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Abstract 

Gait - how someone walks - is considered the ‘sixth vital sign’ of health. This is because poor gait is associated with low 

life satisfaction, an increased risk of falls and severe injuries. In Europe, people over the age of 65 make up more than 19% 

of the population, a figure projected to rise significantly in the future. Accordingly, the frequency of age associated 

conditions such as neurological disorders (Parkinson’s Disease or Stroke) also rise with the prevalence of neurological gait 

disorders increasing from 10% (60–69 years) to 60% in those > 80 years. Increased life expectancy, coupled with a growing 

prevalence of neurological disorders means more people will be coping with mobility loss. Therefore, understanding and 

evaluating impaired gait becomes essential for promoting healthy aging, managing neurological conditions, and/or 

improving the overall well-being of individuals. Although there are various reference technologies used in the gait analysis, 

the focus of this thesis is on wearable sensors (e.g., inertial measurement units, IMUs) due to numerous advantages 

including affordability, accessibility, and ease of use in clinical settings and beyond. 

This thesis initially presents a thorough literature review, exploring the development and progression of gait assessment 

techniques, technologies, and methods as well as limitations in the previous gait studies. It then focuses on contemporary 

techniques such as the use of artificial intelligence (AI) for human activity recognition (HAR) and edge computing for 

remote gait analysis to gain the necessary knowledge improve the limitations. Through a series of original research 

investigations, this thesis 1) investigates the consistencies of two different IMU algorithms during walks in different 

environments in a pilot study. This study reveals the differences and inconsistencies in the extracted temporal parameters; 

however, the underlying reasons cannot be fully understood due to the limitations of unimodal temporal parameters. 

Afterwards, the thesis 2) focuses on developing a framework through a multi-layer data fusion technique for multimodal 

gait analysis to go beyond the limitations of the unimodal approach. The study results show that there are differences in all 

gait characteristics, not only temporal parameters, during indoor and outdoor walking in healthy participants and a small 

group of stroke survivors. This highlights the significance of conducting gait studies in various environments with extended 

data collection, to gain deeper insights into the impacts of habitual environments. Nonetheless, data collection outside of 

clinical settings results in a substantial volume of unlabelled data. 

Data labelling, such as identifying walking bouts in a continuous wearable data stream, is essential for automatically 

labelling walking periods, thereby reducing the time required for offline processing. To achieve an effective data labelling, 

this thesis 3) develops an AI model that fuses the features of IMU and electromyography (EMG) data. In the case of limited 

datasets of neurological conditions, as mobility loss is a significant barrier in creating rich and diverse datasets to perform 

effective model training, this thesis also produce a data augmentation framework. The outcomes of HAR studies performed 

in this thesis show that IMU and EMG data fusion at the feature level can provide highly accurate activity classification, 

and data augmentation improves the performance of the AI model in limited neurological datasets. Finally, this thesis 

focuses on remote gait analysis due to the time-consuming and labour-intensive offline data processing. To mitigate this 

limitation, this thesis 4) presents a prototype edge device that can perform both real-time HAR and parameter extraction 

(e.g., step and stride times) without a need for data post-processing. Validation studies show that the developed device can 

accurately perform remote gait analysis in clinics and beyond. The comprehensive conclusions drawn from this thesis 

demonstrate that contemporary techniques significantly ameliorate the prevailing limitations in the domain of gait analysis. 

Utilising advanced methodologies, this thesis successfully addresses previous constraints, paving the way for more 

automated and comprehensive gait analysis.  
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Foreword: Thesis overview 
Given the escalating prevalence of neurological disorders and an ageing population, the need for effective, affordable, and 

accessible methods to analyse gait disorders is more urgent than ever. This PhD has broad implications for public health, 

particularly in mitigating the impacts of mobility loss on individuals' lives. By improving our understanding of gait 

abnormalities and offering a means to effectively monitor them using wearable technologies, this research supports the 

development of preventative and rehabilitative strategies. Additionally, it empowers individuals with neurological disorders 

to manage their conditions in a more informed and autonomous way. Furthermore, the application of this research in clinical 

settings can help healthcare professionals to provide more personalized and effective care. By innovating in this crucial 

field, the research brings us one step closer to improving the quality of life for those affected by neurological disorders and 

fostering healthier ageing populations. 

 

Chapter 1 

This opening chapter provides a succinct background and highlights several Points of Interest (PoIs) that were identified 

based on existing limitations in the field. Additionally, this chapter outlines the research aims, objectives, hypotheses, and 

the potential contributions to knowledge. 

Chapter 2 

Provides an overview of the evolutionary progression of gait analysis techniques, discussing various technologies and their 

advantages and challenges. Wearable sensors are highlighted for their portability and suitability for free-living gait analysis. 

The chapter also explores algorithms for gait analysis using wearable sensors, addressing challenges in sensor wear location 

and algorithm selection. 

Chapter 3 

A wide range of inertial measurement unit (IMU) algorithms have been validated for the computation of spatiotemporal 

parameters using various wear locations. However, inconsistencies may arise due to variations in methodology, wear 

location selection, walking environments, and cohorts. Consequently, Chapter 3 presents a comparative analysis conducted 

to examine the extent of consistency between two distinct algorithms and how it varies across different gait outcomes. 

Chapter 4 

In this chapter, applications of data fusion techniques, data mining, and AI application such as HAR and IoT to enhance 

the performance and usability of wearable algorithms for gait analysis were explored.  

Chapter 5 

Recap and reflection of chapters 2 to 4, to take note of the acquired knowledge of how digital technologies could be used 

to address research questions. From here, I springboard into multimodal gait analysis methodologies for free living gait 

analysis. 

Chapter 6 

This chapter aims to introduce the methodologies developed using the technologies and methodologies learnt in the 

previous sections. The chapter begins by showcasing various validated algorithms that effectively extract multimodal gait 

characteristics encompassing spatiotemporal measurements, joint kinematics, and muscle activation patterns. A key 

challenge that arises, leading to increased post-processing time, is the labelling of free-living data. This issue is identified 

and acknowledged within the chapter, highlighting the need for innovative approaches to address it. Subsequently, I present 

two distinct methodologies that incorporate HAR techniques for automated multimodal gait analysis. The first 

methodology focuses on the fusion of inertial and EMG data at the fusion level, aiming to enhance the accuracy and 

effectiveness of HAR. By combining data from multiple sensors, a more comprehensive and reliable representation of the 

individual’s gait patterns can be achieved. The second methodology addresses the limitations of existing HAR datasets 

specifically tailored to individuals with neurological conditions. Recognizing the scarcity of such datasets, this 

methodology proposes strategies to overcome this challenge and develop robust HAR models that cater to the unique needs 

and characteristics of this population. 



Chapter 7 

I present the outcomes of a series of experimental studies that were conducted based on the methodologies introduced in 

Chapter 6. This section provides a detailed analysis of the results obtained from these studies, offering insights into the 

reliability and accuracy of the proposed methodologies. Through discussions, the strengths and limitations of the developed 

approaches are evaluated, aiming to provide a comprehensive understanding of their performance. Furthermore, this 

chapter sheds light on the limitations inherent in the current work, identifying areas where improvements can be made in 

future research endeavours. These limitations are critically examined, emphasizing the need for further advancements to 

enhance the efficacy and applicability of the proposed methodologies. 

Chapter 8 

In this chapter, I provide a reflective analysis of the methods I have developed and presented in Chapter 6. By critically 

assessing these methodologies, I aim to gain deeper insights into their effectiveness, limitations, and potential areas for 

improvement. This reflection serves as a valuable exercise to refine and enhance the proposed approaches. Following my 

reflection, I shift focus towards exploring potential research directions and underscore the utilisation of edge computing 

technology in the analysis of gait among individuals with neurological conditions. This research exploration seeks to 

leverage the capabilities of edge computing to overcome challenges and enhance the efficiency and accuracy of remote 

gait analysis. 

Chapter 9 

Here, I introduce a state-of-the-art remote gait analysis device that leverages advanced edge computing technology. I 

provide a comprehensive overview of the hardware and software components incorporated into the design. Furthermore, I 

present detailed experimental results obtained from validation studies conducted to assess the device’s performance and 

accuracy. 

Chapter 10 

Presents a comprehensive discussion of my PoIs and the findings derived from my research. This chapter serves as a 

platform to detail the conclusions drawn from testing my hypothesis and developing an automated multimodal gait analysis 

approach. Within this chapter, I provide an in-depth analysis of the outcomes and implications of my research endeavours. 

I highlight the key insights gained from the testing and implementation of the proposed methodologies, emphasizing their 

contributions to the field of gait analysis. Moreover, I aim to investigate the wider impact of the developed automated 

multimodal gait analysis tool. This speculation explores potential implications and future possibilities resulting from the 

integration of this tool within clinical practice, research domains, and broader societal contexts.  
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1.1. Introduction 

Gait analysis refers to the systematic evaluation of a person's walking pattern and it provides valuable information 

about mobility, functional abilities, and potential abnormalities or impairments. Gait analysis plays a crucial role in 

healthcare, particularly in the context of the aging population, the increasing prevalence of neurological disorders, and the 

overall enhancement of quality of life[1, 2]. Gait abnormalities not only affect physical function but also have psychological 

implications. Because impaired gait can limit individuals' ability to engage in social activities, participate in hobbies, and 

maintain independence[3].  

As societies undergo demographic shifts and advancements in medical care, understanding and evaluating gait patterns 

becomes essential for promoting healthy aging, managing neurological conditions, and improving the overall well-being 

of individuals. This chapter initiates the thesis by shedding light on the encountered challenges in wearable sensor-based 

gait analysis, presented in Chapter 2. This thesis will employ multiple points of inquiry (PoIs) to present a comprehensive 

understanding of the challenges and potential solutions. 

1.2. Defining points of inquiry (PoIs) 

In Chapter 2, I identified the limitations and the knowledge gaps in the field of wearable sensor-based gait analysis in 

neurological PD population and stroke survivors. Subsequently, a set of research questions, denoted as PoIs, were 

formulated to further investigate how the limitations can be mitigated. The methods devised in this thesis for neurological 

gait analysis primarily rely on data collected from subjects with Parkinson's disease (PD) and stroke survivors. These 

specific groups were chosen due to their significant prevalence within neurological conditions[4]. In experimental studies, 

healthy young adults and older adults were also included as a control group for comparative analysis and reference. 

1.2.1. PoI 1: How consistent are the existing IMU algorithms for detecting initial contact (IC) and final contact 

(FC) moments considering sensor wear location, target cohort, and walking environments? 

A plethora of IMU-based gait analysis algorithms were developed and validated for healthy and neurological cohorts 

(PD and stroke survivors) against various reference technologies (Chapter 2-Section 1.5).  Although comparative 

assessment studies[5-7] were performed for various sensor locations, and algorithms on different cohorts to point out the 

most robust and accurate algorithms, these studies were limited to controlled clinical conditions. The level of consistency 

between algorithms in terms of detecting IC and FC points considering walking environments (indoor, and outdoor) was 

not fully investigated. PoI 1 is designed to investigate the level of consistency between the produced temporal parameters 

using different sensor locations and algorithms during treadmill, indoor and outdoor walking. The answer to this question 

aims to inform future studies in terms of how consistent and reliable these algorithms are based on sensor wear location, 

target cohort, and walking environment. 

1.2.2. PoI 2: Could multimodal gait analysis overcome the limitations of unimodal, and how can it be achieved? 

Unimodal gait analysis focuses on the assessment of gait using a single modality/measurement technique (e.g., 

spatiotemporal or kinematics). To date, a plethora of gait studies has been conducted based on unimodal gait characteristics 

due to the technical limitation in combining multiple reference technologies and wearable sensors[8]. Consequently, 

various gait models were developed to provide easy interpretation of gait parameters that rely on unimodal parameters only 

using a single wearable sensor[9, 10]. Although those models provide valuable insights into specific aspects of gait, they 

have limitations in capturing a comprehensive picture of an individual’s gait characteristics. 

Multimodal gait analysis involves the integration of multiple modalities(e.g., spatiotemporal, kinematic, kinetic, 

muscle activation) using data fusion or sensor fusion techniques and multiple sensor units[11]. It combines information 

from different sources such as wearable sensors, force plates, and electromyography [12]. By combining data from various 

modalities, multimodal gait analysis offers a more comprehensive and accurate assessment of gait patterns, capturing a 

broader range of gait parameters and providing a more detailed analysis of gait abnormalities and characteristics. PoI 2 was 

designed to investigate the multimodal approach using advanced sensor and data fusion techniques in healthy adults and 

stroke survivors. 

1.2.3. PoI 3: How could wearable inertial sensor based HAR assist extended periods of gait analysis studies in 

free living? 

Wearable inertial devices offer a paradigm shift in gait assessment, extending the analysis from clinical environments 

to unrestricted free-living settings. In clinical settings, the labelling (e.g., segmenting walking bouts from a continuous data 

stream) of wearable sensor datasets is typically accomplished manually due to the controlled conditions characterized by 
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well-defined periods of walking with precise time stamps [2, 13]. Nevertheless, when transitioning to free living contexts 

for extended periods (e.g., 7 days), the datasets encompass substantial amounts of unlabelled data[14]. To address this 

challenge, artificial intelligence (AI) techniques, particularly deep learning (DL) methodologies, have emerged as essential 

tools for automatically identifying daily and habitual activities, thereby mitigating the need for labour-intensive manual 

segmentation and data labelling processes[15]. PoI3 aims to reveal how wearable sensor based HAR methodologies can 

be utilised to perform automatic labelling of activities in healthy, PD and stroke cohorts. 

Existing human activity recognition (HAR) models exhibit exceptional accuracy and sensitivity in identifying daily 

activities performed by individuals without gait impairments[16, 17]. However, it is widely acknowledged that impaired 

gait differs from healthy gait, and the captured inertial and electromyography (EMG) signals are influenced by the 

characteristics of the specific population being studied[5, 7]. Literature also indicates that HAR models trained using data 

exclusively from healthy participants experience significant declines in accuracy when tasked with classifying activities 

performed by individuals with neurological conditions[18, 19]. Consequently, there is a pressing need to develop 

population-specific artificial intelligence (AI) models capable of accurately and sensitively recognizing daily activities 

among neurological populations. Achieving this objective requires the creation of comprehensive and diverse datasets for 

each neurological population that exhibits similar gait deficits. However, this endeavour poses challenges for neurological 

populations, as participants often encounter difficulties in performing certain daily activities due to limited mobility and 

pain (e.g., ascending stairs)[20]. I hypothesise that the utilisation of data augmentation techniques can mitigate these 

challenges by augmenting the dataset size through well-established augmentation methodologies and increasing the 

performance of deep learning models. 

1.2.4. PoI 4: How Edge computing technology can improve time-consuming offline processing of collected gait 

data? 

Previous studies that seek to examine gait in ecologically valid environments preferred data collection for multiple 

days (e.g., 2-7) or more [21-23]. Conventionally, wearable data has been locally stored on the device for subsequent post-

processing. However, this storage approach requires significant local memory/storage capabilities, potentially impacting 

the device’s size and portability. An alternative approach involves transferring inertial data to a base station in real-time 

during the data collection phase. Nonetheless, streaming data at high sampling frequencies entails substantial bandwidth 

requirements, introducing challenges such as data loss, latency, privacy concerns, and increased power consumption[24]. 
One possible solution to overcome the bandwidth challenges is to increase the processing power of the wearable device 

and perform calculations and assessments on the hardware itself, known as edge computing, detailed in Chapter 4. 

