Cross-feeding interactions between human gut commensals belonging to the Bacteroides and Bifidobacterium genera when grown on dietary glycans

Fernández Juliá, Pedro Jesús, Commane, Daniel, van Sinderen, Douwe and Munoz, Jose (2022) Cross-feeding interactions between human gut commensals belonging to the Bacteroides and Bifidobacterium genera when grown on dietary glycans. Microbiome Research Reports, 1. p. 12. ISSN 2771-5965

[img]
Preview
Text
4708.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Official URL: https://doi.org/10.20517/mrr.2021.05

Abstract

Elements of the human gut microbiota metabolise many host- and diet-derived, non-digestible carbohydrates (NDCs). Intestinal fermentation of NDCs salvages energy and resources for the host and generates beneficial metabolites, such as short chain fatty acids, which contribute to host health. The development of functional NDCs that support the growth and/or metabolic activity of specific beneficial gut bacteria, is desirable, but dependent on an in-depth understanding of the pathways of carbohydrate fermentation. The purpose of this review is to provide an appraisal of what is known about the roles of, and interactions between, Bacteroides and Bifidobacterium as key members involved in NDC utilisation. Bacteroides is considered an important primary degrader of complex NDCs, thereby generating oligosaccharides, which in turn can be fermented by secondary degraders. In this review, we will therefore focus on Bacteroides as an NDC-degrading specialist and Bifidobacterium as an important and purported probiotic representative of secondary degraders. We will describe cross-feeding interactions between members of these two genera. We note that there are limited studies exploring the interactions between Bacteroides and Bifidobacterium, specifically concerning β-glucan and arabinoxylan metabolism. This review therefore summarises the roles of these organisms in the breakdown of dietary fibre and the molecular mechanisms and interactions involved. Finally, it also highlights the need for further research into the phenomenon of cross-feeding between these organisms for an improved understanding of these cross-feeding mechanisms to guide the rational development of prebiotics to support host health or to prevent or combat disease associated with microbial dysbiosis.

Item Type: Article
Additional Information: Funding information: Munoz J received financial support from an internal grant in Northumbria University. van Sinderen D is a member of APC Microbiome Ireland which received financial support from Science Foundation Ireland, through the Irish Government’s National Development Plan (SFI/12/RC/2273-P1 and SFI/12/RC/2273-P2).
Uncontrolled Keywords: Cross-feeding, plant fibre, Bacteroides, Bifidobacterium, gut microbiota, prebiotic
Subjects: C500 Microbiology
C700 Molecular Biology, Biophysics and Biochemistry
Department: Faculties > Health and Life Sciences > Applied Sciences
Depositing User: Elena Carlaw
Date Deposited: 17 Feb 2023 16:12
Last Modified: 17 Feb 2023 16:15
URI: https://nrl.northumbria.ac.uk/id/eprint/51438

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics