the mechanical behaviour of real materials is, 

essentially, rate- or time-dependent plasticity (or viscoplasticity). For example, the strain 

increase with increasing time under constant load, i.e. creep phenomenon. In general, 

viscoplasticity or creep importance in materials escalates with increasing temperature. Thus, 

comprehensive analytical methods are required to accurately predict this nonlinear, time-

dependent behaviour. 

In addition, composite materials exhibit anisotropy resulting from their microstructure. The 

anisotropy of mechanical properties relies on topological texture, i.e. the orientation and spatial 

distribution of the reinforcement. Besides, the morphological texture, referred to as the aspect 

ratio also plays an important role in the response of the composite. The accuracy of predictive 

models resides in accounting for the interaction between inclusions and their surrounding 

neighbourhood. This approach, called the multi-site (MS) modelling [23, 24], was first 

developed by  Fassi-Ferhi [25] for local fields of pairwise heterogeneous and plastic inclusions 

embedded in an anisotropic matrix. 

However, most existing work only employs a simpler approach called one-site (OS) modelling, 

which ignores particle interactions. Other research works dealing with the pairwise particle-

interaction through micromechanics formulation have been done by Ju and Chen [26, 27] for 

spherical inclusions, by Ju and Tseng  [28] for randomly dispersed elastoplastic phases and by 

Ju and Sun [29], and Sun and Ju [30] for randomly located and aligned spheroidal inclusions.



4

The MS modelling was used more recently by Kpobie et al. [31] to derive the thermoelastic 

properties of anisotropic cubic composites. The framework of the MS modelling is used by 

Azoti et al. [32] to derive the macroscopic response of elastoplastic composites with ordered 

microstructures. 

Several multiscale modelling methods exist to derive the effective properties of a heterogeneous 

medium utilising homogenisation [33] of the fundamental physical properties of its constituents 

or vice versa [24, 34]. For example, Pineda et al. [35] utilised the “generalized method of cells” 

model to capture progressive failure within the constituents of a unidirectional fibre-reinforced 

composite material. Kaleel et al. [36] proposed a simplified version of the classical FE2 

concurrent multiscale method for composite materials to save computational costs. Sun et al. 

[37] presented a micromechanical interphase model to investigate the influence of interface 

effects on the elastoplastic behaviour of graphene-reinforced nanocomposites.

In view of the importance of having a thermal effect in the effective behaviour properties; 

Tsiamaki et al. [38] and Tsiamaki and  Anifantis [39] numerically investigated the 

thermomechanical properties of graphene nanocomposites and reported that the temperature 

increase and the multiplicity of graphene layers lead to a decrease of the mechanical properties. 

Sandu [40] and  Yang et al. [41] investigated the thermal conductivity of graphene-based 

nanocomposites and reported higher results than that of the matrix material. Rahman et al. [42] 

, Zhao et al. [43], Zhou et al. [44], Pinto et al. [45], Wang et al. [46], and Tarawneh et al.  [47] 

experimented with graphene to enhance the thermo-mechanical properties of composite 

materials and reported improvement over the matrix material. Georgantzinos et al. [48] utilised 

a spring-based finite element (FE) approach to predict the thermomechanical behaviour of 

graphene. Li et al.  [49] studied the nonlinear thermal performance of the functionally graded 

porous cylinder with the graphene nanofillers embedded in elastic matrix. 

Our current work accounts for composite viscoplasticity using a rate-dependent 

thermomechanical model considering polymeric matrix. In the case of thermoplastic matrix, 

the stress–strain response depends on the strain rate both below and above the yield stress, i.e. 

viscoplastic constitutive models [50]. The material anisotropy is accounted for by the 

interaction of the inclusion and a defined neighbourhood using the MS modelling. Using the 

generalised Mori–Tanaka (GMT) homogenisation scheme, effective thermomechanical 

properties are obtained. The non-linear behavioural response is established in the framework of 

the J2 flow rule model is considered with an isotropic hardening. Numerical characterisations 

involving tensile and compression tests of short glass fibres/graphene nanoplatelet/ Polyamide-
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Nylon 6 (E-Glass/GNP/PA6) composite enable the determination of damage and failure 

thresholds for crashworthiness applications. Modelling of symmetric crush tube of an 

automotive crash-box demonstrates the crash performance characterised by the peak crash 

force, absorbed energy and specific energy absorption (SEA) [51]. The current research 

provides a promising straightforward approach to a consistent material design for graphene 

nanoplatelets (GNPs)-reinforced polymer matrix composites for automotive applications.

2 Strategy formulation and analytical framework

2.1 Fundamentals of kinematics and micromechanical analysis

2.1.1 Local constitutive equations
Let us consider a micro-heterogeneous and macro-homogeneous material of volume  ��

subjected to a thermomechanical loading defined by stress and temperature state. Thus, at a 

point  of the material at the local scale, different physical mechanisms contribute to the total ��

strain  yielding:��( ��)

(1)��(��) = ���
( ��) + ����( ��) + ���( ��)

where  represents the elastic strain, while  states for the thermal strain and  ���
( ��) ����( ��) ���( ��)

denoting the inelastic strain that can be related to plastic deformation, diffusion phenomena, 

phase transformation etc. The expressions of these strain fields are given such as:

(2)���
( ��) = ���
( ��):�� ( ��),   ����( ��) = �� (��)�� ����  ���( ��) = ���( ��):�� ( ��)

with  representing the elastic compliance,  denoting the thermal expansion tensor, ���
( ��) �� (��)

whereas  is the change in temperature with respect to a reference temperature  and �� �� ��

corresponding rate  assumed to be homogeneous for the considered material volume. In �� ��

Eq.(2),  states for the tangent plastic compliance tensor and is  the local stress field. By ��� �� ( ��)

accounting for the strain tensors in Eq. (2), the local constitutive equation can be written like: 

(3)��(��) = ��(��):�� ( ��) + �� (��)�� ��

where . The global thermomechanical constitutive behaviour of the micro-��(��) = ���
(��) + ���(��)

heterogeneous and macro-homogeneous linking the macro strain  to the macro stress  �� ��

through the increment of temperature  takes the form:�� ��

(4)�� = ��eff :�� + �� eff �� ��,  ����     �� ����= ��eff 
�������������� + ��eff 

���� �� ��
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In Eq. (4), the macro strain  and the macro stress  are obtained using the average equation  �� ��

 over the local strain  and local stress  such as:(•) �
�!�! = (•) =
1

�#�$�#(•)�%�� ��(��) �� (��)

(5)�� = ��(��) =
1
�� �$�� �&��(��)�%����  �� = �� (��) =

1
�� �$�� �&�� (��)�%��

The dual form of the Eq. (3) takes the following form:

(6)�� (��) = �'(��):��( ��) �( �)(��)�� ��

with  denoting the stiffness tensor embedding the inelastic behaviour of the material and �'( ��)

thermal stress tensor  stating for the: �)(��)

�'( ��) = �� �( 1(��),     or �*��������( ��) = �+�( 1
��������( ��)

(7)�)(��) = �'(��):�� ( ��),    or �, ����( ��) = �*��������( ��) �� ����( ��)

Thus,
(8)�� = �-eff :�� �( �)eff �� ����  ���� ������= �.eff 

���������� ���� �( �,eff 
���� �� ��

where,

(9)
�-eff = [��eff ] �( 1

,  ���� �.eff 
��������= [��eff ] �( 1

��������

�)eff = �-eff :�� eff ,  ���� �,eff 
���� = �.eff 

��������:�1eff 
����

2.1.2 Local and global concentration tensors
For  a homogeneous medium, the decomposition of  local tensors  and  can be split �'( ��) �)(��)

into uniform and   and fluctuation  and  parts following the expressions below:�'�4 �) �4 �5�' �5�)

