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Abstract

In this thesis we consider a recent model for resonant interaction between long and short waves

that we proposed unifying and generalising those first proposed by Yajima and Oikawa and by

Newell, which we call Yajima-Oikawa-Newell (YON) system, which has the remarkable property

of remaining integrable for any choice of the two arbitrary, non-rescalable parameters it features.

Long wave-short wave systems, which model the propagation of short waves that generate waves

of much longer wavelength, appear in many physical settings, especially in fluid dynamics and

plasma physics. Throughout the thesis, we introduce this new system through mathematical means

and by recalling the physical origin of the Yajima-Oikawa system, and employ various techniques,

both general and pertaining to the theory of integrable systems, to study it. In particular, we ob-

tain several types of solutions, including bright and dark solitons, periodic solutions, breathers

and rational solutions, by means of a general Ansatz approach and by using Hirota bilinearisa-

tion techniques (namely, the theory of τ -functions, which allows us to relate the system with the

Kadomtsev-Petviashvili equation), with which we were able to derive the general N -soliton solu-

tion both on a zero and non-zero background, and the phase shift corresponding to the collision of

two solitons (which, remarkably, only depends on the wave numbers of the two solitons).

Even though a physical derivation of the whole YON system is not available at this point of the

research and remains an open problem, the fact that the Yajima-Oikawa system, in itself a subcase

of the YON system, can be physically derived encourages us to try to obtain the whole system as

a reduction of a physical model of resonantly interacting long and short waves. In case it can be

derived in a physical context, the fact that the system features free parameters might be useful to

better model and assist experiments.

Furthermore, we introduce a recent technique for the study of stability of solutions of integrable

systems, proposed by Degasperis, Lombardo & Sommacal (2018), which makes use of the Lax

pair associated to the system to perform a linear stability analysis of the solution by introducing a

new object that we refer to as the stability spectrum, defined as an algebraic/topological structure

in the complex plane. The geometric properties of this spectrum are linked to the stability or

instability of the given solution, which allows us to provide a full classification of the stability

behaviours in the parameter space. In the thesis we employ this technique to study the stability

of the plane waves of the YON system. We also provide a few conjectures relating the topology
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of the stability spectrum and the existence of special kinds of functions, namely dark solitons and

rational solutions. These predictions are indeed true for the YON system, as checked with the

solutions derived via Hirota bilinearisation.
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Chapter 1

Introduction

In this work, we will introduce a new integrable model, the Yajima-Oikawa-Newell system, to

describe the interaction between long and short waves, unifying and generalising two very well-

known integrable systems (namely, the Yajima-Oikawa and Newell systems), and we will take

advantage of its integrability to apply different machinery to derive some of its properties and

solutions. With this in mind, in this introductory chapter we will review some of the basic tools

and concepts that we will later use throughout the thesis.

In Section 1.1, we will introduce the multiscale method, which enables to reduce a given system

into different ones whose behaviour is easier to study, while still keeping some properties and

information of the original system.

In Section 1.2, we will give a flavour of the concept of integrability by introducing some of the

most popular definitions of integrable system and, in particular, we will introduce the concept of

Lax integrability, along with some basic properties of Lax pairs.

In Section 1.3, we will provide a brief overview of the inverse scattering method, which permits

to derive solutions of a Cauchy problem for an integrable system by making use of its Lax pair

formulation. We will also underline one of the problems one can encounter when applying the

theory (which, in fact, appears when dealing with the Yajima-Oikawa-Newell system).
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1.1. THE MULTISCALE METHOD CHAPTER 1. INTRODUCTION

In Section 1.4, we will review some of the main techniques to study the stability of solutions

of nonlinear systems, which will be later complemented in Chapter 5, by the introduction of a

recently developed technique for the special case of solutions of integrable systems.

Finally, in Section 1.5, we will outline the structure of the thesis, with a brief description of the

content of each chapter.

1.1 The multiscale method

The multiscale method is one of the most popular methods to reduce a complicated nonlinear

system into multiple simpler models at different scales of resolution, for which one can more

readily obtain properties that may be translated into the original system (see [17, 27, 28, 50,

146, 163]). Roughly speaking, this approach is based on the assumption that the behaviour of a

nonlinear system can be described separately at different levels of detail, some of them coarser

and some finer, in the independent variables on which the unknowns depend.

In our case, the rationale behind this assumption lies in the fact that most of the systems we are

considering that describe some physical systems actually model interacting waves. Whenever

they represent monochromatic wave packets of a relatively small amplitude, one can consider

the characteristic packet size and wavelenght of each of the packets as the different scales of

the system. The idea is to focus on one, or at most a few, carrier waves of the linear part of

the nonlinear system and study the effect of the nonlinear part on them, which, for the weakly

nonlinear regime, will act as an amplitude modulation. Thus, the amplitude of the carrier waves

will be studied as a function of coarse-grained space variables and slow time variables.

For the sake of completeness, it is worth noting that the multiscale method is closely related to

the averaging method developed by Whitham and others in the 1970s (see [74, 155]). However,

the multiscale method is more elementary, and as such it allows one to deepen further not only on

the system itself but also on some of its properties, which will be conserved or even reinforced

through the method.

In particular, the multiscale method conserves, or “increases”, the integrability of the system

2



1.1. THE MULTISCALE METHOD CHAPTER 1. INTRODUCTION

(more on integrability in Section 1.2), so the integrability of the derivative system will actually

become a necessary condition for the integrability of the original one (see [25]). An additional

application of this fact is that, by applying the multiscale method on systems that are known

integrable, one can obtain new systems that will also be integrable and have a physical meaning

provided the original system also has it. However, the number of integrable systems coming

from the application of the method is rather small, and for that reason we will call them uni-

versal systems, in the sense that they cover the multiscale behaviour of many different systems

[25].

Let us consider a dispersive, nonlinear partial differential equation of the form

Du “
Bh

Bxh
F pu, ux, uxx, . . . ;u

˚, u˚
x, u

˚
xx, . . .q , (1.1)

where u “ upx, tq is the dependent variable, which will in general be complex, x and t are

the original space and time variables, the subindex x denotes partial derivation with respect to

x, and the asterisk ˚ denotes complex conjugation. D denotes the linear dispersive differential

operator

D “
B

Bt
` iω

ˆ

´i
B

Bx

˙

, (1.2)

with

ωpkq “

M
ÿ

m“0

amk
m , aM ‰ 0 . (1.3)

The method can still be applied if higher order derivatives appear in the expression of D or if

the dependent variable u is a vector or a matrix rather than a scalar, though we will provide an

introduction restricted to this case for simplicity. The adjective “dispersive” applied to D means

that we will impose all the constants am to be real, and that M ą 1. This is imposed so that the

linear PDE

Du “ 0 (1.4)

admits a solution of the form

upx, tq “ eirkx´ωpkqts (1.5)

3



1.1. THE MULTISCALE METHOD CHAPTER 1. INTRODUCTION

with a real ω for any given real k, thus ensuring that |upx, tq| is constant for that solution (and

in fact equal to 1).

The group velocity vpkq is defined in terms of the frequency ωpkq as

vpkq “
dωpkq

dk
“

M
ÿ

m“1

mamk
m´1 . (1.6)

The operator Bh

Bxh in (1.1), where h is a non-negative integer, is introduced for convenience and

could actually be absorbed by F or by u, however it is usually more convenient to keep it to

simplify the computation. The term F in the right-hand side represents the nonlinear part of the

evolution PDE. We will assume that it satisfies the expression

F pεu, ϵux, . . . ; εu
˚, εu˚

x, . . .q “

8
ÿ

m“2

εmF pmqpu, ux, . . . ;u
˚, u˚

x, . . .q , (1.7)

where ε denotes a small parameter and F pmq is a homogeneous polynomial of degree m.

We will consider as our Ansatz a superposition of plane waves of the form

upx, tq “

`8
ÿ

n“´8

εγneinzψnpξ, τq , (1.8)

where z is coming from the solution of the linear problem,

z “ kx´ ωpkqt , (1.9)

and the amplitude modulation ψn depends on the slow variables ξ and τ ,

ξ “ εppx´ V tq , (1.10a)

τ “ εqt , (1.10b)

where V denotes the group velocity, V “ vpkq.

The sum in the right-hand side of (1.8) has an asymptotic character, meaning that we do not need

4



1.1. THE MULTISCALE METHOD CHAPTER 1. INTRODUCTION

it to converge and we will only consider a few terms (e. g. |n| ď 2) for our computations. The

constant k, which ultimately plays the role of a wave number can be chosen arbitrarily as it is

convenient. One of the important points of the computation are the values of the exponents γn,

p and q, since they have to be chosen in such a way that we obtain finite, non-trivial solutions in

the asymptotic ε Ñ 0 limit for the evolution of the amplitude modulations ψnpξ, τq in the slow

variables ξ and τ . The exponents p and q are required to be positive so that the nonlinear effects

in the limit of weak nonlinearity ε Ñ 0 are finite.

Let us remark that when performing the computations for a particular system, further depen-

dences of ε may be required, either in the choice of k (e. g. choosing it as k “ k0 ` ελk1)

or in the form of ψnpξ, τq (e. g. via relations like ψnpξ, τq “ ψ
p0q
n pξ, τq ` εµnψ

p1q
n pξ, τq).

These further introduction of ε may be necessary for cases where extra cancellations occur in

the computations, keeping us from obtaining non-trivial results at the leading order.

The idea is now to introduce the Ansatz (1.8) into (1.1) and compensate terms in the left and

right-hand side to present the same exponentials, to then take the limit ε Ñ 0 to obtain equations

for the ψnpξ, τq, possibly after introducing some rescalings to the dependent and independent

variables to reabsorb constants and show the equation in a clearer form.

Let us illustrate the method by applying it to an example (the derivation was performed for this

work as an exercise; we do not know of a reference including this computation, though it is likely

there is some). We will consider the cubic nonlinear Klein-Gordon equation, which appears in

several fields of physics, especially in quantum mechanics (see [20]),

utt ´ uxx ` up1 ´ uu˚q “ 0 . (1.11)

To apply the multiscale method, we will define a slow spatial variable X “ εx and slow time

variables T “ εt and τ “ ε2t, with ε ! 1 a small positive parameter.

We will look for a solution in the form

u “ εu1 ` ε2u2 ` ε3u3 ` . . . , (1.12)

5



1.1. THE MULTISCALE METHOD CHAPTER 1. INTRODUCTION

where the components are of the form ui “ uipx,X, t, T, τq. Then we can transform (1.11) into

our new variables by using that

uxx “ εpu1qxx ` ε2
”

pu2qxx ` 2pu1qxX

ı

` ε3
”

pu3qxx ` 2pu2qxX ` pu1qXX

ı

`Opε4q , (1.13)

and

utt “ εpu1qtt`ε
2
”

pu2qtt`2pu1qtT

ı

`ε3
”

pu3qtt`2pu2qtT `2pu1qtτ`pu1qTT

ı

`Opε4q . (1.14)

We can define a differential operator L as

Lpϕq “ ϕtt ´ ϕxx ` ϕ , (1.15)

and the nonlinearity as

N pϕq “ ϕ2ϕ˚ . (1.16)

We can introduce the expression for u (1.12) and its derivatives (1.13) and (1.14) to rewrite

(1.11) as

0 “ εLpu1q ` ε2
”

Lpu2q ` 2pu1qtT ´ 2pu1qxX

ı

` ε3
”

Lpu3q ` 2pu2qtT ´ 2pu2qxX ` 2pu1qtτ ` pu1qTT ´ pu1qXX ´ u21u
˚
1

ı

` Opε4q .

(1.17)

At Opεq, we have the equation

Lpu1q “ 0 , (1.18)

that is,

pu1qtt ´ pu1qxx ` u1 “ 0 , (1.19)

which, thanks to its linearity, is solved by a function of the form

u1px,X, t, T, τq “ ApX,T, τqeipkx´ωtq ` c.c. , (1.20)

6



1.1. THE MULTISCALE METHOD CHAPTER 1. INTRODUCTION

where c.c. denotes the complex conjugate, and ω has to satisfy the dispersion relation

ωpkq “
a

k2 ` 1 . (1.21)

Inserting this solution into the equation at Opε2q, we have that

Lpu2q “ 2ipωAT ` kAXqeipkx´ωtq ` c.c. (1.22)

The left hand side has the same structure as the homogeneous problem and hence represents

a secularity. Because of that, we shall equal the right-hand side to zero, which gives the rela-

tion

ωAT “ ´kAX , (1.23)

which means that the wave is propagating with group velocity

V “
k

ω
“ ω1pkq (1.24)

in the slow variables. We can then introduce a new variable ξ “ X ´ V T so that ApX,T, τq “

Apξ, τq and Lpu2q “ 0 in the equation above. That means we have

u2 “ BpX,T, τqeipkx´ωtq ` c.c. (1.25)

We can now introduce our formulae for u1 and u2 into the equation at Opε3q to obtain

Lpu3q “

”

2iωAτ ` p1´ c2qAξξ ` |A|2A`2ipωBT `kBXq

ı

eipkx´ωtq ` |A|2Ae3ipkx´ωtq ` c.c.

(1.26)

Again, we have a secular term if the term in front of eipkx´ωtq is non-zero. Imposing it to be

zero, we get the condition

ωBT “ ´kBX , (1.27)

so again we can set BpX,T, τq “ Bpξ, τq and the term vanishes. Moreover, from the vanishing

7



1.2. FUNDAMENTALS OF INTEGRABIL-
ITY AND THE LAX PAIR

CHAPTER 1. INTRODUCTION

of the term above we get the additional condition

2iωAτ ` ωω2Aξξ ` |A|2A “ 0 , (1.28)

which happens to be the nonlinear Schrödinger (NLS) equation. Assuming ω ‰ 0 (which is true

for every real k by means of the dispersion relation (1.21)), we can divide the equation by 2ω

and use that ω2 “ ω´3 to get

iAT `
1

2ω3
Aξξ `

1

2ω
|A|2A “ 0 . (1.29)

We do not need to worry about the remaining term in (1.26), |A|2Ae3ipkx´ωtq since in the general

case ωp3kq ‰ 3ωpkq, so the term is not in resonance with the homogeneous solution.

The NLS equation is indeed one of the most ubiquitous integrable equations that can result from

a multiscale analysis. A full classification of all the obtainable integrable systems in the simplest

case is available in [27]. However, additional equations may appear by allowing for more general

operators in the original equation, and more complicated expressions for the elements in the

method in terms of ε. This is in fact an active field of current research (e. g. [103]).

1.2 Fundamentals of integrability and the Lax pair

The study of integrable systems has its roots at the very beginning of classical mechanics. Since

Newton formulated his well-known laws, both physicists and mathematicians have tried to find

exact solutions to the problems they model.

Newton himself managed to solve Kepler’s problem, but until several centuries later, only a

handful of simple problems were solved. It was not until the 19th century that Liouville made

a qualitative leap in the study of integrable Hamiltonian systems, giving a general framework in

what is called today the Liouville-Arnold theorem, allowing to find a primitive that defines the

dynamics of the system (see [10, 46, 118]). However, it took another century to develop quite

systematic methods to carry out this task.
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CHAPTER 1. INTRODUCTION

One of the earliest and most popular methods for that is the so-called classical inverse scattering

method, developed by Gardner, Greene, Kruskal and Miura in 1967, and first applied to solve

the Korteweg-De Vries (or KdV) equation (see [78, 126]). It can be seen as a nonlinear analogue

and in some sense a generalisation of Fourier analysis, and it is applicable to many completely

integrable infinite-dimensional systems. Methods for investigating integrability in a quantum

context were developed during the following decade by the Leningrad-St. Petersburg school,

headed by L. Faddeev along with several of his students, notably Korepin, Kulish, Reshetikhin,

Sklyanin or Semenov-Tian-Shansky (see [144]). Their work, connected with the theory of quan-

tum groups by Drinfeld and Jimbo, paved the way for the algebraic formulation of the problem

(in fact, solving the equations of motion became equivalent to solving the factorisation prob-

lem in the corresponding group, see [11]). This new formulation made it possible to unify in a

single mathematical framework the study of integrable quantum field theories and spin-lattice

systems.

The definition of what makes a system integrable is however not unique, and different authors

and trends within the field use different definitions, which depending on the setting may or may

not be equivalent (see e. g. [94]).

The Liouville-Arnold theorem deals with integrability in the sense of dynamical systems, mean-

ing that there exist invariant, regular foliations, i. e., foliations whose leaves are embedded sub-

manifolds of the smallest possible dimension, that are invariant under the flow. For Hamiltonian

systems this condition is equivalent to what is know as complete integrability, or integrability in

the sense of Liouville, which consists of having a maximal set of conserved quantities in invo-

lution, that is, such that the Poisson brackets between the different conserved quantities vanish.

For systems where the phase space is finite-dimensional and symplectic (which is equivalent

to the Poisson bracket being non-degenerate), the dimension is always even, say, 2n (where,

conceptually each position coordinate is associated to a momentum coordinate). In that case,

the maximum number of conserved quantities in involution, including the Hamiltonian itself if

the system is autonomous, is n, so that if that amount is achieved then the system is completely

integrable. The leaves of the maximal foliation associated to the integrable system are totally
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isotropic, and the foliation becomes Lagrangian (which in certain fields of physics is also known

as a foliation of branes). In the infinite-dimensional case, the system is required to have an infi-

nite number of conserved quantities in involution to be considered completely integrable.

In the case of autonomous Hamiltonian systems, the leaves of the foliation happen to be tori,

allowing us to use the natural coordinates of the torus to define canonical coordinates known as

action-angle coordinates that decouple the dynamical system, thus allowing to solve the equa-

tions of movement by quadratures (see e. g. [11, 46, 106]). For other cases of complete inte-

grability these coordinates can also be achieved, with the flow parameters acting as coordinates

of the phase space, and the system is still solvable by quadratures. This leads us to an alternate

definition of integrability, often called solvability, consisting on the ability to find exact solu-

tions in a closed form. Even though the solutions of completely integrable systems can always

be obtained by quadratures, said solutions need not be in closed form as generally understood,

and thus the concepts of completely integrable system and solvable system are not equivalent.

Note here that some authors employ the term “exactly solvable” to refer to completely integrable

systems, especially in the infinite-dimensional case, while others employ it with the vague def-

inition that the solutions can be expressed in terms of “known” functions. Due to its ambiguity

we will avoid using this terminology and keep the distinction between completely integrable and

solvable systems.

The geometric conditions imposed for integrability in the sense of dynamical systems can be

relaxed by allowing a definition of integrability in terms of local properties, instead of global

ones. Thus, a system is called Frobenius integrable if it features locally a foliation by maximal

integral manifolds. Through the Frobenius theorem, the condition for Frobenius integrability is

a necessarily and sufficient condition for the existence of compatible coordinate grids coming

from the different local manifolds (see [107]).

Another definition of integrability is the concept of Painlevé integrability (see [1, 5, 95]). A

system is said to be Painlevé integrable if it exhibits the Painlevé property, which means that

all of its movable singularities, that is, singularities whose location depend on the initial con-

dition, are poles of the solution. All other critical points, including logarithmic branch points

10
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and essential singularities, must be fixed no matter the initial condition. This can be checked by

means of the Painlevé test (see [153]). Painlevé integrability is a necessary condition for com-

plete integrability and for Lax integrability (explained in the next paragraph), although it is not

a sufficient condition. The Laurent series employed in the Painlevé test can be used to construct

auto-Bäcklund and Darboux transformations, and is useful to identify the symmetry algebras of

the PDEs, which are in turn subalgebras of the Kac-Moody algebra and the Virasoro algebra

[12].

A further definition of integrability, which will be the one we refer to throughout the thesis

simply as “integrability”, is the definition of Lax integrability, which consists on the existence

of a Lax pair (see [26, 63, 108, 109]). The classical definition of a Lax pair, which we will refer

to as a Lax pair in operator form, is a pair of matrices Lptq, P ptq whose entries are allowed

to further depend on the variables of the phase space and usually on an additional arbitrary

parameter known as the spectral parameter and usually denoted as λ, and such that the equations

of motion of the system can be written as

dL

dt
“ rP,Ls , (1.30)

where rP,Ls “ PL ´ LP denotes the commutator and P is an anti-Hermitian matrix. A

remarkable property is that the matrix L generates the set of conserved quantities

Ck “ trLk . (1.31)

This follows from the fact that

dCk

dt
“ k tr

ˆ

Lk´1dL

dt

˙

“ k tr
´

Lk´1rP,Ls

¯

“ 0 , (1.32)

due to the cyclicity of the trace. This also implies that the eigenvalues of Lptq are isospectral as

t varies. Because of that, all Lptq are similar for every t, so that

Lptq “ Upt, sqLpsqUpt, sq´1 , (1.33)
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for any t and s, where the unitary matrix Upt, sq is the solution of the Cauchy problem

d

dt
Upt, sq “ P ptqUpt, sq , Ups, sq “ 1 , (1.34)

where 1 denotes the identity matrix. This fact is the basis of the inverse scattering method

(further developed in Section 1.3), which roughly consists on solving the eigenvalue problem

for L when t “ 0 (which will be associated to an initial condition for the system) to then let

the eigenvalues and eigenstate evolve using (1.33) up to an arbitrary t and use the solution to

generate the corresponding solution for the system at time t.

It is important to note that Lax pairs for an integrable system are not unique, and a system can

even be described by Lax pairs of different dimensions.

We will however employ a different, more modern approach to Lax pairs, usually referred to

as AKNS form (due to the renown paper [2]) and which we will simply call Lax pair in matrix

form. Let us consider a 1+1 dimensional PDE, that is, a PDE where the dependent variables de-

pend on two independent variables x and t (extensions of this machinery for systems in higher

dimensions exist, but we will ignore them for the sake of simplicity). Let us also consider a

pair of matrices X and T whose entries are expressed in terms of the dependent and indepen-

dent variables and possibly of an arbitrary parameter λ, which again we will call the spectral

parameter. We define the Lax equations associated to the pair X , T as the pair of ODEs

Ψx “ XΨ , (1.35a)

Ψt “ TΨ , (1.35b)

where we have introduced a new dependent, matrix-valued variable Ψpx, t, λq. We will say

that X , T is a Lax pair for our PDE if it emerges as the compatibility condition of the Lax

equations,

Ψxt “ Ψtx , (1.36)
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that is, our PDE is equivalent to the equality

Xt ´ Tx ` rX,T s “ 0 , (1.37)

which is also referred to as the zero curvature condition. As it happened with the Lax pairs in

operator form, Lax pairs in matrix form are not unique. In fact, there is a direct correspondence

between both formalisms, and one can be readily transformed into the other (see [125]).

The Lax pairs in matrix form are also employed in inverse scattering techniques. A brief intro-

duction to those techniques will be provided in Section 1.3.

1.3 The inverse scattering method

As explained in the section before, the inverse scattering method is one of the most popular

methods to obtain solutions for integrable systems. It makes use of the Lax pair formulation of

the system (either in operator or matrix form) to evolve in time some parameters of the system

(commonly called the scattering parameters) that then allow us to reconstruct the solution of

the system (see e. g. [1, 2, 3, 6, 26, 57, 131, 139]). Let us note here that we will not make

use of the inverse scattering machinery throughout the thesis, however it is presented here for

the sake of completeness and to illustrate some issues that do in fact occur when treating the

Yajima-Oikawa-Newell system. A basic scheme of the method would be

Initial condition at t “ 0
Direct scattering
ÝÝÝÝÝÝÝÝÝÑ Scattering data at t “ 0

§

§

§

§

đ

Solution to the IVP

§

§

§

§

đ

Time evolution

Solution at t “ t1
Inverse scattering

ÐÝÝÝÝÝÝÝÝÝ Scattering data at t “ t1

Let us consider a Lax pair X , T defining the Lax equations (1.35). For simplicity, we will

assume that X and T have the form

Xpλq “ iλΣ `Q , T pλq “ piλq2T2 ` iλT1 ` T0 , (1.38)
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where λ is the spectral parameter, Σ, Q, T2, T1 and T0 are λ-independent matrices, Σ is a

constant, diagonal matrix, and Qpx, tq is an off-diagonal matrix. The compatibility condition of

the Lax pair (1.37) entails the PDE or system of PDEs under scrutiny.

We can start the method by looking at the solution of the first Lax equation, using the matrix X .

With our choice of matrices it reads

Ψx “ piλΣ `QqΨ , (1.39)

which, provided the matrix Σ is invertible, can be rewritten as an eigenvalue problem,

`

iΣ´1Q´ iΣ´1Bx
˘

Ψ “ λΨ . (1.40)

We will then introduce the so-called Jost solutions ψpx, λq and ϕpx, λq of this ODE, which are

uniquely determined by the asymptotic conditions

ψpx, λq “ eiλx1 ` Op1q , x Ñ `8 , (1.41a)

ϕpx, λq “ e´iλx1 ` Op1q , x Ñ ´8 , (1.41b)

where 1 denotes the identity matrix, via Volterra integral equations (see [3, 63, 150]). From the

Jost functions one can also define the Faddeev functions Mpx, λq and Npx, λq as

Mpx, λq “ ψpx, λqe´iλx , (1.42a)

Npx, λq “ ϕpx, λqeiλx . (1.42b)

The individual columns of Mpx, λq and Npx, λq provide us with a basis to construct the so-

called scattering matrix, which in turn we will be able to evolve in time using relatively simple

rules.

One of the delicate points, however, is the fact that the columns of Mpx, λq behave well for

x P R`, while the columns of Npx, λq behave well for x P R´. We have then the task of
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“gluing” both solutions together to get a solution that behaves well everywhere. This process is

usually referred to as the Riemann-Hilbert problem for the Jost functions.

Once the scattering matrix for an arbitrary time t is obtained, then the corresponding solution at

time t is usually obtained through some variation of a Marchenko integral equation, also known

as Gelfand-Levitan equation (see [123]).

Since we will not employ inverse scattering analysis throughout the thesis, we will not delve

deeper into the theory and will refer to the references provided. However, let us note that all the

theory presented in this section works only when the matrix Σ is invertible.

Quite surprisingly, to the best of our knowledge there is no literature attacking the problem of

performing inverse scattering when Σ is a singular matrix, so that the problem cannot be trans-

formed into an eigenvalue problem, but a generalised eigenvalue problem. However, that is

precisely the case for the main systems we will treat throughout the thesis (the Yajima-Oikawa

and Newell systems, and its generalisation in the Yajima-Oikawa-Newell system). In such situ-

ation, the Jost matrices can still be uniquely defined with similar asymptotics as solutions of the

generalised eigenvalue problem. However, when obtaining the columns of the Faddeev func-

tions to construct the scattering matrix, the columns corresponding to zeros of the matrix Σ

vanish too, so one does not get enough vectors to cover for the dimension of the solution space.

Newell himself does perform an inverse scattering analysis for his eponymous system in [128],

however we were unable to reproduce the results in that work, and thus it remains unclear for us

whether he employed a general method that can be applied to general cases.

A way to circumvent that limitation requires heavy mathematical machinery of functional anal-

ysis, and is currently work in progress jointly with Cornelis van der Mee [32].

1.4 Introduction to stability

The stability of solutions of PDEs, that is, the property of a given solution to remain close to the

initial setting under small perturbations, is a classical problem in analysis and dynamical sys-

tems, of great relevance from both the theoretical and applied points of view. For linear systems,
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there exists a plethora of well-established results and techniques. For example, using Schur

analysis, the study of the stability of solutions of a linear system can be translated into studying

the eigenvalue problem of a matrix associated to the system (see e. g. [18, 96, 151].

The stability analysis of solutions of nonlinear evolution systems of integrable and non-integrable

type has been developed much more recently, and due to its complexity only certain kinds of per-

turbations of certain kinds of systems have been studied. For integrable nonlinear systems, one

of the main techniques makes use of the Floquet-Lyapunov theory to map the problem into a lin-

ear one, that can then be more easily solved (e. g. [4, 24, 138, 142]). However, for this analysis

to be applied, it is required that both the solutions and the perturbations be periodic.

Another popular line of research focuses on modulational instability, looking at the reinforce-

ment of the perturbations due to the nonlinearity and how this asymptotically affects wave trains.

In this context, modulational instability has been identified as a potential mechanism for the on-

set of rogue waves [13]. However, again only certain kinds of perturbations have been system-

atically studied: periodic perturbations (e. g. [52, 81, 83, 84]), random perturbations (e. g. [14])

or localised perturbations (e. g. [19]).

Let us illustrate a simple approach of this kind by applying it to a system we will further study

in Chapter 2, the Yajima-Oikawa system,

iSt ` Sxx ´ LS “ 0 , (1.43a)

Lt “ 2p|S|2qx , (1.43b)

where S is a complex variable and L a real one, and the subindices denote partial differentiation.

The Yajima-Oikawa system admits plane wave solutions of the form

Spx, tq “ aeiθ , L “ b , θ “ qx´ νt , ν “ q2 ` b , (1.44)

where a and b are real, constant amplitudes and q is the wave number. We will introduce a
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perturbation in this solution by setting

Spx, tq “ aeiθp1 ` bηq , L “ bp1 ` µq , (1.45)

where ηpx, tq and µpx, tq satisfy the system of PDEs with constant coefficients

iηt ` ηxx` 2iqηx ´ µ “ 0 , µt ´ 2a2pηx ` η˚
xq “ 0 . (1.46)

Through standard Fourier analysis, we can construct solutions of this system of the form

ηpx, tq “ A`e
iϕ `A˚

´e
´iϕ˚

, µpx, tq “ Beiϕ `B˚e´iϕ˚

, ϕ “ kx´ ωt , (1.47)

where A`, A´ and B are complex amplitudes, and where the dispersion relation ωpkq is given

by the three roots of the polynomial

P pρq “ ρpρ´ 2q2 ´ c1ρ` c0 , ρ “
ω

qk
, (1.48)

with

c1 “

ˆ

k

q

˙2

ą 0 , c0 “ 4
a2

q3
, ´8 ă c0 ă `8 . (1.49)

Since it is a cubic polynomial, P pρq always has a real solution, and the other two solutions can

be either real or complex conjugate depending on the value of c1 and c0 (and thus on the value

of a, q and k). Based on our solution (1.47), we require ω to be real for all real values of k

(otherwise, it would give rise to a real exponential that would consequently diverge for large t).