Edge computing involves the decentralized distribution of computing power from the cloud or central computer to the 

edge of the network, where data is directly collected and processed in close proximity to the sensor unit. Edge computing 

approach alleviates the need for extensive memory space to store raw data locally. Moreover, it enables faster and more 

efficient data processing, while simultaneously reducing latency and bandwidth requirements. Previously, this approach 

has been employed for real-time gait phase detection using wearables and it has shown promise [25]. As a result, I 

hypothesise that conducting HAR and gait analysis on the device while data is being collected could significantly reduce 

post-processing time and facilitate real-time gait analysis (PoI4). This objective of remote monitoring can be achieved by 

utilizing modern devices such as microcontrollers and advanced communication protocols like the Internet of Things (IoT). 

 

1.3. Defining a research hypothesis 

I propose that exploration and a better understanding of PoIs are necessary to achieve a low-cost instrumented gait 

analysis tool that can provide insight into various aspects of impaired gait and the discovery of underlying reasons in clinics 

and beyond. Consequently, these PoIs form the foundation of my central hypothesis for my thesis: 

“The use of wearable sensing technology in conjunction with advanced computing techniques may enable highly 

affordable, accessible, comprehensive, and objective multimodal gait analysis tools for clinical and free-living gait 

assessment” 

1.4. Contribution to knowledge 

This research aims to contribute to the existing literature by addressing a number of specific knowledge gaps related 

to wearable sensor-based gait analysis. The main contribution will be on developing a more comprehensive gait analysis 

tool using a multimodal approach to go beyond the limitations of a unimodal approach in both clinical and beyond. The 

secondary contributions include revealing the environmental effects on all gait characteristics and the use of HAR to 
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automate walking bout segmentation in prolonged recordings. The final contribution comes from a developed novel edge 

device to promote remote gait analysis in clinics and beyond with low cost and low computational costs. Contributions will 

enhance the assessment and monitoring of impaired gait, bridging the gap between supervised and unsupervised 

assessment. 

1.5. Aims and objectives 

To develop and conduct a wearable sensor-driven multimodal gait analysis for stroke survivors and individuals with 

Parkinson's Disease, in both clinical settings and beyond, to deliver meaningful insights that guide clinical decisions. 

Additionally, this work aims to automate data processing by leveraging modern AI methodologies and IoT infrastructures, 

fostering remote patient monitoring. 

Therefore, the primary objectives for this PhD are to: 

1. Conduct narrative literature review to explore the development and progression of gait assessment techniques, 

technologies, and methods as well as what technical opportunities/challenges must be overcome. 

2. Conduct a detailed examination of contemporary computing methodologies to improve the limitations of current 

gait analysis. 

3. Perform a two-phased multidisciplinary study with the Faculty of Health and Life Science in this experimental 

project by recruiting participants with PD and stroke survivors. Whilst, the former experiment, including IMU 

and EMG measurements, will be supervised in a clinic/laboratory condition with a physiotherapist, the latter 

experiment will be unsupervised in a free-living environment with data recording for later analysis. 

4. Investigate how the collected multisensory data can be turned into actionable information to develop a multimodal 

gait analysis.  

5. Utilise AI models to develop effective HAR models to automate data labelling and propose solution to limited 

neurological dataset problem. 

6. Develop a novel edge device to promote remote monitoring to improve unsupervised assessment. 

7. Engage with clinic partners to interpret study outcomes and disseminate findings of this PhD programme for 

clinical use. 

 

1.6. Conclusion 

In this chapter, a series of research questions are formulated by providing the rationales. These research questions are 

used to structure the research hypothesis. Moreover, the section on 'contribution to knowledge' is elucidated to spotlight 

the significance of this thesis within the realm of clinical gait analysis. Finally, aims and objectives are detailed to address 

each research question separately. 

In the next chapter, a comprehensive examination of the technologies and methodologies employed in gait analysis 

will be presented. Through an extensive literature review, significant insights into the constraints and areas lacking in 

instrumented gait analysis will be uncovered. 
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Chapter 2 Instrumenting gait  
 

 

This chapter primarily uses text from my previously published online articles to fit the context and narrative of 

this thesis. The review article “Gait analysis in neurological populations: Progression in the use of 

wearables”, was published in the Medical Engineering & Physics in 2021. 

URL: https://doi.org/10.1016/j.medengphy.2020.11.005 

The published work is copyrighted by Elsevier Ltd, however, rights to reuse the work non-commercially for 

theses are granted to original authors. Details on Author rights are available at: 

https://www.elsevier.com/about/policies/copyright#Author-rights 

 

Additionally, some of the text included in this chapter appears as a book chapter (Sensor Integration for Gait 

Analysis) in the Encyclopaedia of Sensors and Biosensors published by Elsevier in 2023. Permission is 

granted to freely use the whole chapter with the declaration of authorisation included in Appendix 10. 

 (URL: https://doi.org/10.1016/B978-0-12-822548-6.00139-4) 

Permission to reuse up to 8x 500-word excerpts of the published work was obtained from Elsevier on 26 May 

2023 – License Number: 5556541043665. The declaration of authorisation is included in (Appendix 10). 

Permission to reuse 1 figure of the published work was obtained from Elsevier on 26 May 2023 – License 

Number: 5556541290238. The declaration of authorisation is included in (Appendix 10). 
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2.1. Introduction 

This chapter aims to offer a thorough literature review, exploring the development and progression of gait assessment 

techniques, technologies, and methods. By critically analysing existing literature, this review aims to present a 

comprehensive understanding of the current state of knowledge in the field. Furthermore, it will identify any gaps or 

limitations within the field, providing a foundation for the subsequent stages of the thesis. Then, this chapter will transition 

towards formulating the primary research questions through several Points of Inquiry (PoI) and hypotheses that will guide 

the research conducted within this thesis. These questions and hypotheses will be specifically tailored to address the 

identified knowledge gaps and limitations, ensuring a focused and targeted approach to the research. 

The chapter begins by exploring the various methods used in the past, including observation and rating scales, as well 

as the utilisation of wearable sensors and laboratory technologies (Section 2.2). Moving forward, Section 2.3 presents a 

thorough examination of current clinical outcomes and gait models. Additionally, Section 2.4 offers a detailed analysis of 

commercially available wearable technologies, highlighting their technical capabilities and their application in gait 

assessment studies for different neurological conditions. In Section 2.5, an overview of existing inertial-based algorithms 

is provided, along with a concise guide summarizing the outcomes of previous neurological gait assessment studies. Section 

2.6 presents the findings of wearable sensor-based gait studies conducted across various neurological populations. 

Subsequently, Section 2.7 focus on the potential of wearable technology in gait assessment, considering the limitations and 

gaps in the existing literature. That section also explores possibilities for future research, providing a foundation for further 

investigation and development in the use of wearables for gait assessment in neurological populations. 

 

2.2. Background 

Gait, the way a person walks, is one of the prominent functional activities that is needed to perform daily life routines [11] 

and maintain wellbeing [26]. Gait abnormalities due to underlying aetiology are among the most consistent predictors for 

falls [27] and abnormal gait can cause other severe consequences such as reduced life satisfaction and limited mobility 

[28]. Impaired gait is present in almost all neurodegenerative diseases. More than two-thirds of those admitted to the 

hospital frequently suffer from a neurological condition that leads to a fall, where 85% of those patients were previously 

undiagnosed [29, 30].  

The prevalence of neurological gait disorders increases from 10% (60-69 years) to 60% in those >80 years, where 

sensory ataxia and parkinsonism are the most prevalent disorders [4]. Generally, patients with neurological conditions show 

similar gait abnormalities, such as reduced gait speed, reduced step length and poor postural balance – suggesting common 

mechanisms that still need to be unravelled [31]. However, there are also subtle but characteristically nuanced patterns 

between different neurological conditions. Typical gait for ataxia includes hard foot strike on each step and staggering gait 

patterns [32, 33], while slow movement (hypokinesia) and loss of movement (akinesia) are common symptoms of 

Parkinson’s disease (PD) [34, 35]. Post-stroke hemiplegia causes severe disruption to gait, e.g. initially, 50% of the patients 

are unable to walk [36, 37] and for those who can, asymmetrical gait is common with a large variance in step length and 

step time [38, 39]. Other neurological disorders exist such as Multiple Sclerosis (MS), a progressive and demyelinating 

disease of the central nervous system (CNS) that exhibits significant reductions in walking speed and step length due to 

deficiencies associated with ataxia, muscular weakness, spasticity and general fatigue [40, 41];  Progressive Supranuclear 

Palsy (PSP) is an uncommon degenerative neurological disorder resulting in decreased cadence and stride length and 

increased step with [42]. As each neurological condition seems to present nuanced gait characteristics, robust exploration 

of underlying impaired gait mechanisms and accurate measurement may play a vital role in targeted physical and/or 

pharmaceutical intervention. In this sense, impaired gait is assessed typically with traditional approaches (e.g., clinical 

rating scales) but more frequently with modern digital approaches. 

Traditionally, patient assessment methods in supervised clinical settings have been widely performed by visual 

observation from a trained physiotherapist [43] utilising subjective rating scales, which rely on clinician expertise. The 

latter include but are not limited to all or sections of the Unified Parkinson Disease Rating Scale (UPDRS) [44]; Scale for 

the Rating and Assessment of Ataxia (SARA) [45]; the Canadian Neurological Stroke Scale (CNSS) [46]; Alzheimer’s 

Disease Assessment Scale (ADAS) [47]; or Expanded Disability Status Scale (EDSS) [48]; High-level Mobility 

Assessment Tool (HiMAT) [49]; Dynamic Gait Index [50]. However, there is ample evidence to suggest that clinical 

assessment scales may not be sensitive to disease severity and cannot evaluate specific characteristics [33, 43, 51, 52]. For 

example, shuffling gait in PD is difficult to assess from observation and subjective rating scores between patients lack 

clarity for robust comparison [51]. Consequently, the inability to collect standardised gait parameters from clinical rating 
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scales under observation may limit understanding of underlying disease mechanisms which restricts robust monitoring of 

disease progression and tailored interventions [52].  

Instrumentation of gait using different digital-based technologies provides information that is not possible to 

detect from clinical observation alone. The use of those devices in conjunction with clinical judgment, provides new insight 

into the dysfunction causing an individual’s symptoms by providing objective digital gait characteristics [53]. These 

devices can be classified based on data collection protocols as non-wearable and wearable sensors where each has its 

advantages and disadvantages [54]. Motion analysis systems, instrumented walkway systems and force plates/platforms 

have been pioneering non-wearable systems that are considered to be “gold/reference standard” for capturing kinetic, 

kinematic and spatiotemporal gait characteristics with reasonable to excellent accuracies [54, 55]. However, those 

technologies conform to a “one-size-fits-all” approach, meaning they do not apply to individual phenotypes or a particular 

condition, further limiting their use [51, 52, 54]. Additionally, those costly non-wearable systems require the use of 

controlled research facilities and trained staff, which provide a snapshot assessment in optimal testing conditions within a 

predefined capture volume, e.g., the length of an instrumented walkway. To overcome limitations of gait assessment in a 

controlled environment with limited time, home motion systems (e.g. Microsoft Kinect) that include cameras, infrared and 

radar-based devices have been used [56, 57]. Yet, when considering user feedback, security, and limited data capture due 

to the field of vision, these devices have limited use [58, 59].  

Wearable technologies such as magnetic (e.g., magnetometers) and inertial measurement sensors (e.g., 

accelerometers and gyroscopes) and force sensors (e.g., insole foot pressure) have opened data capture opportunities that 

overcome limitations of non-wearable devices (e.g., continuous monitoring beyond the clinic). Magneto-inertial 

measurement units (MIMUs) have been used to reliably quantify the rate and intensity of movement by attaching to an 

anatomical segment (e.g. leg, arm) to extract kinematic, temporal and spatial gait characteristics [60]. Alternatively, 

wearable foot pressure sensors (e.g. insole) have also been used to gather continuous kinetic gait characteristics (e.g. ground 

reaction forces, moments) [61, 62]. Wearable sensors enable gait assessment in a range of testing locations but of recent 

interest is during daily, free-living environments such as the home and in the community. In contrast to laboratory-based 

assessment, free-living gait assessment can provide continuous monitoring in real-life (habitual) settings where natural 

dual-tasking or social interactions occur, which may provide new insights into neurological gait disorders [63].  

To date, a plethora of digital gait outcomes has been extracted from various technologies and interpreted using 

different gait models and algorithms. This scoping narrative review aims to provide a comprehensive roadmap for the 

future development of neurological gait assessment by shedding light on limitations and knowledge gaps in existing 

methodologies and technologies, particularly wearable sensors. 

 

2.3.  Understanding gait: Clinical-based outcomes and conceptual models 

Gait can be described as a cyclic pattern of body movements which advances an individual’s position. Consequently, 

studying discrete gait cycles can provide nuanced and even personalised assessments. To analyse the gait cycle in detail, it 

is split into distinct periods [64] where gait characteristics such as kinematic (e.g. hip, knee, ankle joints), kinetic (e.g. 

force, momentum) and muscle activation (e.g. force, onset – offset) occur with alterations during the gait cycle that can be 

extracted for sub-phase analysis [65].  

 

2.3.1. Gait outcomes  

 

2.3.1.1. Kinematic  

The study of kinematics starts with the reconstruction of a body as a multi-segment system using various 

technologies (e.g., motion analysis systems, inertial sensors). Digitally constructed body segments provide insightful 

knowledge about joint movements (e.g. joint angular velocity and acceleration) in 3D [53]. These 3D joint movements 

include rotations, flexions, extensions, abductions and adductions [66]. Typically, basic movements involved in human gait 

are (1) flexion and extension of the hip, knee, and ankle joints and front part of the foot; (2) abduction and adduction of the 

hip joint and (3) rotation of the hip and knee joints [67]. Furthermore, movements of the centre of mass (CoM) of each 

body segment impact overall body CoM, which is found critical for balance and energy expenditure [68].  
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2.3.1.2. Kinetic 

Kinetic information consists of a set of insightful measures from force and momentum perspectives [69]. One 

useful kinetic outcome is ground reaction force (GRF), typically measured with force plates, instrumented treadmills or 

wearable pressure sensors (e.g. insole) during the stance phase (foot is in contact with the ground) [70]. GRF may be 

distinctive in patients with a neurological condition, e.g. PD patients who experience shuffling walking may experience 

decreases in progression force and the second peak of vertical force[71]. Other useful kinetic outcomes include centre of 

pressure (COP), highly useful for postural balance assessment and plantar pressure distribution of the foot, which 

contributes to understanding foot contact with the ground (force per unit area) [72-74]. The latter may help differentiate 

patients who demonstrate neurological gait patterns since neurological groups typically touch the ground with the entire 

foot unlike healthy comparisons [75]. The integration of kinetic (GRF, COP) and joint kinematics allows us to calculate 

joint moments, which is helpful to understand how external forces (e.g. GRF) interact with internal forces (e.g. muscle) to 

stabilize the joints [53]. 