(10)�*��������( ��) = �*�4��������+ �5�*��������( ��),  �, ����( ��) = �, �4
����+ �5�, ����( ��)

Considering that the inhomogeneous microstructure would satisfy behavioural relation of  

Eq.(6) along with the deformation’s compatibility equation:

(11)�6����( ��) =
1
2[�8������( ��) + �8������( ��)] = �8������( ��)

and the equilibrium equation:

(12)�9��������( ��) = 0

Equations (10), (11) and (12) could be written in the form:

(13)�*�4���������8��������( ��) + [�5�*��������( ��) �8�������( �5�, ����( ��) �� ��] ����= 0
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The classic concept of Green’s function [52, 53] is one of the most powerful means for solving 

boundary value problems in linear elasticity based on the superposition principle (i.e. the sum 

of solutions to a given problem is a solution).  The nonlinear constitutive behaviour of 

composites with a periodic microstructure can also be treated with a Green's function approach 

as shown in the expositions by Eshelby [54] Korringa [55], Zeller and Dederichs [56]. Using 

the Green tensor technique, Eq. (13) may be transformed into an integral equation 

(Green's displacement function, see Appendix A):

(14)�8�; ( ��) = �<�4
�; + �$�� �&�=�;�� ( �� �( ���>)[�5�*��������( ���>)�8������( ���>) �( �5�, ����( ���>)�� ��] �����%�� �>

or

(15)�8�;���?(��) = �<�4
�;���?+ �$�� �&�=�;�����?(�� �( ���>)[�5�*��������( ���>)�8������( ���>) �( �5�, ����( ���>)�� ��] �����%�� �>

Thus using Eqs. (11) and (15):

(16)�6�;�?(��) = �� �4
�;�? �( �$�� �&�@�;�?����( �� �( ���>)[�5�*��������( ���>)������( ���>) �( �5�, ����( ���>)�� ��]�%�� �>

where  is the total strain of the reference homogeneous medium subjected to the same �� �4

boundary conditions as the effective medium:

�� �4
�;�? =

1
2(�<�4

�;���?+ �<�4
�?���;) ,

(17)�@�;�?����( �A�( �A�>) = �(
1
2[�=�;�������?(�A�( �A�>) + �=�?�������;( �A�( �A�>)]

Under the assumption of Eshelby inclusion [54] and assuming that and  are piecewise �'�4 �) �4

constant, we can write: 

(18){ �C�'����) = �D�E
�F= �G�&(�'

�F�( �' �4)�H�F(��) = �D�E
�I= �G�&�J�'

�F�H�F(��)

�C�)����) = �D�E
�F= �G�&(�)

�F�( �) �4)�H�F(��) = �D�E
�I= �G�&�J�)

�F�H�F(��)

where  and indicator function  associated �J�' = �'�F�( �' �4,   �J�) = �) �F�( �) �4 �H�F(��) = {1  �K�A�L�M�F

0  �K�A�N�M�F     

with the phase  constituent.�F

The average strain  inside material of phase  can therefore be calculated:���F �F

(19)���F=
1

�� �F�$�� �F�&��(��)�%��

Thus from Eq. (16) in (19): 

(20)���F= �� �4 �(
1

�� �F�D
�E
�O= 1�&[�P�� �F�� �O�&�@(�� �( ���>):[�� �*�O:���O�( �� �) �O�� ��]�%���%�� �>]
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Leading to presenting the unknown total strain of each constituent as (see Appendix A):

(21){���F= �� �4 �( �D�E
�O= 1�&�Q

�F�O:[�� �' �O:���O�( �� �) �O�� ��]
�F= �:���"���7���R�R���E

where,

(22)�Q�F�F=
1

�� �F�$�� �F�$
�� �F�@(�A�( �A�>)�%���%�� �>,  �Q�F�O=

1

�� �F�$�� �F�&�$�� �O�&�@(�� �( ���>)�%���%�� �>

The solution of Eq. (21) can be written in the form of localisation expression relating to the 
strain of reference medium  and the temperature increment  as:�� �4 �� ��

(23)���F= �S�F:�� �4+ �A�F�� ��

where  are concentration tensors of the inclusion for dilute or local mechanical and �S�F and �A�F

thermal strain localisation or, respectively, relative to the reference medium. Substituting Eq. 

(23) into Eq.(21) and solving for  yields: �S�F and �A�F

(24){(�S
�F) ��+ 1 = (�T+ �Q�F�F:�� �' �F) �( 1:(�T�( �D�E

�O= 0
�O�U�F

�&�Q�F�O:�� �*�O:(�S�O)��)
(�A�F) ��+ 1 = (�T+ �Q�F�F:�� �*�F) �( 1:(�Q�F�F:�� �) �F+ �T�( �D�E

�O= 0
�O�U�F

�&�Q�F�O:[�� �) �O�( �� �*�O:(�A�O)��])
�F= �:���"���7���V���R�W���E

Expression in Eq. (24)  are written in their implicit form to be solved iteratively, where 

subscripts  et  are the iteration step numbers,  is the fourth-order symmetric identity (��) (��+ 1) �T

tensor , whereas  denotes the number of phases considered in a I��������=
1

2
(�5�����5����+ �5�����5����) �E+ 1

composite material (matrix phase (o)). To start this iterative process, initial approximation 

values of and  leading to converging, are �S�I
(0) = (�T+ �Q�F�F:(�' �F�( �' �4)) �( 1 �A�F(0) = �S�F

(0):�Q�F�F:�� �) �F

obtained by neglecting the influence of all constituents on relative concentration tensors of th �F

element [57, 58]. and  are the interaction tensors for One-site (OS) and Multi-site (MS) �Q�F�F �Q�F�O

modelling, respectively. General expressions for  and  as well as their numerical �Q�F�F �Q�F�O

implementation are provided in Appendix A. The global fourth-order mechanical  and �Y�F

second-order thermal  strain concentration tensors can next be deduced from tensors  and �Z�F �S�F �A�F

. Volume averaging of Eq. (23) leads to the following relations:

(25){ ���F= �S�F:�� �4+ �A�F�� �� = ��

�� �4= (�S�F) �( 1
:(�� �( �A�F�� ��)

Substituting Eq.(25) into Eq.(23): 



9

(26)���F= [�S�F:(�S�F) �( 1]:�� + [�A�F�( �S�F:(�S�F) �( 1
:�A�F]�� ��

Global localisation tensors, therefore:

(27){ �Y�F= �S�F:(�S�F) �( 1

�Z�F= �A�F�( �S�F:(�S�F) �( 1
:�A�F

2.2 Mori-Tanaka (MT) scheme formulation

Mori–Tanaka (MT) formulation [59] is a homogenisation model built on the concept of 

Eshelby’s dilute model [54]. The MT scheme considers the matrix phase-(o) in a composite 

material to be the reference medium (  ) and the average strain field inside the matrix is �' �� = �'�4

approximated by the strain within the reference medium ( ). The MT scheme allows us �6���[ �\�4

to introduce kinematic equation without the unknown tensors and . This leads to , �Q���� �Q�F�� �6���[ �\��

with  being the local strain of the considered volume  having the matrix properties, thus, �\�� �� �S0

. Therefore, one gets:= �T,  �A�G= 0

(28){
�Y0 = �S0:(�S�F) �( 1

= [�T�( �D�E
�F= 1�&�!�F(�T�( �S�F)] �( 1

�Z0 = �A0 �( �Y0:�A�F= �( �Y0:�D
�E
�F= 1�&�!�F�A

�F

�Y�F= �S�F:(�S�F) �( 1
= �S�F:�Y0

�Z�F= �A�F�( �Y�F:�A�F= �A�F+ �S�F:�Z0

where,   is volume fraction. Finally, the effective properties of a heterogeneous or composite �!�F
material are then deduced from the following relations:

(29){�-
�
�!�! = �*0 + �D�E

�F= 1�&�!�F(�*
�F�( �*0):�Y�F

�)eff = �)0 + �D�E
�F= 1�&�!�F[(�)

�F�( �)0) �( (�' �F�( �'0):�Z�F]
�� = �-eff  ���� �( �)eff �� �� 

2.3 Rate dependent behaviour

2.3.1 Viscoplastic response (VP)

Miled et al. [60]  used the classic J2 plasticity model with isotropic hardening to represent the 

viscoplastic effects of a composite material. As a result, the plastic flow criterion based on the 

J2 theory is given by:
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(30){�!(�9�
�]������6) = �9�
�] �( [�9� (̂ �6) + �4�����]

�9�
�] =
3
2�+���+

Where  is the equivalent stress of von Mises,   is the yield stress indicating the elasticity �9�
�] �9�^

limit  (which may depend on the strain rate deformation) and  is  the hardening function. �4(�)

The accumulative plastic deformation  is an internal variable that preserves the history of �

viscoplastic deformation. It is given such as:

(31){����_��= �$
�_
0�&����`���%�`

� =
2
3��

�a�:���

The viscoplastic strain rate follows a plastic flow rule:

(32)���b�= �
�c�!
�c�9= ��d

where the tensor  is given by:�d

(33){ �d =
3
2

�+
�9�
�]

�d:�d =
3
2

and the viscoplastic multiplier  is defined by a viscoplastic function  such as:�e �f �g

(34){� = 0�h�h�h�h                     ���!     f �i 0
� = �j �b(�9�
�]������6)�h�h�h�h���!  f > 0

2.3.2 Computing algorithm

Considering  finite stress and strain increments, an algorithmic tangent operator can  be �-�l lg

derived from a coherent linearization of the constitutive equations that are integrated over time 
 around the solution such  as:  �_�?+ 1

(35)�5�9(�_�?+ 1) = �-�l lg���5��(�_�?+ 1)

where  means a total variation at  The use of a radial return mapping algorithm in elasto-�5 �_�?+ 1

viscoplastics  allows the algorithmic tangent operator to be obtained by [50]:
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(36){�-
�l lg = �-�
�� �(

���7�=)2

�o�b
�d �p �d �( ���7�=)2 �9�
�]�� �

�9�
�] + �V�=�� �
�c�d
�c�9 �(

�7�=
�o�b�j ���9

�d �p �j ���6

�o�b=
1

(�� �_���j ���9
+ �V�=�(

�j ���

�j ���9

�j ���9=
�c�j �b

�c�9�
�]
;�j ���=

�c�j �b

�c� ;�j ���6=
1
�� �_

�c�j �b

�c��

When the elasticity limit is  is constant, then  and the algorithmic tangent operator  �9�^ �j ,�6= 0

becomes symmetric as an expression identical to that obtained in Doghri [61]. The expressions 

of  and  depend on the viscoplastic (VP) function  that would be taken under �9�^ �j ,� �j �b

consideration, e.g. Norton's law [62]. Odqvist [63, 64] generalized the classical uniaxial stress 

Norton's law of    where  and  are material constants. In the general multiaxial stress �6= �r�9�; �r �;

state Norton's power law (initial yield Norton law) would be [65] :

(37)�j �b(�9�
�]���) = {�9�^

�s( �!
�9�

)̂ �;
�h�h�h�h if �! > 0

0�h�h�h�h else 

where  [Pa s] and  are the viscoplastic modulus and the exponent, respectively. One can �s �;

calculate:  

(38)�j ���9=
�;
�s( �!

�9�
)̂ �; �( 1

,  
�j ���

�j ���9
= �(

�%�4
�%�,  �o�b=

�s
�;�� �� �_��( �!

�9�
)̂1 �( �;

+ �V�=+
�%�4
�%�

The notion of excessive stress can also be accounted for by using another VP power law 

function (current yield Norton law) [66] according to Perzyna’s approach [67, 68, 69] with two 

parameters: the viscoplastic modulus   and the exponent (m) that appear as follows:���t�/�"�u�+�0��

(39)�j �b(�9�
�]���) = {�t( �!
�9�^+ �4�����)

�;
�h�h�h�h if �! > 0

0�h�h�h�h else 

In this case:

(40){ �j ���9= �;
�j �b

�!

�j ���= �( �; �j �b
�%�4
�%�(1

�! +
1

�9�^+ �4�����)
�o�b=

�!
�; �j �b(�� �_��+ �V�=+

�%�4
�%�

�9�
�]

�9�^+ �4�����

In Eq.(37), the initial yield stress  is considered constant. However, in Eq.(39) version of �9�^

Norton law, the yield stress  and the hardening stress  are considered, i.e. the viscoplastic �9�^ �4�����

stress is being updated as the hardening stress increases resulting in more accurate results than 

the first one, and hence it is utilised in our model. 
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From  the algorithmic  tangent operator  given by Eq. (36)  and using the hypothesis , �-�l lg �j ,�6= 0

one gets:

(41){�-
�l lg = �-�
�� �(

���7�=)2

�o�b
�d �p �d �( ���7�=)2 �9�
�]�� �

�9�
�] + �V�=�� �
�c�d
�c�9

�-�
��= �7�=�T�%�
�b+ �V�v�T�b����

�o�b=
1

(�� �_���j ���9
+ �V�=�(

�j ���

�j ���9

2.3.3 Regulation of the algorithmic tangent operator
From Eq. (36) it can be shown that  for very small increments of time  i.e. when , �w�g�x�y �J�z�x�G

a fact which is unacceptable (because  then approaches  although ). To solve the �-�Z�{�| �-�}�~ ���g�e�U�G

problem,  Doghri et al. [70] have developed a method of regulation in elasto-viscoplastic from 

a 1D analytical tangent expression valid for the simplest case (uniaxial- monotonous tension, 

constant deformation velocity, linear isotropic hardening and linear viscous stress). 

(42){�-
reg (�_�?+ 1) = �-ep (�_�?+ 1) + [�-reg (�_�?) �( �-ep (�_�?+ 1)]exp ( �(

�oep 

�o�b�( �oep 
)

�-ep = �-�
�� �(
���7�=)2

�oep 
�d �p �d

�oep = �V�=�(
�j ���

�j ���9

The algorithmic tangent operator obtained from the Eq. (42) will serve as properties of the  

nonlinear phase in the homogenisation process obtained by Eq. (29) From   this model, 

validations and numerical applications will be carried out on data from the literature and 

composites with particles and fibres. 