Hence, we will say that the system is stable for a given value of a and q if all three branches

of the dispersion relation ωpkq are real for every real k. Otherwise, we will define the band of

instability as the set of values of k for which P pρq has complex conjugate roots. The endpoints

of the intervals in the instability band correspond to the zeros of the discriminant of P pρq with

respect to ρ,

Dρpc0, c1q “ 4c31 ´ 32c21 ` p72c0 ` 64qc1 ´ 27c20 ´ 32c0 . (1.50)
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All of these methods, however, are fit to study scalar models of nonlinear waves, but they do

not translate well to the multicomponent case, either because they become hugely convoluted

or because their very formulation is only properly defined in the scalar case. Thus, very little is

known in general about the stability of solutions of multicomponent systems. Moreover, they

do not take advantage of the potential integrability of the system, which could in turn simplify

or improve the calculations by using non-general machinery. In Chapter 5, we will introduce an

algebraic method which makes use of integrability properties of the system (in particular, of its

Lax pair) to investigate the stability of solutions in the linear stage, and which extends naturally

to the multicomponent case. A further advantage of this method is that, from the geometric

features of the resulting object, one appears to be able to predict the range of parameters for

which special kinds of solutions exist (in particular, solitons and rational solutions).

It is worth remarking an also fairly recent method for stability developed by B. Deconinck and

collaborators (see [47, 48, 49, 149]), in which they also use the Lax pair formulation to study the

stability of integrable systems in the linear stage. However, it is unclear how this method relates

to the one introduced in Chapter 5, or whether it can be readily extended to multicomponent

systems. This is an open line of research we are currently working on.

1.5 Aims and scopes

The present thesis covers several mathematical machinery for integrable systems by applying it

to a new integrable system we discovered and introduced during the PhD studies, which gener-

alises two very well-known integrable systems describing the interaction between long and short

waves: the Yajima-Oikawa system and the Newell system.

Some of the methods employed are newly developed, and at the present time our research on

them is still ongoing, trying to understand them in more depth and extend their applicabil-

ity.

In Chapter 2, we introduce the Yajima-Oikawa system by reproducing its derivation from phys-

ical principles, paying particular attention to its derivation from special resonant conditions
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through the multiscale method, and we provide a systematic review on previously obtained prop-

erties and solutions of the system, especially on those related to integrability.

In Chapter 3, we introduce the Newell system and reproduce its original derivation, which,

contrary to the Yajima-Oikawa case, does not rely on physical principles but is rather inspired

by equations of physical relevance. We then provide a review of results and solutions relating to

its integrability.

In Chapter 4, we combine the Yajima-Oikawa system and the Newell system into a more gen-

eral integrable system, which we call the Yajima-Oikawa-Newell system, by combining their

Lax pairs into a single one. Then, we employ an Ansatz approach to derive periodic solutions

(expressed as elliptic functions) and traveling waves (both solitary waves and rational solutions)

for the system, and derive a few of its symmetries and conservation laws.

In Chapter 5, we present the theory for our algebraic method to study the stability of solutions of

integrable systems, and apply it to study the stability of the plane waves of the Yajima-Oikawa-

Newell system, which turn out to be unstable for almost every choice of parameters. Some

conjectures are also proposed relating the geometric or topological properties of the stability

spectra to the existence of various kinds of solutions. Part of the proofs for this chapter are

presented separately in the Appendix A due to their length.

In Chapter 6, we give an overview of the theory for the Hirota bilinear method, and in particular

we introduce the method of τ -functions, which we then apply to obtain several special solutions

for the Yajima-Oikawa-Newell system, including bright and dark solitons, breathers, and rational

solutions.

Then in Chapter 7 we provide a review of the different results presented throughout the thesis

and how they related with our current lines of research.
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Chapter 2

Yajima-Oikawa Long Wave-Short

Wave System

The first model of long wave-short wave interaction that we are going to treat is a system pro-

posed by Yajima and Oikawa in 1976 [159] in the context of sonic-Langmuir waves, that is,

waves in plasma that interact with acoustic-type waves [99].

We will write the Yajima-Oikawa system as

iSt ` Sxx ´ LS “ 0 ,

Lt “ 2p|S|2qx ,

(2.1)

where S is a complex variable representing the short wave, L is real and represents the amplitude

of the long wave, and the subindex x (respectively t) denotes partial derivation with respect to

the variable x (respectively t).

For the sake of completeness, let us briefly reproduce the original derivation of the system in

[159].
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2.1 Physical derivation

The initial point of the computation are the equations for Langmuir waves introduced by Za-

kharov in [162], that is, equations for an ion sound wave under the action of a high-frequency

field:

iEt `
1

2
Exx ´ nE “ 0 ,

ntt ´ nxx ´ 2p|E|2qxx “ 0 ,

(2.2)

where Epx, tq is the normalised complex amplitude of the electric field of the Langmuir oscil-

lation, npx, tq is the normalised density perturbation due to the acoustic wave, and the space

and time variables x and t are also properly normalised to absorb additional constants in the

equation.

The key assumption for deriving the original form of the Yajima-Oikawa system is to consider

sound waves propagating in only one direction, e.g. in the positive x-direction, and with constant

sound speed, so that we can approximate

nt – ´nx , (2.3)

where the sound speed has been normalised to 1. From the approximation (2.3) we obtain the

relation

ntt ´ nxx “

ˆ

B

Bt
´

B

Bx

˙

pnt ` nxq – ´2
B

Bx
pnt ` nxq (2.4)

which we can introduce into the second equation in (2.2) to rewrite it as

nt ` nx ` p|E|2qx “ 0 . (2.5)

In later papers, the nx term in (2.5) was dropped, thus leading to the form of the system we

introduced in (2.1).

Just a year after its introduction by Yajima and Oikawa in the context of sonic-Langmuir inter-
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action [159], the same system was introduced again independently in the context of capillary-

gravity waves by Djordjevic and Redekopp [58].

In that case, the starting point is Laplace’s equation for an irrotational fluid,

ϕxx ` ϕyy ` ϕzz “ 0 , ´h ă z ă ζ , (2.6)

subject to boundary conditions

ϕz “ 0 at z “ ´h ,

ϕz “ ζt ` ϕxζx ` ϕyζy at z “ ζ ,

(2.7)

where ϕpx, y, z, tq denotes the velocity potential, h is the (constant) depth of the liquid, and

ζpx, y, tq is the position of the free surface of the fluid.

A multiscale approach (as explained in Section 1.1) was applied to this system, by assuming an

initial condition for ζ of the form

ζpx, y, t “ 0q “ ε
iω

g ` k2T
pAeikx ´A˚e´ikxq , (2.8)

where, physically, g is the gravitational acceleration, T is the ratio between the surface ten-

sion coefficient and the fluid density, and ε ! 1 is a small (assuming weak nonlinearity), non-

dimensional parameter measuring the slope of the wave surface (hence giving the scale of the

wave envelope). The envelope A depends only on slow variables, and the frequency ω depends

on the wave number k through the dispersion relation

ω “

d

gk

ˆ

1 `
k2T

g

˙

tanhpkhq , (2.9)

obtained by substituting the Ansatz (2.8) back into the equation.

Choosing the right scale for the parameters

ξ “ ε
2
3 px´ cgtq , τ “ ε

4
3 t ,
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where cg is the group velocity,

cg “ Bω{Bk ,

and reducing the study to one-dimensional waves allows us to discern for ϕ the behaviour of

the free wave at the leading order with a long wave at Opε
2
3 q, that we denote by Bpξ, τq, and

the short-wave contribution of the first harmonic at Opεq, which is governed by the envelope

Apξ, τq.

Further analysis (see [58]) shows that the evolution equations for the system are singular in

the resonant case c2g “ gh, and the consequence is that, in order to avoid secular terms in the

multiscale expansion, the long wave evolves forced by the self-interaction of the short wave,

while the short wave is modulated by the long one. The equations for this dependence happen

to be

iAτ ` ρAξξ “ BA ,

Bτ “ ´αp|A|2qξ ,

(2.10)

where ρ is a dispersion coefficient

ρ “
1

2
ω2pkq , (2.11)

and α is defined as

α “
1

2
k3
´

1 ´ tanh2pkhq

¯

„

1 `
cgk

2ω

´

1 ´ tanh2pkhq

¯

ˆ

1 `
k2T

g

˙ȷ

. (2.12)

System (2.10) coincides with system (2.1) introduced before up to rescaling of the parame-

ters.

This last computation already shows us that Yajima-Oikawa can appear as a result of a multi-

scale approach of a different system. Indeed, this was not by chance, and Yajima-Oikawa is a

system that one can call general in the sense that it is the byproduct of multiscale analysis with

a rather general resonance condition, as explained in [59], among others. Let us reproduce their

computation.
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Let us consider a system with a dispersion relation with two branches. A good example of this

would be systems with an upper branch (e. g. of optical nature) and a lower branch (e. g. of

acoustic nature), which already reminds us of the capillary-gravity interaction.

We can think of our problem as two waves with very close wave numbers k ` εκ and k ´ εκ,

with ε ! 1, that play the role of side-bands of the main wave k beating together to form a slow

variation. We can write this as a solution

ϕ “ 4a cospkx´ ωtq cosrεpκx´ Ωtqs , (2.13)

where ϕ is the variable for the upper branch, k and ω are the wave number and frequency of the

fast main wave and κ and Ω are the wave number and frequency of the slow modulation of the

side-bands.

The fast component of the upper branch is too fast to affect the lower branch, but the slow

component created by the beat of the side-bands can excite the lower branch. This in turn causes

the two branches, which would usually be independent, to be actually coupled.

Let us apply multiscale analysis to this system. We can write the equation of motion coming

from the upper branch as

Lpuq

ˆ

B

Bx
,

B

Bt

˙

“ fpϕ,Nq , (2.14)

where Lpuq is a scalar differential operator in B{Bx and B{Bt, andN is the variable corresponding

to the lower branch. To apply multiscale, we expand ϕ and N as

ϕ “ εϕp1q ` ε2ϕp2q ` . . .

N “ ε2n` . . .

(2.15)

and define slow variables X “ εx, T “ εt and τ “ ε2t. Expanding the equations of motion in

a Taylor series, we can separate the equations for the different orders in ε. The first equation we

get is

Lpuqϕp1q “ 0 , (2.16)
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so we can take ϕp1q as

ϕp1q “ ApX,T, τqeiθ ` c.c. , (2.17)

where c.c. denotes the complex conjugate of the part before it. The second equation we get

is

Lpuqϕp2q “ ´

ˆ

L
puq

1

B

BT
` L

puq

2

B

BX

˙

ϕp1q , (2.18)

where Lpuq

1 and Lpuq

2 denote the partial derivatives of Lpuq with respect to the first and second

positions, respectively. As usual when performing multiscale analysis, in order to remove secular

terms, we need to move to the group velocity travelling frame, for which we define a new variable

ξ “ εpx ´ cgtq. By introducing this new variable into (2.18) (see Section 1.1 for more detail),

we can rewrite it as

Lpuqϕp2q “ ´
1

2

ˆ

β
B2

Bξ2
` i

B

Bτ

˙

ϕp1q ` γnϕp1q , (2.19)

where β and γ are constants and the last term comes from quadratic terms coupling ϕ and N in

(2.16), if they exist. Introducing the form for ϕp1q in (2.17) into (2.19), we get the relation

iAτ ` β̃Aξξ “ γ̃An , (2.20)

where β̃ and γ̃ are also constants.

Treating the equation of motion coming from the lower branch is more complicated. For that

reason, we will study as an example a case that appears for many optic-acoustic systems, such as

models in plasmas, where it behaves as a wave equation coupled to the upper branch through a

nonlinear driving term, so that the corresponding differential operator for the lower branch takes

the form

Lpℓq “
B2

Bt2
´ c2p

B2

Bx2
, (2.21)

where cp is the phase speed for the waves in the lower branch. Changing variables from x and t
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to ξ and τ as introduced above, it becomes

Lpℓq “ ε2pc2g ´ c2pq
B2

Bξ2
´ 2ε3cg

B2

BξBτ
` ε4

B2

Bτ2
. (2.22)

Now, since N is of order ε2, when we study the system at Opε4q, looking at the right-hand side

of (2.22) the only terms that match the order are terms featuring B2|ϕp1q|2{Bξ2. The consequence

of this is that n would be proportional to |A|2 and hence the lower branch would just follow the

motion of the upper branch and would not contribute towards the dynamics of the system.

However, we can remove this problem if we study the resonant condition cg “ cp. With that

condition, the only possible coupling between the left-hand side and the right-hand side of (2.22)

is at order Opε5q. By doing some additional choice of coupling scale detailed in [59], the

resulting equation from the computation at Opε5q is

nτ “ αp|A|2qξ , (2.23)

where α is a constant. Note that (2.20) and (2.23) are again the Yajima-Oikawa equations as

presented in (2.1) up to rescaling of the parameters.

Remarkably, the Yajima-Oikawa system can also be derived via multiscale analysis from other

resonant conditions, for instance as a reduction of the Boussinesq equation [27, 28, 50], and it is

of application in more branches of physics, such as water waves [77, 135].

2.2 Integrability properties and solutions

A very important property of the Yajima-Oikawa system that will be key for our purpose is

that it is integrable (see Section 1.2). In their original paper [159], Yajima and Oikawa already

showed that the system they had obtained as written in (2.2) and (2.5) is integrable by providing

a Lax pair (in operator form), and applied the inverse scattering machinery [2, 78, 126] to obtain

multi-soliton solutions.

The system written in the form (2.1) is also integrable. Ma found in 1978 its Lax pair in operator
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form [121] based on the results in [58], and applied the classical inverse scattering techniques

to obtain soliton solutions (which can only go in one direction, as opposed to the ones proposed

for the original equation by Yajima and Oikawa in [159]).

In [111], a Darboux transformation for the system based on Ma’s Lax pair was introduced,

and soliton solutions were also obtained by recursively applying the transformation upon the

vaccuum solution. As for the ones introduced by Ma, these solitons can only move in one

direction.

A Lax pair formulation in matrix form for the system is also known [33, 45]:

Xpλq “ iλΣ `Q , T pλq “ piλq2T2 ` iλT1 ` T0 , (2.24)

where λ is the spectral parameter, Σ is the trace-less, diagonal matrix

Σ “ diagt1 , 0 , ´1u (2.25)

and the λ-independent matrices Q, A, B and C have the form

Q “

¨

˚

˚

˚

˚

˝

0 S iL

0 0 S˚

´i 0 0

˛

‹

‹

‹

‹

‚

, T2 “
i

3

¨

˚

˚

˚

˚

˝

1 0 0

0 ´2 0

0 0 1

˛

‹

‹

‹

‹

‚

, (2.26a)

T1 “

¨

˚

˚

˚

˚

˝

0 iS 0

0 0 ´iS˚

0 0 0

˛

‹

‹

‹

‹

‚

, T0 “

¨

˚

˚

˚

˚

˝

0 iSx i|S|2

S˚ 0 ´iS˚
x

0 S 0

˛

‹

‹

‹

‹

‚

, (2.26b)

where the asterisk denotes complex conjugation.

In [156], a Darboux-dressing approach was employed to obtain breather and rational solutions

of the system via the introduction of an auxiliary version of the system featuring 4 complex

potentials.
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An explicit realisation of a rogue wave in the form of a rational solution for the system in the

form

iSt `
1

2
Sxx ` LS “ 0 ,

Lt “ p|S|2qx ,

(2.27)

based on the results in [156], was presented in [13]:

S “ aeipkx´ωtq

«

1 ´
it` ix

2m´k ` 1
2p2m´kqpm´kq

px´mtq2 ` n2t2 ` 1
4n2

ff

,

L “ b` 2
n2t2 ´ px´mtq2 ` 1

4n2

“

px´mtq2 ` n2t2 ` 1
4n2

‰2 ,

(2.28)

where the real parameters a and b represent the amplitude of the background solution, the fre-

quency ω satisfies the dispersion relation

ω “
k2

2
´ b , (2.29)

and the real parameters m and n are defined by

m “
1

6

„

5k ´

c

3
´

k2 ` l `
ν

l

¯

ȷ

, (2.30a)

n “ ˘
a

p3m´ kqpm´ kq , (2.30b)

with k P R and

ν “
1

9
k4 ` 6ka2 , (2.31a)

$

’

’

&

’

’

%

l “ ´

´

ρ´
a

ρ2 ´ ν3
¯1{3

for k ď ´3p2a2q1{3 ,

l “

´

´ρ`
a

ρ2 ´ ν3
¯1{3

for ´ 3p2a2q1{3 ă k ď 3
2p2a2q1{3 ,

(2.31b)

ρ “
1

2
k6 ´

1

54
p27a2 ` 5k3q2 . (2.31c)

System (2.27) can be transformed into the standard form (2.1) via different transformations, for
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instance

x Ñ ´
1

?
2
x , (2.32a)

L Ñ ´L , (2.32b)

S Ñ 2
1{4 S , (2.32c)

or

t Ñ
3
?
2 t , (2.33a)

x Ñ ´
1
3
?
2
x , (2.33b)

L Ñ ´
1
3
?
2
L . (2.33c)

In [35], Hirota bilinearisation techniques relying on reductions of the Kadomtsev-Petviashvili

(KP) hierarchy (which will be detailed in Section 6.1) were applied in order to derive rogue wave

solutions, which coincide with those introduced above in (2.28).

Hirota bilinearisation techniques were also employed in [45] to introduce rogue wave and breather

solutions, but also so-called “double pole solutions”, which can be interpreted as weakly bounded

groups of solitons with very close wavenumbers.

The rogue waves introduced above were also employed in [33] to model internal behaviours

in a stratified fluid under a resonant condition, which happened to follow Yajima-Oikawa-like

equations.

In the recent paper [116], periodic-background solutions were obtained for the system by com-

bining Darboux techniques with algebraic-geometric methods.

Auto-Bäcklund transformations for a still integrable generalised 3-variable version of the system

were introduced in [157] and employed to construct periodic homoclinic connections of plane

waves.

Finally, several integrable generalisations of the Yajima-Oikawa equations have been proposed
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throughout the years (most of them from a mathematical perspective, whereas their physical

relevance is still to be investigated), including generalisations as vector systems [114], matrix

systems [115], systems with additional or modified terms [79], systems with more than two

equations and variables [156, 157] or systems in higher dimension [135, 62].
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Chapter 3

Newell’s Long Wave-Short Wave

System

The other classical long wave-short wave system that we want to introduce is the one proposed

by Newell in 1978 [128] as an integrable example of the family of long wave-short wave in-

teraction systems introduced by Benney a year before [16]. We will refer to this system as the

Newell system, and we will write it as

iSt ` Sxx `
`

iLx ` L2 ´ 2σ|S|2
˘

S “ 0 , (3.1a)

Lt “ 2σp|S|2qx , σ2 “ 1 , (3.1b)

where, as in Yajima-Oikawa, S is a complex variable representing the short wave and L is the

real amplitude of the long wave. The extra parameter σ, which was not present in Yajima-

Oikawa, is a sign splitting the equation into two different cases, that we can compare with

the focusing and defocusing regimes of the nonlinear Schrödinger (NLS) equation. Note that

in addition to the cross-interaction, different from the cross-interaction in Yajima-Oikawa, the

system features a self-interaction term in the first equation, similar to the self-interaction in the

NLS equation.
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We will proceed as in the case before and introduce the system by reproducing its original com-

putation, but in this case, contrary to Yajima-Oikawa, the derivation will be mainly mathematical

as opposed to deriving it physically from first principles. Indeed, to the best of our knowledge,

more than 40 years after its original derivation, the Newell system has never been derived from

first principles in a physical context in fluid dynamics or nonlinear optics.

3.1 Mathematical derivation

Let us start reproducing the derivation of Benney’s family of long-short interaction in [16].

Let us consider a triad of resonant waves whose wave numbers k1, k2 and k3 and frequencies

ωpk1q, ωpk2q and ωpk3q satisfy the identities

k1 ´ k2 “ k3 , (3.2a)

ωpk1q ´ ωpk2q “ ωpk3q . (3.2b)

The first equation, (3.2a), is equivalent to

k1 “ ks `
1

2
kl , k2 “ ks ´

1

2
kl , k3 “ kl , (3.3)

where ks and kl will represent the wave numbers of the short and long wave, respectively. Note

that this setting is basically the same as the side-band modulations we introduced for the multi-

scale derivation of Yajima-Oikawa in Section 2.1. However, it is unclear whether there is a way

to relate the multiscale approach and the derivation that follows and hence to give the Newell

system a physical origin. This is indeed a relevant open question, on which we have plans to

work in the future.

Now we can write (3.2b) as

ω

ˆ

ks `
1

2
kl

˙

´ ω

ˆ

ks ´
1

2
kl

˙

“ ωpklq . (3.4)
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We will now apply the long wave condition kl ! ks, so that (3.4) gives us

kl ¨ ∇ωpksq “ ωpklq , (3.5)

With this setting in mind, Benney proposes a rather general partial differential equation of the

form

ut ` Lpuq “ N puq , (3.6)

where upx, tq is a displacement taking into account the short and long waves, L is a linear

operator involving only x-derivatives,

L “
ÿ

n

cn
Bn

Bxn
, (3.7)

and N is a nonlinear operator. In order to have a conservative system, we need L to only contain

odd spatial derivatives. We also need N to satisfy that both N puq and uN puq be expressible in

divergence form. Some simple forms for N that are acceptable are

N puq “ uux , (3.8a)

N puq “ uuxxx ` 2uxuxx , (3.8b)

N puq “ uxuxxxx ` 5uxxuxxx . (3.8c)

For the case (3.8b), the breaking of large amplitude long waves is permitted, so that at larger

amplitudes the long waves satisfy the Korteweg-de Vries (KdV) equation, while at small ampli-

tudes they are essentially nondispersive. In the other two cases the breaking of the long waves

is not permitted.

We want solutions of (3.6) made up of a long wave and a short one,

upx, tq “
εl
µ
ulpX,T q ` εsuspX,T q , (3.9)
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where ul and us are long and short components, respectively, εl and εs are the slopes of the

long wave and the short wave, µ is the ratio of the wave lengths, and X and T are slow vari-

ables.

The evolution equation coming from this computation will depend on the relative magnitudes of

εl, εs and µ, so we will identify them with the triple pl,m, nq, where

pεl, εs, µq “

´

εl, εm, εn
¯

, ε ! 1 , (3.10)

with l, m and n natural numbers and ε a small constant.

In order to obtain the evolution equation, we will assume the short wave uspX,T q to be periodic

with constant wave numbers,

uspX,T q “
ÿ

n

SnpX,T qeinθ , (3.11)

where θ “ θpX,T q and, in order for us to be real, we set

S´n “ S˚
n . (3.12)

The interactions are weak, so that the system will be governed by the first harmonic, which we

will denote as S “ S1pX,T q, and the long wave L “ ulpX,T q.

With this, one can compute the evolution equations for different relative magnitudes of the pa-

rameters. For example, for the triple pl,m, nq “ p3, 1, 1q, one obtains the equations

LT ` c1LX “ αp|S|2qX , (3.13a)

ST ` cgSX “ ε
`

iβSXX ` iγS2S˚ ` iδLS
˘

, (3.13b)

with c1, α, β, γ and δ constants, and cg the group velocity.

Now, the evolution equations that come from the different magnitudes are in general non-

34



3.1. MATHEMATICAL DERIVATION CHAPTER 3. NEWELL’S LONG
WAVE-SHORT WAVE SYSTEM

integrable. However, in [128] Newell found a system similar to the ones coming from Benney’s

computations that was indeed integrable.

He started with a system of the form

ST ´ iK2SXX “
`

´K3LX ` iK4L
2 ´ 2iσK5|S|2

˘

S , (3.14a)

LT “ 2σK1p|S|2qX , σ “ ˘1 , (3.14b)

where K1, K2, K3, K4 and K5 are constants, and, as before, SpX,T q and LpX,T q represent

the amplitude of the long wave and the envelope of the short wave,

upX,T q “ ulpX,T q ` uspX,T q , (3.15)

with

ulpX,T q “ LpX,T q , uspX,T q “ SpX,T qeiθ ` c.c. (3.16)

where θ “ kx´ ωt.

Note that (3.14) is assuming that the triad interaction as explained at the beginning of the section

is not direct, meaning that there are no |L|2 or LS terms in (3.14b) (which, as for the non-

resonant case in Yajima-Oikawa, would mean that the long wave follows the short wave simply

by resonance).

The reasoning for the terms in the equation is that |S|2S is a rather general self modal interaction

while the term L2S would describe a frequency adjustment of the short wave due to a mean

current, and would arise from some u2ux term in (3.6).

Now, equations (3.14) are using the most general choice of variables. However, through scaling

analysis one can normalise K1 “ K2 “ K5 “ 1 without loss of generality (as long as they

are non-zero). It turns out in that case the system is integrable for K3 “ K4 “ 1 (in fact, for

integrability it suffices to have the condition K1K3 “ K2K5 in (3.14), however once applied

that condition one can again rescale all the parameters to 1).
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Also in [128], a gauge transformation was introduced providing a simplification of the system.

Once applied the transformation

S “ S̃e´i
şX Lpy,T q dy , (3.17)

equation (3.14a) becomes

S̃T ´ 2LS̃X “ iS̃XX . (3.18)

The form (3.18) of the Newell system is still integrable.

3.2 Integrability properties and solutions

Newell himself proved in [128] that the system as presented in (3.1) is integrable by performing

a classical inverse scattering analysis (see [2, 101, 129]). Through this analysis, he managed to

obtain soliton solutions of the form

L “
4η2σ

ξDpφq
, (3.19a)

S “
2ση

a

Dpφq
e´iχpφq´iξpx0`y0q´iξφ`ipξ2`η2qT , (3.19b)

where ξ and η are, respectively, the real and imaginary part of the spectral parameter, λ “ ξ`iη,

x0 and y0 are arbitrary constants, and

φ “ X ´ x0 ` 2ξT , (3.20a)

Dpφq “ 2

ˆ

1 `
η2

ξ2

˙

1
2

»

—

—

—

—

–

coshp2ηφq ´
σ

ˆ

1 `
η2

ξ2

˙

1
2

fi

ffi

ffi

ffi

ffi

fl

, (3.20b)

sin
`

χpφq
˘

“ ´σ
η

ξ

ˆ

1 `
η2

ξ2

˙´ 1
4 e´ηφ

a

Dpφq
, (3.20c)

36



3.2. INTEGRABILITY PROPERTIES AND
SOLUTIONS

CHAPTER 3. NEWELL’S LONG
WAVE-SHORT WAVE SYSTEM

cos
`

χpφq
˘

“

ˆ

1 `
η2

ξ2

˙

1
4

eηφ ´ σ

ˆ

1 `
η2

ξ2

˙´ 1
4

e´ηφ

a

Dpφq
. (3.20d)

Newell’s system can also be presented through a matrix Lax pair formulation (which, to the

best of our knowledge, was not introduced in the literature before we presented it as a particular

choice in the Lax pair for the more general YON system in [30]) in the form

Xpλq “ iλΣ `Q , T pλq “ piλq2T2 ` iλT1 ` T0 , (3.21)

where

Σ “ diagt1 , 0 , ´1u , (3.22)

and

Q “

¨

˚

˚

˚

˚

˝

0 S iσL

σS˚ 0 S˚

iσL σS 0

˛

‹

‹

‹

‹

‚

, T2 “
i

3

¨

˚

˚

˚

˚

˝

1 0 0

0 ´2 0

0 0 1

˛

‹

‹

‹

‹

‚

, T1 “

¨

˚

˚

˚

˚

˝

0 iS 0

iσS˚ 0 ´iS˚

0 ´iσS 0

˛

‹

‹

‹

‹

‚

,

(3.23a)

T0 “

¨

˚

˚

˚

˚

˝

´iσ|S|2 ´LS ` iSx i|S|2

´σLS˚ ´ iσS˚
x 2iσ|S|2 ´LS˚ ´ iS˚

x

i|S|2 ´σLS ` iσSx ´iσ|S|2

˛

‹

‹

‹

‹

‚

. (3.23b)

A Hirota bilinearisation approach (explained in Section 6.1) was applied to Newell’s system in

[34] to study the rogue waves of the system in the form (3.18). In the same paper, the modula-

tional stability of the plane waves of the system was also studied, resulting in a full coincidence

of the conditions for baseband modulational instability and for the existence of rogue waves (as

also predicted in [13], see Chapter 5).
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Chapter 4

Yajima-Oikawa-Newell: A More

General System

Now that we have introduced the Yajima-Oikawa and Newell systems, their derivation and some

properties, let us delve into the actual system we are going to study: the Yajima-Oikawa-Newell

(YON) system, which unifies and generalises the two aforementioned systems, and which we

introduced in [30].

One of the big advantages of using this new system is that one does not need to study the Yajima-

Oikawa and Newell systems as separate systems. Instead, one can just obtain properties of the

YON system, which then translate immediately as properties of the other two. Furthermore,

in addition to having Yajima-Oikawa and Newell as subcases, YON system features an infinite

family of integrable systems depending on two non-rescalable parameters, α and β, thus having

the potential to better model physical phenomena while remaining integrable. Let us follow its

derivation, as in [30].
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4.1 Mathematical derivation and integrability

Let us recall, for handiness, a couple of formulae for Yajima-Oikawa and Newell systems. The

form we take for Yajima-Oikawa is the system of PDEs

iSt ` Sxx ´ LS “ 0 ,

Lt “ 2p|S|2qx ,

(4.1)

while for Newell we use the form

iSt ` Sxx `
`

iLx ` L2 ´ 2σ|S|2
˘

S “ 0 , (4.2a)

Lt “ 2σp|S|2qx , σ2 “ 1 , (4.2b)

where the absolute value of S represents the amplitude of the short wave, L is the amplitude of

the long wave, and σ is a sign.

Both systems feature a Lax pair of the form

Xpλq “ iλΣ `Q , T pλq “ piλq2T2 ` iλT1 ` T0 , (4.3)

where X and T are two complex 3-by-3 matrix-valued functions, λ P C is the so-called spectral

variable, Σ is the constant, traceless, diagonal matrix

Σ “ diagt1 , 0 , ´1u “

¨

˚

˚

˚

˚

˝

1 0 0

0 0 0

0 0 ´1

˛

‹

‹

‹

‹

‚

, (4.4)

and Qpx, tq is λ-independent and off-diagonal, that is, Qjj “ 0 for j “ 1, 2, 3, and Qjk with

j ‰ k are complex-valued functions of x and t. T2 is also a constant matrix, while T1 and T0

are also λ-independent and can be written as functions of Σ and Q.