 

2.3.1.3. Muscle activation  

Normal gait relies on selective timing and intensity of responsible muscles at each joint [75]. Thus, investigation 

of the phasic contribution of muscles in a gait cycle is important [76, 77]. Highly informative muscle-related outcomes 

(e.g. muscle onset and offset times, muscle synergies) have been used to investigate when the muscle fires, how muscle 

forces change and what muscle synergies are responsible for walking [78]. Onset and offset times of muscle activations 

show the duration of active muscles during gait and are useful to diagnose abnormality in muscle coordination or altered 

muscle activity during freezing episodes in PD [79]. Additionally, motor unit action potentials (MUAP) provide insightful 

knowledge for the diagnosis of neuromuscular disorders since a raw muscle signal consists of super positioned MUAPs 

[80]. Amplitude, duration and number of phases are factors that characterise MUAP [81], where increased MUAP 

amplitude is associated with loss of muscle fibres [79]. Identification of muscle synergies during gait shows the coordinated 

recruitment of a group of muscles and helps to understand how the CNS regulates these muscle synergies during walking 

[78]. Synergy vectors from healthy subjects can be compared with a group that suffers from a neurological condition using 

statistical correlation methods (e.g. Pearson correlation) to monitor similarities and alterations [82]. 

 

2.3.1.4. Temporal and spatial outcomes 

Temporal and spatial features are a common set of gait parameters since these are essential for the identification 

of more pragmatic gait characteristics. Typically, extraction of temporal and spatial outcomes starts with the identification 

of heel strike/initial contact (IC) and toe-off/final contact (FC) within the gait cycle. A gait cycle can be described with 

swing and stance phases, which comprise approximately 38% and 62 % of the gait cycle for healthy adults, respectively 

[83]. Swing phase duration (i.e. swing time) is a temporal/timed measure when the foot under consideration is not in contact 

with the ground, which changes to stance phase duration (i.e. stance time) when the same foot contacts the ground [84]. 

Useful outcomes stemming from those timed durations include single-limb support and double-limb support, which have 

been useful to examine knee joint impairments [85] and balance control during gait [86], respectively. Spatial measures 

(e.g. stride length, step length) have been used to identify small steps and shuffles of impaired gait [51] while the more 

technically challenging outcome of step width (from wearables) is associated with the base of support and postural balance 

[51]. Mathematical approaches for the estimation of temporal and spatial outcomes using wearables are explored in section 

2.5.1.  

 

2.3.1.5. Frequency and time-frequency outcomes 

Typically, frequency domain analysis of acceleration signals allows investigation of how the signal’s energy is 

distributed over a range of frequencies. Time-frequency domain analysis can answer the question of when (in time) a 

particular frequency component occurs. Frequency-based measures are a valid and sensitive estimator of stride-to-stride 

variability that can be used to assess neurological conditions [87]. For instance; width and dominant frequency in 

acceleration epochs were linked to the variability of the gait domain where dominant frequency reflects average step time 

while the width is associated with the variability of the acceleration signal [88]. Furthermore, the bandwidth and energy 

concentration of an acceleration signal in the Medio-lateral direction have been used to discriminate impaired gait. For 

example; PD patients can be discriminated from healthy subjects (HS) as the former has larger bandwidth and lower energy 
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concentrations [89]. Clinically, frequency and time-frequency outcomes are novel for use in neurological gait assessment 

compared to temporal and spatial outcomes where interpretation of the former remains subject to further investigation to 

inform pragmatic insights into neurological gait.  

 

2.3.2. Conceptual models 

Due to the redundancy of parameters and covariance amongst characteristics, conceptual gait models and classification 

approaches based on different technologies are proposed for ease of interpretation. Here is a non-exhaustive description of 

each stemming from creation in non-wearable to wearables. 

1. Lord et al. developed a model consisting of 16 gait characteristics across 5 domains utilising non-wearable 

(instrumented walkway) outcomes and factor analysis with healthy older adults (69.5 years). The developed model 

is composed of (i) pace (e.g. step velocity), (ii) rhythm (e.g. step time), (iii) variability (e.g. step velocity 

variability), (iv) asymmetry (e.g. step-swing time asymmetry) and postural control (e.g. step width) [9]. The model 

was validated using a multimethod approach that included the replication of previous work [90]. 

2. Hollman et al. proposed a gait model that consists of 23 gait parameters extracted from non-wearable (instrumented 

walkway) data for healthy adults (>70 years). This model also consists of 5 domains: (i) rhythm utilises temporal 

parameters such as cadence and stride time; (ii) phase consists of swing, stance, single and double support with % 

gait cycle (GC); (iii) variability includes numerous parameters such as variability of stride length and stride speed; 

(iv) pace includes gait speed and; (v) base of support consist of step width and step width standard deviation [10]. 

3. Sejdic et al. studied 17 parameters of healthy adults (65 years) and PD group (>65 years) using a motion capture 

system and a single wearable attached to the lower back in clinical conditions. The extracted parameters are based 

on 5 different features; (i) stride interval features (e.g. gait speed), (ii) statistical features (e.g. standard deviation, 

skewness), (iii) information-theoretic features (e.g. entropy rate), (iv) frequency features (e.g. peak frequency, 

spectral frequency) and (v) time-frequency features (e.g. wavelet entropy) [89]. 

4. Morris et al. proposed a new model adapted from the previous model (Lord et al.) for use with wearable data from 

older adults (mean age 69 years) and those with PD (mean age 72.3) during free living, which resulted in 14 gait 

characteristics across 4 domain [91]. The model defines (i) pace (e.g., step velocity, step length), (ii) rhythm (e.g., 

step, stance, swing time), (iii) variability (e.g., variance of step, stance, swing time), asymmetry (e.g., asymmetry 

of step, swing, stance time). 

5. Morris et al. upgraded previously proposed models by combining pace and turning gait characteristics in the same 

domain using six inertial sensors for a PD group (mean age 67.6). The developed model contains gait and balance 

components; each has four different domains. Gait model; (i) pace & turning (e.g., gait speed, stride length), (ii) 

rhythm (e.g., stride time, stance time), (iii) trunk (e.g., trunk coronal /sagittal/ transverse range of motion) and (iv) 

variability (e.g., standard deviation of stride length and stride time). Balance model: (i) area & jerk (e.g. sway area, 

JERK and Root Mean Square (RMS) in AP, ML directions), (ii) velocity (e.g. velocity in AP and ML directions) 

(iii) frequency ML (e.g. frequency in ML direction) and (iv) frequency AP (e.g. frequency in AP direction) [92]. 

6. Horak et al. proposed a model based on the outcomes of the instrumented stand and walk test of healthy adults 

(mean age 66.6 years) and PD patients (mean age 66.4) using six wearables. Here, the postural balance domain 

(e.g., sway parameters) is more dominant compared to the previous models. The proposed model consists 6 

domains with 30 measures; (i) sway area (e.g. mean distance, CoM range), (ii) sway frequency (e.g. mean 

frequency, jerk (the rate of change of acceleration)), (iii) gait speed (e.g. stride velocity, step length), (iv) gait trunk 

(e.g. peak trunk velocity), (v)  gait timing (e.g. cadence) and (vi) arm asymmetry (e.g. arm asymmetry velocity) 

[93]. 

7. Weiss et al. suggested a model heavily depends on frequency domain outcomes of healthy adults (>50 years) and 

a PD group (>50 years) during an uncontrolled (e.g., free-living) environment using a single wearable attached to 

the lower back. In the validation study, (i) temporal measure; average stride time and (ii) frequency measures; 

stride time variability, dominant frequency (Hz), amplitude, width and slope were examined[87].   

8. Stuart et al. proposed a gait model for chronic mild traumatic brain injury (mTBI) (mean age 39.56) using five 

wearables. The proposed method consists of 13 gait characteristics and four domains; (i) variability (e.g. standard 

deviation of double support time, stride length), (ii) rhythm (e.g. stride time, single support time), (iii) pace (e.g. 

gait speed, foot strike angle) and (iv) turning (e.g. turn duration and turn velocity) [94].    
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These models show how complex instrumented gait assessment is, with numerous characteristics spread across different 

domains. Inconsistencies between studies result in reduced clarity and confusion where some gait characteristics are 

evidenced in different domains due to e.g., wearable placement and calculation of the same type of outcome. 

 

2.4. Instrumenting gait  

2.4.1. Reference standard technologies 

Acquisition of quantitative information about the mechanics of the musculoskeletal system while executing motor 

tasks is a crucial phase of human movement analysis [95]. The following technologies are usually described as reference 

standards when compared to wearable technologies.  

Motion capture systems (also known as `mocap/mo-cap`): Motion capture systems can be classified as marker-

based and marker-less systems. The former system uses retro-reflective markers along with a video-based optoelectronic 

system and various models (e.g., the Newington model) to calculate the displacement of attached markers. Limitations 

such as the need for additional hardware (e.g., reflective markers, `mocap` suit) and time-consuming setup preparation 

drove researchers into developing more practical marker-less systems, where conventional cameras are used together with 

various three-dimensional human models. The positioning performance of a common motion analysis system (Vicon 

Motion Systems Ltd, Oxford, UK) was studied. The accuracy of displacements with certain errors for dynamic and static 

experiments was investigated and favourable results were reported [96]. Motion analysis systems have been used 

successfully to obtain kinematic data in terms of a joint (e.g. hip, knee, ankle) excursion and spatiotemporal parameters 

(e.g. step time and velocity) [97]. In-depth details on these systems are provided elsewhere [98, 99] but although they offer 

higher accuracies compared to other well know reference standards, their high costs and need for large space prohibit their 

use by researchers and clinicians.  

Force platform technology (also known as force plates, FPs): Measure GRF, moments and COP using pressure 

sensors and load cells. FPs have been widely used to understand how movement is produced and maintained [100] but are 

limited to single-foot strikes due to their small dimensions. Alternatively, instrumented treadmills or pressure 

mats/walkways (using an array of pressure sensors) can detect repeated footfalls. Performance assessment of instrumented 

treadmills for measurement of kinematic gait characteristics was studied as a result of a comparison with a video-based 

system and results suggested that instrumented walkways provide comparable results for temporal parameters and further 

investigation is needed to evaluate the fidelity of its spatial performance [101]. Moreover, although instrumented walkway 

systems are widely accepted as the gold/reference standard, they are not without error[102]. In the validity studies, various 

technologies (e.g. clinical stride analyser ) were used for validation of instrumented walkway systems and 0.51 cm and 

0.67 cm mean absolute errors were reported for step length and stride length, respectively [55, 103]. 

2.4.2. Wearables for gait assessment  

Wearables comprise a range of sensing technologies but the most popular comprise inertial-based devices where 

the proposed use of acceleration signals for human movement date from the 1970s [104]. Developments in micro-

electromechanical systems (MEMS) and the rise of validation studies have enabled inertial-based wearable technologies 

to replace the perceived reference standards by providing equally or more useful information with many advantages (e.g. 

high accessibility, low cost, use beyond the lab) [72]. Yet, other wearable devices involving force sensing technology 

remain useful, but the creation of miniature data capture platforms has enabled new sensing capabilities. Examples of some 

commercially available wearables with numerous sensing capabilities are provided in Table 1. 

2.4.2.1. Magneto-inertial measurement units (MIMUs) 

MIMUs comprise magnetometers, accelerometers, and gyroscopes, which are capable of capturing data across a spectrum 

of sensing properties (e.g., flux, velocity, acceleration, orientation, gravitational forces). Accelerometers are perhaps the 

most popular gait assessment sensor, which can measure 3D linear accelerations and has been used to detect initial-final 

contact (IC-FC) events to quantify temporal and spatial outcomes. Gyroscopes with their capability of measuring 3D 

angular velocities aid the detection of body/segment rotation (e.g., turns). Magnetometers are often used to increase the 

sensing capabilities of accelerometers and gyroscopes [105] with sensor fusion techniques due to their capacity of 

measuring the direction, strength, and change of a magnetic field at a specific location [106]. Although accelerometers and 

gyroscopes could be used in isolation for gait assessment, a combination of these sensors together with magnetometers and 

additional features (e.g. wireless data transmission) produce a highly efficient system for reconstruction and analysis of in 

vivo locomotor system kinematics during gait [60]. Several reasons can be listed for the preference of MIMUs in human 
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movement analysis. Firstly, accelerometers and gyroscopes are self-contained during operation and can be used to collect 

quantitative motion data regardless of time and environment, and the ubiquitous presence of a magnetic field on earth 

makes it possible to use magnetometers in most locations [107]. Secondly, commercially available MIMUs are small, 

lightweight, and with additional hardware (e.g. Bluetooth, Wi-Fi, SD card), can gain useful features such as wireless data 

transmission or internal memory recording – facilitating easy data collection without affecting the natural movement of 

individuals [66].  

 

2.4.2.2. Accelerometers 

According to Newton’s second law, an object with a constant mass (kg) accelerates (m/s2) in proportion to the 

sum of applied net force (N). Accelerometers are developed from this principle using different approaches (e.g., 

piezoelectric, thermal, and capacitive). Accelerometers are highly configurable devices where their bandwidth or frequency 

response can be set through coupling filter capacitors. This is an important aspect of accurate sensing as bandwidth must 

include the frequency or vibration of the motion of interest. Range (g = 9.81 m/s2)  and sampling frequency (fs, Hertz, Hz) 

are additional parameters of interest that need to be selected considering the type of activity to be measured [108].  

The dynamic range of an accelerometer is ± maximum amplitude that can be measured before distorting the output 

signal during data collection. Low-intensity movement (e.g., postural balance) is assessed more sensitively with lower g 

values. Alternatively, high insensitive movements (e.g., gait) are accurately assessed with higher g values to capture high 

amplitude (range) movement without distorting or clipping. Most accelerometer-based wearables have selectable ranges; 

however, the optimal range depends on both the type of movement and the body part making the movement. For example, 

3D linear accelerations recorded at joints ranges from 3.0 to 12.0g, while lower back vertical acceleration and horizontal 

acceleration range from -0.3 to 0.8g and from -0.3 to 0.4g, respectively [109]. Thus, accelerometers must be capable of 

measuring accelerations up to ±12g regardless of attachment location but with enough resolution to capture subtle (low g) 

movement [8, 110, 111]. Additionally, fs needs to be set considering the type of movement to be measured but must also be 

considered for pragmatic reasons, high sampling rates negatively impact battery life [112]. Antonsson and Mann reported 

that during barefoot walking, 99% of the acceleration signal contained a frequency below 15Hz [113]. Similarly, Aminian 

et al. found that there was no significant acceleration frequency component above 16Hz at the lower back or the heel during 

treadmill walking [114]. Sun and Hill also found that the major energy band for daily activities (e.g. walking) ranges from 

0.3 to 3.5 Hz [115]. Considering the findings of previous studies, Bouten et al. concluded that in order to assess daily 

physical activity accelerometers must be able to measure frequencies up to 20Hz [111]. Combining this knowledge with 

Nyquist theorem (fs > 2fmax) where fmax is the max frequency component, preferred sampling frequencies ranged from 22–

320 Hz [116], 50–1000 Hz [8] and 32–128 Hz [110] in previous gait studies where it seems 100 Hz is optimal, to capture 

adverse events during daily living, e.g. falls. An in-depth description of accelerometer use in generic human movement 

analysis is found elsewhere [1, 117, 118] and details on post-processing methodologies can be found in [118]. 

 

2.4.2.3. Gyroscopes 

Gyroscopes measure angular velocity (°/s) and are the next most widely used inertial sensor after accelerometers 

[119]. During deployment, scale factor stability, representing the sensitivity of the optical gyroscope, must be considered. 

A minimum scale factor stability leads to small sensor errors and can be expressed by angle random walk (ARW) = R / 

[60sqrt(B)], where R and B represent resolution and bandwidth, respectively [120, 121]. A combination of a tri-axial 

accelerometer and tri-axial gyroscope can deliver relative heading/direction, but the output drifts overtime. 

 

2.4.2.4. Magnetometers 

Magnetometers measure the direction, strength and change of a magnetic field (Gauss) at a specific location. 

Specifically, magnetometers are sensitive to Earth’s magnetic field and can be used to correct drift or for the detection of 

rotations in a known direction [106]. In the absence of magnetometers, 6 axes (accelerometer and gyroscope each in three 

axes) deliver relative heading, but with drift. Supplementing with magnetometers can solve drift by providing (absolute 

heading) a global reference point of the Earth’s magnetic field [122]. However, magnetometers can be affected by localised 

magnetic fields, which may vary in uncontrolled environments (e.g., free-living). Given the popularity of accelerometer 

and gyroscope-based devices, the remainder of this text will focus on those only with IMUs. 
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2.4.2.5. Pressure (force sensors) 

Pressure and force sensors (e.g. insole) are the cornerstone of gait analysis and are typically used to measure 

kinetic ground reaction forces (GRFs), and temporal and spatial outcomes [123, 124]. These sensors transform the pressure 

information into digital current or voltage data. Capacitive, piezoelectric and piezo-resistive types are the most commonly 

used underfoot sensors [54]. Estimation of GRF can be explained by Newton’s third law; the plantar surface produces a 

vertical force in the direction of the ground, and in response, another force in the opposite direction with the same intensity 

is generated [125]. Alternatively, gait events initial-final contact (IC-FC) can be detected using pressure sensor data, and 

then spatiotemporal measures can be calculated from detected IC-FC in conjunction with simple mathematical equations. 

Recently developed foot pressure sensors provide plantar pressure profiles with visual feedback (e.g. pressure sensor map) 

[126]. 

 

2.4.3. Electromyography (EMG)  

EMG sensors record myoelectric signals (i.e., motor neurons) using different electrode types (i.e., needle or 

surface). Needle (fine wire) electrodes are inserted into the muscle to detect neuromuscular abnormalities, while surface 

electrodes are used to record muscle activities by placement on the skin. Although the former provides more reliable 

outcomes, the invasive nature limits its use. Surface EMG electrodes (sEMG, which have wireless options) offer more 

pragmatic opportunities with a  non-invasive setup to record muscle activities in clinical and/or free-living environments 

[127].  

Myoelectric signals are generally at the millivolt (mV) level and range from 10–1,000 Hz. For example; a muscle 

contraction can generate signals around 10Hz as a result of tissue displacement and whereas ground impact during walking 

produces 25–30 Hz signals [75]. As the EMG signal has low signal reception, it is more susceptible to unwanted signals 

(i.e., noise) mostly derived from tissue motion and neighbour motors. However, these noises are detected and eliminated 

at certain levels during signal acquisition and post-processing. During signal acquisition, unwanted electronic signals 

including common mode signal, which is a noise that flows in the same direction in a pair of lines (e.g. two surface 

electrodes), can be eliminated using differential amplifiers or instrumentation amplifiers (IA), which has large common 

mode rejection ratio (CMRR) [75, 128]. For post-processing noise reduction, digital low pass, high pass or band pass filters 

are used considering the sEMG frequency spectrum [129]. After noise reduction, various signal processing techniques are 

used to process EMG signals and ease the interpretations. Rectification is the most common approach that turns EMG 

signals into single polarity. Once the EMG signal is rectified, further processing such as Root Mean Square (RMS), eq. 1 

and thresholds can be applied to extract information regarding muscle activation amplitude and onset, offset timings. 
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In gait assessment, EMG carries valuable information about motion as walking relies on selective timing and 

intensity of responsible muscles at each joint[75]. Gait relies on harmonised action of 28 main muscles to manage the 

trunks and limbs[130]. For example, the Biceps femoris and Rectus femoris muscle groups are involved in knee flexion 

and extension movements, respectively. Similarly, tibialis anterior and gastrocnemius are responsible for ankle dorsiflexion 

and plantarflexion, respectively[131]. In many neurological disorders, natural walking patterns can be disrupted, for 

example, persons after stroke[132], Parkinson’s disease[133] or head trauma[134] experience disrupted muscle function at 

many levels. Instrumented gait aims to provide clinically useful information about different aspects of gait including gait 

kinetic characteristics. Kinetic analysis is particularly important as it provides information regarding how a movement is 

produced and maintained[1]. Movement kinetics involve external forces such as ground reaction forces (GRF), and internal 

forces produced by muscle mass. EMG measurement complements instrumented gait by providing information about 

internal force (e.g. muscle characteristics) and contributes to outlining the functional cause of a gait abnormality [135]. 

Early gait studies were limited in terms of including muscle activation characteristics during dynamic movements due to 

the lack of appropriate technologies. Recent advances in Microelectromechanical systems (MEMS) and wireless 

communication protocols have enabled the use of EMG and inertial sensors in a single wireless device without a need for 

external synchronisation. In this sense, the EMG signal is processed to provide comprehensive muscle characteristics in a 

gait cycle and its subphase, Figure 1. Electromyographic profiles were found also useful to investigate simple and complex 

activity recognition[136] and better understand falls[137], and freezing of gait (FoG), an abnormal gait pattern commonly 

observed in Parkinson's disease [138].  
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Figure 1. Raw EMG data of four different muscle groups during ground-level walking 

Large inter-individual differences in EMG timing and intensity among participants can be observed as muscle 

activation signals are sensitive to age, Body Mass Index (BMI), and lifestyle[139]. Additionally, each gait cycle is different 

from the other, suggesting gait is characterized by high intra-subject variability. This variability can further increase in 

neurological cohorts[140, 141]. Therefore, EMG needs to be recorded for a longer time (at least 3-5 min), rather than a few 

gait cycles[135]. Comparing EMG activity in the same muscle on different clinic visits or with different individuals requires 

a normalisation[142]. Although maximum voluntary isometric contraction (MVIC) is a highly reliable method to normalize 

EMG data, performing MVIC tests on people with neurological conditions may not be appropriate or possible in some 

cases. Therefore, most neurological gait studies use peak or mean activation levels for normalisation[143]. Also, there are 

other factors that need to be considered during EMG measurement and signal processing to produce comparable results in 

gait studies. Scientific recommendations by the International Society of Electromyography and Kinesiology (ISEK) and 

Surface EMG for Non-Invasive Assessment of Muscles (SENIAM) project suggest the use of band pass filters with 10Hz 

low cut-off and 500Hz high cut of frequencies to reduce aliasing (noise) effect when using an sEMG with a sampling 

frequency of 1kHz [79]. The major disadvantage of sEMG is cross talk, an incident that can be expressed as recording 

activities of neighbour muscles other than the muscle of interest. Muscle cross-talk is more likely to occur in sEMG, but 

use of spatial filters based algorithm helps to reduce interferences [144].  
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Table 1. Examples of some wearable devices 

Company Shimmer Axivity 
McRobert

s 

BTS Bio 

Engineering 
Mc10 xSens 

Micro Sensors. Big 

Ideas® 

Delsys Noraxo

n 

Product 

examples 
Shimmer3 IMU Shimmer3 EMG AX3 AX6 

Move 

Monitor 
G-WALK 

BioStam

p 

RC 

MTw 

Awinda

. 

Inertia-Link® 

 

Trigno Avanti 

 

Ultium 

EMG 

Size and 

weight 

(grams, g) 

24.276 cm3 

23.6g 

27.3 cm3 

31.0g 

5.6 cm3 

11.0g 
5.6 cm3 11.0g 

70.7 cm3 

55.0g 

50.4 cm3 

37.0g 

10.1 cm3 

7.0g 

18.33 

cm3 

16.0g 

61.9 cm3 

39.0g 

 

12.987 cm3 

14.0g 

 

14.95 

cm3 

14.0g 

Sensing 

capabilitie

s 

ACC. 
GYRO. 

MAG. 

PRES. 

TEMP. 

ACC. 
GYRO. 

MAG. 

PRES. 

EMG 

ECG 

ACC. 

TEMP. 

LIGHT 

ACC. 

GYRO. 

TEMP. LIGHT 

ACC. 

MAG. 

BAR. 

TEMP. 

ACC. 

GYRO. 

MAG. 

ACC. 

GYRO. 

EMG. 

ACC. 

GYRO. 

MAG. 

BAR. 

ACC. 

GYRO. 

 

ACC. 

GYRO.  

MAG. 

EMG. 

 

ACC. 

GYRO.  

MAG. 

EMG. 

Range of 
ACC. (g) 

± 
2,4,8,16 

± 
2,4,8,16 

± 
2,4,8,1

6 

± 
2,4,8,16 

± 
2,4,8 

± 
2,4,8,16 

± 
16 

± 
16 

± 
2,5,10 

± 

2,4,8,16 

± 

16 

Range of 

GYRO. 

(°/s) 

± 

250,500,1000,200

0 

± 

250,500,1000,200

0 

 
± 

125,250,500,1000,200

0 

 
± 

250,500,1000,200

0 

± 

2000 

± 

2000 

± 

75,150,300,600,120

0 

 
± 

250,500,1000,200

0 

 
± 

2000 

MAG.  

(Gauss) 

± 

49.1 

± 

1.3-8.1         
  

± 

10.0 

± 

12.0 
 

± 

1.9 
 

 

± 

49.0 

 

± 

48.0 

fs (Hz) 

ACC.  
10.24-1024 512 

12.5-

3200 
12.5-1600 

50- 

200 
4-1000 15.6-250 20-120 1-250 

 

24 – 473 

 

4000  

Memory ≤32 GB ≤32 GB 
512 

MB 
1024 MB 1024 MB 256 MB 32 MB   

 
 

 

2 GB 

Battery 

life 

≤69 hours 

@256 Hz 

 

N/A 

≤14 

days 

@100 

Hz 

≤7 days 

@100 Hz 
≤14 days 8 hours 3 days 6 hours N/A 

 

8 hours 

 

8 hours 

Each 
sensor 

#axes 

3 3 3 3 3 3 3 3 3 3 3 

Wireless 

data 

transfer 

 ✓    ✓ ✓ ✓ ✓ 

✓ ✓ 

ACC.: Accelerometer, GYRO.: Gyroscope, MAG.: Magnetometer, PRES.: Pressure, TEMP.: Temperature, BAR.: Barometer, EMG: Electromyography   
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2.4.4. Validity 

The validity (and reliability) of wearables for robust gait analysis of neurological conditions is crucial for clinic 

and free-living assessment and is of great importance as the field matures. Recently developed expert opinion has a 3-way 

framework defined by (1) verification, (2) analytical verification and (3) clinical validation (V3) for biometric monitoring 

technologies [145]. According to the framework, verification entails systematic evaluation of sample-level sensor outputs 

considering patient safety using various methods such as bench testing prior to patient use. The analytical validation stage 

translates the evaluation procedure for sensors from the bench to patient use. This stage mostly investigates how well the 

data processing algorithms convert sample-level sensor measurements into physiological metrics and requires collaborative 

work between the engineering/computing team responsible for developing the sensor/wearable technology and the clinical 

team. Analytical validation requires a well-defined data collection protocol including the following information: type of 

system (e.g., inertial sensors used), the way the sensors are attached (e.g., orientation and exact location) together with 

study population details. Finally, clinical validation evaluates whether the sensor acceptably identifies or measures 

clinically meaningful outcomes in a stated context of use, conducted by clinical teams who investigated accuracy, precision, 

and reliability within a specific patient population.   

Often verification is a technical process that is not conducted in the literature. One example of bench testing for 

IMU sensor assessment in gait includes the use of a pendulum to assess an accelerometer for its suitability to measure 

dynamic acceleration compared to an electronic goniometer [146]. Instead, various gold/reference standard technologies 

are used to conduct wearable analytical and clinical validation studies [147-151] in tandem, with no clear distinction 

between those processes. For these combined analytical and clinical validations, wearable outcomes and gold/reference 

standard systems are compared [152, 153] while the cohorts wear the IMU-based technology (for the first time), perhaps 

limiting insights to IMU or algorithm deficiencies for that group. Although each system (IMU, 3D motion and walkway) 

measure different components, systematic errors will always remain in practice [154]. Therefore, validation should be 

performed in a step-by-step approach where discrepancies and agreements should be investigated and reported, taking an 

acceptable rate of errors into consideration between V3 processes.  

 

2.4.5. Wearable placement  

 

2.4.5.1. IMU  

Typically, IMU wearables are fixed on the skin with a strap or double-sided tape. Although this method of 

attachment provides a wide range of informative parameters with a certain accuracy, this might create problems like relative 

movement (e.g. linear, angular) between IMU wearables and underlying bones due to soft tissue artefacts, and displacement 

of the fixation clothes or strap [155]. Relative motion based on problems during data collection may cause a discrepancy, 

which can affect the accuracy and robustness of a developed algorithm. Therefore, attaching an IMU, considering the 

location of the soft tissues may provide more stable and reliable signal acquisition. 

IMU locations have crucial impacts on algorithms (e.g., use of thresholds) since the characteristics of acceleration 

and angular velocity differ from one location to another. Moreover, the location of the IMU has a direct effect on the 

extracted parameters/outcomes. An extensive investigation of the effect of IMU locations on the extraction of different 

parameters for a neurological condition is presented elsewhere [156]. To date, the most preferred sensor locations for gait 

assessment are the lower back (3rd to 5th lumbar vertebrae, L3-L5) or feet/foot. In many circumstances, whole-body 

movement analysis with a single device is necessary; thus, IMU location as close as possible to the CoM (i.e. L5) is 

preferred [1, 157]. Various sensors and their locations for gait analysis in different pathologies are presented in Figure 2. 

References in the images: 

[158],[159],[160],[161],[162],[163],[164],[165],[166],[167],[168],[169, 170],[154],[158],[171],[172],[173], [174], [175], 

[176], [177], [178],[179],[180],[181],[182],[183],[184],[185],[186],[187],[188], [189, 190], [191], [192], [193], [194], 

[195], [196],[197],[198],[171],[199], [200],[201],[202],[203]. 
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Figure 2. Previously preferred sensor configurations and locations for different pathologies (PD: Parkinson’s disease, AD: 

Alzheimer's Disease, MS: Multiple Sclerosis, CA: Cerebellar Ataxia, TBI: Traumatic Brain Injury, PSP: Progressive Supranuclear 

Palsy, HD: Huntington’s Disease)  

  

2.4.5.2. EMG 

Large discrepancies were observed in the previous EMG-based studies in terms of electrode placement protocols. 

Mainly, targeted muscle groups and the use of various types of surface electrodes such as different sizes and shapes limit 

the standardization of EMG. To overcome these discrepancies and to offer guidance to the field, an atlas of muscle 

intervention zone [204] and SENIAM [205] were introduced. In those guides, electrode placement protocols typically 

include the identification of electrode types such as shape and material, skin preparation, the position of the patient, 

electrode location and fixation [206]. Further guides for sEMG placement can be found in [207, 208] but of note is that 

soft tissue or inappropriate muscle selection during sEMG measurement limits the collection of meaningful data. 

sEMG attached to lower limb muscle can provide reliable muscle activity and muscle force information for gait 

assessment of neurological conditions [209] where muscle activities of 28 major muscles controlling each lower limb can 

be readily identified [75]. In general, lower leg and foot muscles that are ideal for sensor placement include gastrocnemius 

medialis-lateralis, soleus, tibialis anterior, and peroneus longus-brevis, with reference electrode location for sEMG at the 

ankle [206]. Following SENIAM recommendations, tibialis anterior, lateral gastrocnemius and rectus femoris muscles have 

been selected to collect EMG parameters (amplitude, variability) for gait assessment of PD [210]. However, I observed 

discrepancies in the muscle groups selected, probably due to the study of different neurological conditions.  In the literature, 

few studies have taken into account the recommendation in the atlas guides during sEMG measurement. I found tibialis 

anterior and lateral gastrocnemius muscle groups [211] and rectus femoris, biceps femoris, tibialis anterior and 

gastrocnemius medialis [212] were selected to investigate muscle activities in healthy and pathologic groups. Figure 3 

presents the electrode locations for different patient groups.  
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Figure 3.Previously preferred electrode locations for different pathologies (PD: Parkinson’s disease, MS: Multiple Sclerosis, CA: 

Cerebellar Ataxia, TBI: Traumatic Brain Injury, HD: Huntington’s Disease) 

 
 

2.5. Gait algorithms 

 

2.5.1. Inertial algorithms 

Robust detection of IC and FC within an IMU signal draws upon timing sequences and mathematical formulae 

(Appendix 3) once regions of interest from IMU signals are identified. Some methods for defining and examining those 

regions have been presented previously [213, 214]. Here, I include more recent algorithms: 

 

1. (Lower trunk based) McCamley et al. proposed an algorithm based on several different signal-processing 

techniques. Initially, vertical acceleration was pre-processed through Continuous Wavelet Transform (CWT) with 

Gaussian wavelet function, then IC events were detected as the times of the minima of the processed signal while 

FC events were detected as times of the maxima of the signal obtained after a further CWT differentiation [6]. 

2. (Lower trunk based) Zijlstra and Hof, proposed two different methods (zero-crossing and peak detection) that use 

the acceleration signal in the AP direction to detect the foot contact moment. After low pass filtering the forward 

acceleration signal with (4th Butterworth 20 and 2 Hz cut-off frequencies), (1) the switch from positive to negative 

was taken as IC. In a refinement of this method, the peak forward acceleration was taken as the instant of Ics. 

[215]. 

3. (Lower trunk based) A paper by Gonzalez et al. reported a comprehensive algorithm that uses filtered (11th order, 

finite impulse response filter) acceleration in the AP direction. In the algorithm, enclosed areas by positive values 

of the filtered signal, preceding every zero-crossing detected was approximately calculated. Then, the calculated 

areas were compared to the given threshold rates. When the calculated area is above the threshold rate, a search 

window together with a set of rules is used to locate the peak (local maxima) associated with the IC event. Once 

the IC event is detected, incoming samples are processed searching for the first local minimum that identifies the 

FC event [216]. 

4. (Lower trunk based) Shin and Park suggested a step duration estimation algorithm that uses a tri-axis acceleration 

norm. Sliding window summing (SWS) was used to reduce the noise in the acceleration norm signal. As the SWS 
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signal was sensitive to gravity, the acceleration differential technique was also used to eliminate the effect of 

gravity. Then, the obtained signals were processed to identify zero-crossing moments that are associated with 

periodic steps [217]. 

5. (Lower trunk based) Köse et al. proposed a wavelet-based approach that uses Daubechies wavelet due to the 

similarity of IMU signals during gait. First, accelerometer signals were decomposed in an approximation curve 

and ten levels of detail. Then, thresholds were applied, and signals were reconstructed using only the first three 

detail levels. In the following step, IC and FC were detected in the region of interest considering maximum and 

minimum points in different directions of accelerometer signals based on visual investigation [218].  

6. (Lower trunk based) Yoneyama et al. proposed an extensive self-adaptive algorithm to detect the stride events and 

active rhythm blocks from an accelerometer signal attached to the lower back. The proposed algorithm consists 

of different analytical tools such as normalized cross-correlation, anisotropy, and biphasicity score, to process the 

3-D acceleration signal and track long-term gait monitoring. The algorithm aims to detect correct gait peaks [165].  

7. (Lower trunk based) Bugané et al. proposed an algorithm to estimate spatiotemporal parameters using filtered 

(Butterworth low pass filter, 2 Hz cut-off frequency) anteroposterior acceleration signals. From the typical 

acceleration curve with two positive and one negative peak, the second positive peak was taken as the instant of 

IC. To discriminate automatically between the left and right steps, the medial-lateral acceleration was analysed. 

Assuming the sensor was very close to the centre of mass (L5), acceleration to the left was taken as that during 

the right leg support phase and vice versa [219]. 

8. (Shank based) Trojaniello et al. proposed a gait event detection algorithm based on two MIMUs attached above 

the ankles. In the proposed algorithm, the first trusted swing phase time interval (TSW) was defined with thresholds 

and a set of rules applied to angular velocity in the sagittal plane. Then, Ics and FCs were searched in a time 

interval (TIC and TFC) which were considerably reduced by considering the estimated TSW.  IC was identified as 

the minimum value of the ML angular velocity occurring before the instant of maximum AP acceleration in the 

reduced time interval (TIC). The FC was identified as the instant of minimum AP acceleration in the TFC, since it 

is expected to occur at the time of a sudden motion of the shank preceding the instant of the last maximum AP 

acceleration value in TFC [220]. 

9. (Shank based) Salarian et al. developed an algorithm to estimate gait events (IC and FC) using a gyroscope signal 

attached to shanks. First, the mid-swing area (tms) was detected by applying a threshold (50 °/s), and then local 

minima of shank angular velocity (IC) were searched in the interval of tms [tms-1.5s- tms+1.5s]. In the following 

stage, the signal was low pass filtered with 30 Hz cut-off frequency and local minima with amplitude less than -

20 °/s were searched to detect FC [221]. 

10. (Shank based) Aminian et al. proposed an algorithm to estimate initial-final contact (IC-FC) events based on the 

shank angular velocity. First, wavelet decomposition (Fifth order Coiflet with ten scales) was used to split the 

signal into low and high-frequency components. Then, the approximation approach was used to separate IC 

components and FC components. Global maximum values (mid-swing) were detected as a reference to detect IC 

and FC. In the following stage, IC- FC were detected by finding local minima inside pre-determined time intervals 

[222].  

11. (Shank based) Catalfamo et al. developed an algorithm to detect IC-FC events from shank angular velocity. The 

determination of IC and FC events is based on the detection of two negative peaks in the shank angular velocity 

signal. The algorithm searches for the swing phase of the cycle which is detected when the gyroscope signal 

exceeds a threshold for another time threshold (40 ms). The first negative minimum after the swing is defined as 

IC. Then, the FC event is estimated after defining a waiting time and a set of rules [223]. 

12. (Shank based) Lee et al. suggested a novel algorithm to estimate hemiparetic and normal gait parameters after the 

detection of initial contacts (Ics) using 3 axis accelerometer. First, raw acceleration signals were filtered with 

Finite Impulse Response (FIR) bandpass filter and Least Square Acceleration (LSA) filter, respectively. Then, the 

highest peak points and lowest valley points were detected from Anteroposterior, Medio lateral and Vertical 

accelerations. Finally, estimated step detection points were extracted after applying a set of conditions to the 

extracted the highest and lowest point of all axes [153]. 

13. (Shank based) Khandelwal and Wickstrom proposed a novel algorithm that efficiently identifies gait events from 

accelerometer signals using continuous wavelet transform (CWT). The ‘symlet-4’ (sym4) mother wavelet was 

chosen with 40-80 scale rates. Then, a rough envelope (RE) was obtained for both IC and FC events. K means 
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clustering algorithm was used to differentiate IC (higher cluster) and FC (lower cluster) regions. Finally, IC and 

FC events were searched in relevant regions after the elimination of noisy IC-FC events [224]. 

14. (Foot based) Barth et al. developed a stride segmentation algorithm based on the subsequent dynamic time-

wrapping technique. The developed algorithm uses a gyroscope signal in the vertical axis from an IMU attached 

to the foot to search similar points to the template. FC was detected with zero crossing while IC was detected by 

searching the minima between the steepest negative slope and steepest positive slope. The mid stance was also 

detected considering the lowest energy point in all axes of the gyroscope signal [225].  

15. (Foot based) Chang et al. presented a gait phase detection algorithm that uses the tri-axis angular velocity of 

wearables attached to feet. First, signal vector magnitude (SVMag) was calculated from gyroscope data. Then, the 

slope of the SVMag and a sample timer were used to detect FC. The slopes of SVMag that are higher than the 

predefined threshold rate is considered FC moments. In the meantime, another threshold was used for a timer to 

extract true FC events by avoiding the influence of the user’s unconscious foot trembles and walking friction. 

Once, FCs were detected, each local maximum (peaks) within the interval of each of two successive FC points 

were defined as IC events [158]. 

16. (Foot based) Hsu et al. proposed a partially similar algorithm to Chang et al. using SVMag approaches for foot-

mounted inertial sensors. Initially, the SVMag of the accelerometer and gyroscope signals were calculated. A 

windowing technique that segments SVMag signals into windows was used, and then the variances of acceleration 

and angular velocity for each window were calculated. In the following step, the start flag was set, and the signals 

were scanned window by window. Then, starting points of the stride (IC) were detected when the variance of both 

acceleration and angular velocity of a window is higher than the predetermined two different threshold values 

(one for acceleration and one for angular velocity). Ending points of stride (FC) was calculated with a similar 

approach but different thresholds [178]. 

17. (Foot based) Stamatakis et al. proposed an algorithm based on an accelerometer attached to a foot. First, the 

accelerometer signal was high pass filtered with 10 Hz cut-off frequency, then peaks that represent Ics were 

detected as heel strike results in a high amplitude and frequency peak in the x-axis of the acceleration signal [172].  

18.  (Foot based) Chung et al. developed an algorithm that uses an acceleration signal of foot mounted sensor to detect 

starting and ending points of strides (also known as IC-FC events). First, the signal vector magnitude (SVMag) of 

the 3D acceleration signal was calculated and then segmented into 3 sample window sizes. IC contact was detected 

by finding the first sample point after the variance of the SVMag window surpass the pre-determined threshold. 

Equally, once the variance of the SVMag is found lower than the threshold, the first sample data was accepted as 

FC [179].  

19. (Foot and shank based) Jasiewicz et al. developed three different algorithms using foot linear accelerations, foot 

sagittal angular velocity and shank sagittal angular velocity to identify IC-FC events in individuals with spinal 

cord injuries. (1) IC-FC detection using foot linear accelerations; FC was identified by searching for a peak in 

forward-directed acceleration, within the FC search window located 250 ms before and 50 ms after each peak of 

ankle plantar flexion. To identify IC events, the algorithm searched for a vertically directed acceleration peak 

within the IC search window 100 ms before and 100 ms after peak ankle dorsiflexion. (2) IC-FC detection using 

foot sagittal angular velocities; To identify FC using foot angular velocity data, the algorithm searched for the first 

maximum in angular velocity in the FC window defined earlier.  IC was identified as the velocity zero-crossing 

point in the IC window defined above. (3) IC-FC detection using shank sagittal angular velocities; The algorithm 

evaluates rapid changes in timing characteristics and selects the two minima on either side of a peak in velocity. 

The first minimum was associated with FC and the second minimum with IC [226]. 

 

I found few studies that robustly investigated and compared these gait algorithms, especially in clinical cohorts. Of 

those retrieved within the literature, one performed a comparative evaluation for the accuracy of three methods (presented 

above 1-3) using a single inertial sensor mounted on the lower back [6]. In a similar study, sensitivity and robustness 

together with the accuracy of five different algorithms (1-5) for the estimation of gait temporal parameters were studied 

using a single inertial sensor mounted on the lower trunk [5]. The findings of the study suggested that the accuracy in 

estimating step and stride duration for all methods was acceptable for clinical use but 1 was optimal. Moreover, the same 

study also investigated the robustness of the IMU positioning of three algorithms (1-2 and 4) for four different locations 

around the lower trunk, and algorithms 1 and 4 were reported as highly robust. 
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2.5.2. EMG algorithms  

Often, EMG sensors are used with additional systems since the identification of the gait cycle is challenging from 

EMG signals alone [133, 138, 227]. Some recent EMG-based gait assessment studies, together with various technologies 

are presented in Table 2. When EMG signals arising from gait have been correctly identified, they have been used in 

conjunction with different signal analysis techniques (e.g., Fourier transform) or artificial intelligence techniques (e.g., 

fuzzy logic) to develop advanced EMG detection and analysis. These signal-processing techniques and algorithms facilitate 

the differentiation of neurological gait from healthy gait but also contribute to monitoring specific gait abnormalities [80]. 

The following are current approaches to analyse EMG data: 

1. The linear envelope of an EMG signal is an easy-to-interpret representation of the raw signal as it gives an 

indication of the overall level of activity in a particular muscle at any time. Typically, the envelope of the raw 

EMG signal is extracted by means of a technique based on a full-wave rectifier followed by an integrator 

(smoothing filter) or RMS operation. D’ Alessio et al. proposed an alternative method that improves the drawbacks 

of the traditional approaches by using an adaptive iterative procedure which automatically sets and dynamically 

changes the length of the smoothing filter [228]. 

2. Figueroa et al. used a Kalman filter and an unbiased finite impulse response (UFIR) filter to extract EMG 

envelopes and remove some artefacts with maximum accuracy [229]. 

3. Micera et al. presented the characteristics of novel statistical algorithms and traditional approaches for the 

detection of muscle activation intervals (on-set and off-set timings). Single and double threshold methods which 

compare EMG signal with predetermined thresholds are the most intuitive method for investigation of onset-off 

set durations of muscle contraction activity, studied in [230]. 

4. A paper by Otter et al. used a clustering algorithm to find similarities between EMG amplitude data points and 

grouped these data points according to their similarities to detect muscle activity/inactivity durations. The primary 

reason for using k-means is that it does not require a priori thresholds[132] 

5. Ren et al. developed an algorithm based on single-channel EMG recording for the extraction of MUAPs. First, 

noises were removed through wavelet filtering and thresholds were estimated with wavelet transform. Then, 

MUAPs were extracted based on amplitude single threshold filtering. Finally, MUAPs were classified to detect 

active segments [231]. More algorithms are available for EMG decomposition into MUAPs [79, 80].  

6. Linear decomposition of multi-source EMG signal is another investigation method that helps to monitor the 

alterations in EMG characteristics of patients with gait disorders [232]. In this sense, the muscle synergy approach 

has been widely used with a number of linear decomposition algorithms (e.g. principal component analysis (PCA), 

non-negative matrix factorization (NNMF)) to understand the physiologic aspects of gait disorders [79]. 

7. Frequency and time-frequency analysis of EMG data can be used to distinguish specific gait abnormalities by 

providing useful outcomes such as median power frequency (MdPF) and instantaneous mean frequency (IMNF) 

using signal processing techniques (e.g., fast Fourier transform (FFT), wavelet transform). The FFT technique 

was used to compute power spectra, which are found distinctive in certain neurological conditions [79]. While 

IMNF which is the average frequency of power density spectrum of a signal found discriminative factor between 

affected and unaffected sides of stroke patients [233] 

8. Power spectral density (PSD) provides useful information to understand which frequencies contain the signal’s 

power and can be distinctive for some patient groups (e.g. PD) [234]. Go et al. computed the PDS using FFT 

(Welch method 50% overlap) and also calculated MdPF and total power of low frequencies to investigate the 

differences between muscle characteristics of dystonic and non-dystonic patient groups [235].  

9. In recent years, the classification of EMG signals has been the interest of many researchers. Different type of 

classifiers (e.g. ANN) has been used with a wide range of sEMG features (e.g. integrated EMG, mean absolute 

value, RMS) as detailed in a review [236].  
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Table 2.EMG approaches for gait assessment in some neurological disorders 

Neurological 

Condition 
Ref. Device fs Muscle of interest Used together with to identify gait Groups 

# subject 

–  (mean 

age) 

PD 

[237] 

 

Delsys Trigno 

(Delsys Inc., Boston, MA) 

 

4,000 

Hz 

TA-GL-GAM 

Motion Analysis – (Vicon Nexus, 

Oxford, UK) Instrumented treadmill 

(Bertec Corporation, Columbus, OH) 

PD 5-(57) 

HS 5-(27.6) 

[133] 

 

Konigsburg Instruments, 

Pasadena, CA 

 

1,200 

Hz 

SOL- GAM-VM-

RF-TA-GM-SM 

Motion Analysis- (Vicon Nexus, 

Oxford, UK) 

PD 15-(66.6) 

HS 14-(66.2) 

[212] 
TeleMyo 900, Noraxon 

USA, Inc. 

 

1,000 

Hz 

RF-BF-TA-GAM Motion Analysis - 

Freezers 12-(69.1) 

Non-

freezers 
14-(66.1) 

[138] 
K‐Laboratory EMG 

system; The Netherlands 

 

2,500 

Hz 

 

TA-GS 

Motion Analysis- (Vicon Nexus, 

Oxford, UK) 

 

Freezers 

 

11-(64.8) 

[227] 

EMG preamplifier SX230, 

Biometrics Ltd., Gwent, 

UK 

 

1,000 

Hz 

RF-VM-TA-BF-

GL-SOL 

Motion Analysis- (Vicon Nexus, 

Oxford, UK) 
PD 9-(76.6) 

[238] 
TMSi Mobita, The 

Netherlands 

2,000 

Hz 
TA 

Foot switch – EEG (TMSi Mobita, The 

Netherlands) 

PD 20-(67.4) 

HS 24-(65.1) 

 

 

Stroke 

[239] 
MediTrace ECG 1801 

Pellet 

2,400 

Hz 
BF-RF-GAM-TA Motion Analysis- (PRIMASTM Stroke 14-(54.7) 

[240] 
(SATEM Mygotron, 

SATEM srl, Rome,Italy 
- 

 

GL 

Motion Analysis- ELITE 

(BTS, Milan, Italy) 

Stroke 10-(61.6) 

HS (62.6) 

[241] 
Noraxon USA Inc., 

Scottsdale, Arizona, USA 

1,000 

Hz 
TA-GAM-RF-BF- 

Motion Analysis- (Vicon Nexus, 

Oxford, UK) 

force plates (Advanced Mechanical 

Technology Inc., Watertown, 

Massachusetts, USA) 

Stroke 35-(61.04) 

HS 9-(61.0) 

[242] 
Noraxon, Inc., Scottsdale, 

AZ, USA 

2,520 

Hz 

TA-GS-SOL-RF-

VL-BF 

Motion Analysis- (Inc., Santa 

Rose, CA, USA) 

 

Stroke 

 

5-(51) 

[243] 

MA-416-003 Motion Lab 

System Baton Rouge, 

LA 

 

2,000 

Hz 

 

 

TA-SOL-GAM-

VM-RF-LH-MH-

GM 

Force Plate- (Bertec Corporation, 

Columbus, OH) 

Stroke 34-(61.6) 

HS 20-(56.1) 

[244] 

Motion Lab Systems 

MA300-28, Baton Rouge 

LA 

 

1,000 

Hz 

 

SOL-GAM 

Motion Analysis- (VICON, Colorado, 

USA) 

Stroke 24-(62.7) 

HS 17-(70.1) 

Traumatic 

Brain Injury 

(TBI) 

[134] 
Delsys Trigno 

(Delsys Inc., Boston, MA) 
1926 Hz 

TA-GAM-SOL-

VL-RF-MH 

Accelerometer – (Trigno 

Delsys Inc., Boston, MA) 

TBI 44-(53.4) 

HS 20-(25.3) 

Multiple 

Sclerosis 

(MS) 

[40] 

Noraxon Telemyo 2400T 

EMG system 

Noraxon, Scotsdale, AZ 

1,200 

Hz 
GAM-GL-SOL 

Motion Analysis- (Vicon Nexus, 

Oxford, UK) 

Force Plate- Kistler 

Instruments AG, Winterthur, 

Switzerland) 

MS 16-(42.01) 

HS 10-(37.21) 

[245] 

Tyco Healthcare Nederland 

BV, Zaltbommel, the 

Netherlands) 

1,000 

Hz 

HS-RF-TA-SOL-

GS 

Motion Analysis- (Basler Pilot piA640- 

210gc GigE, Basler AG, Ahrensburg, 

Germany) Force Plate- (AMTI, OR6-5-

1000, Watertown, Massachusetts) 

MS 81-(47.1) 

[246] 
(EMG) system Cometa, 

Milano, Italy 

1,000 

Hz 
TA-GL-SOL 

Motion Analysis-(Vicon Nexus, Oxford, 

UK) 

MS 30-(42.5) 

HS 15-(36.8) 

Cerebellar 

Ataxias 

(CA) 

[247] 

 

FreeEMG 1000; BTS SpA, 

Milan, Italy 

 

 

1,000 

Hz 

GM-RF-VL-VM-

SM-BF-TA-GAM-

GL-SOL-PL- TFL 

Motion Analysis- 

(SMART-D System; BTS, Italy, Milan) 

 

CA 

 

23-(50.0) 

HS 23-(48.4) 

[248] 

EMG; FreeEMG300 

System, 

BTS 

 

1,000 

Hz 

VL-BF-TA-GAM 
Motion analysis – (SMART-DX 500 

System, BTS, Milan, Italy) 

CA 13-(50.2) 

HS 13-(50.2) 

Huntington 

Disease 

(HD) 

[249]  
Micromed Brain Quick-

(Mogliano Veneto, Italy) 
256 Hz TA-GL 

EEG- (Micromed Brain Quick, 

Mogliano Veneto, Italy) 

HD 24-(48.13) 

HS 14-(48.8) 

Semimembranosus (SM), gluteus medius (GM), peroneus longus (PL), gastrocnemius (GS), lateral hamstring (LH), medial hamstring (MH), hamstring muscle (HS), 

tensor fasciae latae (TFL), 
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2.6. Wearables in neurological conditions 

Impaired gait and poor postural balance emerge with the development of a neurological condition and both are 

challenging to recover despite rehabilitation programs [250]. Therefore, accurate identification of these neurological 

conditions and understanding of the underlying pathology may contribute to better and more targeted treatment. Those at 

risk may display a minimal number of abnormal gait and postural balance deficits from the early stages of a disease. 

Individual signs are never pathognomonic for any specific disorder but rather come with an associated differential diagnosis 

[251]. However, some neurological gait studies report some unique gait deficits, linked to different regions of the brain 

which are susceptible to various conditions. Here, I present reported characteristics of gait together with technologies and 

techniques used for instrumentation in groups stratified by generic neurological conditions. Investigation of temporal and 

spatial measures using wearable devices in gait assessment of different pathologies are presented in Table 3. 

 

2.6.1. Stroke 

About half of post-stroke sufferers clearly present motor impairments such as synkinesis, abnormal muscle tone, 

and orthopaedic deformations [38]. More than half of stroke victims walk with hemiplegic gait, which is characterized by 

the change in the temporal and spatial outcomes, e.g. decreased stance phase and prolonged swing phase of the paretic side 

[76]. In addition, a significant decrease in the stride time and cadence is most likely to be observed in post-stroke groups 

[158, 252]. A foot-mounted IMU (±8g, 100Hz) was used to obtain gait characteristics, where increased stride time and 

decreased stride length and velocity were reported [158]. Elsewhere [241], as a result of an investigation of the muscle 

activity for both stroke and healthy subjects, the number of bursts in the tibialis anterior (TA) during the swing phase was 

found significantly lower in asymmetric stroke patients. Descriptive EMG measures and altered muscle activation patterns 

(AMAP), were compared for post-stroke hemiparetic gait and healthy controls to identify the alterations in the EMG gait 

patterns of the stroke population. Results indicated that significant numbers of stroke survivors experienced altered muscle 

activation patterns in some muscle groups (soleus, tibialis anterior, and medial gastrocnemius) in terms of amplitude and 

onset timing [243].  

 

2.6.2. Traumatic Brain Injury (TBI) 

Gait disorders following TBI (resulting from e.g. blow to the head) are often severe and complex, varying considerably 

between people [253]. Some TBI sufferers experience severe gait disruption and poor postural balance while others 

experience relatively mild difficulties. The gait quality of patients with severe TBI was investigated using five IMUs 

(128Hz) and found a reduced stride frequency, along with an increased stride duration for TBI groups [198]. Free-living 

mobility of mild TBI patients has been investigated with a single IMU (128 Hz, waist) and descriptors of ambulation (e.g., 

the number of bouts per hour, total steps per day) as well as turning parameters (e.g., a number of turns, velocity) was 

studied. Results have suggested that people with chronic mild TBI made larger turns, had longer turning durations together 

with slower average and peak velocities [195]. Abnormal muscle activation patterns have also been investigated with 

chronic gait deficits after TBI, where participants who experienced TBI exhibited characteristics changes in the temporal 

coordination of select lower extremity muscles, which may have an impact on impaired walking during challenging tasks 

(e.g. dual tasking)  [134]. 

 

2.6.3. Hypoxic-Ischemic brain injury (HIBI)  

HIBI mostly occurs as a result of cardiac arrest or respiratory failure and deprivation of adequate oxygen supply, which 

may result in death or long-term impaired gait [254]. As in many neurological conditions, HIBI patients often show 

different movement disorders like chorea and dystonia with reduced walking speed and cadence [255]. Although 

individuals after HIBI rarely experience freezing of gait (FOG), 3D motion analysis and force plate-based study results 

showed that HIBI sufferers with FOG have reduced velocity, stride length and increased double support time compared to 

those without FOG episodes in the HIBI group [256]. To the authors’ knowledge, no gait assessment studies have 

investigated the gait characteristics of HIBI using wearables (see Appendix 3). 
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2.6.4. Parkinson’s Disease (PD) 

A neurodegenerative disease with resting tremor, bradykinesia and rigidity manifestations is one of the most common 

neurological conditions [257] and with significant developments in the use of wearables to assess PD gait. Reduced walking 

speed, shortened stride length and increased stride variability are quantified in the early stages [35]. Although swing and 

stance times are sensitive to age and severity of the disease, both are found lower in PD compared to controls [154]. Another 

manifestation observed in PD is freezing of gait (FOG), which frequently causes falls [258]. Free-living PD gait has been 

examined with the use of a single wearable (lower back) for extended periods (e.g. 7-days) to examine ambulation (e.g. 

volume, pattern, variability) as well as temporal and spatial gait where the latter was shown to be different to controlled 

lab conditions [21-23]. Elsewhere, an algorithm that sensitively and automatically distinguishes PD patients from healthy 

controls was developed  using extracted EMG features and support vector machine (SVM) classification [237]. It is 

reported in an EMG-based gait assessment study that PD groups exhibit decreased neuromuscular complexity during gait 

and muscle activation profiles also undergo changes compared to controls [133]. 

 

2.6.5. Progressive supranuclear palsy (PSP) 

PSP is characterized by poor balance, frontal dysfunction and rapid disease progression. Even though it is challenging 

to discriminate from PD groups in its early stages, diagnosis may be possible with the study of distinctive spatiotemporal 

gait parameters. In addition, FOG was reported as an indicator in the early stages, and its presence might improve the 

clinical diagnosis of PSP condition [259]. A single IMU (250 Hz, lower back) based study reported that PSP survivors 

experienced lower vertical displacement and higher acceleration than those with PD group in the same cadence. [171]. A 

walkway-based gait study findings suggested that, despite similar disease durations, increased step width and double 

support were found slightly higher in PSP groups than in PD groups and always higher than in healthy controls [42]. 

Although some studies investigated spatiotemporal gait characteristics of those with PDP, studies related to muscle 

characteristics of PDP gait are very limited. 

 

2.6.6. Cervical dystonia (CD) 

CD is a neurological movement disorder in the neck muscles. The condition is associated with involuntary muscle 

contractions that result in an impaired posture with twisting movements [260]. People with phasic CD experience poor 

postural control and impaired mobility, especially during walking and turning [261]. Contrary to the majority of 

neurological conditions, those with CD have increased step length compared to controls as well as displaying increased 

step time and double support time as reported in a walkway-based gait assessment study [262]. To the authors’ knowledge, 

no gait assessment studies have investigated the gait characteristics of CD patients using wearables (Appendix 3). 

 

2.6.7. Huntington’s disease (HD) 

An autosomal dominant inherited condition, HD has a different set of movement disorders like chorea, dystonia and 

bradykinesia. Gait disturbance, unpredictable accelerations and decelerations in gait speed, can be seen from the early stage 

[263]. In an IMU (250 Hz, upper sternum) based study, spatial gait characteristics and postural balance were investigated 

for healthy controls, pre-manifest HD and manifest HD groups. Results showed a considerable decrease in speed, and step-

stride lengths together with increased step-time asymmetry in the pathologic groups. [200]. Furthermore, changes in motor 

activity during walking with dual tasking conditions were investigated using EMG and electroencephalogram (EEG). The 

study findings reported that for those with HD, associations with cognitive tests produced only a slight and not relevant 

deterioration of motor speed and muscle recruitment, whereas some modulation of EEG beta-band activity was observed 

during dual tasking [249]. 