3 Algorithms for Solving the Effective Properties

3.1 Analytical procedure

Considering the 3-phases hierarchical graphene-reinforced polymer nanocomposite (HGPNC), 

the total volume fraction is given such as , where  , ,  represent  �• = �•�‚ + �•�=+ �•�� = 1 �•�‚ �• �= �• ��

the volume fraction of the fibres, the GNPs, and the polymer matrix, respectively. As within 

the 2-phases graphene-based polymer nanocomposite (GPNC), the volume fractions of GNP 

and the polymer matrix are,

, (43)v�==
�•�=

�• �=+ �•��
,       v�� =

�•��

�• �=+ �•��
 = 1 �( v�=
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respectively. If the manufacturing or design process requires  and  to be determined first v�= v��

as 2-phase composite then afterwards a third phase of  is to be added, the volume fractions �• �‚

would be calculated as, 

(44)�•�== v�=(1 �( �• �‚ )

with the required value of ,  is calculated and, . The algorithm starts �• �‚ �• �= �• �� = 1 �( �• �=�( �• �‚

with the strain increment , time step, temperature increment and thermal expansion �J�„

coefficient (CTE)  as the input.  is then split between the phases of the 3-phases HGPNC �J�„

composite. Considering multiscale modelling with  two- sequential levels, at the first level, 

Voigt assumption  states the strain increment in the fibres while strain averaging (�…�†�~�‡
�ˆ = �T)

represents the strain increment in the 2-phases GPNC composite considered as a matrix. Within 

the 2-phases GPNC composite, the strain increment is once more divided between the graphene 

inclusions and the polymer matrix.  After a convergence check, the modified Mori–Tanaka 

scheme for imperfect interfaces computes the effective properties of the 2-phases GPNC 

composite. At the second level, the effective properties for the 2-phases GPNC composite are 

used conjunctly with the algorithmic tangent modulus of the fibres to provide the whole 3-

phases HGPNC composite with effective tangent modului through a convergence checking. 

Considering a time interval , strain increment  and thermal instantaneous  such [�z�‰,�z�‰+ �Š]  �J�„ �� ����

as   input for the algorithm. The below steps summarise numerical �„�‰+ �Š= �„�‰+ �J�„ + �� ����

implementation of the incremental algorithm in Figure 1.

i. Initialization of the strain increment in the fibre phase   , where �J�‹�‚ �Œ�J�„+ �� ���� �J�‹�‚ = �…�‚

 such as  .�J�„ �…�‚ = �T
ii. Update the stress and compute the algorithmic moduli  in fibre phase using �-�A�}�•

�‚

Eqs.(42).
iii. Apply the mid-point rule at time   to the algorithmic moduli of the fibres  using �z�‰+ �� �. ���
�Ž

�‚

 �-�A�}�•
�A���‰+ ���� = (1 �( �� �•) �-�A�}�•

�A�‰ + �� �•�-�A�}�•
�A�‰+ �Š,  �A= �‚ ; �� �• �L[0,1]

iv. Compute the average strain increment in the 2-phases GPNC composite phase �J�‹�=�� =
�J�„�( �• �‚ �J�‹�‚

1 �( �• �‚

v. Initialization of the strain increment in the graphene phase   , where �J�‹�=�Œ�J�‹�=�� �J�‹�== �…�=

such as . �J�‹�=�� �…�== �T
vi. Update the stress and compute the algorithmic moduli  in graphene phase using �-���
�Ž

�=

Eqs.(42).
vii. Apply the mid-point rule at time   to the algorithmic moduli of the graphene  �z�‰+ �� �. ���
�Ž

�=

using  �-���
�Ž
�A���‰+ ���� = (1 �( �� �•) �-���
�Ž

�A�‰ + �� �•�-���
�Ž
�A�‰+ �Š,  �A= �=; �� �• �L[0,1]
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viii. Initialization of the strain increment in the polymer matrix   , where �J�‹���Œ�J�‹�=�� �J�‹�==

 such as . 
�J�‹�=�� �( v�=�J�‹�=

1 �( v�=
�…�� = �T

ix. Update the stress and compute the algorithmic moduli  in polymer matrix using �-�A�}�•
��

Eqs.(42).
x. Apply the mid-point rule at time   to the algorithmic moduli of the graphene  �z�‰+ �� �. ���
�Ž

��

using  �-�A�}�•
�A���‰+ ���� = (1 �( �� �•) �-�A�}�•

�A�‰ + �� �•�-�A�}�•
�A�‰+ �Š,  �A= ��; �� �• �L[0,1]

xi. Compute the global strain concentration tensors of graphene  and polymer matrix  �…�= �…��

using Eqs. (28).
xii. Calculate the residual to check the compatibility of average strain in graphene phase �S

= �…�• �‘�J�‹�=�� �( �J�‹�=

xiii. If , then continue to the next step, else go to step v  using the |�S| �i TOL= 10 �( 8

computed value of strain concentration tensor �…�=

xiv. Compute the effective tangent modulus  of the 2-phases GPNC composite using �-�}�—�—
�•��

Eq. (29). 
xv. Apply the mid-point rule at time   to the algorithmic moduli of the graphene  �z�‰+ �� �-�}�—�—

�•�˜

using  �-�A�}�•
�A���‰+ ���� = (1 �( �� )�-�A�}�•

�A�‰ + �� �-�A�}�•
�A�‰+ �Š,  �A= �=��; �� �L[0,1]

xvi. Compute thermal effective tangent modulus   of the 2-phases GPNC composite �) �}�—�—
�•�™

using Eq. (29).
xvii. Using   and  as a matrix phase, compute global strain concentration tensors �-�A�}�•

�•�™(�‰+ �� ) �) �}�—�—
�•�™

 of the fibres using Eq. (28).�…�ˆ

xviii. Calculate the residual to check the compatibility of average strain in graphene phase �S
= �…�ˆ �‘�J�‹�( �J�‹�‚

xix. If , then continue to the next step, else to the step i  using the |�S| �i TOL= 10 �( 8

computed value of strain concentration tensor .�…�‚

xx. Finally, compute the effective tangent modului  and   of the 3-phases HGPNC �-�}�—�—
�ˆ�•�™ �) �}�—�—

�ˆ�•�™

composite using Eq. (29). 

3.2 Numerical modelling

For the numerical modelling, LS-DYNA finite element (FE) solver [71] is employed as a user-

defined material (UMAT). The UMAT is developed in a FORTRAN subroutine using the 

algorithm shown in Figure 2. The strain increments  and time steps input for the numerical �J�„

modelling come from LS-DYNA FE code.

The subroutine reads the material constants, such as the stiffness and strength, from the LS-

DYNA input file. Then, using the history variables, material constants, and strain increments, 

the subroutine follows the same approach as the previous algorithm shown in  Figure 1 to 

calculate the HGPNC properties at the end of the time step by using the constitutive equations. 

The subroutine then updates and saves the history variables to the current time step and outputs 

calculated properties. A flag for failure was set for each integration point; if it were true, the 
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integration point fails; if not, the calculations proceed to the next time step. It should be noted 

that the failure flag value needs to be as accurate as possible otherwise would result in earlier 

failure of the integration point.

Strain, time, and temperature increments, and
CTE of constituents

Fibre concentration operators  �…�†�~�‡
�ˆ

Graphene and polymer concentration 
operators �…�†�~�‡

�• , �…�†�~�‡
�™

Fibre Strain �J�‹�‚ Graphene/Polymer 
matrix Strain �J�‹�=��

Graphene Strain �J�‹�= Polymer matrix Strain �J�‹��

Graphene algorithmic 
modulus �-�A�}�•

�•���‰+ ����

Polymer algorithmic 
modulus �-�A�}�•

�™���‰+ ����

Graphene and polymer concentration operators 
update �…�d�}�š

�• , �…�d�}�š
�™

 

Fibre algorithmic 
modulus �-�A�}�•

�ˆ���‰+ ����

False

Graphene and 
polymer 

concentration 
operators 

�…�†�~�‡
�• = �…�d�}�š

�•

�…�†�~�‡
�™ = �…�d�}�š

�™

Convergence
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Figure 1 Algorithm for analytical solution of the 3-phases composite.
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Figure 2 Algorithm for FE solver of the 3-phases composite nonlinear response.