In particular, as stated in [53] and explained later Section 5.1, for Lax pairs of the form (4.3),
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the only form allowed for T2, T1 and T0 that avoids non-localities is

T2 “ ´C2 , (4.5a)

T1 “ ´iC1 ´D2pQq , (4.5b)

T0 “ C0 ´
1

2
rD2pQq,ΓpQqspdq ´ Γ

`

D2pQxq
˘

´ Γ
´

rD2pQq, Qspoq
¯

´ iD1pQq , (4.5c)

where the matrices Cj with j “ 0, 1, 2 are constant and diagonal, the superindices pdq and poq

denote respectively the diagonal and off-diagonal part of the matrix, the linear invertible map Γ

acts on off-diagonal matrices as

`

ΓpMq
˘

jk
“

Mjk

sj ´ sk
, (4.6)

where M is off-diagonal and sj with j “ 1, 2, 3 denotes the diagonal entry Σjj , so that

rΣ,ΓpMqs “ Γ
`

rΣ,Ms
˘

“ M , (4.7)

and the maps Dj with j “ 1, 2 also act only on off-diagonal matrices in the following man-

ner

DjpMq “ rCj ,ΓpMqs “ Γ
`

rCj ,Ms
˘

. (4.8)

The proof for these formulae is provided in the Appendix A.

For Yajima-Oikawa, as presented in Section 2.2, the matrices above have the form

Q “

¨

˚

˚

˚

˚

˝

0 S iL

0 0 S˚

´i 0 0

˛

‹

‹

‹

‹

‚

, T2 “
i

3

¨

˚

˚

˚

˚

˝

1 0 0

0 ´2 0

0 0 1

˛

‹

‹

‹

‹

‚

, (4.9a)

T1 “

¨

˚

˚

˚

˚

˝

0 iS 0

0 0 ´iS˚

0 0 0

˛

‹

‹

‹

‹

‚

, T0 “

¨

˚

˚

˚

˚

˝

0 iSx i|S|2

S˚ 0 ´iS˚
x

0 S 0

˛

‹

‹

‹

‹

‚

, (4.9b)
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while, for Newell, we derived the Lax pair as

Q “

¨

˚

˚

˚

˚

˝

0 S iσL

σS˚ 0 S˚

iσL σS 0

˛

‹

‹

‹

‹

‚

, T2 “
i

3

¨

˚

˚

˚

˚

˝

1 0 0

0 ´2 0

0 0 1

˛

‹

‹

‹

‹

‚

, T1 “

¨

˚

˚

˚

˚

˝

0 iS 0

iσS˚ 0 ´iS˚

0 ´iσS 0

˛

‹

‹

‹

‹

‚

,

(4.10a)

T0 “

¨

˚

˚

˚

˚

˝

´iσ|S|2 ´LS ` iSx i|S|2

´σLS˚ ´ iσS˚
x 2iσ|S|2 ´LS˚ ´ iS˚

x

i|S|2 ´σLS ` iσSx ´iσ|S|2

˛

‹

‹

‹

‹

‚

. (4.10b)

As usual (see Section 1.2), the Lax pairs generate the original systems of PDEs through the

compatibility condition

Xt ´ Tx ` rX , T s “ 0 . (4.11)

Now, we can try to unify the two systems by combining their Q matrices, given they have the

same Σ. If we take

Q “

¨

˚

˚

˚

˚

˝

0 S iL

αS˚ 0 S˚

iα2L´ iβ αS 0

˛

‹

‹

‹

‹

‚

, (4.12)

where α and β are two arbitrary real constants, then using the relations (4.5) we can obtain the

matrices

T2 “
i

3

¨

˚

˚

˚

˚

˝

1 0 0

0 ´2 0

0 0 1

˛

‹

‹

‹

‹

‚

, T1 “

¨

˚

˚

˚

˚

˝

0 iS 0

iαS˚ 0 ´iS˚

0 ´iαS 0

˛

‹

‹

‹

‹

‚

, (4.13a)

T0 “

¨

˚

˚

˚

˚

˝

´iα|S|2 ´αLS ` iSx i|S|2

´α2LS˚ ` βS˚ ´ iαS˚
x 2iα|S|2 ´αLS˚ ´ iS˚

x

iα2|S|2 ´α2LS ` βS ` iαSx ´iα|S|2

˛

‹

‹

‹

‹

‚

, (4.13b)

where we have used the same choices for the matrices C0, C1 and C2 as for the Lax pairs for

Yajima-Oikawa and Newell. Then, through the compatibility condition (4.11), we get the new
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system

iSt ` Sxx `
`

iαLx ` α2L2 ´ βL´ 2α|S|2
˘

S “ 0 , (4.14a)

Lt “ 2
`

|S|2
˘

x
, (4.14b)

which we refer to as the Yajima-Oikawa-Newell (YON) system. It is integrable by construction,

given that it comes from the compatibility condition of a Lax pair. It reduces to Yajima-Oikawa

via the special choice of parameters α “ 0, β “ 1, and to Newell via the choice α “ σ,

β “ 0 and the change of variable L Ñ σL, where σ is the sign appearing in Newell’s system,

σ “ ˘1.

The YON system is invariant under the transformation

px, t, S, Lq Ñ

ˆ

c´1x, c´2t, c exp

„

i
pc2 ´ 1qβ2t

4α2

ȷ

S, cL´
pc´ 1qβ

2α2

˙

(4.15)

with c ‰ 0 an arbitrary real parameter. For the Yajima-Oikawa limit α Ñ 0, the limit of the

transformation can be obtained by first applying the map c Ñ expp´2α2cq, yielding

px, t, S, Lq Ñ
`

c2x, c4t, c´3S, c´4L
˘

, (4.16)

while for the Newell case β “ 0 the transformation becomes

px, t, S, Lq Ñ
`

c´1x, c´1t, cS, cL
˘

. (4.17)

4.2 Miura transformation

The idea of combining the Yajima-Oikawa and Newell systems was fueled by the claim in the

literature that both systems are related through a Miura transformation [119]. Similarly to the

Gardner equation, which generalises the Korteweg-de Vries and modified Korteweg-de Vries

systems [126], the existence of a Miura transformation is a good indicator of the potential exis-

tence of a more general integrable system encompassing them.
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The claim is that the paper [117] provides a Miura transformation from the Yajima-Oikawa

system into the Newell one. However, it is not claimed in the paper itself that the transformation

provided is indeed a Miura transformation, but a Darboux transformation, and a preliminary

analysis shows that there are some critical issues with assuming it is the former. The content of

this section is based on an ongoing correspondence with Annalisa Calini [23].

Let us consider the Yajima-Oikawa system (4.1) with the Lax pair given by (4.9). We will try to

relate it to the auxiliary system introduced in [117],

qt “
1

2
pqxx ´ uqq , (4.18a)

rt “
1

2
p´rxx ` urq , (4.18b)

ut “ pqrqx , (4.18c)

where q, r and u are complex variables. System (4.18) is also integrable, and it admits the Lax

pair X1, T1, with

X1 “

¨

˚

˚

˚

˚

˝

0 1 0

u` λ2 0 1

r 0 0

˛

‹

‹

‹

‹

‚

, (4.19a)

T1 “

¨

˚

˚

˚

˚

˝

1
3λ

2 0 q

qr 1
3λ

2 qx

´rx r ´2
3λ

2

˛

‹

‹

‹

‹

‚

. (4.19b)

It reduces to the Yajima-Oikawa system for

t “ ´2it1 , q “ S˚ , r “ iq˚ , u “ L , (4.20)

where we have denoted the time variable of Yajima-Oikawa by t1 (i. e. S “ Spx, t1q and

L “ Lpx, t1q). The condition r “ iq˚ is referred in [117] as the reality condition (since it allows

for L to be real, and reduces the system to only two equations).
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A gauge transformation is then introduced for (4.18),

Ψ “ GΦ , (4.21)

where Φ is a solution of the Lax equations for the Lax pair (4.19), and G is the matrix

G “

¨

˚

˚

˚

˚

˝

1 0 0

´û 1 ´q̂

0 0 1

˛

‹

‹

‹

‹

‚

. (4.22)

Then the target system is defined by Ψ̂ “ X̂Ψ, where

X̂ “ pGx `GX1qG´1 . (4.23)

This gives us a relation between variables

ûx ` û` q̂r̂ “ u , (4.24a)

q̂x ` q̂û “ q , (4.24b)

r̂ “ r , (4.24c)

which, according to [117], gives rise to the new system

q̂t “
1

2
pq̂xx ` ûxq̂ ´ û2q̂ ´ q̂2r̂q , (4.25a)

r̂t “
1

2
p´r̂xx ` ûxr̂ ` û2r̂ ` q̂r̂2q , (4.25b)

ût “
1

2
pq̂r̂qx . (4.25c)

One can readily show that, if q̂, r̂ and û satisfy (4.25), then the variables q, r and u given by

(4.24) satisfy (4.18). However, it is unclear how to obtain the system (4.25) starting from (4.18)

via (4.24) (which may mean that the transformation works from Newell to Yajima-Oikawa, and

not the other way around as often claimed in the literature).
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Furthermore, if one imposes the reality condition r̂ “ q̂˚ to (4.25), then the system reduces

to the Newell system (4.2) with σ “ 1. However, the reality condition to reduce (4.25) to the

Newell system does not seem to entail the reality condition to reduce (4.18) to Yajima-Oikawa,

which is a major issue to achieve a transformation between Yajima-Oikawa and Newell.

One can try and use a different approach to Miura transformations to construct one for our

problem, for example [148]. However, when one does so, a similar problem occurs, and the

condition for the reality of the long wave L in the Newell system seems to be incompatible with

the reality of L in Yajima-Oikawa.

We are currently investigating whether one can overcome these issues and define a Miura trans-

formation between the Yajima-Oikawa and Newell systems. At the time of the writing of the

present thesis, this is still work in progress.

4.3 Periodic and travelling wave solutions

Being integrable, the YON system is fit for specific, elegant approaches in order to compute

solutions, such as Hirota bilinearisation (which we will introduce later in the thesis) or inverse

scattering machinery (introduced in Section 1.3).

However, some interesting solutions can also be obtained through a less sophisticated approach

such as using an Ansatz. Let us recall our computations in [29] to obtain those solutions.

Let S and L have a travelling wave form, mimicking those of the NLS equation,

Spt, xq “ spzqeipϕpzq´ωtq, Lpt, xq “ ℓpzq, (4.26)

where z “ x ´ V t with V ‰ 0 and ω real constants which we will call the velocity and the

frequency, respectively, and s, ϕ and ℓ real valued functions of z.

Introducing this Ansatz into (4.14b) we get the equation

´4spzqs1pzq ´ V ℓpzq “ 0 , (4.27)
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where the apostrophe denotes derivation with respect to z. We can now integrate (4.27) with

respect to z to obtain a formula for ℓ in terms of s:

ℓpzq “ ´
2

V
spzq2 ` c1, (4.28)

where c1 is an arbitrary integration constant. We can introduce the expression (4.28) into (4.14a)

and separate it into real and imaginary parts to obtain the system of equations

spzqϕ2pzq ` 2s1pzqϕ1pzq ´

„

V `
4α

V
spzq2

ȷ

s1pzq “ 0 , (4.29a)

s2pzq ´ spzqϕ1pzq2 ` V spzqϕ1pzq ` pα2c21 ´ βc1 ` ωq spzq

`

ˆ

2β

V
´

4α2c1
V

´ 2α

˙

spzq3 `
4α2

V 2
spzq5 “ 0 .

(4.29b)

for s and ϕ. Let us multiply (4.29a) by ϕ and integrate with respect to z to get a formula for the

first derivative of ϕ as a function of s:

ϕ1pzq “
α

V
spzq2 `

V

2
` c2 spzq´2 , (4.30)

where c2 is an integration constant. Now, we can use (4.30) to get rid of ϕ in (4.29b) and

transform it into an ODE for s:

s2pzq `
1

4V

“

V 3 ` 4V
`

α2c21 ´ βc1 ` ω
˘

´ 8αc2
‰

spzq

`
2

V
pβ ´ αV ´ 2α2c1q spzq3 `

3α2

V 2
spzq5 ´ c22 spzq´3 “ 0 ,

(4.31)

which, again, we can integrate after multiplication by s1, giving us a differential equation for

s1pzq2:

s1pzq2 “ ´
1

4V

“

V 3 ` 4V
`

α2c21 ´ βc1 ` ω
˘

´ 8αc2
‰

spzq2

`
1

V
p´β ` αV ` 2α2c1qspzq4 ´

α2

V 2
spzq6 ` 2c3 ´ c22 spzq´2 ,

(4.32)

where c3 is an integration constant. Note that for the Yajima-Oikawa case α “ 0, the coefficient
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of spzq6 becomes zero, making the equation lower order and leading to the Weierstrass elliptic

function (as opposed to the Jacobi elliptic functions we will obtain in general). We will only

consider the case α ‰ 0, leaving Yajima-Oikawa to the broad literature on the subject (see

Section 2.2).

Let us then introduce the change of variable

V

2α
upzq “ spzq2 ´ u0 , u0 “

V pαV ` 2K1α
2 ´ βq

4α2
, α ‰ 0 , (4.33)

so that equation (4.32) transforms into

u1pzq2 “ ´upzq4 ` µ2upzq2 ` µ1upzq ` µ0 (4.34)

where

µ0 “ ´
V

2α3
c3 `

4α2ω ´ 8α2 V 2 ´ β2

4α4
c2 `

α2µ1 ` 2αV 2pµ2 ` 6ωq ´ α2 V 3 ´ 3β2 V

2α3
c

`
1

4

#

2µ1 V ` V 2

ˆ

4ω ´
β2

α2

˙

´

“

β2 ´ α2pµ2 ` 4ωq
‰2

α4

+

(4.35)

and c, µ1 and µ2 are arbitrary real constants. Note that the number of arbitrary constants has not

changed, as the old set of integration constants c1, c2 and c3 can be expressed in terms of the

new constants c, µ1 and µ2 as

c1 “
c` β

2α2
, (4.36a)

c2 “ ´
V
␣

c2 ` 6cα V ` 2β2 ` α2
“

V 2 ´ 2pµ2 ` 4ωq
‰(

16α3
. (4.36b)

c3 “
V 3

“

´2α3µ1 ` 2α2µ2pc` αV q ´ pc` αV q3
‰

32α4
. (4.36c)

As for ϕ, the quadrature (4.30) becomes

ϕ1pzq “
α
“

αV 2 ´ c V ` αpµ2 ` 4ωq
‰

´ β2 ` 2αupzqrc` 2αV ` αupzqs

2αrc` αV ` 2αupzqs
. (4.37)
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In the case µ1 “ 0, equation (4.34) admits periodic solutions in the form of Jacobi elliptic

functions. Let us compute them.

4.3.1 Jacobi elliptic sine solution

Let us assume upzq has the form

upzq “ γ0 ` γ1 sn
´

apz ´ z0q,m
¯

, (4.38)

where snpzq denotes the Jacobi elliptic sine of z, and γ0, γ1, a, z0 and m are arbitrary real

parameters with the constraint 0 ď m ď 1.

Now, if we introduce the solution (4.38) into equation (4.34) and set µ1 “ 0, after some manip-

ulation we get the following polynomial in sn
´

apz ´ z0q,m
¯

equated to zero:

´γ21pm2a2 ` γ21q sn4
´

apz ´ z0q,m
¯

` γ21
`

p1 `m2qa2 ` µ2
˘

sn2
´

apz ´ z0q,m
¯

` γ1µ1 sn
´

apz ´ z0q,m
¯

´
1

4

!

2cV 3α3 ` 4a2α4γ21 ´ 2cα3µ1

` c2pβ2 ´ 4α2ωq ` V 2α2p8c2 ` β2 ´ 4α2ωq `
“

β2 ´ α2pµ2 ` 4ωq
‰2

` 2V α
“

c3 ` 3cβ2 ´ α3µ1 ´ 2cα2pµ2 ` 6ωq
‰

)

“ 0 ,

(4.39)

where for simplicity we have already set γ0 “ 0 since it results from the system of equations

explained in the paragraph below.

Since this equality must hold for every value of z, the only possibility is that all the coefficients

are identically zero. By doing so, we obtain a set of algebraic equations for the parameters ω, m,

a, γ0, γ1, µ2, and c. In particular, from the independent term of (4.39) one can get an expression

for ω in terms of the rest of parameters. However, this expression turns out to always be non-real

for any choice of parameter, which contradicts our initial assumption that ω is a real constant.

Hence, we can conclude that no solution of the form (4.38) exists starting from an Ansatz of the

form (4.26).
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4.3.2 Jacobi elliptic cosine solution

Let us now assume a solution with the elliptic cosine cnpzq replacing snpzq in (4.38). Then,

going through the same computation as (4.39) and solving the system of equations for the pa-

rameters, we obtain that the solution has the form

upzq “ ma cn
´

apz ´ z0q,m
¯

, (4.40)

and that

µ2 “ p2m2 ´ 1qa2 , c “ b´ αV , (4.41a)

and

ω “
1

8α2

!

2β2 ` 2α2
“

a2p1 ´ 2m2q ´ 2V 2
‰

` 4αV b` b2

˘
a

pb´ 2amαq pb` 2amαq rb2 ` 4a2p1 ´m2qα2s

)

,

(4.41b)

where m, z0, a ‰ 0 and b are real parameters with 0 ď m ď 1. Introducing the solution (4.40)

back into the Ansatz (4.26) via the change of variable (4.33), we get the following solution for

the YON system:

Spx, tq “
1

2
eipϕpz´ωtq

g

f

f

e

V
”

b` 2mαa cn
´

apz ´ z0q,m
¯ı

α2
, (4.42a)

Lpx, tq “

β ´ αV ´ 2mαa cn
´

apz ´ z0q,m
¯

2α2
, z “ x´ V t , (4.42b)

where ϕpzq satisfies the quadrature
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ϕ1pzq “
1

4α

#

b` 2α
”

V `ma cn
´

apz ´ z0q,m
¯ı

˘

a

pb´ 2amαq pb` 2amαq rb2 ` 4a2p1 ´m2qα2s

2mαa cn
´

apz ´ z0q,m
¯

` b

+

,

(4.42c)

where the sign in front of the square root must be the same sign chosen for ω.

Let us note that, in addition to the arbitrary coupling parameters α and β coming from the YON

system (4.14), the solution (4.42) features five additional real parameters –namely a, b, m, V ,

and z0,– with a sixth one coming from the integration of (4.42c).

We now need to do one last check. In order for our computations to be true, we need our initial

assumption that s, ϕ and ω are real to be true. However, our formulae feature square roots that,

depending on the values of the parameters, may become imaginary. Hence, we will need to

check the sign inside each of the square roots and impose constraints on the parameters to make

sure they are all positive. These constraints turn out to be

ˇ

ˇ

ˇ

ˇ

b

αa

ˇ

ˇ

ˇ

ˇ

ě 2m, V b ě 0 . (4.43)

Additionally, in the special case m “ 1, the value b “ 0 is allowed as long as αV a ą 0. We

will treat that special case in Section 4.3.4.

Let us now obtain a few properties of the cnoidal solution. Its short wave |S| oscillates between

the values
1

2

c

V pb` 2mαaq

α2
and

1

2

c

V pb´ 2mαaq

α2
, (4.44)

that is to say, |S|2 oscillates with an amplitude |V ma{α|, whereas the long wave L oscillates

between the values

β ´ αV ´ 2mαa

2α2
and

β ´ αV ` 2mαa

2α2
, (4.45)

that is to say, with an amplitude |2ma{α|. Both S andL are periodic in xwith period |4Kpmq{a|
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and in t with period |4Kpmq{paV q|, where Kpmq is the complete elliptic integral of the first

kind of m,

Kpmq “

ż π
2

0

dθ
a

1 ´m sin2 θ
“

ż 1

0

dt
a

p1 ´ t2qp1 ´mt2q
. (4.46)

(a) Short wave |S|. (b) Long wave L.
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(c) Short wave profile at t “ 0.
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(d) Long wave profile at t “ 0.

Figure 1: Elliptic cosine solution with α “ 1, β “ 2, V “ 1.2, b “ 5, a “ 1.3, z0 “ 0,
m “ 0.5.

Finally, let us note that two special solutions appear when taking the particular choices m “ 0

and m “ 1. When m “ 0, the elliptic cosine reduces to the trigonometric cosine, so the solution

becomes a plane wave. For the choice m “ 1, the elliptic cosine reduces to the hyperbolic

secant, hence leading to a localised solution, which we will cover in Section 4.3.4.
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4.3.3 Jacobi delta amplitude solution

We will now proceed as above but using the Jacobi delta amplitude dnpzq instead snpzq or cnpzq

in (4.38), thus obtaining the following solution to (4.34):

upzq “
a

m
dn

´

apz ´ z0q,m
¯

, (4.47)

with

µ2 “

ˆ

2

m2
´ 1

˙

a2 , c “ b´ αV , (4.48a)

and

ω “
1

8m2α2

#

2α2
“

´ 2V 2m2 ` pm2 ´ 2qa2
‰

` 4V m2αb`m2p2β2 ` b2q

˘
a

pmb´ 2aαq pmb` 2aαq rm2b2 ´ 4a2p1 ´m2qα2s

+

,

(4.48b)

where, as in the previous case, m, z0, a ‰ 0, and b are real parameters with 0 ď m ď 1.

Again, we can undo the change of variable (4.33) to get a solution of the original system,

Spx, tq “
1

2
eipϕpzq´ωtq

g

f

f

e

V
”

mb` 2αadn
´

apz ´ z0q,m
¯ı

mα2
, (4.49a)

Lpx, tq “

mpβ ´ αV q ´ 2αadn
´

apz ´ z0q,m
¯

2mα2
, z “ x´ V t (4.49b)

where ϕ satisfies the quadrature

ϕ1pzq “
1

4mα

«

2V mα `mb` 2αadn
´

apz ´ z0q,m
¯

˘

a

pmb´ 2aαq pmb` 2aαq rm2b2 ´ 4a2p1 ´m2qα2s

2αadn
´

apz ´ z0q,m
¯

`mb

ff

,

(4.49c)

where the sign in front of the square root must coincide with the sign chosen for ω. Similarly to

the cnoidal solutions, the dnoidal solutions feature five arbitrary real parameters –namely a, b,
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m, V , and z0,– with a sixth one coming from the integration of (4.49c).

As with the cnoidal solutions, we need to check the sign inside the square roots involved in

the formulae above to ensure that all the variables are real. In this case, the constraints on the

parameters turn out to be

2

c

1 ´m

m2
ď

b

αa
ď 2

c

1 ´m2

m2
, α V a ą 0 , 0 ă m ď 1 . (4.50)

Additionally, it admits the special values b
αa “ ´2

b

1´m
m2 and b

αa “ 2
m , for 0 ă m ď 1. We

will treat the special case m “ 1 in Section 4.3.4.

Let us also introduce some properties of the solution. It is periodic in x for both L and |S| with

period |2Kpmq{a|, and in t with period |2Kpmq{paV q|, where Kpmq is the complete elliptic

integral of the first kind of m as written in (4.46). The phase of S is also periodic, with period

|4Kpmq{a|.

As for the amplitudes, the short wave |S| oscillates between the values

1

2

d

V r2αap1 ´mq
1{2 `mbs

mα2
and

1

2

c

V p2αa`mbq

mα2
, (4.51)

that is to say, the oscillations in |S|2 have an amplitude
ˇ

ˇV ap1 ´
?
1 ´mq{p2αq

ˇ

ˇ, whereas the

long wave L oscillates between the values

mpβ ´ αV q ´ 2αa

2mα2
and

mpβ ´ αV q ´ 2αa
?
1 ´m

2mα2
, (4.52)

that is to say, with an amplitude
ˇ

ˇap1 ´
?
1 ´mq{α

ˇ

ˇ.

4.3.4 Traveling waves: Solitons

Let us now study the special choice m “ 1 in (4.40). In that case, the period of the elliptic

cosine diverges, and hence the solution becomes localised. The resulting object is of solitonic

nature, and can be either bright or dark.
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(a) Short wave |S|. (b) Long wave L.
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-1.5 -1 -0.5 0 0.5 1 1.5
-6.6

-6.4

-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

-4.6
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Figure 2: Delta amplitude solution with α “ 1, β “ 1, V “ 2, b “ 9, a “ 3, z0 “ ´2,m “ 0.5.

The generic solution coming from the cnoidal one when m “ 1 corresponds to a dark soliton of

the form

Spx, tq “
1

2
eipϕpzq´ωtq

g

f

f

e

V
”

b` 2αa sech
´

apz ´ z0q

¯ı

α2
, (4.53a)

Lpx, tq “
β ´ αV ´ 2αa sech

´

apz ´ z0q

¯

2α2
, z “ x´ V t , (4.53b)

ω “
1

8α2

”

2β2 ´ 2α2p2V 2 ` a2q ` 4V αb` b2 ˘
a

b4 ´ 4α2a2b2
ı

, (4.53c)

with

ϕpzq “
z ´ z0
4α

´

2αV ` b˘ sgnpbq
a

b2 ´ 4α2a2
¯

` arctan
´

tanh
´a

2
pz ´ z0q

¯¯

¯ sgnpbq arctan

˜

pb´ 2αaq tanh
´

a
2 pz ´ z0q

¯

?
b2 ´ 4α2a2

¸

` ϕ0 ,

(4.53d)
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where the phase ϕ0 is an arbitrary integration constant, and the sign function satisfies sgnp0q “

0.

As a direct consequence of (4.43), and as it can be observed from the formulae above, the con-

straint on the parameters that ensures the validity of the soliton solution is, when b ‰ 0,

ˇ

ˇ

ˇ

ˇ

b

αa

ˇ

ˇ

ˇ

ˇ

ě 2 . (4.54)

As mentioned before, when m “ 1 the special choice b “ 0 is also allowed by the system. In

that case, the phase becomes

ϕpzq “
V pz ´ z0q

2
` arctan

´

tanh
´a

2
pz ´ z0q

¯¯

` ϕ0 , (4.55)

and the soliton in S becomes a bright one.

As for the amplitudes, the square of the short wave, |S|2, has an amplitude
1

2

ˇ

ˇ

ˇ

ˇ

V a

α

ˇ

ˇ

ˇ

ˇ

over the back-

ground
ˇ

ˇ

ˇ

ˇ

V b

4α

ˇ

ˇ

ˇ

ˇ

, whereas the long wave L has an amplitude ´
a

α
over the background

β ´ αV

2α2
.

Note that both amplitudes and the background of S do not depend on β at all, while they all

depend inversely on α.

By construction, both Spx, 0q and Lpx, 0q are centred at x “ z0, whereas Spx, t0q and Lpx, t0q

for a given t0 are both centred at x “ z0 ` V t0.

Whenever b “ 0, the short wave S has zero background (and hence is of bright nature), whereas

for V “ β{α, the long wave L has zero background. When both equalities are true one has

a bright soliton solution, and when both are false the solution is dark. When only one of the

equalities is true the solution is mixed bright-dark one.
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The resulting formulae for the fully bright case is

Spx, tq “

?
2

2
eipϕpzq´ωtq

g

f

f

e

βa sech
´

apz ´ z0q

¯

α2
, (4.56a)

Lpx, tq “ ´

a sech
´

apz ´ z0q

¯

α
, z “ x´

β

α
t , (4.56b)

ω “ ´
β2 ` α2a2

4α2
, (4.56c)

ϕpzq “
βpz ´ z0q

2α
` arctan

´

tanh
´a

2
pz ´ z0q

¯¯

` ϕ0 . (4.56d)

A similar computation can be carried for the dnoidal solution (4.47) by taking the limit m “

1. However, the resulting formulae are the exact same soliton formulae that resulted from the

cnoidal case.

(a) Short wave |S|. (b) Long wave L.
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(c) Short wave profile at t “ 4.

-50 0 50
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
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Figure 3: Bright soliton solution, with α “ 0.5, β “ 2, a “ 0.25, b “ 0, V “ 4, z0 “ ´20.
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4.3.5 Traveling waves: Rational solutions

We can obtain further types of solution by making different choices of parameters in our original

differential equations. Let us get back to (4.32) and make the choice c1 “ c2 “ c3 “ 0. Then,

the equation becomes

s1pzq2 “ ´
α2

V 2
spzq2

„

spzq4 ´
V

α2
pαV ´ βq `

V 2

3α4
pαV ´ βq2

ȷ

, (4.57)

It can be solved through an integration process,

ż 0

s

3
?
3α2|α|

pV pαV ´ βq ´ 3α2ζ2q3{2
dζ “ ˘

c

α2

V 2
z . (4.58)

By computing the integral, solving with respect to spzq and introducing it into the formulae for

ℓpzq and ϕpzq, we get the solution

Spx, tq “
z

?
3α

eipϕpzq´ωtq

d

V pαV ´ βq3

9α2 ` pαV ´ βq2z2
, (4.59a)

Lpx, tq “ ´
2pαV ´ βq3z2

3α2r9α2 ` pαV ´ βq2z2s
, z “ x´ V t , (4.59b)

ω “
α2V 2 ´ 8αβV ` 4β2

12α2
, (4.59c)

ϕpzq “ arctan

ˆ

3α

pαV ´ βqz

˙

`

ˆ

V

2
`
αV ´ β

3α

˙

z ` ϕ0 , (4.59d)

where the phase ϕ0 is an arbitrary integration constant. As in the cases before, one needs to

check the inside of the square root involved in S to ensure it is a positive quantity. That entails

the following constraint for the parameters:

V pαV ´ βq ě 0 . (4.60)

The short wave |S| turns out to be a dark rational solution with an amplitude depression of
a

V pαV ´ βq{p3α2q propagating over a non-vanishing background
a

V pαV ´ βq{p3α2q (that

is, the minimum is at zero), whereas the long wave L has an amplitude 2pαV ´ βq{p3α2q over
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the asymptotic background ´2pαV ´ βq{p3α2q (again meaning that the peak is at zero, either

growing from a negative background or decreasing from a positive one). Also note that the

profile of the short wave is that of a peakon, produced by the non-differentiability of the arctan

function inside the phase, while the profile of the long wave is akin to a soliton.

(a) Short wave |S|. (b) Long wave L.
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(d) Long wave profile at t “ 4.

Figure 4: Rational solution with α “ 2, β “ 1, V “ 1.