 

2.6.8. Dementia: Alzheimer’s disease (AD) 

Dementia disease subtypes have been investigated with a single accelerometer (±8g, 100 Hz, lower back) [264]. AD 

is the most common subtype and damages the stability and symmetry of people’s gait explicitly. Reduced stride length and 

cadence are preliminary deficits observed from the beginning of AD [97, 265]. Increased stride time, stance time and swing 

time and double support time measures are more likely to be seen in AD groups [178, 266]. IMUs (±4g, 100 Hz, feet and 

waist) were used to detect gait abnormalities and postural balance of those with AD group and controls during single and 
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dual tasking. Findings showed that those with AD have slower gait speed and lower stride length, whereas balance task 

findings reported that those with AD experienced a significantly larger average sway speed in Medio-lateral (ML) direction 

compared to controls [178]. There have been increasing reports of non-cognitive symptoms (e.g. loss of motor function) 

associated with AD; thus a review investigated links between motor function and preclinical AD [267]. Findings suggested 

that the change in BMI, and lower levels of function (muscle strength) together with both a lower level and more rapid rate 

of motor decline may be an early cognitive sign of AD. 

 

2.6.9. Multiple Sclerosis (MS)  

MS is commonly known for ataxia and weakness impairments [40]. Significant reductions have been reported in step 

length and velocity with the use of a single IMU [183]. Alternatively, two wireless IMUs (102.4 Hz, each shank) compared 

early MS patients to controls during a Timed-Up-and-Go (TUG) test. Classification with 53 extracted mobility parameters 

showed that those with early-stage MS could be distinguished with 96.90% accuracy [268]. Free-living physical activity 

of patients with MS was monitored with wearables, reporting that the least disabled MS patients performed significantly 

higher step numbers than those with severe MS [269]. Ankle mobility was investigated for MS patients using EMG sensors 

(with a motion analysis system) and study findings suggested that a decline in ankle push-off may be the common factor 

to induce limited walking ability in MS groups [245]. In [40], muscle activities in plantarflexion muscle groups were 

investigated for those with MS patients and controls, where results suggested that plantarflexion muscle groups in those 

with MS demonstrated an increased EMG amplitude. 

 

2.6.10. Cerebellar Ataxias (CA) 

Cerebellar Ataxias (CA) are a series of gait disorders as a result of impaired cerebellum and associated mechanisms, 

and gait disturbance was found to be one of the most pronounced and disabling symptoms for the disease [270]. An IMU 

(±10g, 20 Hz, lower back) showed decreased gait velocity, cadence and step length [189, 190]. Another study investigated 

the time-varying multi-muscle co-activation function (TMCf) in the lower limbs and concluded that global co-activation 

was significantly increased in patients with CA compared to controls [247]. In a similar EMG-based study, significantly 

higher mean co-activity index values were found in specific muscle groups (VL-BF-TA-GAM, Figure 3) during almost all 

gait phases in the CA groups compared to healthy controls [248].  
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Table 3.Wearables in neurological gait assessment with increased (↑) or decreased (↓) spatiotemporal outcomes for that groups 

Neurological 

Condition 
Ref. 

Device – 

g-fs 

Algorithms used.  

(Section 2.5.1.) 
Group 

# 

subject 

- (Age) 

VEL CAD SPL SDL SPT SDT 
Additional 

findings 

CA 

[190] 

ACC 

± 10 

20 Hz 

- 

HS 
56-

(57.2) 
↑ ↑ ↑ - - - 

- 

CA 
51-

(60.3) 
↓ ↓ ↓ - - - 

[189] 

ACC 

± 10 

20 Hz 

- 

HS 
57-

(56.7) 
↑ ↑ ↑ - - - Decreased step 

regularity is observed 

in CA patients. CA 
61-

(61.1) 
↓ ↓ ↓ - - - 

PD 

[51] 

IMU 

± 6 

51.2 Hz 

Gait cycle 

algorithm-14 

Spatial algorithm 1 

HS 
101-

(41-84) 
↑ ↑ ↑ ↑ - ↓ 

Increased stance 

phase and reduced 

swing phase are 

found in PD. 
PD 

190-

(36-85) 
↓ ↓ ↓ ↓ - ↑ 

[158] 

IMU 

± 8 

100 Hz 

Gait cycle 

algorithm-15 

HS 
15-

(68.47) 
↑ ↑ - ↑ - X 

Reduced swing time, 

non-significant 

difference for stance 

time in both group 
PD 

5-

(76.20) 
↓ ↓ - ↓ - X 

[154] 

ACC 

± 8 

50-100 Hz 

Gait cycle 

algorithm 1 

Spatial algorithm 3 

HS 
30-

(66.6) 
↑ - ↑ - ↓ - 

Reduced stance and 

swing time, increased 

stance and swing 

time asymmetry in 

PD group. 

PD 
30-

(66.9) 
↓ - ↓ - ↑ - 

[172] 

ACC 

± 10 

100 Hz 

Gait cycle 

algorithm-17 

HS - ↑ - - ↑ ↓ ↓ 
Decreased step 

frequency, single 

support time and 

increased double 

support time in PD 

group. 

PD - ↓ - - ↓ ↑ ↑ 

[171] 

ACC 

N/A 

100 Hz 

- 

HS 
24-

(73.7) 
↑ ↑ ↑ - ↓ - 

Increased double 

support and step time 

variability in PD 

group. 
PD 

124-

(68.4) 
↓ ↓ ↓ - ↑ - 

[220] 

MIMU 

± 6 

128 Hz 

Gait cycle 

algorithm 8 

Spatial algorithm 2 

HS 
10-

(69.7) 
↑ - - ↑ ↓ ↓ 

Increased stance time 

in PD group 
PD 

10-

(73.8) 
↓ - - ↓ ↑ ↑ 

HD 

 

[200] 

ACC 

± 2.5-10 

250 Hz 

Gait cycle 

algorithm 2 

Spatial algorithm 3 

HS 
10-

(56.45) 
↑ ↑ ↑ ↑ ↓ - 

Increased step time 

asymmetry observed 

in manifest HD 

group. 
HD 

14-

(51.83) 
↓ ↓ ↓ ↓ ↑ - 

[220] 

MIMU 

± 6 

128 Hz 

Gait cycle 

algorithm 8 

Spatial algorithm 2 

HS 
10-

(69.7) 
↑ - - ↑ ↓ ↓ Increased stance and 

swing time in HD 

group HD 
10-

(50.3) 
↓ - - ↓ ↑ ↑ 

PSP 
 

[171] 

ACC 

N/A 

100 Hz 

- 

HS 
24-

(73.7) 
↑ ↑ ↑ - ↓ - 

No significant 

difference in double 

support. Increased 

step time variability 

in PSP. 

PSP 
20-

(71.8) 
↓ ↓ ↓ - ↑ - 

Stroke [158] 
IMU 

± 8 

Gait cycle 

algorithm-15 
HS 

15-

(68.47) 
↑ ↑ - ↑ - ↓ 
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Neurological 

Condition 
Ref. 

Device – 

g-fs 

Algorithms used.  

(Section 2.5.1.) 
Group 

# 

subject 

- (Age) 

VEL CAD SPL SDL SPT SDT 
Additional 

findings 

100 Hz 

Stroke 
4-

(51.50) 
↓ ↓ - ↓ - ↑ 

Increased stance and 

swing time in stroke 

group 

[220] 

MIMU 

± 6 

128 Hz 

Gait cycle 

algorithm 8 

Spatial algorithm 2 

HS 
10-

(69.7) 
↑ - - ↑ ↓ ↓ Increased stance and 

swing time in stroke 

group Stroke 
10-

(58.6) 
↓ - - ↓ ↑ ↑ 

Stroke- 

Paretic-non 

paretic 

[159] 
IMU 

100 Hz 
- 

Non 

paretic 
25-

(66.6) 

↓ ↓  ↓  ↑ 
Reduced double 

support phase in 

paretic side. Paretic ↑ ↑  ↑  ↓ 

AD 

[178] 

IMU 

± 4 

100 Hz 

Gait cycle 

algorithm-16 

HS 
50-

(59.86) 
↑ ↑ - ↑ ↓ ↓  

Increased stance and 

swing time in AD. AD 
21-

(61.48) 
↓ ↓ - ↓ ↑ ↑ 

[179] 

IMU 

± 2 

100 Hz 

Gait cycle 

algorithm-18 

HS 3-(69.0) ↑ ↑ - ↑ ↓ - 
Reduced mean stride 

frequency and 

increased stance 

phase in AD. 
AD 9-(71.0) ↓ ↓ - ↓ ↑ - 

MS 

[182] 
IMU 

50 Hz 

Gait cycle 

algorithm-12 

HS 
15-

(57.9) 
- ↑ - - ↓ ↓ 

 

- 
MS 

45-

(58.2) 
- ↓ - - ↑ ↑ 

[183] 
IMU 

N/A 
- 

HS 
47-

(39.4) 
↑ ↑ - ↑ ↓ - 

Minor differences for 

stance and swing 

phases (% of the 

GC), and increased 

double support time 

was reported for MS 

group. 

MS 
105-

(42.2) 
↓ ↓ - ↓ ↑ - 

HS: Healthy subject, X: the same value, (-): not available, g=force, Fs= sampling frequency, VEL: velocity, CAD: cadence, SPL: step length SDL: stride length, SPT: 

step time, SDT: stride time 
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2.7. Discussion 

To date, a large number of signal-based parameters have been quantified using various technologies and used 

along with different gait models to better understand impaired gait due to one or more neurological conditions [10, 

91, 93]. Existing gait models may be limited as some originated from non-wearable technology-based temporal 

and spatial outcomes, later adapted for wearable purposes. Current models also fail to include kinematic, kinetic 

or muscle activation characteristics, which could prove beneficial. Furthermore, proposed models are developed 

for a particular neurological condition, meaning they may not translate to other pathological cohorts. Thus, 

developing a model based on more gait characteristics for use in specific pathologies may contribute to a better 

understanding and assessment of impaired gait. 

Wearable IMU-based temporal and spatial outcomes are presented extensively in the literature, but novel 

frequency and time-frequency outcomes are becoming more evident and may provide further insights into free-

living gait assessment. Alternatively, the use of EMG for muscle characteristics of impaired gait has been studied 

for some neurological conditions (e.g., PD, MS) and distinctive muscle-related parameters have been reported [40, 

134, 271, 272]. However, the number of gait studies, which investigate muscle activities in other pathologies is 

limited. Moreover, it was found that there is a large variance in the methodology of sEMG use such as placement 

protocols. Although there are guidelines for the use of sEMG [204, 205], few studies are adhering to these 

recommendations.  

In favour of wearable sensing technologies, gait assessments of pathologies have been moving away from 

clinics to free-living environments. Free-living gait assessment contributes to the existing knowledge because it 

reflects real-life settings such as environmental factors and natural dual tasking. Although the majority of gait 

abnormalities have been studied in the clinical environment, very few neurological conditions and very small 

populations were studied during free living. Instrumented gait is predominately investigated in PD and trends to 

monitor during free-living show large discrepancies in temporal and spatial outcomes between lab and free-living 

assessment [21-23]. However, the number of evidential studies to investigate whether there are large variances 

between lab and free-living assessments for other neurological conditions (e.g., Stroke, MS, AD) is very limited. 

Next, I discuss potential limitations, and future directions in wearable-based gait assessments, including inertial 

algorithms, multiple sensor fusion and free-living gait assessment. 

 

2.7.1. Wearable signal processing – future directions 

Use of wearable, primarily IMUs, have been validated and used in gait assessment of various neurological 

conditions (e.g. PD [154, 174], stroke [159, 168], AD [178, 179], MS [187, 273], CA [191, 192], HD [200, 201]). 

A plethora of inertial gait algorithms was used in these studies. The abundance of inertial algorithms is possibly 

due to the redundancy of preferred experimental protocols in methodology (e.g., statistical, mathematical) and data 

capture (e.g., sensor placement). However, both the lack of standardisation and the fact that these inertial-based 

algorithms were developed for a particular pathology are some limitations in the field. Although a comparative 

assessment study was performed for 5 different inertial algorithms to estimate gait temporal parameters using a 

single IMU (on L5) within three different pathologic groups (stroke, PD and HD) [7], the most appropriate 

algorithm for each pathology or for pathologies that experience similar deficits is still unclear. Due to these 

inconsistencies, developing conclusive interpretations of existing evidence based on wearables remains limited. 

Perhaps, a manual like sEMG guides can be developed for IMUs data capture and methodology to standardise use 

of wearable sensors in gait assessment of different pathologies. Furthermore, wearable validation studies should 

adopt the V3 approach[145] of clearly presenting verification (bench testing), analytical validation (efficiency and 

accuracy of sample-level sensor measurements into physiological metrics) and clinical validation (acceptably 

identifying or measuring clinically meaningful outcomes in a stated context of use with a predefined 

disease/condition) approaches within standalone or within a series of research output/papers. 

 

2.7.1.1. Data synchronisation & fusion  

Multiple sensors are used commonly in gait assessment of neurological conditions. Depending on the 

application (e.g. joint kinematics, muscle characteristics) a number of IMUs, pressure, EMG sensors and clinical-

based technologies have been used collectively [64, 274]. Although, some studies use multiple IMUs for kinetic 

gait analysis [148, 275] and lab-based systems along with EMG [134, 238, 241, 271] for muscle activation analysis, 
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the number of studies that use multiple wearable sensors e.g. IMU and EMG are very limited. It is believed that 

this limitation is because of the incapability of technical devices. Previously, commercially available devices were 

not capable of capturing multiple gait characteristics (e.g., spatiotemporal and muscle activation) simultaneously, 

while multiple device configurations bring complexities such as data synchronisation and sensor data fusion.  

Synchronisation of sampling frequencies (i.e., interpolation) has the utmost importance to achieve an accurate 

assessment. Using multiple devices with different sampling frequencies results in data loss or drift error and may 

not reflect simultaneous information. Utilising time stamps on devices to be synced provides convenience without 

the need for additional ports. With the recent advancements in wearables, commercially available sensors (e.g., 

BioStamp RC, Shimmer3 EMG, Trigno Avanti and Ultium EMG) can provide inertial sensing and muscle activation 

signals simultaneously in a single device. It is believed that this convenience will initiate new studies to overcome 

the limitations of previous gait studies e.g., gait models based on spatiotemporal parameters/outcomes only. The 

second complexity of the use of multiple sensors (sources) is sensor data fusion (also known as multi-sensor data 

fusion), which is a process of integrating multiple data sources to produce more consistent and reliable output. The 

type of data fusion algorithm depends on the target application considering the required output, operational time, 

and battery life. To date, data fusion algorithms have been used in activity recognition [276, 277], fall 

detection[278, 279], gait analysis [280, 281] and biomechanical modelling [282, 283]. Further discussion on data 

fusion algorithms; signal level, feature level and decision level can be found in [284]. 

 

2.7.1.2. Walking environments (treadmills, indoor, outdoor) 

Gait analysis in neurological populations is typically performed in controlled environments, where pathways 

(e.g., instrumented mats, treadmills) are usually level, clear, and mostly straight or circular. Variations in 

environments exist due to fundamental research questions e.g., foot clearance due to obstacle crossing. Within 

controlled environments, various gold standards technologies such as 3D motion capture, instrumented walkways 

and treadmills are commonly used. Although these technologies offer highly accurate data, they lack ecological 

validity as outcomes may not apply to more complex outdoor environments and different walking terrains [285]. 