4 Results and Discussions

4.1 Validation

The ability of the present model to reproduce results is examined from the open literature out 

herein. The model predictions are compared with several earlier works in literature. Li et al. 

[15] experimented on carbon nanotubes (CNTs) – Graphene nanoplatelets (GNPs) / epoxy 

composite. CNTs were considered discontinuous fibres, and GNPs were assumed to be effective 

rectangular solid fibres. The material properties used for this analysis are presented in Table 1. 

Table 1 Material properties of CNT, GNP and epoxy constituents used for validation against 
Li et al. [15].

Epoxy matrix
�� �™ �a�� �9�� �v �; �� [1/s] �� CTEo (10-6/K) �›��

2.2a GPa 0.3b 2 MPa 140 MPa 0.33 150 10 81c 1.1a g/cm3

Graphene nanoplatelets (GNPs) 
�� �•�d�œ �a�=�E�• aspect ratio (AR) CTEGNP (10-6/K) �›�=�E�•

1000a,d GPa 0.22 0.01e 7.83c 2.25a g/cm3

Carbon nanotubes (CNT)
�� �-�d�Q �a�.�E�ž aspect ratio (AR) CTECNT (10-6/K) �›�.�E�ž

450a,f GPa 0.22g 1000e 0.2h 1.78a g/cm3

a According to Li et al. [15]
b According to Chandra et al. [72]
c According to Shi et al. [73]
d According to Zhao et al. [43] 
e According to our calculations based on Li et al. [15] inclusion morphology  
f According to Rafiee et al. [74]
g According to Zeng et al. [75]

Graphene/polymer thermo-elasto-visco-plastic response  
�-�}�—�—

�•�™, �) �}�—�—
�•�™

Fibre concentration operators update �…�d�}�š
�ˆ

Overall thermo-elasto-visco-plastic response �-�}�—�—
�ˆ�•�™, �) �}�—�—

�ˆ�•�™

True

False

Fibre concentration 
operators

 �…�†�~�‡
�ˆ = �…�d�}�š

�ˆ

True

Convergence Integration 
point failure

Failure flag

Update history variables to the current time step
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h According to Deng et al. [76]

Material constants yield strength  , strength coefficient  and strain hardening exponent  �� �™ �§ �¨

were determined based on a comparison between experimental results and theoretical power-

law model using Ludwik equation [77]:

(45)�� = �� �G+ �§���¨

True strains and stresses were converted to their engineering counterparts  and  , respectively, �}

as shown in Figure 3 using [77]:

(46)�
 = exp(���� �( 1,  �+=  �� (�
 + �Š)

Figure 3 Experimental values versus power-law flow function.

Conversion of mass fraction to volume fraction for a 2-phases composite can be calculated 

using the density of the constituents [74, 43, 78]. Thus for a 3-phases composite:

(47)�©CNT=
�¬CNT/ �CNT

�¬GNP/ �GNP+ �¬CNT/ �CNT+ �¬o/ �o
=

�¬CNT

�¬CNT+ (�CNT/ �GNP)�¬GNP+ (�CNT/ �o)(1 �( �¬GNP�( �¬CNT)

(48)�©GNP=
�¬GNP/ �GNP

�¬GNP/ �GNP+ �¬CNT/ �CNT+ �¬o/ �o
=

�¬GNP

�¬GNP+ (�GNP/ �CNT)�¬CNT+ (�GNP/ �o)(1 �( �¬GNP�( �¬CNT)

where , ,  and  are the volume and weight fraction of CNT and  GNP, �° �±�²�³ �° �´�²�µ �¶ �±�²�³ �¶ �´�²�µ

respectively,  and  are the volume fraction and weight fraction of the matrix,  and �° �¸ �¶ �¸ �¹�±�²�³

 are the density of CNT and GNP, respectively, and is the matrix density. The macro �¹�´�²�µ �¹�¸

stress–strain response under uniaxial loading is given by a macro strain increment such as �J�„

  with , where ,  and =  �º���� �� = �»�¼�p �»�¼�(
�Š

�½
[�»�Š�p �»�Š+ �»�½�p �»�½] �»�Š= �/�Š���G���G�0�»�½= �/�G���Š���G�0 

 are unit vectors.�»�¼= �/�G���G���Š�0

Figure 4 illustrates the predicted results of the multi-site model versus the experimental work 

of Li et al. [15]. Considering the one-site results, Figure 4 (a) combines overall comparisons. 

Figure 4 (b) specifies epoxy matrix and GNP/epoxy composite, indicating a good trend except 
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that experimental values suffer from ductile damage starting at about 4% strain. Figure 4 (c) 

indicates no match between the predicted  GNP/epoxy composite and the experimental values.  

This is attributed to the waviness of pristine CNTs, which interfere with predicting the 

composite behaviour and causes the aspect ratio for CNTs to be meaningless. Thus, the hybrid 

CNT– GNP reinforced composite, with which the CNTs were grown on GNPs, rendered 

uniform dispersion and maintained their aspect ratio and shape, resulting in the acceptable 

prediction of the hybrid CNT–GNP composite behaviour shown in Figure 4 (d). As for the one-

site model, results follow the same behaviour predicted for the multi-site model as there is no 

significant difference between the multi-site and one-site model results for the current 

composite, as shown in Figure 5. This outcome was expected because the interactions between 

reinforcements are negligible due to their small mass fractions within the composite material.

(a) (b)

 (c) (d)
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Figure 4 Tensile stress-strain curves of epoxy matrix and the epoxy composites with 0.5 wt.% 

reinforcements validation for multi-site model at strain rate ( ) =10-4 against Li et al. [15]: ��

(a) Combined results (b) GNP composite, (c) CNT composite, and (d) CNT–GNP hybrids with 

CNTs (0.24 wt.%) and GNPs (0.26 wt.%).

Figure 5 Tensile stress-strain curves of epoxy matrix and the epoxy composites with 0.5 wt.% 

reinforcements validation for one-site versus multi-site model at strain rate ( ) =10-4 against ��

Li et al. [15].

4.2 Fibre-glass/graphene-reinforced 3-phases composite 

4.2.1 Material characteristics

The matrix considered is polyamide PA6-B3K with an isotropic hardening power-law, whereas 

the graphene nanoplatelets (GNP) and short glass fibres considered elastic are reported in Table 

2.

Table 2 Material properties for E-Glass/G2NAN/PA6-B3K constituent materials [79, 80, 81].

Polyamide PA6-B3K polymer matrix
�� �™ �a�� �9�� �v �; �� [1/s] �� CTEo (x10-6/ oC) �›��

2.0 GPa 0.39 60.5 
MPa

63
 MPa 0.4 150 5 95.0 1.13 g/cm3

Graphene G2NAN
�� �• �a�= aspect ratio (AR) CTEG (x10-6/ oC) ��=

700 GPa 0.22 10-3 20.0m,n,p 2.2 g/cm3

Short E-Glass fibres
�� �ˆ �a�‚ aspect ratio (AR) CTEF (x10-6/ oC) ��‚
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85 GPa 0.23 10 5.0 2.49 g/cm3

m According to Jiang et al.  [82]
n According to Shi et al. [73]
p According to Yoon et al. [83]

It should be mentioned that the thermal expansion coefficient (CTE) of single-layer graphene 

has a negative value and is estimated to be -8.0 E-6 /oC at room temperature [83]. However, 

graphene CTE is very sensitive to the substrate. A very weak substrate interaction can largely 

affect the negative CTE value. The CTE will be positive if the substrate interaction is strong 

enough and the value reaches 20.0 x10-6 / oC [82, 84].