In the special case β “ 0, that is, going back to the Newell system (3.1), the rational solution

becomes

Spx, tq “
z

?
3α

eipϕpzq´ωtq

c

αV 4

9 ` V 2z2
, (4.61a)

Lpx, tq “ ´
2V 3z2

3αr9 ` V 2z2s
, z “ x´ V t , (4.61b)

ω “
V 2

12
, (4.61c)

ϕpzq “ arctan

ˆ

3

V z

˙

`

ˆ

V

2
`
αV

3α

˙

z ` ϕ0 , (4.61d)
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and the constraint on the parameters (4.60) becomes

α ą 0 . (4.62)

Note that taking α ą 0 is equivalent to making the choice of sign σ “ 1 in the Newell system,

showing that the two choices of sign are most likely intrinsically different.

To the best of our knowledge, this was the first time such a rational solution was derived for the

Newell system (3.1).

Another special solution can be obtained by taking the extra choice of parameters ω “ ´c2{4,

in addition to c1 “ c2 “ c3 “ 0. The quadrature for spzq, (4.32), then becomes

s1pzq2 “ ´
α2

V 2
spzq4

„

spzq2 ´
V

α2
pαV ´ βq

ȷ

, (4.63)

and an integration process similar to the one before leads to the solution

Spx, tq “ eipϕpzq´ωtq

d

V pαV ´ βq

α2 ` pαV ´ βq2z2
, (4.64a)

Lpt, xq “ ´
2pαV ´ βq

α2 ` pαV ´ βq2z2
, z “ x´ V t , (4.64b)

ω “ ´c2{4 , (4.64c)

ϕpzq “
V

2
z ` arctan

ˆ

pαV ´ βqz

α

˙

` ϕ0 . (4.64d)

As before, the constraint after checking the square root is

V pαV ´ βq ě 0 . (4.65)

This is a bright rational solution, where the short wave |S| and the long wave L have amplitudes
a

V pαV ´ βq{pα2q and ´2pαV ´ βq{pα2q, respectively, on a zero background.

Again, to the best of our knowledge, it is also a novel solution of the Newell system once taken
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β “ 0, and again it is only valid for α ą 0 (that is, for σ “ 1).

4.4 Symmetries and conservation laws

As the last part of this chapter, we will obtain some additional properties of the YON system

related to symmetries and conserved quantities. Namely, we will first study the Lie point sym-

metries of the system, which are continuous transformation groups that map every solution of

the system into another solution.

Afterwards, we will proceed to study the conservation laws of the system. Since it is integrable,

it allows infinitely many conservation laws. However, we will just derive a few explicit ones by

studying multipliers.

4.4.1 Lie point symmetries

Let us start with the Lie point symmetries. The computations that follow were done as part of

the collaboration for [29] although they did not make the final version of the paper. In order to

perform the computation we will need all the quantities and variables involved to be real. Hence,

since S is complex, we will split it into real and imaginary part, Spx, tq “ S1px, tq ` iS2px, tq,

introduce it into (4.14a) and also split the equation into real and imaginary part. By doing so,

we are able to rewrite the YON system as a system of 3 real PDEs, which we will denote

F1 “ 0 , F2 “ 0 , F3 “ 0 , (4.66a)

where

F1 “ ´S2,t ` S1,xx ` α2L2S1 ´ βLS1 ´ 2αS1S
2
2 ´ 2αS3

1 ´ αLxS2 , (4.66b)

F2 “ S1,t ` S2,xx ` αLxS1 ´ βLS2 ´ 2αS3
2 ´ 2αS2

1S2 ` α2L2S2 , (4.66c)

F3 “ Lt ´ 2pS2
1 ` S2

2qx . (4.66d)
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We say that the 1-parameter group of transformations

st “ stpx, t, S1, S2, L, εq, sx “ sxpx, t, S1, S2, L, εq,

sS1 “ sS1px, t, S1, S2, L, εq, sS2 “ sS2px, t, S1, S2, L, εq, sL “ sLpx, t, S1, S2, L, εq,

acting on a subset of R3 and depending on a real continuous parameter ε, is a Lie point symmetry

of (4.66a) if its infinitesimal generator

X “ ξ
B

Bx
` τ

B

Bt
` η1

B

BS1
` η2

B

BS2
` η3

B

BL
, (4.67)

where

ξ ” ξpx, t, S1, S2, L, εq “
Bsx

Bε

ˇ

ˇ

ˇ

ˇ

ε“0

, τ ” τpx, t, S1, S2, L, εq “
Bst

Bε

ˇ

ˇ

ˇ

ˇ

ε“0

,

η1 ” η1px, t, S1, S2, L, εq “
B sS1
Bε

ˇ

ˇ

ˇ

ˇ

ε“0

, η2 ” η2px, t, S1, S2, L, εq “
B sS2
Bε

ˇ

ˇ

ˇ

ˇ

ε“0

,

η3 ” η3px, t, S1, S2, L, εq “
BsL

Bε

ˇ

ˇ

ˇ

ˇ

ε“0

,

(4.68)

satisfies the invariance condition

Xp2qFi “ 0 whenever Fi “ 0, i “ 1, 2, 3 , (4.69)

where the second prolongation Xp2q is given by

Xp2q “ X ` η
pxq

1

B

BS1,x
` η

ptq
1

B

BS1,t
` η

pxq

2

B

BS2,x
` η

ptq
2

B

BS2,t

` η
pxq

3

B

BLx
` η

ptq
3

B

BLt
` η

pxxq

1

B

BS1,xx
` η

pxxq

2

B

BS2,xx
,

(4.70)

where the extended infinitesimals are found through the formulae

η
pxq

j “ Dxηj ´ pDxξqSj,x ´ pDxτqSj,t , (4.71a)

η
ptq
j “ Dtηj ´ pDtξqSj,x ´ pDtτqSj,t , (4.71b)
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η
pxxq

j “ Dxηjpxq ´ pDxξqSj,xx ´ pDxτqSj,xt , (4.71c)

for j “ 1, 2, and

η
pxq

3 “ Dxη3 ´ pDxξqLx ´ pDxτqLt , (4.71d)

η
ptq
3 “ Dtη3 ´ pDtξqLx ´ pDtτqLt , (4.71e)

with Dx and Dt denoting the total derivative with respect to x or t, respectively.

The invariance condition (4.69) leads to an overdetermined system of linear equations for the in-

finitesimals ξ, τ and ηj and its solution leads to a unique determination of Lie point symmetries,

see [136]. By employing a computational approach as described in [40, 41, 42, 43, 44], we can

obtain, for every choice of the parameters α and β in (4.14), the vector fields

X1 “
B

Bx
, X2 “

B

Bt
, X3 “ S2

B

BS1
´ S1

B

BS2
, (4.72)

which correspond, by making use of the exponential map, see [136], to translations in x,

psx,st, sS1, sS2, sLq “ px` ε, t, S1, S2, Lq , (4.73)

translations in t,

psx,st, sS1, sS2, sLq “ px, t` ε, S1, S2, Lq , (4.74)

and rotations around the origin in the pS1, S2q-plane,

psx,st, sS1, sS2, sLq “ px, t, S1 cos ε` S2 sin ε,´S1 sin ε` S2 cos ε, Lq , (4.75)

respectively. One can obtain additional Lie point symmetries by taking special choices for the

parameters. If α ‰ 0, then we have the additional generator

X4 “ 4t
B

Bt
` 2x

B

Bx
´

2α2S1 ´ β2tS2
α2

B

BS1
´
β2tS1 ` 2α2S2

α2

B

BS2
´

2α2L´ β

α2

B

BL
, (4.76)
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which corresponds to the transformation group

psx,st, sS1, sS2, sLq “

˜

e2εx, e4εt,

S1e
´2ε cos

ˆ

β2

α2
ε

˙

` S2e
´2ε sin

ˆ

β2

α2
ε

˙

,

´S1e
´2ε sin

ˆ

β2

α2
ε

˙

` S2e
´2ε cos

ˆ

β2

α2
ε

˙

β

α2

ˆ

1 ´
1

2
e´2ε

˙

` Le´2ε

¸

.

(4.77)

r¨, ¨s X1 X2 X3 X4

X1 0 0 0 2X1

X2 0 0 0 4X2 ´
β2

α2X3

X3 0 0 0 0
X4 ´2X1 ´4X2 `

β2

α2X3 0 0

Table 1: Commutator table for α ‰ 0.

If α “ 0 and β ‰ 0, then we also have the generators

X5 “ 4t
B

Bt
` 2x

B

Bx
´ 3S1

B

BS1
´ 3S2

B

BS2
´ 4L

B

BL
, (4.78a)

X6 “ βtS2
B

BS1
´ βtS1

B

BS2
`

B

BL
. (4.78b)

The generator X5 is associated to a transformation group corresponding to a scaling transforma-

tion,

psx,st, sS1, sS2, sLq “ pe2εx, e4εt, e´3εS1, e
´3εS2, e

´4εLq , (4.79)

which was already introduced in (4.16), whereas the transformation group associated to X6 is

given by

psx,st, sS1, sS2, sLq “ px, t, S1 cospβtεq`S2 sinpβtεq,´S1 sinpβtεq`S2 cospβtεq, L`εq , (4.80)

and it corresponds to a precession with frequency βε around the origin in the pS1, S2q-plane.
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r¨, ¨s X1 X2 X3 X5 X6

X1 0 0 0 2X1 0
X2 0 0 0 4X2 βX3

X3 0 0 0 0 0
X5 ´2X1 ´4X2 0 0 4X6

X6 0 ´βX3 0 ´4X6 0

Table 2: Commutator table for α “ 0, β ‰ 0.

4.4.2 Conservation laws

As stated before, one of the key properties of integrable systems is that they possess an infinite

number of linearly independent conserved quantities. Although there exists specific machinery

to compute them for the special case of integrable systems, such as using Lenard chains, which

allow one to obtain the conserved quantities via recursions (see [122]), as for the rest of this

chapter we will ignore the integrability of the system and apply a standard method in order to

obtain a few explicit conservation laws following [29]. A conservation law is a relation of the

form

ρt ` fx “ 0 , (4.81)

where ρ ” ρpS,L, Sx, Lx, . . .q is the density and f ” fpS,L, Sx, Lx, . . .q the corresponding

flux, respectively. The second equation of the YON system, (4.14b), is trivially a conservation

law of the system, with

ρ0 “ L , (4.82a)

f0 “ ´2|S|2 . (4.82b)

As stated in [7, 8, 9], conservation laws correspond to symmetries of the equation, but in many

cases those symmetries may turn out to be non-classical or even non-local. When Noether’s the-

orem can be applied, the correspondence between conservation laws and symmetries are made

explicit; however, in order to apply it one needs to write the system in a variational formula-
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tion, which we were unable to find. Because of that, we will employ the multiplier method (see

[7, 8, 9, 136]), which consists on finding a vector g “ pg1, g2, g3q, called multiplier, depending

on S, L and their derivatives up to a fixed but arbitrary order, such that

δg1E1
δS

“ 0 ,
δg2E2
δS˚

“ 0 ,
δg3E3
δL

“ 0 , (4.83)

where

E1 “ iSt ` Sxx `
`

iαLx ` α2L2 ´ βL´ 2α|S|2
˘

S , E2 “ F˚
1 , E3 “ Lt ´ 2p|S|2qx

(4.84)

are the equations in YON system (and its complex conjugate for the complex equation), and

where δ{δu denotes the variational derivative with respect to the variable u. If a multiplier g like

that can be found, then it ensures the existence of some ρ and f such that

ρt ` fx “ g1E1 ` g2E2 ` g3E3 “ 0 . (4.85)

By using the specially designed GeM software package for symmetries and conservation laws

(see [40, 42, 41, 43, 44]), one can, for any choice of α and β, compute pairs of conserved

densities and fluxes depending on derivatives up to second order, namely

ρ1 “
α

2
L2 ´ |S|2 , (4.86a)

f1 “ ´2αL|S|2 ´ 2 ImpS˚Sxq ; (4.86b)

ρ2 “ 2α2L|S|2 ´ β|S|2 ` 2α pS˚Sxq , (4.87a)

f2 “ 2α|Sx|2 ´ 2α RepS˚Sxxq ` 4α2L ImpS˚Sxq ´ 2β ImpS˚Sxq ; (4.87b)
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ρ3 “2α2tL|S|2 `
α2

2
xL2 ´

β

2
xL´ βt|S|2 ´ αx|S|2 ` 2αt ImpS˚Sxq , (4.88a)

f3 “ ´ 2α2xL|S|2 ` βx|S|2 ` 4α2tL ImpS˚Sxq ` 2αt|Sx|2 ´ 2αx ImpS˚Sxq (4.88b)

´ 2βt ImpS˚Sxq ´ 2αt RepS˚Sxxq;

ρ4 “
1

2
α5L4 ´ 2α4L2|S|2 ´ α3βL3 ` 2α3|S|4 ` 4α3L ImpS˚Sxq (4.89a)

´
1

2
α3L2

x ` 2β2|S|2 ´ 4αβ ImpS˚Sxq ` 4α2|Sx|2 ,

f4 “6α3βL2|S|2 ` 8α4L|S|4 ´ 4α2β|S|4 ´ 4αβ|Sx|2 ` 4α3L|Sx|2 (4.89b)

´ 4α5L3|S|2 ` 8α3|S|2 ImpS˚Sxq ` 4β2 ImpS˚Sxq ´ 4α4L2 ImpS˚Sxq

` 8α3Lx RepS˚Sxq ` 4αβ RepS˚Sxxq ´ 4α3L RepS˚Sxxq ` 8α2 ImpS˚
xSxxq.
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Chapter 5

Stability of Plane Waves for the YON

System

Once we have studied some basic properties of the YON system in the previous chapter ignoring

the fact that it is integrable, now we will devote to the study of the stability of its solutions

(see Section 1.4). In this case we will make use of its integrability properties by following the

stability method introduced in [53], which makes use of the Lax pair of the system (4.3) to

systematically construct local perturbations of solutions (namely, of plane waves, though we

plan to extend the method to broader kinds of solutions) and study their stability in an algebro-

geometric framework through the so-called stability spectrum. The theory on this method will

be presented in Section 5.1.

This algebro-geometric method had already been applied to the study and completely charac-

terise the instabilities of plane waves in the vector nonlinear Schrödinger (vNLS) equation (see

[53, 54, 55]), and the 3-wave resonant interaction model (see [120, 141]), and we succesfully

applied it to the YON system too (see [30]). Let us present how the method works to then show

its application to the YON system.
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5.1 The stability spectrum

We will follow the original introduction of the method in [53]. Let us consider an integrable

system of PDEs as introduced in Section 1.2, with a Lax pair of the form

Ψx “ XΨ , Ψt “ TΨ , (5.1)

where Ψ, X , and T are N ˆN matrix-valued complex functions of x, t, the unknown variables

of the system of PDEs at hand, and their derivatives. X and T will also depend on an additional

complex parameter called the spectral parameter, which we will denote by λ. For our purpose,

we will consider this dependence to be polynomial up to linear order for X , and to quadratic

order for T , that is,

Xpλq “ iλΣ `Q , T pλq “ λ2T2 ` λT1 ` T0 . (5.2)

The system of PDEs arises from this framework as the compatibility condition of the Lax

pair,

Xt ´ Tx ` rX, T s “ 0 , (5.3)

where rX, T s denotes the commutator of X and T , rX, T s “ XT ´ TX . That means that the

equality (5.3) will hold if and only if the original system of PDEs is satisfied.

Given that both X and T are polynomial in λ, the left-hand side of the compatibility condition

will also be polynomial. In particular, since X is linear and T is quadratic, the left-hand side of

the compatibility condition will be cubic, and, since it must hold for every choice of λ, it yields

4 equations for the matrix coefficients Σ, Q, T0, T1 and T2.

Let us now introduce a small perturbation. Given a pair X and T solving the compatibility

condition (5.3), let us consider a new solution X ` δX and T ` δT differing by a small change

of the original X and T . Then, the perturbations δX and δT must satisfy, at first order, the

linearised equation

pδXqt ´ pδT qx ` rδX, T s ` rX, δT s “ 0 . (5.4)
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That means that the task at hand is finding a solution Apx, t, λq, Bpx, t, λq of the linearised

equation

At ´Bx ` rA, T s ` rX, Bs “ 0 , (5.5)

where we have denoted A “ δX and B “ δT to simplify the notation. Let us note, however,

that both A and B are related to the fundamental solution of the Lax equations (5.1), Ψpx, t, λq.

Namely, if we define a new matrix-valued function Φpx, t, λq by

Φpx, t, λq “ Ψpx, t, λqMpλqΨ´1px, t, λq , (5.6)

where Mpλq is an arbitrary constant matrix depending only on λ, then it satisfies the pair of

linear ODEs

Φx “ rX, Φs , Φt “ rT, Φs . (5.7)

These relations are a direct consequence of the Lax equations (5.1):

Φx “ pΨMΨ´1qx

“ ΨxMΨ´1 ` ΨMΨ´1
x

“ XΨMΨ´1 ´ ΨMΨ´1X

“ rX, ΨMΨ´1s “ rX, Φs ,

where we have used the matrix relation

M´1
x “ ´M´1MxM´1 (5.8)

for any invertible matrix M, so that

Ψ´1
x “ ´Ψ´1ΨxΨ

´1 “ ´Ψ´1XΨΨ´1 “ ´Ψ´1X ,

where we have again applied the Lax equations (5.1). The proof for Φt is completely analogous.

The compatibility of equations (5.7), Φxt “ Φtx, coincides with the compatibility condition

69



5.1. THE STABILITY SPECTRUM CHAPTER 5. STABILITY OF PLANE
WAVES FOR THE YON SYSTEM

for the Lax pair. With this, we can now prove the following result, previously introduced in

[53].

Proposition 5.1.1 LetA andB be a pair of matrix-valued functions solving the linearised equa-

tion (5.5). Then, also the pair

F “ rA, Φs , G “ rB, Φs (5.9)

is a solution of the same linearised equation, that is,

Ft ´Gx ` rF, T s ` rX, Gs “ 0 . (5.10)

Proof: To prove the result we will only need the relations (5.7) and the Jacobi identity.

Ft ´Gx ` rF, T s ` rX, Gs “ prA, Φsqt ´ prB, Φsqx ` rrA, Φs, T s ` rX, rB, Φss .

We have that

rA, Φst “ rAt, Φs ` rA, Φts

“ rAt, Φs ` rA, rT, Φss

“ rAt, Φs ´ rΦ, rA, T ss ´ rT, rΦ, Ass

“ rAt, Φs ` rrA, T s, Φs ´ rrA, Φs, T s ,

and, similarly,

rB, Φsx “ rBx, Φs ´ rrX, Bs, Φs ` rX, rB, Φss .

Putting all together we have that

Ft ´Gx ` rF, T s ` rX, Gs “
“

At ´Bx ` rA, T s ` rX, Bs, Φ
‰

,

but the first entry of the commutator is the linearised equation for A and B, so it is equal to 0,
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which proves the proposition.

With this proposition, we can also get the following corollary:

Corollary 5.1.2 The matrix-valued functions

F “

„

BX

Bλ
, Φ

ȷ

, G “

„

BT

Bλ
, Φ

ȷ

(5.11)

are a solution of the linearised equation (5.10).

It follows from Proposition 5.1.1 and the fact that

A “
BX

Bλ
, B “

BT

Bλ
(5.12)

trivially satisfy the linearised equation (5.5).

Let us now go back to our system through the Lax pair (5.2). We will need to impose a few

additional properties on the matrix coefficients. First of all, we will impose that Σ be constant

and Hermitian, and hence, without loss of generality, we will consider it diagonal and real, in

block-diagonal notation

Σ “ diagtα111, . . . , αL1Lu , 2 ď L ď N , (5.13)

where the eigenvalues α1, . . . , αL are real and distinct, 1j is the nj ˆ nj identity matrix where

nj is the multiplicity of the eigenvalue αj , and N is the order of the matrix Σ.

Then, the structure of Σ allows us to split the set of N ˆ N matrices into two subspaces: the

subspace of block-diagonal matrices and the subspace of block-off-diagonal matrices, where the

size of the blocks is defined by the size of the blocks with the same eigenvalue in Σ. We can

then, given any N ˆN matrix M, adopt the notation

M “ Mpdq ` Mpoq , (5.14)

where Mpdq denotes the block-diagonal part of M and Mpoq denotes its block-off-diagonal
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part.

Consistently with this notation, we will define the entries Mjk as matrices themselves of di-

mension nj ˆ nk demarcated by the blocks above. Note that the matrix entries Mjk do not

necessarily commute with each other; in fact, they are in general rectangular matrices.

Also note that, given two arbitrary matrices M and N , we have that MpdqN pdq is block-

diagonal, MpdqN poq is block-off-diagonal, whereas, forN ą 2, MpoqN poq is neither necessarily

block-diagonal nor block-off-diagonal.

Furthermore, we will impose Qpx, tq in (5.2) to be block-off-diagonal, and differentiable up

to sufficiently high order so that all the derivatives involved in the computation are properly

defined.

After this consideration, we can express the matrix coefficients of T as functions of Σ and Q

through the compatibility condition of the Lax pair (5.3):

T2 “ C2 , (5.15a)

T1 “ C1 ´ iI1 ´ iD2pQq , (5.15b)

T0 “ C0 ` I0 ´
1

2
rD2pQq,ΓpQqspdq ´ Γ

`

D2pQxq
˘

´ Γ
´

rD2pQq, Qspoq
¯

´ iD1pQq ´ rI1,ΓpQqs , (5.15c)

where the matrices Cj with j “ 0, 1, 2 are constant and diagonal (we will set C0 “ 0 since

its value is irrelevant for our purpose), the linear invertible map Γ acts on block-off-diagonal

matrices as
`

ΓpMq
˘

jk
“

Mjk

αj ´ αk
, (5.16)

where M is block-off-diagonal, so that

rΣ,ΓpMqs “ Γ
`

rΣ,Ms
˘

“ M , (5.17)
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and the maps Dj with j “ 1, 2 also act only on block-off-diagonal matrices as

DjpMq “ rCj ,ΓpMqs “ Γ
`

rCj ,Ms
˘

. (5.18)

Finally, the non-local matrices I1 and I0 are block-diagonal and are defined by

I1px, tq “

ż x

dy
”

Qpy, tq, D2

`

Qpy, tq
˘

ıpdq

(5.19a)

I0px, tq “

ż x

dy

#

´
1

2

”

C2,
“

ΓpQypy, tqq, ΓpQpy, tqq
‰pdq

´

”

Qpy, tq, Γ
`

rD2pQpy, tqq, Qpy, tqspoq
˘

ıpdq

(5.19b)

´ i
”

Qpy, tq, D1

`

Qpy, tq
˘

ıpdq

´

”

Qpy, tq,
“

I1ptq, ΓpQpy, tqq
‰

ıpdq

+

.

The detailed proof for these formulae is provided in the Appendix A.

The nonlocality generated by I1 and I0, whose consequence is that Qpx, tq will satisfy an

integro-differential equation through the compatibility condition, rather than a partial differ-

ential equation, is problematic, since it is non-physical and it is unclear whether the system can

be treated via spectral methods in case they are non-zero (see [51]). Because of that, we will

only consider the local case, and will therefore give the condition for I1 and I0 to vanish.

Proposition 5.1.3 The matrices I1 and I0 vanish if and only if the blocks of C1 and C2 are

proportional to the identity matrix, that is,

C1 “ diagtβ111, . . . , βL1Lu , C2 “ diagtγ111, . . . , γL1Lu . (5.20)

The proof of this proposition is also provided in the Appendix A.

We will keep these conditions for locality from now on, so that the evolution equation for the
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matrix Q reads

Qt “ ´Γ
`

D2pQxxq
˘

´

”

Γ
`

D2pQxq
˘

, Q
ıpoq

´ Γ
´

“

D2pQq, Q
‰poq

x

¯

´

”

`

D2pQqΓpQq
˘pdq

, Q
ı

´

”

Γ
´

“

D2pQq, Q
‰poq

¯

, Q
ıpoq

´ iD1pQxq ´ i
“

D1pQq, Q
‰poq

. (5.21)

With this, we can introduce a local perturbation by substituting the given solutionQwithQ`δQ,

and then linearise the equation (5.21) by neglecting the nonlinear terms in δQ. That way, we

obtain the linear PDE

δQt “ ´Γ
`

D2pδQxxq
˘

´

”

Γ
`

D2pδQxq
˘

, Q
ıpoq

´ Γ
´

“

D2pQxq, δQ
‰poq

¯

´ Γ
´

“

D2pδQq, Q
‰poq

`
“

D2pQq, δQ
‰poq

¯

x
´

”

`

D2pQqΓpQq
˘pdq

, δQ
ı

´

”

`

D2pδQqΓpQq
˘pdq

, Q
ı

´

”

`

D2pQqΓpδQq
˘pdq

, Q
ı

´

”

Γ
´

“

D2pQq, Q
‰poq

¯

, δQ
ıpoq

´

”

Γ
´

“

D2pδQq, Q
‰poq

¯

, Q
ıpoq

´

”

Γ
´

“

D2pQq, δQ
‰poq

¯

, Q
ıpoq

´ iD1pδQxq

´ i
“

D1pQq, δQ
‰poq

´ i
“

D1pδQq, Q
‰poq

.

(5.22)

This leads us to the main result of this section:

Proposition 5.1.4 The matrix

F “ rΣ, Φs , (5.23)

defined as in the Corollary 5.1.2 by taking the Lax pair (5.2), satisfies the same linear PDE

(5.22) as δQ if and only if the matrices C1 and C2 satisfy the locality condition (5.20).

The proof of the proposition is rather long but straightforward. Roughly, the idea of the proof is

to combine the ODEs for Φ, (5.7), to obtain a λ-independent PDE for the matrix F . In order to

do so, one can split the first of the ODEs in (5.7) into block diagonal Φpdq and block-off-diagonal

Φpoq “ ΓpF q parts,

λF “ ΓpFxq ´
“

Q, Φpdq
‰

´ rQ, ΓpF qspoq , Φpdq
x “ rQ, ΓpF qspdq . (5.24)
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With this one can write Ft from (5.23) together with the second ODE in (5.7), that is,

Ft “
“

Σ, rT, Φs
‰

, (5.25)

expand T with its expression in (5.2) along with (5.15) and replace all the terms λF in the

resulting expression using the formula (5.24).

Once that is done, all the terms containing Φpdq cancel out, provided the condition (5.20), and the

remaining terms in Ft can be rearranged in the same form as (5.22) purely algebraically.

With this we have arrived to an important conclusion. The matrix F that we defined in (5.23) has

the same block-off-diagonal structure as the perturbation δQ and is a λ-dependent solution of the

linearised equation (5.22), with a λ-dependence originating from both the arbitrary matrixMpλq

and from the fundamental solution of the Lax equations Ψ, both of which make up Φ. Its role

is analogous to that of the exponential solutions of linear equations with constant coefficients,

that is, by “moving” the spectral parameter λ over what we call the stability spectrum (which

will be introduced later on in this section), F provides the Fourier-like modes of the system of

PDEs.

Note that throughout the whole chapter we have not made any reference to the boundary con-

ditions of Qpx, tq at x “ ˘8. In fact, F does not depend at all on the boundary conditions

and hence it is fit to treat problems with either vanishing or non-vanishing boundary conditions,

periodic solutions, and even other different kinds of problems which may be of physical inter-

est.

Now, the results in Proposition 5.1.4 imply that any sum (or, for our interest, integral) of

F px, t, λq over the spectral variable λ is also a solution of the linearised equation (5.22) for δQ,

and, as such, a proper perturbation of the solution. Henceforth, we will simplify the notation by

simply calling that object δQ,

δQpx, tq “

ż

Sx
dλF px, t, λq . (5.26)
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The choice of integrand and path of integration must be performed in such a way that δQ is

bounded in the x variable at any fixed t and in the proper function space (e. g. a localised

perturbation). The construction of perturbations via a series,

δQpx, tq “
ÿ

λPIĂSx

F px, t, λq , (5.27)

which is potentially a good framework to represent periodic perturbations.

Both in the integral and in the series cases, the boundedness of the solution implies thatF px, t, λq

itself must be bounded, which leads to the construction of what we called the stability spectrum

Sx, which consists on the subset of the complex λ-plane for which the perturbation F px, t, λq is

bounded in the x variable.

Whether a given λ belongs or not in the stability spectrum depends on the asymptotic behaviour

of Qpx, tq for large |x|. When Qpx, tq vanishes sufficiently fast for |x| Ñ 8, for example when

its entries are in L1, then Sx coincides with the so-called Lax spectrum, that is, the spectrum

of the X operator that acts on the fundamental solution through the Lax equation Ψx “ XΨ.

That is the case when the matrices X , T in the Lax pair are 2 ˆ 2 matrices. In that cases, the

procedure introduced in the present chapter is equivalent to the method of squared eigenfunctions

(see [100, 160]), making it unnecessary to use this more convoluted method.

However, when dealing withNˆN matrices, this is not true anymore, asQpx, tq tends in general

to some finite, nonzero value when |x| Ñ 8. In that case the Lax spectrum and the stability

spectrum do not coincide, and the squared eigenfunctions method cannot be applied anymore

[110]. In fact, the action that should be studied to consider stability is not the direct action but

the action through the commutator, Φx “ rX,Φs. The corresponding stability spectrum Sx

will consist on a piecewise continuous curve, potentially along with a finite number of isolated

points.

Before continuing, note that the study of the completeness of the F px, t, λq in (5.26) and (5.27)

is out of the scope of this work, and hence we will only describe solutions of the linearised

equation for δQ (5.22) belonging to an adequate function space and that can be obtained through
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the integral or series representations introduced above.

We will claim that a given solution Qpx, tq is linearly stable (with respect to t) if any small

change δQpx, t0q compatible with our representation remains small as time grows.

Let us now show how we can represent the matrix F px, t, λq in the case of 3 ˆ 3 matrices. We

can consider the fundamental matrix solution Ψ of the Lax equations (5.1), and denote its three

column vectors by ψp1q, ψp2q and ψp3q,

Ψ “

´

ψp1q ψp2q ψp3q
¯

. (5.28)

We can consider without loss of generality that Ψ has unit determinant, so that

detΨ “ ψp1q ¨ ψp2q ^ ψp3q . (5.29)

Then, the expression for F px, t, λq (5.23) can be rewritten as

F px, t, λq “
“

Σ, Ψpx, t, λqMpλqΨApx, t, λq
‰

, (5.30)

where ΨA denotes the adjugate matrix of Ψ. We can express it through its rows,

ΨA “

¨

˚

˚

˚

˚

˝

ψAp1qT

ψAp2qT

ψAp3qT

˛

‹

‹

‹

‹

‚

, (5.31)

where the superscript T denotes transposition, transforming column vectors into rows. In this

framework, the vectors ψApjq are given by the expression

ψApjq “ ψpmq ^ ψpnq , (5.32)

where tj,m, nu is a cyclic permutation of t1, 2, 3u.

Since for a generic non-reduced Qpx, tq and a given value of λ we need six eigenfunctions, we
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can represent the perturbation using the basis of matrices M pjmq given by

M
pjmq

ab “ δjaδmb , j,m “ 1, 2, 3, j ‰ m, (5.33)

where the deltas denote the Kronecker delta. Then we will denote

F pjmq “
“

Σ, ΨM pjmqΨA
‰

. (5.34)

The strength of this choice relies on the fact that

Ψpx, t, λqM pjmqΨApx, t, λq “ ψpjq
`

ψpjq ^ ψpnq
˘T
ϵjnm , (5.35)

where ϵjnm denotes the parity of the permutation tj, n,mu of t1, 2, 3u (that is, ϵjnm “ 1 if it is

a cyclic permutation and ϵjnm “ ´1 otherwise). We can then write F pjmq as

F pjmqpx, t, λq “

”

Σ, ψpjq
`

ψpjq ^ ψpnq
˘T

ı

ϵjnm . (5.36)

With this representation, we can write the perturbation as

F px, t, λq “
ÿ

j,m

µpjmqpλqF pjmqpx, t, λq , (5.37)

where the six functions µpjmqpλq play the role of a Fourier-like transform.

Let us illustrate how the method works by applying it to the plane wave solutions of the Yajima-

Oikawa-Newell system introduced in Chapter 4.
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5.2 The YON case

Let us recall the YON system introduced in Chapter 4,

iSt ` Sxx `
`

iαLx ` α2L2 ´ βL´ 2α|S|2
˘

S “ 0 , (5.38a)

Lt “ 2
`

|S|2
˘

x
, (5.38b)

which has a Lax pair

Xpλq “ iλΣ `Q , T pλq “ λ2T2 ` λT1 ` T0 , (5.39)

with

Σ “ diagt1 , 0 , ´1u “

¨

˚

˚

˚

˚

˝

1 0 0

0 0 0

0 0 ´1

˛

‹

‹

‹

‹

‚

, (5.40)

Q “

¨

˚

˚

˚

˚

˝

0 S iL

αS˚ 0 S˚

iα2L´ iβ αS 0

˛

‹

‹

‹

‹

‚

, (5.41)

which, using formulae (5.15), give rise to

T2 “
i

3

¨

˚

˚

˚

˚

˝

´1 0 0

0 2 0

0 0 ´1

˛

‹

‹

‹

‹

‚

, T1 “

¨

˚

˚

˚

˚

˝

0 ´S 0

´αS˚ 0 S˚

0 αS 0

˛

‹

‹

‹

‹

‚

, (5.42a)

T0 “

¨

˚

˚

˚

˚

˝

´iα|S|2 ´αLS ` iSx i|S|2

´α2LS˚ ` βS˚ ´ iαS˚
x 2iα|S|2 ´αLS˚ ´ iS˚

x

iα2|S|2 ´α2LS ` βS ` iαSx ´iα|S|2

˛

‹

‹

‹

‹

‚

. (5.42b)

We will study the plane waves of the system following the computations in [29], which have the
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general form

Spx, tq “ aeiθ Lpx, tq “ b , θ “ qx´ νt , ν “ q2 ´ α2b2 ` βb` 2αa2 , (5.43)

where we have introduced three new arbitrary real parameters, namely, the two amplitudes a

and b and the wavenumber of the short wave, q. The last formula of (5.43) shows the dispersion

relation for the plane wave.

The first step to apply on the solution (5.43) the stability method introduced before is finding

a corresponding fundamental solution Ψ̂px, t, λq of the Lax equations (5.1). One can find such

solution with the form

Ψ̂px, t, λq “ eiρpλqtRpx, tqeipxW pλq´tW 2pλqq , Rpx, tq “ diagt1, e´iθ, 1u , (5.44)

where

ρpλq “
2

3
λ2 ` α2b2 ´ 2αa2 ´ βb, (5.45)

and the x, t-independent matrix W pλq takes the form

W pλq “

¨

˚

˚

˚

˚

˝

λ ´ia b

´iαa q ´ia

α2b´ β ´iαa ´λ

˛

‹

‹

‹

‹

‚

. (5.46)

Since W pλq has the trace properties

trpW q “ q , trpW 2q “ ν ` 3ρ , (5.47)

then the solution Ψ̂px, t, λq in (5.44) has unit determinant.

For our purpose, and according to the formalism in the previous section, it is convenient to
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choose the alternative solution Ψpx, t, λq whose column vectors ψpjq are defined by

ψpjq “ Ψ̂px, t, λq f pjqpλq , j “ 1, 2, 3, (5.48)

where the three vectors f pjqpλq are the eigenvalues of W pλq,

Wf pjq “ wjf
pjq , (5.49)

where wj denotes the corresponding eigenvalue of W pλq. We will consider them normalised so

that

f p1q ¨

´

f p2q ^ f p3q
¯

“ 1 , (5.50)

which entails the condition det
`

Ψpx, t, λq
˘

“ 1. Proceeding this way, we can compute the

column vectors ψpjq, which turn out to be

ψpjq “ eipηj`ρtqRf pjq , (5.51)

with

ηj “ wjx´ w2
j t , j “ 1 , 2 , 3 . (5.52)

With this, we can use formula (5.36) to compute the eigenfunctions F pjmqpx, t, λq corresponding

to the plane wave solution at hand. With further simplifications coming from the fact that

η1 ` η2 ` η3 “ θ ´ 3ρt , (5.53)

and the matrix relation (for any pair of arbitrary vectors u and v)

eiθpRuqpRu^RvqT “ R
“

upu^ vqT
‰

R´1 , Rpx, tq “ diag
!

1, e´iθ, 1
)

, (5.54)

we get the expression

F pjmqpx, t, λq “ eipηj´ηmq R
”

Σ , f pjqpf pjq ^ f pnqqT
ı

R´1 ϵjnm , j ‰ m, (5.55)
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where, as before, ϵjnm denotes the parity of the permutation tj, n,mu.

This shows that, apart from the phase θ, which is independent of λ, the eigenfunctionsF pjmqpx, t, λq

depend on x and t only through the exponentials eipηj´ηmq, which, thanks to the expression

(5.52), one can write in the form

e˘ipknx´ωntq , kn “ wn`1 ´ wn`2 , ωn “ w2
n`1 ´ w2

n`2 , n “ 1, 2, 3 mod 3 , (5.56)

where the wave numbers kjpλq and the corresponding frequencies ωjpλq are defined in terms of

the eigenvalues wj of the matrix W , that is, the roots of the characteristic polynomial

P pw, λq “ detrw 1 ´W pλqs “ pw ´ w1qpw ´ w2qpw ´ w3q

“ pw ´ qqpw2 ´ λ2 ` pq ` r ,

(5.57)

where the parameters p and r are defined as

p “ 2αa2 ´ α2b2 ` βb “ ν ´ q2 , r “ a2r2αpq ` αbq ´ βs . (5.58)

Since we require our solutions to be bounded functions of x, we can conclude that the set of val-

ues of λ that allows us to construct valid perturbations is the subset of the complex λ-plane where

at least one of the wave numbers kjpλq is real. That leads us to the following definition.

Definition 5.2.1 The stability spectrum Sx is defined as the set of complex values of λ for which

at least one of the three wave number functions k1pλq, k2pλq, and k3pλq is real.

The dispersion relation between the wave number kj and the corresponding frequency ωj is

parametrically defined by the functions kjpλq and ωjpλq by varying the spectral parameter λ

over the stability spectrum Sx. The corresponding plane wave will be linearly stable if ωjpλq is

real for the values of j such that kjpλq is real for every λ in the spectrum Sx. Otherwise, if for

some j and λ P Sx, ωjpλq is non-real, then the plane wave solution is linearly unstable. In that
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case, the relevant physical information of the instability is given by the gain function,

Γjpλq “ |Impωjpλqq| , λ P Sx , Impkjpλqq “ 0 . (5.59)

We can then proceed to classify the different stability spectra for each choice of parameters

and the corresponding gain functions. Note that the characteristic polynomial P pw, λq in (5.57)

depends only on the wave number q of the short wave solution, the parameters r and p defined

in (5.58), and the spectral parameter λ only via the combination λ2 ´ p (which, in turn, is also

the only appearance of p). Because of that, it is sufficient to fix the values of q and r in the

characteristic polynomial and redefine the stability spectrum as a curve in the complex plane of

λ2 ´ p. By doing so, our parameter space reduces to the pq, rq-plane. We will then introduce the

more convenient, complex variable Λ as

Λ “ λ2 ´ p , (5.60)

so that the parameter p becomes irrelevant for the classification of spectra. In a minor abuse of

notation, we will refer to the characteristic polynomial as a function of Λ as

P pw,Λq “ detrw 1 ´W s “ pw ´ w1qpw ´ w2qpw ´ w3q

“ pw ´ qqpw2 ´ Λq ` r .

(5.61)

To make the change of variable explicit, we will denote by SΛ the stability spectrum in the

complex Λ-plane through the following definition.

Definition 5.2.2 The stability spectrum SΛ is defined as the set of complex values of Λ for which

at least one of the three wave number functions k1pΛq, k2pΛq, and k3pΛq is real

Let us also note that the parameter q, if non-zero, can be rescaled to q “ 1 by rescaling w by q,

Λ by q2, and r by q3, that is, through the change of variables

w Ñ qw , Λ Ñ q2Λ , r Ñ q3r . (5.62)
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We will however keep q in the formulae so that we can set q “ 1 numerically when desired, and

study separately the case q “ 0.

Let us consider first the part of the spectrum SΛ that lies on the real axis, ImΛ “ 0. In that

case, all the coefficients of the characteristic polynomial P pw,Λq are real, and hence either the

three zeros w1pΛq, w2pΛq, and w3pΛq are real, or one is real and two are complex conjugate. In

the first case, the three wave numbers kjpΛq are real, while in the second one none of them is,

leading to the following.

Proposition 5.2.3 If Λ is real then it belongs to the spectrum SΛ if and only if thew-discriminant

of the polynomial (5.61) is non-negative, that is, if ∆w P pw,Λq ě 0, where

∆w P pw,Λq “ k21 k
2
2 k

2
3 “ 4Λ3 ´ 8q2Λ2 ` 4qpq3 ´ 9rqΛ ´ 27r2 ` 4rq3 . (5.63)

As shown by the expression (5.63), the large and positive real values of Λ do always belong

to the spectrum SΛ, while the large and negative real values of Λ do not. We can study the

asymptotics of the equation P pw,Λq “ 0 around the point at infinity of the complex Λ-plane to

obtain the behaviours of the roots wj :

w1pΛq “
?
Λ ´ r

2Λ `Op1{Λ3{2q

w2pΛq “ ´
?
Λ ´ r

2Λ `Op1{Λ3{2q

w3pΛq “ q ` r
Λ `Op1{Λ2q ,

(5.64)

where the labels 1, 2, 3 are arbitrary. It is clear from (5.64) that if Λ is real, large and posi-

tive, then also the wave numbers kjpΛq are real and large. Conversely, if Λ is real, large and

negative, then none of the wave numbers kjpΛq are real and hence Λ does not belong to the

spectrum.

Let us turn our attention to the w-discriminant (5.63). It is a cubic polynomial of Λ with real

coefficients, so it can either have one or three real zeros. If it only has one zero, say Λ`, then

the discriminant ∆wP pw,Λq must be negative for all values Λ ă Λ` and positive for Λ ą Λ`.

That means that the real part of the spectrum SΛ is the semi-axis Λ` ď Λ ă 8. If, on the
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contrary, ∆wP pw,Λq has three real roots, say Λ0 ă Λ´ ă Λ`, then the discriminant will be

negative both for Λ ă Λ0 and for Λ´ ă Λ ă Λ`, meaning that the real part of the spectrum SΛ

consists on the finite interval Λ0 ď Λ ď Λ´ and the semi-axis Λ` ď Λ ă 8. This finite gap

between the different pieces of the real part of the spectrum will be a distinctive feature of the

topology of the spectra in our classification. Its existence is determined by the Λ-discriminant

of ∆wP pw,Λq, that is ∆Λ∆wP pw,Λq, which depends only on the two parameters q and r, and

can be summarised in the following result.

Proposition 5.2.4 Let ∆Λ∆wP pw,Λq be the Λ-discriminant of the discriminant (5.63), that is,

∆Λ∆wP pw,Λq “ 16rp8q3 ´ 27rq3 . (5.65)

The spectrum SΛ has one, and only one, finite gap (G) on the real axis if and only if

∆Λ∆wP pw,Λq ą 0, namely, if and only if rp8q3 ´ 27rq ą 0, and it has no gap if

rp8q3 ´ 27rq ă 0. The gap opening and closing threshold values of the parameters are r “ 0

and r “ p8{27q q3.

Now that we have completed the study on the real part of the spectrum, we can switch our

attention to the non-real values of Σ that yet belong to the spectrum, Σ P SΛ with ImpΛq ‰ 0.

For this we will introduce what we call the polynomial of the squares of the differences,

Ppζ,Λq “ pζ ´ k21qpζ ´ k22qpζ ´ k23q “ ζ3 ` γ2 ζ
2 ` γ1 ζ ` γ0 , (5.66a)

whose the roots ζjpΛq, j “ 1, 2, 3, are the squares of the differences of the Λ-dependent roots

wjpΛq of the characteristic polynomial P pw,Λq,

ζjpΛq “ k2j pΛq “ pwj`1 ´ wj`2q2 , j “ 1, 2, 3 mod 3 . (5.66b)

The coefficients of the polynomial Ppζ,Λq (5.66a) can be computed explicitly in terms of the

coefficients of the polynomial P pw,Λq (5.61) using symmetry properties (see [54]). Let us
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consider a generic monic polynomial

fpxq “ xN ` fN´1x
N´1 ` . . .` f0 , (5.67)

and try to construct a new polynomial gpyq whose roots are the squared differences of the N

roots xj of fpxq, that is,

gpyq “
ź

jăm

”

y ´ pxj ´ xmq2
ı

. (5.68)

Since the roots of gpyq are, by construction, quadratic symmetric functions of the roots xj of

fpxq, the coefficients of gpyq are necessarily polynomials of the coefficients of fpxq. In partic-

ular, for the case N “ 3, gpyq is also a cubic polynomial,

gpyq “ y3 ` g2y
2 ` g1y ` g0 , (5.69)

and its coefficients are given by Vieta’s formulae,

g2 “ 2
`

3f1 ´ f22
˘

,

g1 “
`

3f1 ´ f22
˘2
,

g0 “ 27f20 ` 4f31 ´ 18f0f1f2 ` 4f0f
3
2 ´ f21 f

2
2 .

(5.70)

Note that these formulae give gpyq the non-generic form gpyq “ ypy ` g2{2q2 ` g0. Also note

that, when y “ 0 in (5.68), we have that

´gp0q “ ∆xpfq “
ź

jăm

pxj ´ xmq2 . (5.71)

By using the formulae (5.70) with the coefficients of P pw,Λq in (5.61), one can compute the

coefficients γj of the polynomial of the squares of the differences (5.66a), which turn out to

be

γ2 “ ´2p3Λ ` q2q ,

γ1 “ p3Λ ` q2q
2
,

γ0 “ ´4Λ3 ` 8q2Λ2 ´ 4qpq3 ´ 9rqΛ ` 27r2 ´ 4rq3 .

(5.72)
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Also the property (5.71) tells us that the w-discriminant (5.63) is related to this new polynomial

by

∆wP pw,Λq “ ´Pp0,Λq . (5.73)

Relation (5.73) allows us to rewrite the Proposition 5.2.4 for characterisation of gaps in terms of

the new polynomial P .

We now get to the main point of the method, which is that we can also redefine our stability

spectrum SΛ by changing the point of view on Ppζ,Λq, and instead of seeing it as a function

of ζ with coefficients on Λ we can see it as a function of Λ with coefficients in ζ, or rather as

an implicit equation of a curve, similar to an algebraic curve. By doing that, we can express the

stability spectrum as the locus of the Λ-zeros of Ppζ,Λq corresponding to a real, non-negative

value of the variable ζ ě 0. We can then construct the stability spectrum by moving ζ in the

interval r0,8q and, for each value of ζ, computing the three Λ-roots of Ppζ,Λq. Let us note that

the polynomial of the squares of the differences has the expression as a polynomial in Λ

Ppζ,Λq “ ´4 rΛ ´ Λ1pζqs rΛ ´ Λ2pζqs rΛ ´ Λ3pζqs

“ ´4Λ3 ` Λ2p9ζ ` 8q2q ´ 2Λp3ζ2 ´ 3q2ζ ` 2q4 ´ 18qrq

` ζ3 ´ 2q2ζ2 ` q4ζ ` 27r2 ´ 4q3r ,

(5.74)

which, assuming ζ is real, has real coefficients, and hence the following.

Proposition 5.2.5 The stability spectrum SΛ is symmetric with respect to the real axis.

That means that the stability spectrum is a symmetric piecewise smooth curve in the complex

Λ-plane. Switching from a triplet of real Λ-roots of Ppζ,Λq to a pair of complex conjugate roots

and one real root (or vice versa) when moving ζ from 0 to 8 comes from a collision of two real

(or two complex conjugate) Λ-roots. That happens at a zero ζj of the discriminant

Qpζq “ ∆ΛPpζ,Λq , (5.75)

that is, when Qpζjq “ 0, provided the discriminant changes sign. The polynomial Qpζq turns
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out to be of fifth degree. It factorises as

Qpζq “ 4Q2
1pζqQ2pζq

Q1pζq “ 18qζ ` 27r ´ 8q3,

Q2pζq “ ζ3 ´ 8q2ζ2 ` 8qp2q3 ´ 9rqζ ` 4rp8q3 ´ 27rq .

(5.76)

After a collision where the discriminant Qpζq changes sign, two real Λ-roots scatter off the real

axis, or two complex conjugate Λ-roots scatter into the real axis. This makes the factor Q2
1pζq

irrelevant for our analysis since it does not encode a change of sign. It is worth noting, however,

that, for more convoluted systems where Ppζ,Λq is of a higher degree, components that do not

encompass changes of sign may be relevant to characterise meaningful collisions of roots taking

place off the real axis, or even several simultaneous collisions in the real axis.

Be that as it may, for the case at hand we only need to focus on Q2pζq. It is a cubic polynomial

with real coefficients, so its three roots ζ1, ζ2, and ζ3 can either be all real if the discriminant of

Q2pζq is positive,

∆ζQ2pζq “ 16r
`

16q3 ´ 27r
˘3

ą 0 , (5.77)

or two complex conjugate and one real if the discriminant is negative.

We can also write our condition for the existence of a gap in terms of Q2pζq, reformulating it as

Q2p0q “ ´ζ1ζ2ζ3 “ 4rp8q3 ´ 27rq ą 0. It is more convenience for the study of the condition

to consider the sign of qr instead of the sign of r and q separately. In particular, we can use the

condition q2Q2p0q ą 0, which translates into

pqrq
“

8q4 ´ 27pqrq
‰

ą 0 , (5.78)

which is never satisfied if qr ă 0 and, in fact, is only satisfied if 0 ă qr ă p8{27qq4.

We can do something similar with condition (5.77) on the discriminant of Q2pζq to transform it

into the condition

pqrq
“

16q4 ´ 27pqrq
‰

ą 0 , (5.79)
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which in turn gives the condition 0 ă qr ă p16{27qq4. If that is the case, then for large enough

values of ζ, namely ζ3 ă ζ ă 8, as well as for ζ1 ă ζ ă ζ2, Q2pζq is positive, while for

ζ2 ă ζ ă ζ3 and for ´8 ă ζ ă ζ1, Q2pζq is negative. We can now analyse all the possible

cases according to the sign of the ζ-roots of Q2pζq.

(i) ζ1 ă ζ2 ă ζ3 ă 0: this case (all three roots are negative) is not allowed due to Vieta’s

relation ζ1 ` ζ2 ` ζ3 “ 8q2.

(ii) ζ1 ă ζ2 ă 0 ă ζ3: Vieta’s relation ζ1ζ2ζ3 “ 4rp27r´8q3q, implies pqrq
“

27pqrq ´ 8q4
‰

ą

0, while the positive discriminant condition (5.79) does not allow qr to be negative. That

means that only the interval p8{27qq4 ă qr ă p16{27qq4 is allowed. In that case, two Λ-

roots collide for ζ “ ζ3 and, for 0 ď ζ ă ζ3, the spectrum exhibits two complex conjugate

curves in the Λ-plane. We refer to this complex part of the spectrum as branch (B), since

the two end-points at ζ “ 0 of the two Λ-roots trajectories do not generically coincide

with each other (see Figure 5a below). Gaps are not allowed in this case, which we denote

as 0G 1B 0L, or B-type.

(iii) ζ1 ă 0 ă ζ2 ă ζ3: the same Vieta’s relation above requires 0 ă qr ă p8{27qq4, which

is also compatible with the positive discriminant condition (5.79). Two Λ-roots collide

for ζ “ ζ3, get off the real axis and collide again for ζ “ ζ2 on the real Λ-axis thereby

forming one complex closed curve, which we term loop (L) (see Figure 6a below). In

this case there exist no branches. However, a gap does exist since its existence condition

(5.78) is satisfied. Thus, we denote this spectrum type 1G 0B 1L, or LG-type.

(iv) 0 ă ζ1 ă ζ2 ă ζ3: this case is not allowed by two Vieta relations, which lead to the in-

equalities 6q4´27pqrq ą 0 and pqrq
“

27pqrq ´ 8q4
‰

ą 0, and by the positive discriminant

condition (5.79).

Let us now consider the spectra SΛ whose parameters q, r satisfy the negative discriminant

inequality, namely pqrq
“

16q4 ´ 27pqrq
‰

ă 0. In that case only one ζ-root, say ζ3, is real, while

the other two are complex conjugate roots. Again we will study the possible cases according to

the sign of ζ3.
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(i) ζ3 ă 0: not possible since Vieta’s relations for the polynomial Q2pζq, see (5.76), and the

sign of the discriminant ∆ζQ2pζq are never compatible.

(ii) ζ3 ą 0: again, combining Vieta’s relations with the negative discriminant condition shows

that this is possible only for qr ă 0 or qr ą p16{27qq4. The resulting spectrum is of type

0G 1B 0L.

With all the observations above we can finalise our full characterisation of the possible spectra,

which is shown in Table 3. As explained before, we have completed the computation assuming

Table 3: Stability spectra

qr ă 0 0 ă qr ă 8
27q

4 8
27q

4 ă qr

0G 1B 0L 1G 0B 1L 0G 1B 0L

q ‰ 0 (so that, for the sake of plotting, we can just take q “ 1 and it will be equivalent

to any other non-zero value). For completeness, we can study the non-general choice q “ 0

separately, assuming r ‰ 0. In that case the polynomial of the squares of the differences Ppζ,Λq

becomes

Ppζ,Λq “ ´ p4Λ ´ ζq pΛ ´ ζq
2

` 27r2 , (5.80)

and hence Ppζ,Λq “ ´4Λ3 ` 27r2. By means of the Proposition 5.2.3, the real part of the

spectrum is the semi-axis Λ0 ď Λ ă 8 with Λ0 “
“

p27{4qr2
‰1{3. For the complex part of the

spectrum, let us note that Q2pζq “ ζ3 ´ 108r2, which means that the only real zero of Q2pζq is

the positive number ζ3 “
`

108r2
˘1{3. For this value, the polynomial Ppζ3,Λq has a double real

Λ-root ΛB , which can be found to be ΛB “ p1{2qζ3 “ 21{3Λ0. As ζ is moved back from 8,

two Λ-roots collide at ΛB when ζ “ ζ3 and then scatter off the real axis to produce a branch,

whose end-points for ζ “ 0 are located at the complex conjugate points Λ0e
2iπ{3 and Λ0e

´2iπ{3.

That means that for q “ 0, r ‰ 0, the spectrum is of type 0G 1B 0L.

The only additional choices left to study are the non-generic thresholds between regions, in

particular qr “ 0 and qr “ p8{27qq4. We have already seen what happens when q “ 0 and

r ‰ 0, we can now look at the spectrum when r “ 0. In that case, the characteristic polynomial
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(5.61) becomes

P pw,Λq “ pw ´ qqpw2 ´ Λq , (5.81)

making the roots explicit. The corresponding spectrum is entirely real, which we will denote as

0G 0B 0L. The wave number functions have the expression

k1pΛq “ ´q ´
?
Λ , k2pΛq “ q ´

?
Λ , k3pΛq “ 2

?
Λ , 0 ď Λ ă `8 . (5.82)

The last choice of parameters we have to check is 27r ´ 8q3 “ 0, where a gap disappears. In

that case the discriminant Qp0q goes to zero, meaning that the polynomial of the squares of the

differences,

Pp0,Λq “ ´4

„

Λ `
1

3
q2
ȷ2 „

Λ ´
8

3
q2
ȷ

, (5.83)

has a double Λ-root, ΛD “ ´p1{3qq2, where a branch closes up and becomes a loop. The

corresponding spectrum can be classified as 1G 0B 1L, where the real segment before the loop

is reduced to only a point.

Now, once we have completed the study of the stability spectrum, regarding the space variable x,

we can switch our attention to the time variable t to look at the stability of the perturbations. That

means we have to investigate whether the frequencies ω1pΛq, ω2pΛq, and ω3pΛq (see (5.56)) are

real numbers for Λ P SΛ. We can write their relation with the wave numbers kjpΛq as

ωj “
1

3
kj p2q ` kj ` 2kj`1q , j “ 1, 2, 3 mod 3 , (5.84)

which can be derived from their definition (5.56) by first inverting the map twju Ñ tkju, that

is

wj “
1

3
pq ` kj ` 2kj`2q , j “ 1, 2, 3 mod 3 . (5.85)

However, this is not a dispersion relation, since every frequency ωj is written in terms of two

different wave numbers, kj and kj`1. We can obtain a proper dispersion relation by eliminating

the variable Λ among the algebraic relations P pw,Λq “ 0, Ppζ,Λq, and ωj “ kjpq ´ wjq. In
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order to do that, we also need to introduce the polynomial of the squares of the differences for

W 2, which we will denote by Rpξ,Λq,

Rpξ,Λq “ pξ ´ ω2
1qpξ ´ ω2

2qpξ ´ ω3q2 “ ξ3 ` δ2ξ
2 ` δ1ξ ` δ0 . (5.86)

where the coefficients can be computed using Vieta’s relations (5.70):

δ2 “ ´2
`

q4 ´ 6qr ´ 2q2Λ ` Λ2
˘

,

δ1 “
`

q4 ´ 6qr ´ 2q2Λ ` Λ2
˘2
,

δ0 “ r2
`

´4q3r ` 27r2 ´ 4q4Λ ` 36qrΛ ` 8q2Λ2 ´ 4Λ3
˘

,

(5.87)

The problem then reduces to finding a Gröbner basis for our set of polynomials, which can be

obtained via standard methods, e. g. Buchberger’s algorithm or Faugère’s algorithms [22, 64,

65]. With that, we can compute the three-branch dispersion relation Hp˘kj ,˘ωjq “ 0, where

Hpk, ωq has the expression

Hpk, ωq “ ω3 ´ 4qkω2 ` k2
`

4q2 ´ k2
˘

ω ´ 4rk3 . (5.88)

Note here that the dispersion relation (5.88) can also be obtained via a stardard Fourier approach

to the linearised equations. However, the Fourier expansion approach can only be used for plane

wave, whereas the approach shown in this chapter has the potential to be applied to broader

classes of solutions, which will be a topic of further research. Further reasons justifying the

convenience to use this approach are explained in Section 5.3.

Now that we have the dispersion relation, let us study the stability for generic values of q and

r. We have seen that for any generic value of q and r, the stability spectrum exhibits both a

real component and a complex, non-real one. For each point Λ of the real part of the spectrum,

all three wave numbers k1pΛq, k2pΛq, and k3pΛq are real. That means, by using the expression

(5.84), that the corresponding frequencies ωjpΛq are also real, so the perturbations constructed

using only the real part of the spectrum are bounded in t and thus do not cause instabilities.

On the other hand, for points Λ on the non-real part of the spectrum (that is, either on a branch
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or on a loop), only one of the three wave numbers, say k3pΛq, is real, whereas the other two

are non-real. Again by using the expression (5.84), the corresponding frequency ω3pΛq is then

non-real, since its real part is

Repω3q “
1

3
k3 p2q ` k3q `

2

3
k3 Repk1q . (5.89)

while its imaginary part, which produces the instability, has the form

Γ3pλq “ |Impω3q| “
2

3
|k3 Impk1q| , (5.90)

which is non-zero as long as Λ is off the real axis. We can conclude the analysis of stability with

the following result.

Proposition 5.2.6 All stability spectra SΛ are classified with respect to the parameters q and

r ‰ 0 in two types: the B-type, containing a real part and one branch, and the LG-type, con-

taining a real part with one finite gap, and one loop. Only for r “ 0 the spectrum is totally real

with no complex part. The plane wave solutions are then linearly stable if and only if r “ 0,

with ω1 “ k21 ` 2qk1, ω2 “ ´k22 ` 2qk2, and ω3 “ 0, and is otherwise unstable for every value

of q and every non-vanishing value of r.

Examples of these two types of spectra have been numerically computed. In Figure 5, B-type

spectrum is presented (Figure 5a); with the corresponding gain function Γ on the branch (Fig-

ure 5b), which proves that this instability is of baseband type, that is, waves are unstable around

|k| “ 0; the functions kjpΛq, for j “ 1, 2, 3, if Λ is real, together with the function k3pRepΛqq

on the branch (Figure 5c); the real frequency on the branch as function of k “ k3 (Figure 5d).

The same functions are plotted in Figures 6b, 6c and 6d, for an LG-type spectrum, which is

shown in Figure 6a. In particular, Figure 6b shows that in this case the instability is of passband

type, namely, waves are stable for sufficiently small values of |k|.
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(a) Spectrum SΛ.
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(b) Gain function Γ versus k3.
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(d) Real frequency versus k3 (see (5.89)).

Figure 5: B-type spectrum, q “ 1, r “ ´4.