Figure 6 compares the one-site model with the multi-site considering the evolution of the 

effective stress versus the equivalent strain under different volume fractions  of short glass �©F

fibres. The analyses have been conducted for two sets of volume fraction , low and increased �©F

volume fractions. As expected, in both cases, the effective behaviour is enhanced with the 

increase of . The higher the volume fraction , the better the equivalent stress of the 3-�©F �©F

phases HGPNC composite material. As seen in Figure 6, it is apparent that the one-site model 

exaggerates the enhanced behaviour compared with the multi-site model considering particle 

interactions. In addition, the higher the volume fraction, the stronger the interactions between 

reinforcements and the more significant the gap between the two prediction models.

(a) (b)

Figure 6 Comparing one-site model versus multi-site model: (a) low volume fraction, and (b) 
increasing volume fraction.

Figure 7 depicts the effect of graphene on the evolution of the effective stress-strain response 

of the 3-phases HGPNC composite. As anticipated, results appear to shift towards high stress 

with increased GNPs volume fraction resulting in increased composite stiffness in terms of 
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Young modulus, initial yield strength and plastic hardening modulus. Figure 8 indicates the 

overestimation of the one-site model results against the multi-site model, especially with 

increasing the volume fraction.

(a) (b)

Figure 7 Effect of graphene constituent on 3-phases E-Glass/G2NAN/PA6-B3K composite 
under uniaxial loading at strain rate ( ) =10-4: (a) one-site, and (b) multi-site.�6

Figure 8 Comparing one-site versus multi-site considering effect of graphene on 3-phases E-
Glass/G2NAN/PA6-B3K composite under uniaxial loading at strain rate �&�? �@�' =10-4.

Figure 9 illustrates the composite behaviour as a function of the strain rate  and the temperature ��

increment  design parameters of one-site model. Figure 9 (a) shows the influence of the strain �� ��
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rate  . This results in a loss of ductility of the composite with increasing . The influence of �� ��

the temperature increment  has been analyzed in Figure 9 (b). It shows that the more  �� �� �� ��

increases, the stress-strain response of the composite slightly deteriorates. The increase in 

temperature, therefore, exerts a slight decreasing effect on the mechanical performance of the 

composite. Indeed variations in the strain rate  and temperature  have a similar effect on the �� �� ��

multi-site model as shown in Figure 10 however at a less composite stiffness due to the 

considered interactions of neighbouring inclusions.

(a) (b)

Figure 9 Effective response of 3-phases composite under uniaxial loading using one-site 
model: (a) influence strain rate ( ), and (b) influence of the temperature increment at  =10-4.�6 �6

(a) (b)
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Figure 10 Effective response of 3-phases composite under uniaxial loading using multi-site 
model: (a) influence strain rate ( ), and (b) influence of the temperature increment at  =10-4.�6 �6

4.2.2 Numerical modelling and characterisation

The developed constitutive equations are implemented through a multiscale simulation. 

Mechanical characterisations based on the ASTM standards are performed on tensile and 

compression [27]. Tensile specimen geometry recommendations of ASTM-E8M [85] are 

considered, which are comparable to tensile test specimen dimensions for reinforced 

composites conforming to the dimensions of the Type I specimen of ASTM D638 [86] and also 

comparable to ASTM D3039/D3039M [87]. At the same time, compression specimens were 

based on ASTM D695 [88]. Figure 11 compares analytical and FE tensile testing. Low volume 

fractions were used to diminish the effect of anisotropy. Overall good agreement is shown 

between both sets of results using one-site and multi-site models.

(a) (b) 

Figure 11 Numerical versus analytical stress–strain behaviour of the 3-phases composite (�©G

) under tensile test: (a) one-site-model, and (b) multi-site model.= 0.0005, �©F = 0.01

Figure 12 illustrates the development of the effective stress and strain response of the 3-phases 

HGPNC composite under the tensile test. As obtained previously, the gap between responses is 

sensitive to the GNP volume fraction. The higher the volume fraction, the higher the gap. The 

composite stiffness increases as the results shift in the direction of high stress with the increase 

of the GNP volume fraction. For the compression, similar trends are also observed in terms of 

increased Young modulus, initial yield strength and plastic hardening modulus, as shown in 

Figure 13. However, the composite behaviour under the compression is different. No softening 

�¿���À�Á�Â�E�r�¿���À�Á�Â�E�r
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trend is observed due to the densification resulting from material crushing together, leading to 

an increasing stiffer response. Both tests enable the characterisation of the damage beginning 

and failure threshold for the ultimate tensile and compression strengths. Additionally, it can be 

seen that, unlike the multi-site model, the one-site model amplifies the enhancement of 

composite behaviour.

   

(a)
   

(b)

Figure 12 Stress–strain behaviour of the 3-phases composite under tensile test: (a) one-site-
model, and (b) multi-site model.

�©�== 0.05

�©�== 0.01

�©�== 0.0

�©�== 0.001

�©�== 0.05

�©�== 0.01

�©�== 0.001

�©�== 0.0
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(a) 

(b) 
Figure 13 Stress–strain behaviour of the 3-phases composite under compressive test: (a) one-

site-model, and (b) multi-site model.

4.2.3 Crashworthiness and energy absorption application

A quarter of a symmetric crush tube of an automotive crash box is modelled to examine the 

crash performance. The geometry of the symmetric short crush tube depicted in Figure 14 is 

created under LS-DYNA FE software [89, 90]. The standard library 8-node solid elements are 

used for meshing purposes. The crushing load is applied on one side (upper) of the tube through 

a rigid wall moving at an initial impact velocity of 20 mph. The other (lower) side of the box is 

fully constrained. For symmetry constraints *BOUNDARY_SPC_SET command is used. 

Contact capabilities in LS-DYNA/EXPLICIT mainly*CONTACT AUTOMATIC SINGLE 

SURFACE are used to define the contact interactions between different parts of the model. The 

constitutive mechanical law implemented in the crash box results from a user subroutine *MAT 

USER DEFINED MATERIAL MODELS. Failed continuum elements are removed using a 

damage-based element deletion. 

�©�== 0.0

�©�== 0.001

�©�== 0.01

�©�== 0.05

�©�== 0.05

�©�== 0.01

�©�== 0.001

�©�== 0.0
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Energy absorption is computed to determine the energy dissipation capability due to composite 

crushing. Energy absorption on the total work done is equal to the area under the force-

displacement curve and evaluated as,

(49)�� �l�Ã�+= �$�‚  ds

 where F is the corresponding force on the structure and s is the impact distance. Energy 

absorption capability is also evaluated as per unit mass absorbed, i.e. specific energy absorption 

(SEA) and evaluated as,

(50)SEA=
�� �l�Ã�+

�; =
�� �l�Ã�+

���

where m is crushed mass,  is the composite material density, and V is the volume of the crush �

component.

 

                    

Figure 14 Numerical model of symmetric crush tube of an automotive crash-box.

The evolution of force-displacement and energy-displacement profiles obtained by the crushing 

of the tube specimens are depicted in the four diagrams of Figure 15 grouped per modelling 

approach. At the beginning of crushing, the force-displacement curves in Figure 15 (a) and (b) 

mass=800Kg       v=20 mph
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show a linear segment of the loading controlled by the tube's elastic deformation. A 

considerable drop in the load is recorded after the peak force, indicating the starting of a post-

crushing stage. Throughout this stage, most well-known damage mechanisms (e.g. matrix 

cracking, debonding, fibre micro buckling, delaminations, and fibre failure) interact, forming 

the load-displacement profile. Eventually, the composite tube reaches a densification stage, 

where the specimens cannot carry extra load, and the fixed boundary constraints contribute to 

the load-carrying capacity. For easy comparison, the data used are limited to 134 mm 

displacement before the densification stage. The energy absorbed profiles shown in Figure 15 

(c) and (d)  indicate a considerable enhancement in the composite energy absorption capability 

as the graphene volume fraction increases. 

   

(a) One-site (b) Multi-site

(c) One-site (d) Multi-site

Figure 15 Symmetric crush tube of 3-phases composite: (a) & (b) force versus displacement, 
and (c) & (d) energy absorption versus displacement.
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Figure 16 compares steel versus 3-phases HGPNC composite responses. The peak crush force 

and the SEA obtained from a steel specimen are plotted against the 3-phases HGPNC 

composite. It can be seen that the respective peak crush force of both composite materials is 

much lower compared to that predicted by the steel. For the OS model, reduction percentages 

of =0.0, 0.01 and 0.05 are 80.9%,  80.6% and 78%,  respectively, whereas for MS model �©�=

considering the same GNP volume fractions are 85.7%,  81.4% and 80.9%,  respectively. 

However, the contribution of GNP is significant in terms of specific energy absorption SEA. 

Even in cases of the multi-site model, the higher the GNP volume fraction, the higher the SEA 

showing the contribution of the GNP in the enhancement of the energy absorption considering 

the strength-to-weight ratio.

(a) One-site (b) Multi-site

(c) One-site (d) Multi-site

Figure 16 Symmetric crush tube of steel versus 3-phases composite: (a) & (b) force versus 
displacement, and (c) & (d) specific energy absorption versus displacement.
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5 Conclusion

Multi-site (MS) modelling of the nonlinear elasto-viscoplastic response of 3-phases hierarchical 

fibres/graphene nanoplatelets-reinforced polymer matrix (HGPNC) composites has been 

analysed. Furthermore, the analysis of MS was compared with the traditional OS modelling. 

Generally, the analysis consists of modelling the 2-phases GPNC composite, whose effective 

properties are obtained from micromechanics formalism. Next, short glass fibres are embedded 

in the 2-phases composite to obtain the HGPNC 3-phases composite. Finally, different design 

parameters are analysed, including volume fraction, temperature, and strain rate. 

Models have been validated and implemented as a UMAT subroutine in LS-DYNA®.  Before 

utilising the models for crashworthiness application, numerical characterisation-based ASTM 

standard tests are performed in tensile and compression to determine material damage 

thresholds needed to indicate the failure onset of the simulated component. The comparison 

between analytical and FE tensile testing indicates good agreement between the results, 

revealing that implementing the stress integration algorithm developed and used for the UMAT 

is successful. 

The crashworthiness of both models is then assessed for automotive components' response in a 

multiscale crashworthiness simulation. Results highlight the disparity between MS and OS 

approaches. When MS is considered, the simulation results for the FE macro-model indicate a 

reduction of the peak crush force (with percentages of 4.1% and 13% at =0.01 and 0.05,  �° �•

respectively) and energy absorption (37.2 % and 44.4% at =0.01 and 0.05,  respectively) �° �•

compared to the OS results, as the GNP volume fraction increases. In general, the volume 

fraction of GNP seems to significantly improve the specific energy absorption of the structure 

compared to the steel counterpart considering strength to weight ratio. Contrasting the OS 

model, the MS model results showed more discretion (decrease versus the OS) regarding 

material responses due to the interaction between neighbouring inclusions. Design-wise, MS 

modelling can be considered a safer approach to follow.

The current method is a coupling between fast and cheap analytical techniques and the 

computationally expensive numerical FE method. It represents a computational 

homogenisation model of two-scale homogenisation for the 3-phases composite and can be 

easily generalized to a multiscale homogenisation method applicable to a multi-phase 

polymeric matrix composite system of elastic or inelastic reinforcements.  However, some 

limitations should be taken into consideration: the reinforced inclusions would be of the same 

shape and alignment, and convergence problems may be encountered. Although the MS 
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approach has the advantage of dealing with the material’s anisotropy through the morphological 

and topological textures of the microstructure, more computing time may be required over the 

OS approach to obtain results.

Future research may address conducting investigations and pursuing a suitable model for failure 

and fragmentation behaviour, e.g. mesh splitting or user-defined element interface to define 

structural solid/shell elements. This model would be incorporated with the current UMAT 

model instead of elements just being distorted, overlapped, folded or deleted under large 

deformations when reaching a failure criterion. Furthermore, not only individual components 

and structures can be simulated but also as part of whole-vehicle models. For example, a whole-

vehicle simulation model can be used to virtually "crash" the vehicle into a barrier and carry 

out crashing analyses. Finally, The use of artificial intelligence (AI) and machine learning 

(ML)-based approaches such as artificial neural networks (ANNs) could be employed in future 

work. Although applying such techniques for constitutive material modelling is recent and not 

fully explored, they could potentially overcome the computational time constraints. 

Appendix A

To establish the integral relation of Eq. (15) between the local velocity gradient of the 
inhomogeneous medium and the kinematic boundary conditions:

Eq. (13) may be rewritten in another form,

(A1)�Ç�����8��( ��) + �!��( ��) = 0

where

�Ç����= �*�4���������c���c��

 (A2)�!�� = [�5�*��������( ��) �8��,��( ��) �( �5�, ������������ ��], ��

are, respectively, the Lame's operator and volume force. Equation (13) can be transformed into 

the integral equation by means of the Green tensor  for the infinite medium �=���; ( �� �( ���>)

characterized by . This Green tensor couples velocity components  at  with a rate of �' �4 �8��( ��) ��

force  applied in the direction  at the position .�_ �; ���>

(A3)�*�4���������=���; ,����( �� �( ���>) + �5���; �5(�� �( ���>) = 0

including the requirement:   when . The properties of the Dirac distribution  �=���; �x�: ���x�y �5(�� �( ���>)

and the Kronecker symbol  imply�5���;

(A4)�8�; ( ��) = �$�� �>�&�5�;�� �5(�� �( ���>)�8��( ���>)�%�� �>

and taking Eq. (A2) into account results in:
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(A5)�8�; ( ��) = �( �$�� �>�&�*
�4
���������=���; ,����( �� �( ���>)�8��( ���>)�%�� �>

Using the property:

(A6)�=���; ,�� =
�c�=���;

�c����
= �(

�c�=���;

�c���>��
= �( �=���; ,��

and, after integration by parts, integral (A5) becomes:

(A7)
�8�; ( ��) =  �( �$�� �>�&�*�4��������[ �=���; ,���>�b��( ���>)]���>�%�� �>+ �$�� �>�&�*�4��������[ �=���; ( �� �( ���>)�8��,��( ���>)],���>�%�� �>

 �( �$�� �>�&�&�*�4���������=���; ( �� �( ���>)�8��,����( ���>)�%�� �>

Making use of the divergence theorem, the first two volume integrals are transformed into 

surface integrals:

(A8)
�8�; ( ��) =  �( �$���>�*�4���������=���; ,���>�b��( ���>)�%���>��+ �$���>�&�*�4���������=���; ( �� �( ���>)�8��,��( ���>)�%���>��

 �( �$�� �>�&�*�4���������=���; ( �� �( ���>)�8��,����( ���>)�%�� �>

Considering the symmetry property:

(A9)�*�4���������=���; ( �� �( ���>)�8��,����( ���>) = �*�4���������=�;�� ( �� �( ���>)�8��,����( ���>)

Now, using Eq. (13) yields:

(A10)�*�4���������=���; ( �� �( ���>)�8��,����( ���>) = �( �=�;�� ( �� �( ���>)[�5����������( ���>)�8��,��( ���>) �( �5�, ����( ���>)�� ��],��

thus, Eq. (A8)