5.3 Stability and rogue waves

One relevant application of the method is that the classification of the spectra in having either

passband or baseband instability gives a straightforward prediction on the existence of rogue

waves understood as rational solitons. As shown in the literature, baseband modulation instabil-

ity is one of the proposed mechanisms for the origin of rogue waves [13, 14, 152]. Using the

stability spectra, the existence of baseband instability is associated to the existence of branches

in the spectrum, which enables to relate the choices of parameters that allow for rogue waves

with the topological properties of the stability spectrum. In fact, we propose the following con-

jecture, which is yet to be proven rigorously but holds true for all the systems studied and has

some geometrical intuition.
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(d) Real frequency versus k3 (see (5.89)).

Figure 6: LG-type spectrum, q “ 1, r “ 0.1.

Conjecture 5.3.1 The existence of branches in a stability spectrum for a plane wave is equiva-

lent to the existence of rational solitons constructed using that same plane wave as background.

The value of the spectral parameter λ at the end of the branches coincides exactly with the value

of λ that allows one to turn breathers into rational solitons in the Darboux-dressing framework.

This conjecture, if true, tells us that not only can we predict the existence of rogue waves from the

shape of the spectrum, but it also gives the exact value of the spectral parameter we have to use to

construct them via spectral methods. That would be a strong point remarking the convenience of

using the approach in this chapter instead of simpler methods like a Fourier expansion. We also

have an addition conjecture, still not proven rigorously, regarding the existence of gaps.

Conjecture 5.3.2 The existence of gaps or, otherwise, parts of the real axis not included in
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the stability spectrum is related to the existence of dark solitons having that plane wave as

background. The values of the spectral parameter λ in the gap can be used to construct the dark

soliton solution via spectral methods.

Note that in this case we do not propose an equivalence, given that for some systems there exist

dark solitons that use values of the spectral parameter out of the gaps for their construction. For

example, for the YON system both the finite gaps and infinite gaps in the Λ-spectra, which may

be used to construct dark solitons, can move to the imaginary axis for big enough values of p

when going back to the original spectral parameter λ, which serves as a counterexample.

A rigorous proof and, if true, a geometric analysis for these conjectures are yet to be produced,

and are a topic of further research.

Summarising, some strenghts of the method introduced in this section in comparison with

Fourier-based methods are:

• It is better suited to deal with multicomponent systems, which are often hard to treat or

untreatable with other methods.

• It provides additional information in the form of the stability spectrum, which allows to

predict the types of instability that the system presents without the need to derive the gain

function.

• The stability spectrum can also potentially provide predictions for the existence of special

types of solution, such as rational solutions or dark solitons.

• Although further research is needed, the links between its topology and the behaviour of

the system may provide deeper insights on the nature of integrability from the geometric

point of view.
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Chapter 6

Hirota Bilinear Method for the YON

System

The last part of the thesis will be devoted to the application of Hirota bilinearisation techniques

(see [88, 89, 90, 91, 93]) to obtain general classes of soliton and rational soliton solutions for

the YON system. Multiple techniques have been developed throughout the years to construct

solutions in closed form for nonlinear equations of integrable type. Some of the most notable

methods include inverse scattering techniques [1, 2, 3, 6, 78, 126, 131], Bäcklund transforma-

tions [85, 140], and Darboux methods [111, 156]. Nevertheless, the Hirota bilinear method has

two very important points that distinguish it from the methods before: it is not an analytical

method but an algebraic one, and it is not a spectral method, meaning that it does not rely on

the existence of a Lax pair to work. In fact, some authors claim it can even be applied to non-

integrable systems [113, 137]; however, other results seem to point otherwise, finding evidence

that the existence of multisoliton solutions via Hirota bilinearisation may indeed be a character-

isation of integrability (see [87]). Studying this characterisation and the connections between

the method and the classical definitions of integrability is currently an open field of research.

The construction of a Hirota bilinearisation of a system is also useful for constructing Bäcklund

transformations [92].
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The specific approach we are going to take, known as the method of τ -functions, makes use of

the Kadomtsev-Petviashvili (KP) equation (see [98]) and the discrete KP (dKP) equation, also

known as Hirota-Miwa (HM) equation (see [93, 127]) to write the corresponding bilinear forms

as elements of the KP hierarchy. It has been succesfully applied to several integrable systems

including the massive Thirring model [38], the semidiscrete Camassa-Holm equation [134, 143],

the complex short pulse equation [72], the Sasa-Satsuma equation [73, 158], the Yajima-Oikawa

system [35], the Newell system [34, 39], the vector nonlinear Schrödinger (NLS) equation, also

known as Manakov system [66], the discrete NLS equation [132], the generalised derivative

NLS equation [37], the nonlocal NLS equation, also known as Ablowitz-Musslimani equation

[68], the multicomponent coupled Ito equation [36], the Degasperis-Procesi equation [70, 71],

or the reduced Ostrovsky equation [69], among others.

6.1 The Hirota bilinear method

A very nice introduction to the Hirota bilinear method is presented in [86]. We will follow

results from that paper along with workshop notes [67] that Baofeng Feng kindly provided to

give some insights on the topic.

The first step in the method consists on bilinearising the equation, which means rewriting the

original equations with Hirota’s bilinear operator D,

Dn
xf ¨ g “ pBx ´ Byq

n fpxqgpyq
ˇ

ˇ

x“y
, (6.1)

instead of the regular derivatives. Let us illustrate how we can perform this bilinearisation by

performing it on the Korteweg-de Vries (KdV) equation,

uxxx ` 6uux ` ut “ 0 , (6.2)

following the computations in [86]. A way to find it is to change variables so that the leading

derivative has the same number of derivatives than the nonlinear term, that is, to define a new

variable w such that the first two terms in (6.2) have the same number of derivatives. If we
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establish each x-derivative having degree 1, then the leading derivative uxxx has degree 3, so,

in order to balance the term uux, u needs to have degree 2, so we can introduce the change of

variable

u “ B2
xw , (6.3)

so that (6.2) transforms into

wxxxxx ` 6wxxwxxx ` wxxt “ 0 . (6.4)

Now we can integrate (6.4) with respect to x to get

wxxxx ` 3w2
xx ` wxt “ 0 . (6.5)

This integration should introduce an integration constant, but given that w is just defined in (6.3)

up to

w Ñ w ` xC1ptq ` C0ptq , (6.6)

we can absorb the integration constant by making an appropriate choice forC0ptq andC1ptq.

Now that we have an equation with balanced derivatives, namely (6.4), we can bilinearise it by

introducing a new variable with natural degree (as explained above) equal to zero, that is, either

logpF q or f{g. For this case, the former works, so let us define

w “ γ logpF q , (6.7)

with γ a free parameter. By introducing it into (6.4), we get an equation of fourth degree in F ,

with a structure

F 2 ˆ (quadratic term) ` 3γp2 ´ γqp2FF 2 ´ F 12qF 12 “ 0 . (6.8)

We want the equation to be quadratic, so we will choose γ “ 2, so that the equation be-

99



6.1. THE HIROTA BILINEAR METHOD CHAPTER 6. HIROTA BILINEAR
METHOD FOR THE YON SYSTEM

comes

FxxxxF ´ 4FxxxFx ` 3F 2
xx ` FxtF ´ FxFt “ 0 . (6.9)

Once we have the equation in a quadratic form, we can try and replace the derivatives with

Hirota’s bilinear operator (6.1). D operates on a product of two functions similarly to the Leibniz

rule, but with an important sign change,

Dxf ¨ g “ fxg ´ fgx , (6.10a)

D2
xf ¨ g “ fgxx ´ 2fxgx ` fxxg , (6.10b)

DxDtf ¨ g “ fxtg ´ fxgt ´ ftgx ` fgxt . (6.10c)

In particular, we can write

DxDtF ¨ F “ 2pFxtF ´ FxFtq , (6.11a)

D4
xF ¨ F “ 2pFxxxxF ´ 4FxxxFx ` 3F 2

xxq , (6.11b)

so that we can rewrite (6.9) as

`

D4
x `DxDt

˘

F ¨ F “ 0 , (6.12)

which we will call the Hirota bilinear form of the KdV equation. Overall, to obtain the Hirota

bilinear form we have applied the transformation

u “ 2B2
x logpF q (6.13)

and integrated the equation once, to then transform the derivatives into Hirota derivatives using

the D-operator. This is, however, not an algorithmic process, and the exact transformation and

the number of new variables needed to get to a bilinear form may vary from one system to

another. In fact, for some systems a Hirota trilinear formalism has been introduced, due to the

impossibility of finding a bilinear form for the equation (see [80]).
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Now that we have the bilinear form (6.12) we can use it to obtain solutions of the KdV equation.

Let us give a few useful propertes of the D-operator before. Let P be a polynomial. Then,

P pDq1 ¨ f “ P p´Bqf , P pDqf ¨ 1 “ P pBqf , (6.14a)

P pDqepx ¨ eqx “ P pp´ qqepp`qqx , (6.14b)

B2
x logpfq “ pD2

xf ¨ fq{p2f2q , (6.14c)

B4
x logpfq “ pD4

xf ¨ fq{p2f2q ´ 3pD2
xf ¨ fq2{p2f4q . (6.14d)

Let us start obtaining the soliton solutions. The bilinear form of KdV, like for many other

systems, is of the polynomial form

P pDx, Dy, . . .qF ¨ F “ 0 . (6.15)

We can do the further assumption that P is an even polynomial, since all the odd terms cancel

out due to the antisymmetry of the D-operator.

The most basic solution we can look for is the vacuum solution, corresponding to u “ 0 in (6.2).

By means of (6.13), the corresponding F -solution is of the form

F “ eC1ptqx`C0ptq , (6.16)

but, as we said, we have the freedom to choose C1ptq and C0ptq however we want, so we can

just define the vacuum solution as F “ 1. It is a solution of the system as long as

P p0, 0, . . .q “ 0 , (6.17)

that is, as long as the independent term of the polynomial is zero. The soliton solutions are
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obtained as finite perturbation expansions around the vacuum solution,

F “ 1 ` εf1 ` ε2f2 ` . . . (6.18)

where ε is a formal expansion parameter. Each extra term we take in the finite expansion will

contribute an additional soliton to the solution. Let us start with the 1-soliton solution, which

only uses one perturbation term,

F “ 1 ` εf1 . (6.19)

If we substitute it into (6.15), we get

P pDx, Dt, . . .qr1 ¨ 1 ` ε1 ¨ f1 ` εf1 ¨ 1 ` ε2f1 ¨ f1s . (6.20)

The order ε0 vanishes due to (6.17). For the order ε1, both terms are actually the same due to

relation (6.14a) and P being an even polynomial. It gives the equation

P pBx, Bt, . . .qf1 “ 0 . (6.21)

The soliton solutions will be associated to the exponential solutions of this equation. For the

1-soliton solution, we can take

f1 “ eη , η “ px` qt` . . .` const , (6.22)

so the equation (6.21) provides a dispersion relation for the parameters p, q, . . . in the exponen-

tial,

P pp, q, . . .q “ 0 . (6.23)

Once that we have established f1 is an exponential solution, the term of order ε2 also vanishes

due to property (6.14b),

P pDx, Dt, . . .qe
η ¨ eη “ P pp´ p, q ´ q, . . .qe2η “ P p0, 0, . . .qe2η “ 0 . (6.24)
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For the particular case of KdV, with

F “ 1 ` epx`qt`ϕ0 (6.25)

the equation (6.23) provides the well known dispersion relation q3 “ p.

For the 2-soliton solution, one has to add one more term to the vacuum solution, F “ 1`f1`f2,

and, in order to combine the solitons, we want that

f1 “ eη1 ` eη2 , (6.26)

with the notation

ηi “ pix` qit` . . .` const , (6.27)

with pi, qi, . . . complex parameters related through the dispersion relation (6.23).

A similar analysis to the one performed for the 1-soliton solution tells us that the combination

we are looking for is

F “ 1 ` eη1 ` eη2 `A12e
η1`η2 , (6.28)

where A12 has the form

A12 “ ´
P pp1 ´ p2, q1 ´ q2, . . .q

P pp1 ` p2, q1 ` q2, . . .q
. (6.29)

For the 3-soliton solution, the corresponding form would be

F “ 1`eη1 `eη2 `eη3 `A12e
η1`η2 `A13e

η1`η3 `A23e
η2`η3 `A12A13A23e

η1`η2`η3 , (6.30)

where the Aij are defined as in (6.29). The computation is based on imposing that the solution

reduces to the 2-soliton solution when the third soliton goes to infinity (when η3 Ñ ˘8). The

general N -soliton solution can be obtained in a similar way (see [80]) and has the form

F “
ÿ

µi“0,1
1ďiďN

exp

˜

ÿ

1ďiăjďN

φpi, jqµiµj `

N
ÿ

i“1

µiηi

¸

, (6.31)
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where we have defined Aij “ eφpi,jq. Note that going from the 2-soliton solution to the N -

soliton solution does not add additional conditions or constraints on the individual solitons or on

the equation, and is completely fixed.

The existence of these multisoliton solutions without additional constraints on them is a distinc-

tive feature of integrable systems. Indeed, one can define a system as Hirota integrable if such

a solution exist, and, for all the systems studied up to our knowledge, this definition of integra-

bility is equivalent to more conventional definitions of integrability, like Lax integrability (see

[86]).

Now that we have an idea of how the general method works, let us introduce the method we

will employ, the method of τ -functions, following [67]. We will make use of the discrete

Kadomtsev-Petviashvili (dKP) equation, also known as Hirota-Miwa equation (see [93, 127]),

which is also integrable. It is an equation for a complex-valued τ -function defined on a three-

dimensional lattice with lattice constants a1, a2 and a3, so that the coordinates of the vertices are

pk1a1, k2a2, k3a3q with k1, k2, k3 P Z. In a slight abuse of notation we will denote these coor-

dinates as pk1, k2, k3q, so that we will denote τpk1, k2, k3q “ τpk1a1, k2a2, k3a3q. The standard

way of writing the dKP equation in bilinear form is

a1 pa2 ´ a3q τ pk1 ` 1, k2, k3q τ pk1, k2 ` 1, k3 ` 1q

` a2 pa3 ´ a1q τ pk1, k2 ` 1, k3q τ pk1 ` 1, k2, k3 ` 1q

` a3 pa1 ´ a2q τ pk1, k2, k3 ` 1q τ pk1 ` 1, k2 ` 1, k3q “ 0 .

(6.32)

The dKP equation appears naturally when generalising certain geometric settings to a nonlinear

stage (see [60]). By defining

x “

3
ÿ

i“1

aiki , y “
1

2

3
ÿ

i“1

a2i ki , t “
1

3

3
ÿ

i“1

a3i ki , (6.33)

and taking the continuous limit ai Ñ 0, we get the bilinear equation [67]

`

D4
x ´ 4DxDt ` 3D2

y

˘

τpx, y, tq ¨ τpx, y, tq “ 0 , (6.34)
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which, by means of the change of variable u “ 2plog τqxx, transforms into the original KP

equation [98],

p´4ut ` 6uux ` uxxxqx ` 3uyy “ 0 . (6.35)

By using the more compact notation

τ pk1 ` 1, k2, k3q “ τ1 , τ pk1, k2 ` 1, k3 ` 1q “ τ23 “ pτ1 , (6.36)

we can write the dKP equation as

a1 pa2 ´ a3q τ1pτ1 ` a2 pa3 ´ a1q τ2 pτ2 ` a3 pa1 ´ a2q τ3pτ3 “ 0 . (6.37)

Note that it can also be rewritten as a determinant,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 a1 a1τ1 pτ1

1 a2 a2τ2 pτ2

1 a3 a3τ3 pτ3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 . (6.38)

The dKP hierarchy is then defined as the set of dKP equations for lattices pki, kj , kmq taken from

the bigger lattice pk1, k2, k3, . . .q,

´

a´1
j ´ a´1

m

¯

τiτjm `
`

a´1
m ´ a´1

i

˘

τjτmi `

´

a´1
i ´ a´1

j

¯

τmτij “ 0 . (6.39)

We can further rewrite the dKP equation by using the gauge transformation

τ Ñ
`

a´1
2 ´ a´1

3

˘k2k3 `a´1
1 ´ a´1

3

˘k1k3 `a´1
1 ´ a´1

2

˘k1k2 τ , (6.40)

so that it becomes

τ1τ23 ´ τ2τ31 ` τ3τ12 “ 0 . (6.41)
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Via a similar transformation, the equations in the dKP hierarchy can also be transformed into

τmτij ´ τjτim ` τiτjm “ 0 . (6.42)

This is integrable, and its Lax pair is known and has been employed to study its Darboux trans-

formation (see [130]). It also admits solutions in terms of the following discrete Gram-type

determinant [133]

τ pk1, k2, k3q “ |mij pk1, k2, k3q|1ďi,jďN (6.43)

with

mij pk1, k2, k3q “ cij `
1

pi ` qj

3
ź

l“1

ϕ pal, klq ϕ̄ pal, klq , (6.44)

where

ϕ pal, klq “ p1 ´ alpiq
´kl , ϕ̄ pal, klq “ p1 ` alqjq

k3 . (6.45)

That means it can also be explicitly expressed as

τ pk1, k2, k3q “

ˇ

ˇ

ˇ

ˇ

ˇ

cij `
1

pi ` qj

ˆ

´
1 ´ a1pi
1 ` a1qj

˙´k1 ˆ

´
1 ´ a2pi
1 ` a2qj

˙´k2 ˆ1 ´ a3pi
1 ` a3qj

˙´k3
ˇ

ˇ

ˇ

ˇ

ˇ

.

(6.46)

The dKP equation also admits the Casorati-type solution [133]

τ pk1, k2, k3q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
p0q

1 φ
p1q

1 ¨ ¨ ¨ φ
pN´1q

1

φ
p0q

2 φ
p1q

2 ¨ ¨ ¨ φ
pN´1q

2

...
...

...

φ
p0q

N φ
p1q

N ¨ ¨ ¨ φ
pN´1q

N

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (6.47)

with

φ
pnq

i pk1, k2, k3q “ αip
n
i

3
ź

j“1

p1 ´ ajpiq
´kj ` βiq

n
i

3
ź

j“1

p1 ´ ajqiq
´kj . (6.48)

106



6.1. THE HIROTA BILINEAR METHOD CHAPTER 6. HIROTA BILINEAR
METHOD FOR THE YON SYSTEM

One can also define higher order equations in the dKP hierarchy via the determinant [133]

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 a1 a21 ¨ ¨ ¨ an´2
1 an´2

1 τ1 pτ1

1 a2 a22 ¨ ¨ ¨ an´2
2 an´2

2 τ2pτ2
...

...
...

...
...

1 an a2n ¨ ¨ ¨ an´2
n an´2

n τnpτn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 , (6.49)

so that we can get, for example, the equation

a21 pa2 ´ a3q pa2 ´ a4q pa3 ´ a4q τ1pτ1 ´ a22 pa1 ´ a3q pa1 ´ a4q pa3 ´ a4q τ2pτ2

` a23 pa1 ´ a2q pa1 ´ a4q pa2 ´ a4q τ3pτ3 ´ a24 pa1 ´ a2q pa1 ´ a3q pa2 ´ a3q τ4pτ4 “ 0 .

(6.50)

Together with the following equations written using (6.39)

`

a´1
2 ´ a´1

4

˘

τ1τ24 `
`

a´1
4 ´ a´1

1

˘

τ2τ41 `
`

a´1
1 ´ a´1

2

˘

τ4τ12 “ 0 , (6.51a)
`

a´1
3 ´ a´1

4

˘

τ1τ34 `
`

a´1
1 ´ a´1

3

˘

τ4τ13 `
`

a´1
4 ´ a´1

1

˘

τ3τ41 “ 0 , (6.51b)
`

a´1
2 ´ a´1

3

˘

τ4τ23 `
`

a´1
3 ´ a´1

4

˘

τ2τ34 `
`

a´1
4 ´ a´1

2

˘

τ3τ42 “ 0 , (6.51c)

and the original dKP equation (6.37) we can write the following equation of hydrodynamic

type

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 pa1 ´ a2q τ12 pa3 ´ a1q τ13 pa2 ´ a3q τ23

pa2 ´ a1q τ12 0 pa1 ´ a4q τ14 pa4 ´ a2q τ24

pa1 ´ a3q τ13 pa4 ´ a1q τ41 0 pa3 ´ a4q τ34

pa3 ´ a2q τ23 pa2 ´ a4q τ24 pa4 ´ a3q τ34 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

a4τ4

a3τ3

a2τ2

a1τ1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ 0 . (6.52)

In order to have a non-trivial solution we require that the determinant of the coefficient matrix
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be equal to zero,

pa1 ´ a2q pa3 ´ a4q τ12τ34 ´ pa1 ´ a3q pa2 ´ a4q τ13τ24 ` pa1 ´ a4q pa2 ´ a3q τ14τ23 “ 0 .

(6.53)

Now that we have introduced this language of τ -functions we can see how other systems can be

derived in this same language following similar definitions to (6.46). Let us illustrate it by seeing

how it enables to construct and study the continuous two-dimensional Toda hierarchy. The

Toda lattice is an integrable model describing a chain with a nearest neighbour interaction under

a certain special potential (see [147]). It can be written in the so-called Flaschka’s variables

as
$

’

’

&

’

’

%

dan
dt

“ anpbn ´ bn`1q ,

dbn
dt

“ 2pa2n´1 ´ a2nq ,

(6.54)

where physically an and bn are functions of the generalised coordinate qn and generalised mo-

mentum pn of the n-th particle in the chain.

The two-dimensional Toda lattice is a still integrable extension of the one-dimensional one ob-

tained by adding a linear coupling in the vertical direction (see [112, 124]), so that the equation

of motion for the pn,mq-th particle is

d2yn,m
dt2

“ e´pyn,m´yn´1,mq ´ e´pyn`1´yn,mq ` κpyn,m`1 ` 2yn,m ` yn,m´1q , (6.55)

where yn,m is the position of the pn,mq-th particle and κ is a coupling constant. We will consider

a continuous limit in the vertical direction, that is, yn,m Ñ ynpx, tq. Expanding yn,m˘1 as

yn,m˘1 “ yn ˘ h
Byn
Bx

`
1

2
h2

B2yn
Bx2

` Oph3q , (6.56)

we end up getting

B2yn
Bt2

“ e´pyn´yn´1q ´ e´pyn`1´yn,mq ` κh2
B2yn
Bx2

` Oph4q . (6.57)
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If we define rn “ yn ´ yn´1, after normalising the constants and neglecting the terms of higher

order in h, we get
B2rn
Bt2

´
B2rn
Bx2

“ 2e´rn ´ e´rn`1 ´ ern´1 . (6.58)

By defining the new variables z “ 1
2pt` xq and s “ 1

2px´ tq, so that

Bt “
1

2
pBy ´ Bsq , Bx “

1

2
pBy ` Bsq , (6.59)

then (6.58) becomes
B2rn
BzBs

“ 2e´rn ´ e´rn`1 ´ ern´1 , (6.60)

the two-dimensional Toda equation in light-cone coordinates [67]. We can now introduce a

change of variable to linearise the equation,

e´rn ´ 1 “
B2

BzBs
logpτnq , (6.61)

so that (6.60) adopts the Hirota bilinear form

pDyDs ´ 2qτn ¨ τn “ ´τn`1τn´1 . (6.62)

Let us get back to the dKP equation (6.32). If we introduce the change of variable

1 ´ a1pi “ ´p̃i , 1 ` a1qj “ q̃j , (6.63a)

1 ´ a2pi
1 ` a2qj

“
1 ´ ap̃i
1 ` aq̃j

, a “
a2

a1 ´ a2
, (6.63b)

1 ´ a3pi
1 ` a3qj

“
1 ´ b´1p̃i
1 ` b´1q̃j

, b´1 “
a3

a1 ´ a3
, (6.63c)
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then through the indices transformation

n “ ´pk1 ` k3q , (6.64a)

k “ k2 , (6.64b)

l “ k3 , (6.64c)

the dKP equation becomes

pa´ b´1qτnpk, lqτnpk ` 1, l ` 1q

´ aτn´1pk ` 1, lqτn`1pk, l ` 1q ` b´1τnpk, l ` 1qτnpk ` 1, lq “ 0 ,

(6.65)

which we can rewrite as

ab
´

τnpk, lqτnpk ` 1, l ` 1q ´ τn´1pk ` 1, lqτn`1pk, l ` 1q

¯

“ τnpk, lqτnpk ` 1, l ` 1q ´ τnpk, l ` 1qτnpk ` 1, lq ,

(6.66)

namely, the discrete analogue of the two-dimensional Toda lattice (6.62). That means it admits

a Gram-type solution similar to (6.43),

τnpk, lq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cij `
1

pi ` qj

˜

´
pi
qj

¸n˜

1 ´ api
1 ` aqj

¸´k˜

1 ´ bp´1
i

1 ` bq´1
j

¸´l

eξi`ξ̄j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (6.67)

where

ξi “ p´1
i x´1 ` pix1 ` . . . , ξ̄j “ q´1

j x´1 ` qjx1 ` . . . (6.68)
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6.2 Hirota bilinearisation for the YON system

Let us apply the theory introduced above to study the Yajima-Oikawa-Newell (YON) system

iSt ` Sxx ` piαLx ` α2L2 ´ βL´ 2α|S|2qS “ 0 , (6.69a)

Lt “ 2p|S|2qx , (6.69b)

following results from our paper in preparation [31] By replacing L with L{α and β “ 2αδ, we

can rewrite it as

iSt ` Sxx ` piLx ` L2 ´ 2δL´ 2α|S|2qS “ 0 , (6.70a)

Lt “ 2αp|S|2qx . (6.70b)

We will bilinearise (6.70) by using the change of variables

L “ i

ˆ

log
f˚

f

˙

x

, S “
g

f
, (6.71)

where f and g are complex functions and f˚ denotes the complex conjugate of f . The rationale

for the form of L is to ensure the resulting quantity is real, plus balancing the derivatives as

explained in the previous section.

The application of (6.71) into (6.70b) entails

i

ˆ

log
f˚

f

˙

tx

“ 2α

ˆ

gg˚

ff˚

˙

x

. (6.72)
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By integrating with respect to x, we get

i

ˆ

log
f˚

f

˙

t

“ 2α
gg˚

ff˚
` C1 (6.73a)

ùñ i
Dtf

˚ ¨ f

ff˚
“ 2α

gg˚

ff˚
` C1 (6.73b)

ùñ iDtf ¨ f˚ “ ´2αgg˚ ´ C1ff
˚ , (6.73c)

where we have used antisymmetry and the property

B

Bx
log

a

b
“
Dxa ¨ b

ab
(6.74)

for arbitrary functions a and b. By setting C1 “ 0 in (6.73c), we get the first of our bilinear

equations,

iDtf ¨ f˚ “ ´2α|g|2 . (6.75)

Introducing (6.71) into (6.70a) is a little more convoluted,

i

ˆ

g

f

˙

t

`

ˆ

g

f

˙

xx

´

#

ˆ

´ log
f˚

f

˙

xx

`

„

i

ˆ

log
f˚

f

˙

x

ȷ2

´ 2iδ

ˆ

log
f˚

f

˙

x

´ 2α
gg˚

ff˚

+

g

f
“ 0 ,

(6.76a)

ùñ
iDtg ¨ f

f2
`
D2

xg ¨ f

f2
`

«

´
D2

xf ¨ f

f2
´

ˆ

D2
xf

˚ ¨ f˚

2f˚2
´
D2

xf ¨ f

2f2

˙

`

ˆ

i
Dxf

˚ ¨ f

ff˚

˙2

´ 2iδ
Dxf

˚ ¨ f

ff˚
´ 2α

gg˚

ff˚

ff

g

f
“ 0 , (6.76b)

ùñ
piDt `D2

xqg ¨ f

f2
´
g

f

˜

D2
xf

˚ ¨ f˚

2f˚2
`
D2

xf ¨ f

2f2
`

pDxf
˚ ¨ fq2

f2f˚2

`
2iδDxf

˚ ¨ f ` 2αgg˚

ff˚

¸

“ 0 , (6.76c)

ùñ
piDt `D2

xqg ¨ f

f2
´
g

f

˜

f2p2f˚
xxf

˚ ´ 2f˚
x
2q

2f2f˚2
`
f˚2p2fxxf ´ 2f2xq

2f2f˚2

`
pDxf

˚ ¨ fq2

f2f˚2
`

2iδDxf
˚ ¨ f ` 2αgg˚

ff˚

¸

“ 0 , (6.76d)
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ùñ
piDt `D2

xqg ¨ f

f2
´
g

f

˜

f˚
xx

f˚
`
f˚2

x

f˚2
`
fxx
f

´
f2x
f2

`
pf˚

x f ´ f˚fxq2

f2f˚2

`
2iδDxf

˚ ¨ f ` 2αgg˚

ff˚

¸

“ 0 , (6.76e)

ùñ
piDt `D2

xqg ¨ f

f2
´
g

f

˜

f˚
xx

f
´
fxx
f

´
2f˚

x fx
ff˚

`
2iδDxf

˚ ¨ f ` 2αgg˚

ff˚

¸

“ 0 ,

(6.76f)

ùñ
piDt `D2

xqg ¨ f

f2
´
g

f

˜

f˚
xxf ´ 2f˚

x fx ` f˚fxx
ff˚

`
2iδDxf

˚ ¨ f ` 2αgg˚

ff˚

¸

“ 0 ,

(6.76g)

ùñ
piDt `D2

xqg ¨ f

f2
´
g

f

pD2
x ´ 2iδDxqf ¨ f˚ ` 2αgg˚

ff˚
“ 0 . (6.76h)

By decoupling (6.76h), we obtain two additional bilinear equations,

piDt `D2
xqg ¨ f “ 0 , (6.77)

pD2
x ´ 2iδDxqf ¨ f˚ ` 2α|g|2 “ 0 . (6.78)

We can use the previous bilinear equation (6.75) to rewrite (6.78) as

iDtf ¨ f˚ “ pD2
x ´ 2iδDxqf ¨ f˚ . (6.79)

So, summarising, the YON system transforms into a system of three Hirota bilinear equations:

piDt `D2
xqg ¨ f “ 0 , (6.80a)

iDtf ¨ f˚ “ pD2
x ´ 2iδDxqf ¨ f˚ , (6.80b)

iDtf ¨ f˚ “ ´2α|g|2 . (6.80c)
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6.3 Bright soliton solutions

Now, to produce bright soliton solutions (understood as soliton solutions on a zero background),

we can take our variables f and g with the form

f “ 1 ` ϵf2 ` ϵf4 ` . . . , g “ ϵg1 ` ϵ3g3 ` ϵ5g5 ` . . . (6.81)

and introduce them into our bilinear equations (6.80). In order to obtain the one-bright-soliton

solutions we can assume

f4 “ f6 “ . . . “ 0 , g3 “ g5 “ . . . “ 0 . (6.82)

After this choices, to the lowest order in ϵ our bilinear equations (6.80) yields

piDt `D2
xqg1 ¨ 1 “ 0 , (6.83a)

pD2
x ´ 2iδDxqf2 ¨ 1 ` pD2

x ´ 2iδDxq1 ¨ f˚
2 “ ´2αg1g

˚
1 , (6.83b)

iDtf2 ¨ 1 ` iDt1 ¨ f˚
2 “ ´2αg1g

˚
1 . (6.83c)

From (6.83a) we get

i
Bg1
Bt

`
B2g1
Bx2

“ 0 , (6.84)

which gives us a solution

g1 “ γ1e
η1 , η1 “ k1x` ik21t` ϕ0 , (6.85)

with k1 the corresponding wave number and ϕ0 an arbitrary initial phase.

From (6.83b) and (6.83c) we get

B2f2
Bx2

´ 2iδ
Bf2
Bx

`
B2f˚

2

Bx2
` 2iδ

Bf˚
2

Bx
“ ´2αg1g

˚
1 , (6.86a)

i
Bf2
Bt

´ i
Bf˚

2

Bt
“ ´2αg1g

˚
1 . (6.86b)
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We can plug the expression for g1 obtained above into (6.86) to get

B2f2
Bx2

´ 2iδ
Bf2
Bx

`
B2f˚

2

Bx2
` 2iδ

Bf˚
2

Bx
“ ´2α|γ1|2eη1`η˚

1 , (6.87a)

i
Bf2
Bt

´ i
Bf˚

2

Bt
“ ´2α|γ1|2eη1`η˚

1 . (6.87b)

For these equations we can try an Ansatz

f2 “ A2e
η1`η˚

1 , f˚
2 “ A˚

2e
η1`η˚

1 , (6.88)

and after substituting we get that

A2 “
2α|γ1|2piδ ` k˚

1 q

pk1 ` k˚
1 q2pk1 ´ k˚

1 q
. (6.89)

Putting everything together, we end up with the solution

f “ 1 `
2α|γ1|2piδ ` k˚

1 q

pk1 ` k˚
1 q2pk1 ´ k˚

1 q
eη1`η˚

1 “

∣∣∣∣∣∣∣∣
iδ ` k˚

1

k1 ` k˚
1

eη1`η˚
1 1

´1 ´
2α|γ1|2

k˚
1
2 ´ k21

∣∣∣∣∣∣∣∣ , (6.90a)

f˚ “ 1 `
2α|γ1|2piδ ´ k1q

pk1 ` k˚
1 q2pk1 ´ k˚

1 q
eη1`η˚

1 “

∣∣∣∣∣∣∣∣
iδ ´ k1
k1 ` k˚

1

eη1`η˚
1 1

´1 ´
2α|γ1|2

k˚
1
2 ´ k21

∣∣∣∣∣∣∣∣ , (6.90b)

g “ γ1e
η1 “

∣∣∣∣∣∣∣∣∣∣∣

iδ ` k˚
1

k1 ` k˚
1

eη1`η˚
1 1 eη1

´1 ´
2α|γ1|2

k˚
1
2 ´ k21

0

0 ´γ1 0

∣∣∣∣∣∣∣∣∣∣∣
, η1 “ k1x` ik21t` ϕ0 . (6.90c)

Upon getting back to the S and L variables through the change (6.71), the formulae above

provide the one-soliton solution. For example, for the short wave we have

S “
g

f
“

γ1e
η1

1 `
2α|γ1|2piδ`k˚

1 q

pk1`k˚
1 q2pk1´k˚

1 q
eη1`η˚

1

(6.91)
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and

|S|2 “
gg˚

ff˚
“

|γ|2eη1`η˚
1

´

1 `
2α|γ1|2piδ`k˚

1 q

pk1`k˚
1 q2pk1´k˚

1 q
eη1`η˚

1

¯´

1 `
2α|γ1|2piδ´k1q

pk1`k˚
1 q2pk1´k˚

1 q
eη1`η˚

1

¯ . (6.92)

We can denote k1 “ kr ` iki and get back to the original variables in (6.69) to write explicitly

the general form of the one-bright-soliton solution as

Spx, tq “
8eipk

˚2t`k˚xqkik
2
rγ

8e4kikrtkik2r ` |γ|2e2krxrβ ´ 2pki ` ikrqαs
, (6.93a)

Lpx, tq “ ´
64e2krp2kit`xqkik

4
r |γ|2

64e8kikrtk2i k
4
r ´ 16e2krp2kit`xqkik2r |γ|2p2kiα ´ βq ` |γ|4e4krxp4α2|k|2 ´ 4αβki ` β2q

.

(6.93b)

(a) Long wave L. (b) Short wave |S|.
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(c) Long wave profile at t “ 2.5.
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(d) Short wave profile at t “ 2.5.

Figure 7: 1-bright-soliton solution with α “ 1, β “ 2, k1 “ 2 ` i, γ1 “ 2 ` i.
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Both S and L are solitons moving with velocity

V “ 2ki , (6.94)

so that Lpx, 0q “ Lpx` V t, tq for every x and t (and the same applies for |Spx, tq|).

When t “ 0, both |S| and |L| have their maximum at

xmax “
1

4kr
log

ˆ

64k2i k
4
r

|γ|4p4α2|k|2 ´ 4αβki ` β2q

˙

, (6.95)

with the soliton in L having an amplitude

AL “
4k2r

´sgnpkiq
a

4α2|k|2 ´ 4αβki ` β2 ` p2αki ´ βq
, (6.96)

where sgnpkiq denotes the sign of ki, while the amplitude of |S| satisfies

A2
S “ ´kiAL (6.97)

as a direct consequence of the property

Lpx, tq

|Spx, tq|2
“ ´

1

ki
. (6.98)

Note that all the formulae above reduce nicely to the Newell case β “ 0 for every value of

the parameters. However, for the Yajima-Oikawa case α “ 0, the amplitude AL in (6.96)

diverges whenever ki ă 0. That, together with the expression for the velocity (6.94) indicates

that Yajima-Oikawa admits only bright solitons traveling to the right direction.

Once we have computed the formulae we can check that the solitons obtained in Section 4.3.4

via an Ansatz approach are indeed subcases of the ones we obtained via Hirota. In particular,

the bright soliton solution coincides with the Hirota soliton for the special case ki “ β{2α, so

that the velocity of the soliton is exactly V “ β{α. This reduction does not work well for the

Yajima-Oikawa case α “ 0, which is not surprising considering our Ansatz computation was
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only valid for α ‰ 0.

Through a similar process, we can compute the two-bright-soliton solutions by assuming k4 and

g3 are also nonzero in (6.81). By doing that, one ends up with the expressions

f “

∣∣∣∣∣∣∣∣∣∣∣∣∣

iδ`k˚
1

k1`k˚
1
eη1`η˚

1
iδ`k˚

2

k1`k˚
2
eη1`η˚

2 1 0

iδ`k˚
1

k2`k˚
1
eη2`η˚

1
iδ`k˚

2

k2`k˚
2
eη2`η˚

2 0 1

´1 0 ´
2α|γ1|2

k˚
1
2´k21

´
2αγ˚

1 γ2
k˚
1
2´k22

0 ´1 ´
2αγ˚

2 γ1
k˚
2
2´k21

´
2α|γ2|2

k˚
2
2´k22

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6.99a)

f˚ “

∣∣∣∣∣∣∣∣∣∣∣∣∣

iδ´k1
k1`k˚

1
eη1`η˚

1
iδ´k2
k1`k˚

2
eη1`η˚

2 1 0

iδ´k1
k2`k˚

1
eη2`η˚

1
iδ´k2
k2`k˚

2
eη2`η˚

2 0 1

´1 0 ´
2α|γ1|2

k˚
1
2´k21

´
2αγ˚

1 γ2
k˚
1
2´k22

0 ´1 ´
2αγ˚

2 γ1
k˚
2
2´k21

´
2α|γ2|2

k˚
2
2´k22

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6.99b)

g “

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iδ`k˚
1

k1`k˚
1
eη1`η˚

1
iδ`k˚

2

k1`k˚
2
eη1`η˚

2 1 0 eη1

iδ`k˚
1

k2`k˚
1
eη2`η˚

1
iδ`k˚

2

k2`k˚
2
eη2`η˚

2 0 1 eη2

´1 0 ´
2α|γ1|2

k˚
1
2´k21

´
2αγ˚

1 γ2
k˚
1
2´k22

0

0 ´1 ´
2αγ˚

2 γ1
k˚
2
2´k21

´
2α|γ2|2

k˚
2
2´k22

0

0 0 ´γ1 ´γ2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.99c)

One can study the phase shift via the changes of variableX “ x`2k1i andX “ x`2k2i, where

k1i and k2i are the imaginary parts of k1 and k2, in order to make “stationary” the first and second

soliton, respectively. That way one can make t go to ˘8 to collapse to a one-soliton solution,

and then study the difference in phase between the two asymptotic one-soliton solutions. The

phase shift for the first soliton in the 2-soliton solution then takes the form

ϕ0 “ σ
1

2k1r
log

„

pk21i ` k21r ` k22i ` k22r ´ 2k1ik2i ´ 2k1rk2rq2pk21i ` k21r ` k22i ` k22r ` 2k1ik2i ` 2k1rk2rq

pk21i ` k21r ` k22i ` k22r ´ 2k1ik2i ` 2k1rk2rq2pk21i ` k21r ` k22i ` k22r ` 2k1ik2i ´ 2k1rk2rq

ȷ

,

(6.100)
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(a) Long wave L. (b) Short wave |S|.
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(c) Long wave profile at t “ ´0.5.
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(d) Short wave profile at t “ ´0.5.

Figure 8: 2-bright-soliton solution with α “ 1, β “ 2, k1 “ 2 ` i, k2 “ 1 ´ 2i, γ1 “ 2 ` i,
γ2 “ 1 ` 2i.

where k1 “ k1r ` ik1i, k2 “ k2r ` ik2r, and the sign σ is

σ “ sgnrk2rpk2i ´ k1iqs . (6.101)

The corresponding shift for the second soliton can be obtained by simply swapping the subindices

1 and 2 in the formulae above.

Further solitons can be added to the solution by taking more nonzero terms in f and g. The

resulting f and g have similar forms as above, by extending the size of the determinant in 2 for
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each soliton added, so the N -soliton solution has the form

f “

∣∣∣∣∣∣∣
A 1N

´1N B

∣∣∣∣∣∣∣ , (6.102a)

g “

∣∣∣∣∣∣∣∣∣∣
A 1N cη

´1N B 0Nˆ1

01ˆN rγ 0

∣∣∣∣∣∣∣∣∣∣
, (6.102b)

where the N ˆN matrices A and B are defined by

Aij “
iδ ` k˚

j

ki ` k˚
j

eηi`η˚
j , Bij “ ´

2αγ˚
i γj

k˚
i
2 ´ k2j

, (6.103a)

the column vector cη satisfies pcηqi “ eηi , i “ 1, . . . , N , and the row vector rγ satisfies prγqi “

´γi.

As one would expect, the soliton solutions above coincide with the ones obtained for the Newell

system in [34] when setting β “ 0 and α “ 1, and with the solutions for Yajima-Oikawa

obtained in [35] upon setting α “ 0 and β “ 1.

6.4 Dark soliton solutions

In the previous section we computed the bright soliton solutions. Now we will also use the

Hirota techniques to produce dark soliton solutions (by which we mean soliton solutions on a

constant non-zero background), also following our paper in preparation [31]. In order to do so,

we will have to modify the change of variables we used for the bilinearisation. In the bright case,

we just wrote a change of variable on a zero background, however now we need to explicitly

account for the plane wave

S “ ρeirqx´pq2`2ρ2qts , L “ ν . (6.104)
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in our change of variable. To do so, we can modify our previous change of variable (6.71)

into

S “ ρ
g

f
eirqx´pq2`2ρ2qts , L “ ν ` i

ˆ

log
f˚

f

˙

x

. (6.105)

From (6.70b) we get

i

ˆ

log
f˚

f

˙

xt

“ 2αρ2
ˆ

gg˚

ff˚

˙

x

. (6.106)

By integrating it with respect to x we get

i

ˆ

log
f˚

f

˙

t

“ 2αρ2
gg˚

ff˚
` C1 (6.107a)

ùñ i
Dtf

˚ ¨ f

ff˚
“ 2αρ

gg˚

ff˚
` C1 (6.107b)

ùñ iDtf ¨ f˚ “ ´2αρ2gg˚ ´ C1ff
˚ . (6.107c)

In this case we will set C1 “ ´2αρ2 to obtain

iDtf ¨ f˚ “ 2αρ2p|f |2 ´ |g|2q , (6.108)

which will be one of our bilinear equations. To introduce the change of variable in (6.70b), the

computation will again be a longer one,

i

ˆ

g

f

˙

t

` pq2 ` 2αρ2 ´ ν2 ` 2δνq
g

f
` 2iq

ˆ

g

f

˙

x

`

ˆ

g

f

˙

xx

´
g

f

ˆ

log
f˚

f

˙

xx

`
g

f

„

ν ` i

ˆ

log
f˚

f

˙

x

ȷ2

´ 2iδ
g

f

„

ν ` i

ˆ

log
f˚

f

˙

x

ȷ

´ 2αρ2
gg˚

ff˚

g

f
“ 0 , (6.109a)

ùñ
iDtg ¨ f

f2
` 2αρ2

g

f
` 2iq

Dxg ¨ f

f2
`
D2

xg ¨ f

f2
´
g

f

D2
xf ¨ f

f2

´
g

f

ˆ

D2
xf

˚ ¨ f˚

2f˚2
´
D2

xf ¨ f

2f2

˙

`
g

f

«

2iν
Dxf

˚ ¨ f

ff˚
`

ˆ

i
Dxf

˚ ¨ f

ff˚

˙2
ff

(6.109b)

´ 2iδ
g

f

Dxf
˚ ¨ f

ff˚
´ 2αρ2

gg˚

ff˚

g

f
“ 0 ,

ùñ
piDt ` 2iDx `D2

x ` 2αρ2qg ¨ f

f2
(6.109c)

´
g

f

ˆ

D2
xf

˚ ¨ f˚

2f˚2
`
D2

xf ¨ f

2f2
`

pDxf
˚ ¨ fq2

f2f˚2
`

2ipδ ´ νqDxf
˚ ¨ f ` 2αρgg˚

ff˚

˙

“ 0 ,
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ùñ
piDt ` 2iqDx `D2

x ` 2αρ2qg ¨ f

f2
´
g

f

˜

f2p2f˚
xx ´ 2f˚

x
2q

2f2f˚2
`
f˚2p2fxxf ´ 2f2xq

2f2f˚2

`
pDxf

˚ ¨ fq2

f2f˚2
`

2ipδ ´ νqDxf
˚ ¨ f ` 2αρ2gg˚

ff˚

¸

“ 0 , (6.109d)

ùñ
piDt ` 2iqDx `D2

x ` 2αρ2qg ¨ f

f2
´
g

f

˜

f˚
xx

f˚
´
f˚
x
2

f˚2
`
fxx
f

´
f2x
f2

´
f2x
f2

`
pf˚

x f ´ f˚fxq2

f2f˚2
`

2ipδ ´ νqDxf
˚ ¨ f ` 2αρ2gg˚

ff˚

¸

“ 0 , (6.109e)

ùñ
piDt ` 2iqDx `D2

x ` 2αρ2qg ¨ f

f2

´
g

f

ˆ

f˚
xx

f˚
`
fxx
f

´
2fxf

˚
x

ff˚
`

2ipδ ´ νqDxf
˚ ¨ f ` 2αρ2gg˚

ff˚

˙

“ 0 , (6.109f)

ùñ
piDt ` 2iqDx `D2

x ` 2αρ2qg ¨ f

f2

´
g

f

ˆ

f˚
xxf ´ 2fxf

˚
x ` f˚fxx

ff˚
`

2ipδ ´ νqDxf
˚ ¨ f ` 2αρ2gg˚

ff˚

˙

“ 0 , (6.109g)

ùñ
piDt ` 2iqDx `D2

x ` 2αρ2qg ¨ f

f2

´
g

f

pD2
x ´ 2ipδ ´ νqDxqf ¨ f˚ ` 2αρ2gg˚

ff˚
“ 0 . (6.109h)

By decoupling (6.109h), we obtain the bilinear equations

piDt ` 2iqDx `D2
xqg ¨ f “ 0 , (6.110)

pD2
x ´ 2ipδ ´ νqDxqf ¨ f˚ “ 2αρ2p|f |2 ´ |g|2q . (6.111)

We can use the previous bilinear equation (6.108) to rewrite the latter as

iDtf ¨ f˚ “ rD2
x ´ 2ipδ ´ νqDxsf ¨ f˚ . (6.112)
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To summarise, by using the change of variable (6.105) we were able to rewrite the YON system

as

piDt ` 2iqDx `D2
xqg ¨ f “ 0 , (6.113a)

iDtf ¨ f˚ “ rD2
x ´ 2ipδ ´ νqDxsf ¨ f˚ , (6.113b)

iDtf ¨ f˚ “ 2αρ2p|f |2 ´ |g|2q . (6.113c)

One can compare these with the following equations in the extended KP hierarchy

pDx2 ´ 2aDx1 ´D2
x1

qτn,k`1 ¨ τn,k “ 0 , (6.114a)

pDx2 ´ 2bDx1 `D2
x1

qτn,k ¨ τn`1,k “ 0 , (6.114b)

rpa´ bqDx´1 ` 1sτn,k ¨ τn`1,k “ τn,k`1τn`1,k´1 . (6.114c)

As members of the KP hierarchy, they have a Gram-type solution

τn,k “ |mn,k
ij |1ďi,jďN , (6.115)

with

mn,k
ij “ δij `

ikj ´ b

ki ` k˚
j

ˆ

´
ki ´ b

kj ` b

˙n
˜

´
ki ´ a

k˚
j ` a

¸k

eξi`ξ˚
j , (6.116)

where

ξi “
1

ki ´ a
x´1 ` kix1 ` k2i x2 ` ξi0 , ξ˚

i “
1

k˚
i ´ a

x´1 ` k˚
i x1 ` k˚

i
2x2 ` ξ˚

i0 . (6.117)

If we add the constraint condition

1

ki ´ a
`

1

k˚
i ` a

“
1

2αpa´ bqρ2
pk2i ´ k2i

˚q , (6.118)

which we can rewrite as
2αpa´ bqρ2

pki ´ aqpk˚
i ` aq

“ ki ´ k˚
i , (6.119)
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to the N -soliton solutions, then the τ -functions satisfy

pa´ bqBx´1τn,k “
1

2αρ2
Bx2τn,k , (6.120)

so that (6.114c) becomes

pDx2 ` 2αρ2qτn,k ¨ τn`1,k “ 2αρ2τn,k`1τn`1,k´1 . (6.121)

After adding this constraint, we can set n “ ´1 and k “ 0 in the three KP bilinear equations to

get

pDx2 ´ 2aDx1 ´D2
x1

qτ´1,1 ¨ τ´1,0 “ 0 , (6.122a)

pDx2 ´ 2bDx1 `D2
x1

qτ´1,0 ¨ τ0,0 “ 0 , (6.122b)

pDx2 ` 2αρ2qτ´1,0 ¨ τ0,0 “ 2αρ2τ´1,1τ0,´1 . (6.122c)

We can then introduce

f “ τ´1,0 , g “ τ´1,1 , f˚ “ τ0,0 , g˚ “ τ0,´1 , (6.123)

so the bilinear equations above become

pDx2 ´ 2aDx1 ´D2
x1

qg ¨ f “ 0 , (6.124a)

pDx2 ´ 2bDx1 `D2
x1

qf ¨ f˚ “ 0 , (6.124b)

pDx2 ` 2αρ2qf ¨ f˚ “ 2αρ2gg˚ . (6.124c)
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Finally, by taking x2 “ it, a “ iq and b “ ipδ ´ νq, they become

piDt ` 2iqDx `D2
xqg ¨ f “ 0 , (6.125a)

iDtf ¨ f˚ “ rD2
x ´ 2ipδ ´ νqDxsf ¨ f˚ , (6.125b)

iDtf ¨ f˚ “ 2αρ2p|f |2 ´ |g|2q , (6.125c)

which are exactly the equations (6.113) that we obtained for the YON system.

That means that we can adapt the solutions (6.115) and (6.116) as solutions of the YON system.

The 1-dark-soliton solution is given by

f “ 1 ´
ik˚

1 ´ δ ` ν

k1 ` k˚
1

eξ1`ξ˚
1 , (6.126a)

f˚ “ 1 `
ik1 ` δ ´ ν

k1 ` k˚
1

eξ1`ξ˚
1 , (6.126b)

g “ 1 `
ik˚

1 ´ δ ` ν

k1 ` k˚
1

k1 ´ iq

k˚
1 ` iq

eξ1`ξ˚
1 , (6.126c)

g˚ “ 1 ´
ik1 ` δ ´ ν

k1 ` k˚
1

k˚
1 ` iq

k1 ´ iq
eξ1`ξ˚

1 , (6.126d)

ξ1 “ k1x` ik21t` ξ10 , ξ˚
1 “ k˚

1x´ ik˚
1
2t` ξ˚

10 , (6.126e)

where the parameters must satisfy the constraint condition

2iαpq ´ δ ` νqρ2

|k1 ´ iq|2
“ k1 ´ k˚

1 . (6.127)

By taking k1 “ k1r ` ik1i, we can rewrite the constraint condition as

k1r “ ˘

ˆ

αpq ´ δ ` νqρ2

k1i
´ pk1i ´ qq2

˙

1
2

. (6.128)

As with the bright case, the dark solitons move with a velocity V “ 2ki, that is, they satisfy

Lpx, tq “ Lpx` 2kit, 0q and |Spx, tq| “ |Spx` 2kit, 0q|.
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(a) Long wave L. (b) Short wave |S|.
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(c) Long wave profile at t “ 2.5.

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Short wave profile at t “ 2.5.

Figure 9: 1-dark-soliton solution with α “ ´1, δ “ 3, k1 “ 1 ` i, ρ “ 1, ν “ 1, q “ 1.

The N -dark-soliton solution is, as in the bright case, given in determinant form,

f “

ˇ

ˇ

ˇ

ˇ

ˇ

δij ´
ik˚

j ´ δ ` ν

ki ` k˚
j

eξi`ξ˚
j

ˇ

ˇ

ˇ

ˇ

ˇ

NˆN

, (6.129a)

f˚ “

ˇ

ˇ

ˇ

ˇ

δij `
ikj ` δ ´ ν

k˚
i ` kj

eξ
˚
i `ξj

ˇ

ˇ

ˇ

ˇ

NˆN

, (6.129b)

g “

ˇ

ˇ

ˇ

ˇ

ˇ

δij `
ik˚

j ´ δ ` ν

ki ` k˚
j

ki ´ iq

k˚
i ` iq

eξi`ξ˚
j

ˇ

ˇ

ˇ

ˇ

ˇ

NˆN

, (6.129c)

g˚ “

ˇ

ˇ

ˇ

ˇ

δij ´
ikj ` δ ´ ν

k˚
i ` kj

k˚
i ` iq

ki ´ iq
eξ

˚
i `ξj

ˇ

ˇ

ˇ

ˇ

NˆN

, (6.129d)

ξi “ kix` ik2i t` ξi0 , ξ˚
i “ k˚

i x´ ik˚
i
2t` ξ˚

i0 , (6.129e)
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where the parameters are subject to the constraint

2iαpq ´ δ ` νqρ2

|ki ´ iq|2
“ ki ´ k˚

i . (6.130)

As with the 1-dark-soliton solution, we can set ki “ kir ` ikii to write the constraint as

kir “ ˘

ˆ

αpq ´ δ ` νqρ2

kii
´ pkii ´ qq2

˙

1
2

. (6.131)

(a) Long wave L. (b) Short wave |S|.
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(c) Long wave profile at t “ ´0.5.
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(d) Short wave profile at t “ ´0.5.

Figure 10: 2-dark-soliton solution with α “ 2, δ “ ´3, k1 “
?
2 ` 2i, k2 “

?
6 ` i, ρ “ 1,

ν “ 1, q “ 1.

The phase shift for the 2-dark-soliton solution can be written explicitly by denoting k1 “ k1r `

ik1i and k2 “ k2r ` ik2i and proceeding as in the bright case, that is, moving with the velocity

of one of the solitons to make it stationary, so that for t Ñ ˘8 the solution collapses into a
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1-soliton solution. For the first soliton, the phase shift reads

ϕ0 “

log

ˆ

k21r ` k21i ` k22r ` k22i ` 2k1rk2r ´ 2k1ik2i
k21r ` k21i ` k22r ` k22i ´ 2k1rk2r ´ 2k1ik2i

˙

2k1r
. (6.132)

The formula for the second soliton can be also written by simply exchanging indices 1 and 2 in

the formula above.

6.5 Breathers and rogue waves

To derive the breather solutions, we can use the same change of variable (6.105) we used for

the dark solitons in the previous sections. For the breather case, we will employ the breather

solutions for the KP hierarchy (6.114)

τn,k “ |mn,k
ij |1ďi,jďN , (6.133)

where

mn,k
ij “

2
ÿ

m,r“1

aimbjrpkim ´ bq

kim ` k˚
jr

˜

´
kim ´ b

k˚
jr ` b

¸n˜

´
kim ´ a

k˚
jr ` a

¸k

eξim`ξ˚
jr , (6.134)

with

ξim “
1

kim ´ a
x´1 ` kimx1 ` k2imx2 ` ξim,0 , (6.135a)

ξ˚
jr “

1

k˚
jr ` a

x´1 ` k˚
jrx1 ` k˚

jr
2x2 ` ξ˚

jr,0 , (6.135b)

and kim, kjr, aim, ajr, ξim,0, ξjr,0 arbitrary complex parameters.

If we add the constraint condition

1

ki1 ´ a
`

1

ki2 ´ a
“ ´

1

2αpa´ bqρ2
pki1 ` ki2q , (6.136)
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which we can rewrite as
2αpa´ bqρ2

pki1 ´ aqpki2 ´ aq
“ ki1 ` ki2 , (6.137)

then the τ -functions satisfy

pa´ bqBx´1τn,k “
1

2αρ2
Bx2τn,k , (6.138)

so that (6.114c) becomes

pDx2 ` 2αρ2qτn,k ¨ τn`1,k “ 2αρ2τn,k`1τn`1,k´1 . (6.139)

By performing the same transformation from the KP bilinear system to the one coming from the

YON system, we can write the N -breather solution as

f “

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

m,r“1

aimbjrrk˚
jr ` ipδ ´ νqs

kim ` k˚
jr

eξim`ξ˚
jr

ˇ

ˇ

ˇ

ˇ

ˇ

NˆN

, (6.140a)

f˚ “

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

m,r“1

a˚
imb

˚
jrrkjr ´ ipδ ´ νqs

k˚
im ` kjr

eξ
˚
im`ξjr

ˇ

ˇ

ˇ

ˇ

ˇ

NˆN

, (6.140b)

g “

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

m,r“1

aimbjrrk˚
jr ` ipδ ´ νqs

kim ` k˚
jr

kim ´ iq

kjr ` iq
eξim`ξ˚

jr

ˇ

ˇ

ˇ

ˇ

ˇ

NˆN

, (6.140c)

g˚ “

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

m,r“1

a˚
imb

˚
jrrkjr ´ ipδ ´ νqs

k˚
im ` kjr

k˚
im ` iq

k˚
jr ´ iq

eξ
˚
im`ξjr

ˇ

ˇ

ˇ

ˇ

ˇ

NˆN

. (6.140d)

The constraint condition becomes

2αpq ´ δ ` νqρ2

pki1 ´ iqqpki2 ´ iqq
“ ki1 ` ki2 . (6.141)

We can also study the fundamental rogue wave solution (understood as a rational solution) using

the same bilinear equations in the KP hierarchy. Let us consider the solution

τn,k “ ABmn,k , (6.142)
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(a) Long wave L. (b) Short wave |S|.
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Figure 11: Breather solution with δ “ 1, k1 “ 2 ` i, k2 “ 1 ´ 2i, a1 “ 1 ` 2i, b1 “ 1 ´ 2i,
a2 “ 2 ´ i, b2 “ 2 ` 1, ρ “ 1, ν “ 1, q “ 1.

where

mn,k “
´k1 ` b

k1 ` k˚
1

ˆ

´
k1 ´ b

k˚
1 ` b

˙nˆ

´
k1 ´ a

k˚
1 ` a

˙k

eξi`ξ˚
j , (6.143)

with

ξi “
1

k1 ´ a
x´1 ` k1x1 ` k21x2 , ξ˚

j “
1

k˚
1 ` a

x´1 ` k˚
1x1 ` k˚

1
2x2 , (6.144)

and A and B are the differential operators

A “ a0pk1Bk1q ` a1 , B “ b0pk˚
1Bk˚

1
q ` b1 , (6.145)
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with a0, a1, b0 and b1 arbitrary constants. In this case, the constraint condition turns out to

be
2αpa´ bqρ2

pk1 ´ aq2
“ 2k21 , (6.146)

which coincides with the constraint for breathers (6.137) for ki1 “ ki2 “ k1. By taking the

choice of parameters leading to the YON system, we get our fundamental rogue wave solution,

f “ AB

„

k˚
1 ` ipδ ´ νq

k1 ` k˚
1

eξi`ξ˚
j

ȷ

, (6.147a)

g “ ´AB

„

k˚
1 ` ipδ ´ νq

k1 ` k˚
1

k1 ´ iq

k˚
1 ` iq

eξi`ξ˚
j

ȷ

. (6.147b)

The constraint condition then becomes

2iαpδ ´ ν ´ qqρ2

pk1 ´ iqq2
“ 2k21 , (6.148)

which we can rewrite using iz “ k1 as

2zpz ´ qq2 ` 2αpδ ´ ν ´ qqρ2 “ 0 . (6.149)

Now, since we have k1 ` k˚
1 in the denominators, we need k1 to have a non-zero real part. That

means that (6.149) needs to feature complex conjugate roots, since it is a cubic equation with

real coefficients. We can write it in terms of the original α and β instead of using δ as

2zpz ´ qq2 ` pβ ´ 2αν ´ 2αqqρ2 . (6.150)

The condition to have two complex conjugate roots in a cubic polynomial is a condition on the

discriminant, namely

∆ “ 4ρ2r2αpq ` νq ´ βs

”

8q3 ` 27ρ2r2αpq ` νq ´ βs

ı

ă 0 , (6.151)

which coincides exactly with the condition for branches in the stability analysis (see (5.79),
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with r given in (5.58)) after identifying ρ “ a and ν “ αb, hence supporting the conjecture

in Section 5.3. Note that, when taking α “ 0, hence reducing the YON system to the Yajima-

Oikawa system, the condition for the existence of rogue waves coincides with the one derived

using Darboux-dressing in [156].
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Chapter 7

Conclusions and Outlook

To close out the thesis, let us give a brief tally of the results presented in the thesis and an outlook

of prospective lines of research branching from them.