(A11)
�8�; ( ��) =  �( �$���>�&�*�4���������=���; ,���>�8��( ���>)�%���>��+ �$���>�&�*�4���������=���; ( �� �( ���>)�8��,��( ���>)�%���>��

 + �$�� �>�&�=�;�� ( �� �( ���>)[�5����������( ���>)�8��,��( ���>) �( �5�, ����( ���>)�� ��], ���%�� �>

After an integration by parts, the last integral may be changed to a volume and a surface

integrals and Eq. (A11) is replaced by
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�8�; ( ��) =  �( �$���>�&�&�*�4���������=���; ,���>( �� �( ���>)�8��( ���>)�%���>��+ �$���>�&�&�*�4���������=���; ( �� �( ���>)�8��,��( ���>)�%���>��

 + �$���>�&�=�;�� ( �� �( ���>)[�5�*��������( ���>)�8��,��( ���>) �( �5�, ����( ���>������]�%���>�� �( �$�� �>�&�=�;�� ,��( �� �( ���>)[�5�*��������( ���>)�8��,��( ���>) �( �5�, ����( ���>������]�%�� �>

(A12)

The second and third surface integrals disappear because of Green's tensor property for . ���x�y

The first surface integral presents the solution to the homogeneous problem (homogeneous 

material of  instantaneous tangent moduli which is submitted to the real boundary �&�*�4��������

conditions). Defining this solution as  one may write:�<�4
�; = �8�4

�; ( ��)

(A13)�8�; ( ��) = �<�4
�; + �$�� �>�&�=�;�� ,��( �� �( ���>)[�5�*��������( ���>)�8��,��( ���>) �( �5�, ����( ���>)�� ��]�%�� �>

The velocity gradient may now be calculated as,

(A14)�=�;�?(�È) = �8�; ,�?(��) = �<�4
�; ,�?+ �$�� �>�&�=�;�� ,���?(�� �( ���>)[�5�*��������( ���>)�8��,��( ���>) �( �5�, ����( ���>)�� ��]�%�� �>

Solution of the general equation of heterogeneous inclusions to obtain Eq. (21):

Generally, the field  inside inclusions of any shape is not uniform. In that case, the exact ��(��)

solution of Eq.(16) requires numerical methods or approximation of  using a polynomial �6(��)

form [91]. In most real situations, it is reasonable to assume that  is quasi uniform inside �6(��)

the inclusions, so that the average value ,  , … etc of  inside the inclusions  , ,…etc ���F ���O ��( ��) �F �O

may be obtained as follows: 

From Eq. (16) in (19):

(A15)
�6�F�;�? = �� �4

�;�? �(
1

�� �F
�$�� �F�&�$�� �&�@�;�?����( �� �( ���>)[�� �. �F

���������H�F(��)������( ���>) �( �� �, �F
�����H�F(��)�� ��] d��  d�� �>

 �(
1

�� �F
�$�� �F�&�$�� �&�@�;�?����( �� �( ���>)[�� �. �O

���������H�O(��)������( ���>) �( �� �, �O
�����H�O(��)�� ��] d��  d�� �>�( �R�
�_�*

To obtain  , from an analogous formula:���O

(A16)���O=
1

�� �O�$�� �O�&�6�O�;�?(��)�%��

(A17)
�6�O�;�? = �� �4

�;�? �(
1

�� �O
�$�� �O�&�$�� �&�@�;�?����( �� �( ���>)[�� �. �O

���������H�O(��)������( ���>) �( �� �, �O
�����H�O(��)�� ��]d��  d�� �>

 �(
1

�� �O
�$�� �O�&�$�� �&�@�;�?����( �� �( ���>)[�� �. �F

���������H�F(��)������( ���>) �( �� �, �F
�����H�F(��)�� ��] d��  d�� �>�( …�
�_�*
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The exact solution of these equations is still very complex and difficult to deduce in general; an 

approximate solution can be obtained by replacing the deformations  integrals in Eq. (A15) ��( ��)

and Eq. (A17) by their average value , ,…etc in the inclusions , ,…etc.���F ���O �F�O

Thus Eq. (A15) becomes,

(A18)
�6�F�;�? = �� �4

�;�? �(
1

�� �F
�$�� �F�&�$�� �F�&�@�;�?����( �� �( ���>)[�� �. �F

���������6�F����( ���>) �( �� �, �F
������ ��] d��  d�� �>

 �(
1

�� �F
�$�� �F�&�$�� �O�&�@�;�?����( �� �( ���>)[�� �. �O

���������6�O����( ���>) �( �� �, �O
������ ��] d��  d�� �>�( �R�
�_�*

and a similar expression for  can be established.���O

By setting  and  , the �Q�F�F
�;�?����=

1

�� �F�$�� �F�$�� �F�@�;�?����( �� �( ���>)�%���%�� �> �Q�F�O
�;�?����=

1

�� �F�$�� �O�&�$�� �O�&�@�;�?����( �� �( ���>)�%���%�� �>

following linear system is obtained:

�6�F�;�? = �� �4
�;�? �( �Q�F�F

�;�?����[�� �. �F
���������6�F���� �( �� �, �F

������ ��] 
 �( �Q�F�O

�;�?����[�� �. �O
���������6�O���� �( �� �, �O

������ ��] d��  d�� �>�( �R�
�_�*

or 

(A19)���F= �� �4 �( �D
�O�&�Q

�F�O:[�� �' �O:���O�( �� �) �O�� ��]

Similarly by setting  and  , �Q�O�O
�;�?����=

1

�� �O�$�� �O�&�$�� �O�&�@�;�?����( �� �( ���>)�%���%�� �> �Q�F�O
�;�?����=

1

�� �O�$�� �O�&�$�� �O�&�@�;�?����( �� �( ���>)�%���%�� �>

results in :

�6�O�;�? = �� �4
�;�? �( �Q�O�O

�;�?����[�� �. �O
���������6�O���� �( �� �, �O

������ ��] 
 �( �Q�F�O

�;�?����[�� �. �F
���������6�F���� �( �� �, �F

������ ��] d��  d�� �>�( �R�
�_�*

or 

(A20)���O= �� �4 �( �D
�F�&�Q

�F�O:[�� �' �F:���F�( �� �) �F�� ��]

General expressions and numerical quadrature for approximate computation of  and �Q�I�I

:�Q�I�É

Considering ellipsoidal-shaped inclusion with semi-axis (a, b, c), the following expressions 

based on the Fourier transform  of the Green tensor  could be provided [32]:�• �•

(A21)�Q�F�F
�;�?����=

1

4�Ë�$
�Ë
0 �( 0�&�$

2�Ë
�• �( 0�&�Ì�?�Ì���Í2�=�;�� ( �Î)sin ���%�•�%��

and,
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(A22)�Q�F�O
�;�?����=

9

8�Ë3�� �O�$
�Ë
�� = 0�&�$

2�Ë
�• = 0�&�Ð�?�Ð���Í2�=�;�� ( �Î)sin ���‚ ( ��,�•)�%�•�%��

where  and  in Eqs. (A21) and �Ñ= [sin ��cos�•,
�l

�Ãsin ��sin �•,
�l

�*cos �� ] �¶ = [sin ��cos �•��sin ��sin �•��cos �� ]

(A22), respectively. Variables  and  are the directional cosines while  is defined by �� �• �Ó �Î��= �Í

 and  is a function of the inclusions’ morphological and �Ì��,�Í2�=����( �Ó) = (�*�4���������Ì���Ì��)
�( 1 �‚ ( ��,�•)

topological textures.
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