In this work we have presented a new long wave-short wave interaction system, unifying and

generalising the Yajima-Oikawa and Newell systems into a what we called the Yajima-Oikawa-

Newell system. It has the remarkable property of being Lax integrable for any choice of the two

arbitrary, non-rescalable parameters it features. We have derived its bright and dark multi-soliton

solutions, as well as the rational solutions by means of a Hirota bilinear approach. We have

studied the stability spectra associated to its plane wave solutions, showing that the condition

for the existence of the topological feature referred to as branch in the stability spectrum of

a plane wave corresponds to the existence condition of the corresponding rogue wave coming

from the Hirota bilinear method.

In Chapter 1 we gave an introduction on several techniques and pieces of theory on integrable

systems, including multiscale method, Lax pairs and inverse scattering. We showed how the

standard inverse scattering techniques are not of application to certain kinds of systems where

the Lax pair features a singular matrix (and, later on, we verified that the Yajima-Oikawa-Newell

system is an example of those). Trying to derive new machinery for this kind of systems is one

of our current lines of research, jointly with Cornelis van der Mee. We finished the introductory
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chapter giving a review of different approaches to the stability of solutions of nonlinear systems,

and their advantages and disadvantages in terms of applicability and additional information they

provide. Another of our lines of research focuses on how these different techniques relate to

each other, especially to the one we later employ for Chapter 5.

We then went on to reproduce the historical introduction of two very well-known integrable

systems to model the interaction between long and short waves, namely the Yajima-Oikawa

(Chapter 2) and Newell (Chapter 3) systems, after which we provided a review of the different

results on them available in the literature.

After having presented those two classical systems, in Chapter 4 we introduced a new system

generalising them into a single integrable system, which we called Yajima-Oikawa-Newell, via

working with their Lax pairs. In a first survey of the system, we employed an Ansatz approach

to compute periodic solutions in the form of elliptic functions, soliton solutions (by making the

periodic of the elliptic solutions go to infinity), and rational solutions. We are currently work-

ing on finding connections and applications of the Yajima-Oikawa-Newell system for physical

settings, jointly with Antonio Degasperis and others. In this chapter we also present existing lit-

erature about links between the Yajima-Oikawa system and the Newell system, and how, despite

some authors claiming it provides a Miura transformation, the arguments provided fell short of

a proof of this fact. We are currently trying to derive a Miura transformation for these systems

jointly with Annalisa Calini.

In Chapter 5, we present a method to investigate the stability of solutions of integrable sys-

tems by transforming the problem of stability into the problem of studying the geometric and

topologic features of a certain curve in the spectral parameter space, which we call the stabil-

ity spectrum. We applied the method to study the stability of the plane wave solutions of the

Yajima-Oikawa-Newell system, and concluded that they are unstable for almost any choice of

parameters. We also introduced a few conjectures relating the topology of the stability spectrum

to the existence of various types of solutions, namely rational solutions and solitons. A rigorous

proof for these conjectures is not available at this point of the research, and is currently work in

progress. Another of our current lines of research deals with extending the applicability of the
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stability method, either to broader classes of Lax pairs (which could potentially lead to the study

of some systems of great physical relevance, like the massive Thirring model), or to broader

classes of solutions, particularly to periodic solutions and soliton solutions of multicomponent

systems (both of which have been barely studied). Finally, jointly with Sara Lombardo and

Priscila Leal da Silva, we are investigating the relation between our stability spectra and the

ones studied by Deconinck and collaborators.

Finally, in Chapter 6 we provided an overview of the general theory of Hirota bilinearisation

and, more in particular, of the theory of τ -functions, relating the bilinear form of integrable sys-

tems to that of members of the Kadomtsev-Petviashvili hierarchy. We then applied these Hirota

techniques to obtain various kinds of solutions of the Yajima-Oikawa-Newell system, namely

bright and dark solitons, breathers, and rational solutions. These results form part of a paper

currently in preparation, written jointly with Baofeng Feng and Kenichi Maruno. In particu-

lar, the condition derived for the existence of rational solutions for the Yajima-Oikawa-Newell

equation coincides with our condition for the existence of branches in the stability spectrum in

Chapter 5, hence supporting our conjectures in Section 5.3. As a final note, we want to mention

that a further line of research related to the material in Chapter 6 focuses on the connection

between the Hirota techniques and spectral techniques, such as the Darboux-dressing method.

This is also work in progress.
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Appendix A

Proof for the Lax Pair Formulae

In this appendix we will provide the proofs for formulae (5.15) to (5.19) and Propositions 5.1.3

and 5.1.4.

Let us consider a Lax pair of the form

X “ iλΣ `Q , T “ λ2T2 ` λT1 ` T0 , (A.1)

where Σ is a constant diagonal matrix, and Q, T0, T1 and T0 are matrices depending only on x

and t, but not on λ. For the sake of simplicity, we will assume that all eigenvalues of Σ have

multiplicity 1 and Q is off-diagonal (although the proof will be also valid for a matrix Σ with

repeated eigenvalues and Q a block-off-diagonal as introduced in Chapter 5). The compatibility

condition of the Lax pair reads

Xt ´ Tx ` rX,T s “ 0 , (A.2)

which, for the choices of X and T in (A.1), translates as

Qt ´

´

λ2pT2qx ` λpT1qx ` pT0qx

¯

`

”

iλΣ `Q, λ2T2 ` λT1 ` T0

ı

“ 0 . (A.3)

We will assume the matrices Σ and Q are known and try to find an expression for T2, T1 and T0 in

terms of them. Since the relation (A.3) has to hold for every choice of λ, the coefficient of every

power of λ has to be identically zero, so we will study each of the coefficients to obtain relations

among the matrices. Henceforth, for any given matrix M we will denote its diagonal part as M pdq
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and its off-diagonal part as M poq. From the coefficient of λ3, we get the expression

irΣ, T2s “ 0 ùñ T
poq

2 “ 0 , (A.4)

since Σ is a diagonal matrix with distinct eigenvalues. Now, the coefficient of λ2 gives us the

expression

´pT2qx ` irΣ, T1s ` rQ,T2s “ 0 . (A.5)

Note that both Σ and T2 are diagonal matrices, which imply that the result of both commutators in

(A.5) is off-diagonal. In order to study it, we will split the equation in diagonal and off-diagonal

part. For the diagonal part we have
´

T
pdq

2

¯

x
“ 0 , (A.6)

which, along with (A.4) tells us that T2 is a constant, diagonal matrix. We will denote it as

T2 “ C2. From the off-diagonal part of (A.5) we also get the expression

i
“

Σ, T
poq

1

‰

` rQ,T2s “ 0 , (A.7)

where we have used that, since Σ is diagonal, rΣ, T1s “
“

Σ, T
poq

1

‰

. To obtain a formula for T poq

1 ,

let us take a look at the expression

“

Σ, T
poq

1

‰

“ irQ,C2s . (A.8)

Note that the linear map rΣ, ‚s is actually an automorphism of the subalgebra of off-diagonal

matrices, and hence it is invertible when restricted to that class. Let us denote its inverse by Γ.

Given any off-diagonal matrix M , one can explicitly write ΓpMq as

`

ΓpMq
˘

ij
“

Mij

αi ´ αj
, i ‰ j ,

`

ΓpMq
˘

ii
“ 0 , (A.9)

where αj “ Σjj denotes the j-th diagonal entry of Σ. It is easy to check that, as expected,

Γ
`

rΣ,M s
˘

“
“

Σ,ΓpMq
‰

“ M . (A.10)
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With this definition of Γ, we can use the equation (A.8) to get an explicit expression

T
poq

1 “ iΓ
`

rQ,C2s
˘

“ ´iD2pQq , (A.11)

where we have arbitrarily defined

DjpMq “ Γ
`

rCj ,M s
˘

(A.12)

for any off-diagonal matrix M . Now, from the coefficient of λ, we have the relation

´pT1qx ` irΣ, T0s ` rQ,T1s “ 0 . (A.13)

We will proceed as before and split it into diagonal and off-diagonal part. Note that, as opposed to

T2, now T1 has a non-zero off-diagonal part. From the diagonal part of (A.13), we get

´
`

T
pdq

1

˘

x
`
“

Q,T
poq

1

‰pdq
“ 0 , (A.14)

so that

T
pdq

1 “

ż

“

Q,T
poq

1

‰pdq
“ i

ż

”

Q,Γ
`

rQ,C2s
˘

ıpdq

. (A.15)

We have that, since C2 is diagonal,

rQ,C2sij “ QijpC2qjj ´ pC2qiiQij “ Qijpγj ´ γiq , (A.16)

where we have denoted by γj “ pC2qjj the diagonal entries of C2. Then, from the definition of Γ

in (A.9), we have

Γ
`

rQ,C2s
˘

ij
“ Qij

γj ´ γi
αi ´ αj

, (A.17)

so that

”

Q,Γ
`

rQ,C2s
˘

ı

ij
“
ÿ

k

ˆ

QikQkj
γj ´ γk
αk ´ αj

´QikQkj
γk ´ γi
αi ´ αk

˙

“
ÿ

k

QikQkj

ˆ

γj ´ γk
αk ´ αj

´
γk ´ γi
αi ´ αk

˙

.

(A.18)
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Now, when i “ j, the constants inside the bracket cancel out, so that

”

Q,Γ
`

rQ,C2s
˘

ı

ii
“ 0 , (A.19)

and hence from (A.15) we get that

T
pdq

1 “

ż

0NˆN “ C1 , (A.20)

where C1 denotes an arbitrary, constant, diagonal matrix. Furthermore, from the off-diagonal part

of (A.13) we get the relation

´
`

T
poq

1

˘

x
` i

“

Σ, T
poq

0

‰

` rQ,T1spoq “ 0 , (A.21)

so that, proceeding as before,

T
poq

0 “ iΓ
`

rQ,T1spoq
˘

´ iΓ
´

`

T
poq

1

˘

x

¯

“ iΓ
´

“

Q,C1 ´ iD2pQq
‰poq

¯

` Γ
´

Γ
`

rQx, C2s
˘

¯

“ ´iD1pQq ` Γ
´

“

Q,D2pQq
‰poq

¯

´ Γ
`

D2pQxq
˘

.

(A.22)

Finally, the independent term gives

Qt ´ pT0qx ` rQ,T0s “ 0 . (A.23)

Its diagonal part gives the relation

´
`

T
pdq

0

˘

x
`
“

Q,T
poq

0

‰pdq
“ 0 , (A.24)

so that

T
pdq

0 “

ż

“

Q,T
poq

0

‰pdq
“ i

ż

”

Q,Γ
`

rQ,C1s
˘

ıpdq

`

ż

”

Q, Γ
´

“

Q,D2pQq
‰

¯ıpdq

´

ż

”

Q, Γ
`

D2pQxq
˘

ıpdq

.

(A.25)
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Let us study each of those integrals individually. First, note that

ż

”

Q,Γ
`

rQ,C1s
˘

ıpdq

“

ż

0NˆN (A.26)

by the same reasoning as (A.15)-(A.20). For the next one, let us recall that

D2pQqij “ Qij
γi ´ γj
αi ´ αj

, (A.27)

so that

“

Q,D2pQq
‰

ij
“
ÿ

k

ˆ

QikQkj
γk ´ γj
αk ´ αj

´QikQkj
γi ´ γk
αi ´ αk

˙

“
ÿ

k

QikQkj

ˆ

γk ´ γj
αk ´ αj

´
γi ´ γk
αi ´ αk

˙

,

(A.28)

and then

Γ
´

“

Q,D2pQq
‰

¯

ij
“
ÿ

k

QikQkj

αi ´ αj

ˆ

γk ´ γj
αk ´ αj

´
γi ´ γk
αi ´ αk

˙

. (A.29)

Now, we have

”

Q, Γ
´

“

Q,D2pQq
‰

¯ı

ij
“
ÿ

k, l

QilQlkQkj

αl ´ αj

ˆ

γk ´ γj
αk ´ αj

´
γl ´ γk
αl ´ αk

˙

´
ÿ

k, l

QikQklQkj

αi ´ αl

ˆ

γk ´ γl
αk ´ αl

´
γi ´ γk
αi ´ αk

˙

.

(A.30)

Swapping the indices k and l in the second sum, we have that

”

Q, Γ
´

“

Q,D2pQq
‰

¯ı

ij
“

“
ÿ

k, l

QilQlkQkj

„

1

αl ´ αj

ˆ

γk ´ γj
αk ´ αj

´
γl ´ γk
αl ´ αk

˙

´
1

αi ´ αk

ˆ

γl ´ γk
αl ´ αk

´
γi ´ γl
αi ´ αl

˙ȷ

,

(A.31)

but then when i “ j, all the constants in the bracket cancel out, so that

”

Q, Γ
´

“

Q,D2pQq
‰

¯ı

ii
“ 0 (A.32)
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and
ż

”

Q, Γ
´

“

Q,D2pQq
‰

¯ıpdq

“

ż

0NˆN . (A.33)

We now have only one integral left in (A.25),

ż

”

Q, Γ
`

D2pQxq
˘

ıpdq

. (A.34)

Let us proceed with it. First, we have that

D2pQxqij “ Qij
γi ´ γj
αi ´ αj

, (A.35)

so that

Γ
`

D2pQxq
˘

ij
“ Qij

γi ´ γj
pαi ´ αjq

2
, (A.36)

and hence

”

Q, Γ
`

D2pQxq
˘

ı

ij
“
ÿ

k

„

QikpQkjqx
γk ´ γj

pαk ´ αjq
2

´ pQikqxQkj
γi ´ γk

pαi ´ αkq2

ȷ

. (A.37)

Now, when i “ j, we have

”

Q, Γ
`

D2pQxq
˘

ı

ii
“
ÿ

k

γk ´ γi
pαk ´ αiq

2

´

QikpQkiqx ` pQikqxQki

¯

. (A.38)

Now the key point is that we can distribute the constant to construct entries of Γ
`

D2pQq
˘

or

Γ
`

D2pQxq
˘

in any way we want, so that we get the relation

”

Q, Γ
`

D2pQxq
˘

ı

ii
“

”

Q, Γ
`

D2pQxq
˘

ı

ii
“ ´

”

Γ
`

D2pQq
˘

, Qx

ı

ii
. (A.39)

Let us call R “ Γ
`

D2pQq
˘

and Rx “ Γ
`

D2pQxq
˘

to simplify the notation. Then we have

rQ,Rxs “
1

2

´

rQ,Rxs ´ rR,Qxs

¯

“
1

2

´

QRx ´RxQ´RQx `QxR
¯

“
1

2

´

`

QR
˘

x
´
`

RQ
˘

x

¯

“
1

2

´

QR ´RQ
¯

x
“

1

2

“

Q,R
‰

x
.

(A.40)
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That means that

”

Q, Γ
`

D2pQxq
˘

ı

ii
“

”

Q, Γ
`

D2pQxq
˘

ı

ii
“

1

2

´”

Q,Γ
`

D2pQxq
˘

ı

x

¯

ii
(A.41)

and hence
”

Q, Γ
`

D2pQxq
˘

ıpdq

“
1

2

”

Q,Γ
`

D2pQxq
˘

ıpdq

x
. (A.42)

Putting all these results back into (A.25), we have that

T
pdq

0 “ ´
1

2

ż

”

Q,Γ
`

D2pQxq
˘

ıpdq

x
“ C0 ´

1

2

”

Q,Γ
`

D2pQxq
˘

ıpdq

, (A.43)

where C0 is a constant, diagonal matrix.

We can now put all the results together to give the full expression for T2, T1 and T0:

T2 “ T
pdq

2 ` T
poq

2 “ C2 , (A.44a)

T1 “ T
pdq

1 ` T
poq

1 “ C1 ´ iD2pQq , (A.44b)

T0 “ T
pdq

0 ` T
poq

0

“ C0 ´
1

2

”

Q,Γ
`

D2pQxq
˘

ıpdq

´ iD1pQq ` Γ
´

“

Q,D2pQq
‰poq

¯

´ Γ
`

D2pQxq
˘

, (A.44c)

which coincide with the formulae given in (5.15) after setting I1 “ I0 “ 0. We will also set

C0 “ 0 since it does not matter for our purpose.

The off-diagonal part of (A.23) gives us the formula for Qt, which coincides exactly with the one

presented in (5.21) after substituting the formulae in (A.44).

I0 and I1 being zero comes from the fact that we have assumed that all the diagonal matrices

involved have distinct eigenvalues. To understand how it works and prove the Proposition 5.1.3

we can look at how the proof adapts to having a matrix Σ with repeated eigenvalues, so that pdq

and poq represent respectively the block-diagonal and block-off-diagonal part of the matrix, as

explained in Chapter 5. In that framework, Mij represents the i, j-th block of the matrix, instead

of a single matrix, so that we have to be careful not to assume commutativity. The only point of

the proof where we used commutativity was in (A.16) and the analogous computation forC1. That

relation is only true if we impose that pC2qjj “ γj1j and pC1qjj “ βj1j , which means that C2
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and C1 have the same diagonal structure as Σ and is exactly the condition (5.20) of the Proposition

5.1.3.
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and partial differential equations. J. Nonlinear Math. Phys., 13:90–111, 2006.

[13] F. Baronio, S. Chen, P. Grelu, S. Wabnitz, and M. Conforti. Baseband modulation instability

as the origin of rogue waves. Phys. Rev. A, 91:033804, 2015.

[14] F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, and S. Wabnitz. Vector

rogue waves and baseband modulational instability in the defocusing regime. Phys. Rev.

Lett., 113:034101, 2014.

[15] T. B. Benjamin and J. E. Feir. The disintegration of wave trains on deep water. Part 1.

Theory. J. Fluid Mech., 27:417–430, 1967.

[16] D. J. Benney. A general theory for interactions between short and long waves. Stud. Appl.

Math., 56:81–94, 1977.

[17] D. J. Benney and A. C. Newell. The propagation of nonlinear wave envelopes. J. Math.

Phys., 46:133–139, 1967.

[18] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York,

NY, US, 1997.

[19] G. Biondini, S. Li, D. Mantzavinos, and S. Trillo. Universal behavior of modulationally

unstable media. SIAM Rev., 60(4):888–908, 2018.

[20] J. D. Bjorken and S. D. Drell. Relativistic Quantum Fields. McGraw-Hill, New York, NY,

US, 1965.

[21] H. Borluk and S. Erbay. Stability of solitary waves for three-coupled long wave-short wave

interaction equations. IMA J. Appl. Math., 76:582–598, 2011.

146



REFERENCES REFERENCES

[22] B. Buchberger. Theoretical basis for the reduction of polynomials to canonical forms. ACM

SIGSAM Bull., 10(3):19–29, 1976.

[23] A. Calini. Personal communication.

[24] A. Calini, C. M. Schober, and M. Strawn. Linear instability of the Peregrine breather:

Numerical and analytical investigations. Appl. Numer. Math., 141:36–43, 2018.

[25] F. Calogero. Why are certain nonlinear PDEs both widely applicable and integrable? In

V. E. Zakharov, editor, What Is Integrability? Springer, Berlin/Heidelberg, Germany, 1991.

[26] F. Calogero and A. Degasperis. Spectral Transform and Solitons: Tools to Solve and In-

vestigate Nonlinear Evolution Equations. North-Holland, Amsterdam, The Netherlands,

1982.

[27] F. Calogero, A. Degasperis, and J. Xiaoda. Nonlinear Schrödinger-type equations from

multiscale reduction of PDEs. I. Systematic derivation. J. Math. Phys., 41:6399–6443,

2000.

[28] F. Calogero, A. Degasperis, and J. Xiaoda. Nonlinear Schrödinger-type equations from

multiscale reduction of PDEs. II. Necessary conditions of integrability for real PDEs. J.

Math. Phys., 42:2635–2652, 2001.

[29] M. Caso-Huerta, A. Degasperis, P. Leal da Silva, S. Lombardo, and M. Sommacal. Periodic

and solitary wave solutions of the long wave–short wave Yajima–Oikawa–Newell model.

Fluids, 7(227), 2022.

[30] M. Caso-Huerta, A. Degasperis, S. Lombardo, and M. Sommacal. A new integrable

model of long wave-short wave interaction and linear stability spectra. Proc. R. Soc. A,

477:20210408, 2021.

[31] M. Caso-Huerta, B.-F. Feng, S. Lombardo, K. Maruno, and M. Sommacal. Solitary and

rational solutions of the Yajima-Oikawa-Newell long wave–short wave model via Hirota

bilinearization. Paper in preparation.

[32] M. Caso-Huerta, S. Lombardo, M. Sommacal, and C. van der Mee. The scattering problem

for the Yajima-Oikawa-Newell equations. Paper in preparation.

147



REFERENCES REFERENCES

[33] H. N. Chan, R. H. J. Grimshaw, and K. W. Chow. Modeling internal rogue waves in a long

wave-short wave resonance framework. Phys. Rev. Fluids, 3:124801, 2018.

[34] J. Chen, L. Chen, B.-F. Feng, and K. Maruno. High-order rogue waves of a long-wave–

short-wave model of Newell type. Phys. Rev. E, 100:052216, 2019.

[35] J. Chen, Y. Chen, B.-F. Feng, K. Maruno, and Y. Ohta. General high-order rogue waves of

the (1+1)-dimensional Yajima-Oikawa system. J. Phys. Soc. Jpn., 87:094007, 2018.

[36] J. Chen, Y. Chen, B.-F. Feng, and H.-M. Zhu. Pfaffian-type soliton solution to a multi-

component coupled Ito equation. Chin. Phys. Lett., 31(11):110502, 2014.

[37] J. Chen and B.-F. Feng. A note on the bilinearization of the generalized derivative nonlinear

Schrödinger equation. J. Phys. Soc. Jpn., 90(2):023001, 2021.

[38] J. Chen and B.-F. Feng. Tau-function formulation for bright, dark soliton and breather

solutions to the massive Thirring model. Stud. Appl. Math., 150(1):35–68, 2022.

[39] J. Chen, B.-F. Feng, K. Maruno, and Y. Ohta. The derivative Yajima–Oikawa system:

Bright, dark soliton and breather solutions. Stud. Appl. Math., 141(2):145–185, 2017.

[40] A. F. Cheviakov. GeM software package for computation of symmetries and conservation

laws of differential equations. Comput. Phys. Commun., 176:48–61, 2007.

[41] A. F. Cheviakov. Computation of fluxes of conservation laws. J. Eng. Math., 66:153–173,

2010.

[42] A. F. Cheviakov. Symbolic computation of local symmetries of nonlinear and linear partial

and ordinary differential equations. Math. Comput. Sci., 4:203–222, 2010.

[43] A. F. Cheviakov. Symbolic computation of nonlocal symmetries and nonlocal conservation

laws of partial differential equations using the GeM package for Maple. In J.-F. Ganghoffer

and I. Mladenov, editors, Similarity and Symmetry Methods, Lecture Notes in Applied and

Computational Mechanics, pages 165–184. Springer, Cham, Switzerland, 2014.

[44] A. F. Cheviakov. Symbolic computation of equivalence transformations and parameter

reduction for nonlinear physical models. Comput. Phys. Commun., 220:56–73, 2017.

148



REFERENCES REFERENCES

[45] K. W. Chow, H. N. Chan, D. J. Kedziora, and R. H. J. Grimshaw. Rogue wave modes for

the long wave-short wave resonance model. J. Phys. Soc. Jpn., 82:074001, 2013.

[46] A. Das. Integrable Models. World Scientific Lecture Notes in Physics, vol. 30. World

Scientific, Singapore, 1989.

[47] B. Deconinck, P. McGill, and B. L. Segal. The stability spectrum for elliptic solutions to

the sine-Gordon equation. Physica D, 360:17–35, 2017.

[48] B. Deconinck and B. L. Segal. The stability spectrum for elliptic solutions to the focusing

NLS equation. Physica D, 346:1–19, 2017.

[49] B. Deconinck and J. Upsal. The orbital stability of elliptic solutions of the focusing nonlin-

ear Schrödinger equation. SIAM J. Math. Anal., 52(1):1–41, 2020.

[50] A. Degasperis. Multiscale expansion and integrability of dispersive wave equations. In

A. V. Mikhailov, editor, Integrability, Lecture Notes in Physics, vol. 767, pages 215–244.

Springer, Berlin/Heidelberg, Germany, 2009.

[51] A. Degasperis. Integrable nonlocal wave interaction models. J. Phys. A, 44(5):052002,

2011.

[52] A. Degasperis and S. Lombardo. Integrability in action: Solitons, instability and rogue

waves. In M. Onorato, S. Resitorio, and F. Baronio, editors, Rogue and Shock Waves in

Nonlinear Dispersive Media, Lecture Notes in Physics, vol. 926, pages 23–53. Springer,

Berlin/Heidelberg, Germany, 2016.

[53] A. Degasperis, S. Lombardo, and M. Sommacal. Integrability and linear stability of non-

linear waves. J. Nonlinear Sci., 28:1251–1291, 2018.

[54] A. Degasperis, S. Lombardo, and M. Sommacal. Coupled nonlinear Schrödinger equations:

Spectra and instabilities of plane waves. In N. Euler and M. C. Nucci, editors, Nonlinear

Systems and Their Remarkable Mathematical Structures, volume 2. CRC Press, Boca Ra-

ton, FL, US, 2019.

[55] A. Degasperis, S. Lombardo, and M. Sommacal. Rogue wave type solutions and spectra of

coupled nonlinear Schrödinger equations. Fluids, 4(1):57, 2019.

149



REFERENCES REFERENCES

[56] F. Demontis, S. Lombardo, M. Sommacal, C. van der Mee, and F. Vargiu. Effective gener-

ation of closed-form soliton solutions of the continuous classical Heisenberg ferromagnet

equation. Commun. Nonlinear Sci. Numer. Simul., 64:35–65, 2018.

[57] F. Demontis, B. Prinari, C. van der Mee, and F. Vitale. The inverse scattering transform

for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions. J.

Math. Phys., 55(10):101505, 2018.

[58] V. D. Djordjevic and L. G. Redekopp. On two-dimensional packets of capillary-gravity

waves. J. Fluid Mech., 79:703–714, 1977.

[59] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris. Solitons and Nonlinear Wave

Equations. Academic Press, New York, NY, US, 1982.

[60] A. Doliwa. Desargues maps and the Hirota–Miwa equation. Proc. R. Soc. A, 466:1177–

1200, 2010.

[61] P. G. Drazin and R. S. Johnson. Solitons: An Introduction. Cambridge University Press,

Cambridge, UK, 1972.

[62] H. A. Erbay and S. Erbay. Transverse linear instability of solitary waves for coupled long-

wave short-wave interaction equations. Appl. Math. Lett., 25:2402–2406, 2012.

[63] L. D. Faddeev and L. A. Takhtajan. Hamiltonian Methods in the Theory of Solitons.

Springer, Berlin, Germany, 1987.

[64] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl.
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tions. J. Math. Phys., 24(3):522–526, 1983.

[154] G. B. Whitham. Nonlinear dispersion of water waves. J. Fluid Mech., 27:399–412, 1966.

[155] G. B. Whitham. Linear and Nonlinear Waves. Wiley-Interscience, New York, NY, US,

1974.

[156] O. C. Wright. Homoclinic connections of unstable plane waves of the long-wave–short

wave equations. Stud. Appl. Math., 117:71–93, 2006.

[157] O. C. Wright. On a homoclinic manifold of a coupled long-wave–short-wave system. Com-

mun. Nonlinear Sci., 15:2066–2072, 2010.

[158] C. Wu, B. Wei, C. Shi, and B.-F. Feng. Multi-breather solutions to the Sasa-Satsuma equa-

tion. Proc. R. Soc A, 478:20210711, 2022.

[159] N. Yajima and M. Oikawa. Formation and interaction of sonic-Langmuir solitons: Inverse

scattering method. Prog. Theor. Phys., 56(6):1719–1739, 1976.

[160] J. Yang and D. J. Kaup. Squared eigenfunctions for the Sasa-Satsuma equation. J. Math.

Phys., 50(2):023504, 2009.

[161] H. C. Yuen and B. M. Lake. Instabilities of waves on deep water. Annu. Rev. Fluid Mech.,

12(1):303–334, 1980.

[162] V. E. Zakharov. The collapse of Langmuir waves. Sov. Phys. JETP, 35:908–914, 1972.

[163] V. E. Zakharov and E. A. Kuznetsov. Multi-scale expansions in the theory of systems

integrable by the inverse scattering transform. Physica D, 18:455–463, 1986.

158



REFERENCES REFERENCES

[164] V. E. Zakharov and A. B. Shabat. Exact theory of two-dimensional self-focusing and one-

dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP, 34:62–69,

1972.

159


	Abstract
	Acknowledgements
	Declaration
	Introduction
	The multiscale method
	Fundamentals of integrability and the Lax pair
	The inverse scattering method
	Introduction to stability
	Aims and scopes

	Yajima-Oikawa Long Wave-Short Wave System
	Physical derivation
	Integrability properties and solutions

	Newell's Long Wave-Short Wave System
	Mathematical derivation
	Integrability properties and solutions

	Yajima-Oikawa-Newell: A More General System
	Mathematical derivation and integrability
	Miura transformation
	Periodic and travelling wave solutions
	Jacobi elliptic sine solution
	Jacobi elliptic cosine solution
	Jacobi delta amplitude solution
	Traveling waves: Solitons
	Traveling waves: Rational solutions

	Symmetries and conservation laws
	Lie point symmetries
	Conservation laws


	Stability of Plane Waves for the YON System
	The stability spectrum
	The YON case
	Stability and rogue waves

	Hirota Bilinear Method for the YON System
	The Hirota bilinear method
	Hirota bilinearisation for the YON system
	Bright soliton solutions
	Dark soliton solutions
	Breathers and rogue waves

	Conclusions and Outlook
	Appendix Proof for the Lax Pair Formulae
	References