For example, treadmills are classified as an external cue since these devices force participants to walk at the 

device’s programmed speed and incline rather than participants’ comfortable speed and patterns. Walking on a 

treadmill requires additional balancing abilities compared to walking on the ground. Additionally, treadmill bars 

may have an impact on patients’ perception and proprioception during walking, limiting participants' natural gait 

[286]. Consequently, gait characteristics (e.g., muscle activation) recorded during treadmill walking differ from 

overground walking [287].  

Indoor ground-level walking allows participants to perform their natural gait patterns, typically instrumented 

via gold standard technologies that provide highly accurate multimodal data (e.g., pressure sensing from an 

instrumented walkway, displacement from 3D motion capture or inertial from wearables), informing different 

aspects of impaired gait in neurological populations [237, 288]. To date, various gait models are used to ease the 

interpretation of gait characteristics (e.g., spatiotemporal parameters), developed and validated for indoor walking 

assessments with instrumented walkways [9] as well as outdoor with wearable IMUs [91]. However, there is a 

trend toward more outdoor gait assessment as indoor walking studies have limitations such as limited walking 

bouts in unnatural idealistic conditions.   

Data collected in outdoor environments for extended periods (e.g., days, weeks) can potentially complement 

clinical assessments. Exploring neurological gait beyond the clinic enables clinicians to capture some rare 

incidents such as increased gait variability that may lead to a fall, which is not likely to naturally occur during 

clinical visits. Indeed, data collected outside of the clinic was found more informative than the data collected in 

the clinics in terms of predicting the risk of future falls [289]. Moreover, previous studies revealed differences in 

spatiotemporal, kinematics and muscle activation between indoor and outdoor walking [150, 290-292].  Complex 

walking terrains in outdoor environments are associated with differences between indoor and outdoor walking 

since gait adaptation strategies to maintain stability are found sensitive to walking terrain [293]. Other factors that 

could explain differences are alertness, motivation, stress, and the white coat effect. The latter relates to a 

participant being more self-conscious during an observational assessment by a healthcare professional within a 

clinic. Data collection in controlled environments under observation may capture a participant’s best performance 

rather than their usual everyday performance/capability in the home and community. Although data captured 

outside of the clinics reflects more about real life e.g., with natural dual tasking (see next section), certain 
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limitations are reported [294]. Primarily, data interpretation of outdoor walking for extended periods is challenging 

due to the lack of appropriate gait models and contextual information for outdoor walking. In addition, robustness, 

and test-retest reliability of existing sensor algorithms needs to be established for outdoor walking environments. 

However, the lack of gold-standard systems in outdoor environments could limit the validation of sensor 

algorithms.  

 

2.7.1.3. Data Reduction; activity and terrain detection 

Although wearable technology makes it possible to collect data for an extended time in free-living conditions, 

a convincing data collection period has not yet been established [22]. In this sense, a greater number of gait 

assessment studies using wearables in free-living is required to establish satisfactory data collection periods for 

each pathology. Alternatively, continuous data recording, especially with high sampling frequencies may result in 

a vast amount of data that includes different daily dynamic gait activities (e.g., level walking, stair ascend) and 

static activities (e.g., sitting, lying). Therefore, it is essential to process the collected data to extract meaningful 

gait information for a more comprehensive assessment. Currently, activity recognition with IMUs has been a 

widely used approach to segment dynamic movements from static. However, there is a large discrepancy observed 

for the preferred sensor numbers and locations. Considering the comfort and long hours recording possibilities, a 

single sensor on the wrist [295], two inertial sensors attached to feet [281], a single accelerometer on the chest 

[296] and a single accelerometer at the level of the waist [297] seem preferred during free-living activity detection. 

However, considering neurological conditions, the attachment of a single sensor to the waist may be ideal for both 

activity recognition and extraction of gait measures (e.g., cadence, stride length).  

A similar discrepancy is observed in preferred methodologies. Physical activities have been classified using 

IMUs with traditional (e.g., threshold based) [298], time-frequency (e.g. DWT) [296] and analytical (e.g. statistical 

schemes) [297] approaches. Although threshold-based and time-frequency algorithms provide high-accuracy data 

classification, the need for calibration limits these approaches. Moreover, pre-determined threshold rates may not 

translate between different neurological conditions. Conversely, supervised methods that include machine learning 

(ML) and neural networks (NN) have been preferred due to many advantages such as less sensitivity to sensor 

location and high accuracy results and ability to be trained. In previous studies, activity recognition with modern 

approaches typically consists of two different stages: (1) feature selection and (2) classification. In the former 

stage, appropriate time domain (e.g. mean, signal magnitude area, skewness, variation) and frequency domain (e.g. 

energy, entropy) features are extracted [295]. In the latter stage, extracted features are used in training and testing 

to cluster different physical activities. Supervised classification techniques; k- Nearest Neighbour (k-NN), support 

vector machines (SVM), Random Forest (RF) and unsupervised; k-Means, Gaussian mixture model (GMM) and 

Hidden Markov Model (HMM) are commonly used machine learning techniques [276, 277]. However, 

discrepancies in selected features and classification techniques and the scarcity of labelled data are impeding 

factors. Therefore, a deep long short-term memory (LSTM) neural network architecture together with the 

spectrogram-based feature extraction approach are alternatives used for activity recognition with inertial data [299, 

300]. 

A better understanding of free-living gait may become more meaningful when we know on which surface 

(e.g., terrain) it is performed, Figure 4. It is reported that gait adaptation strategies to maintain stability are sensitive 

to different walking surfaces [293]. Older adults are known to be less sensitive to maintaining balance in the 

moment of trips and slips when walking on different terrains due to deterioration in their sensory, motor and 

cortical functions [301]. In previous studies, indoor-outdoor and hard-soft walking terrains (e.g. tiles, carpet, grass) 

were accurately classified using SVM and RF with acquired inertial data from the chest and lower back [302], and 

indoor walking terrains were investigated with an IMU attached to lower back [303]. Although only a few studies 

investigated gait on uneven terrain for neurological conditions using clinic-based technologies [304], wearable-

based gait assessment for those populations on different terrains has not been fully investigated. Thus, it is believed 

that extracting specific periods of gait together with the walking terrain may be useful to better understand how 

neurological conditions adapt to walking on different terrains (multi-surface). Then, this insightful knowledge may 

contribute to the design of interventions (e.g., bespoke rehabilitation programs) for people with neurological 

conditions to improve impaired gait, poor postural balance and minimise falls.  
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Figure 4. Walking on different terrains 

 

2.8. Limitations and knowledge gap 

 

1. Previously IMU based algorithms were validated for different sensor wear locations and cohorts to 

compute IC and FC moments. However, consistency/agreement levels between algorithms were not fully 

investigated considering sensor wear locations, target cohort or walking environment. 

2. Current approaches utilise mostly unimodal/IMU from a single wearable only. Therefore, existing gait 

models were developed based on only unimodal characteristics to interpret gait. Multimodal gait analysis 

may potentially provide more comprehensive gait outcomes and can be used to improve the limitations 

of existing gait models. Nevertheless, the methodology for integrating multiple sensors or data sources is 

still not sufficiently advanced. 

3. Clinical gait analysis is often performed in controlled lab environments and offers snapshot assessment. 

Moving beyond clinics using wearable sensors may potentially help collect gait outcomes for longer 

periods, but the obstacles associated with sensor technology and methodology have not yet been 

comprehensively explored. 

4. Free-living gait analysis creates challenges such as a vast amount of unlabelled gait data. HAR 

methodologies may be used to automatically label the data collected in free-living environments. 

 

2.9. Conclusion 

In this chapter, a comprehensive examination of the technologies and methodologies employed in gait analysis 

is presented. The emphasis is primarily placed on the utilisation of wearable sensors, owing to their numerous 

benefits. Through an extensive literature review, significant limitations and knowledge gaps in instrumented gait 

analysis were uncovered. These identified shortcomings were subsequently utilised to develop the Points of 

Interest (PoI) presented in Chapter 1. 

In the next chapter, an in-depth examination of the initial research question (PoI 1: "How consistent are the 

existing IMU algorithms for detecting initial contact (IC) and final contact (FC) moments, considering factors 

such as sensor placement, cohort type, and walking conditions?") will be investigated through a comprehensive 

comparative experimental study. 
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Chapter 3 Examining Agreement Levels 

in Inertial Gait Algorithms  
This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The open access journal article “Wearable Inertial Gait Algorithms: Impact of Wear 

Location and Environment in Healthy and Parkinson’s Populations”, was published in the Sensors in 

2021. 

 (URL: https://doi.org/10.3390/s21196476) 

This work was distributed under a Creative Commons 4.0 license (Appendix 9). 
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3.1. Introduction 

IMUs generate distinct acceleration and angular velocity signals (waveforms) depending on where they are 

placed on the body during walking [1]. Therefore, existing IMU methods to detect initial contact (IC) and final 

contact (FC) moments differ from each other in terms of the algorithms, digital filters and threshold values used. 

Moreover, systematic errors in these validated algorithms exist [305] and are sensitive to the target cohort as 

previous studies report that wearable IMUs attached to people with neurological conditions generate different 

acceleration and angular velocity signals than healthy controls[306]. This raises the question of what algorithms 

are the most accurate/consistent in terms of extracting spatiotemporal parameters in neurological conditions. 

Chapter 2.5 introduced some of these algorithms that were tailored to extract spatiotemporal parameters like step 

length and step time, considering the characteristics of the accelerometer or angular velocity signals. Consequently, 

inconsistencies in the extracted parameters were presented due to differences in signal type or the methodology 

employed, such as the use of digital low-pass filters[5, 7].  

The purpose of this chapter is to conduct a comparative study that investigates the level of agreement between 

lower-back and shank sensor-based algorithms in adults and PD cohorts during walks in different walking 

environments. This will help to investigate PoI1. The objective of this chapter is to provide a guide for future 

studies and inform them about how cautious they should be when interpreting the temporal outcomes derived from 

these algorithms.  

 

3.2. Background 

Human gait is a complex cyclic pattern that relies on individuals′ kinetic, kinematic and muscle characteristics. 

Neurodegenerative disorders (e.g., PD) and other factors like age and lifestyle can alter an individual’s gait pattern 

[307]. Typically, people with PD walk slowly with short fast shuffling steps [23, 91]. Additionally, those with PD 

may present with additional conditions due to poor gait such as pain arising from poor foot health and reduced 

quality of life [308] leading to increased depression scores [309]. Although most neurological conditions share 

similar gait deficits such as reduced gait speed and poor balance, there are also characteristically distinctive 

patterns (e.g., increased step time) that help differentiate particular neurological conditions [2]. Therefore, 

investigating discrete gait cycles may provide nuanced and even personalized assessments for those with gait 

disturbances. 

Wearable IMUs are now commonly used for gait analysis due to their small form factor and long data 

recording possibilities, in indoor and outdoor environments [310, 311]. The vertical acceleration of the pelvis and 

sagittal plane angular velocity of the shins are commonly used inertial signals to detect initial contacts (ICs) and 

final contacts (FCs) within the gait cycle [150, 214, 305]. In general, methods to quantify ICs and FCs are 

dependent upon inertial signal quality as well as IMU location (e.g., lower-back, shin/shank, foot) and 

computational methodology (e.g., wavelet transform)[2, 150, 214, 305]. 

Research demonstrates that either linear acceleration or angular velocity sensors attached to various body 

locations/segments can be used to detect ICs-FCs as accurately as a reference system (e.g., footswitches, 

instrumented walkway) for both normal and pathological gait footfalls [216, 217, 219-221, 223, 224, 226, 312, 

313]. However, the accuracy of the IMU algorithm also varies depending on the walking terrain (environment) 

and target population. Previous studies investigated the performance of IMU algorithms that provide accurate and 

repeatability valid ICs-FCs. For example, lower-back algorithms that use acceleration signals were compared in 

healthy [5, 6] and neurological populations during indoor walking [7]. Wrist, waist and shank accelerometer signal-

based algorithms were compared during various walking settings (e.g., indoor, outdoor) in a healthy young 

population [314]. Performances of foot and shank angular velocity with foot acceleration signal-based algorithms 

were compared in spinal-cord injured individuals [226]. Other studies investigated optimal IMU locations (lower-

back, shank, foot) and algorithms that provide accurate ICs-FCs moments for healthy young adults only [150, 

214]. Each study reported various levels of accuracy, where inconsistencies could be associated with the 

fluctuations in performances of IMU algorithms e.g., better-detecting ICs than FCs [314] due to the higher variance 

of generated signals by each cohort during walking on different terrains [150]. 

Performances of lower-back IMU algorithms are typically poorer/lower in neurological cohorts compared to 

healthy cohorts, due to occasional failed detection of acceleration-based ICs-FCs [7]. This could be attributed to 

the development of the algorithms within controlled environments only [214]. Moreover, previous studies reported 
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certain differences between indoor and outdoor temporal parameters [21, 91, 315, 316] and this was associated 

with the fluctuation in performances of inertial algorithms along with many other factors such as the white coat 

effect [294]. Indeed, previous papers investigated and compared IMU algorithms based on sensor location and 

target signal used by using a reference system in healthy populations [150, 214, 305], but the margin of error 

between algorithms (or absolute agreement) has not been fully investigated in different groups and environment. 

Furthermore, the population size of validation and comparison studies was generally limited/low. Consequently, 

optimal algorithms, IMU locations for a specific cohort and environment to inform how cautious researchers 

should be while interpreting temporal parameters remain unclear. 

This work aims to investigate the level of agreement between established lower-back and shank IMU 

algorithms in young adults (YA), older adults (OA) and PD cohorts during different walking protocols in various 

environments. I hypothesise that existing inertial algorithms may be sensitive to sensor wear location, target cohort 

and walking environments limiting the widespread use of wearable IMU algorithms during indoor and outdoor 

gait assessment. Discovering the effects of cohort and environment could help better understand the difference 

between indoor and outdoor walking. Unlike previous studies, this study directly investigates agreement between 

algorithms rather than agreement with a reference system in large healthy and PD populations. Accordingly, I aim 

to make a judgement about how confidently researchers can use one algorithm over the other. The results of this 

study will add to the current knowledge by providing details about how similar the results of two common IMU 

algorithms are in various environments. To the author′s knowledge, this is the first comparative study that 

investigates the level of agreement between lower-back and shank sensor-based algorithms on adults and PD along 

with a large YA population. The main contributions are to: 

• Investigate agreement between algorithms across different groups (YA-OA-PD), 

• Investigate the impact of the walking environment (treadmill-indoor-outdoor) on the agreement between 

algorithms, 

• Provide recommendations when deciding on optimal IMU location and gait algorithms. 

 

3.3. Materials and Methods 

A total of 128 participants’ gait data were analysed from previously created datasets. Public dataset 1 (DS1 

http://gaitanalysis.th-brandenburg.de/ accessed 5 Oct 2020) contained 72 healthy young adults (YA) [317]. 

Additional dataset 2 (DS2) comprises 20 (age-matched) healthy older adults (OA) and 36 PD participants, a sample 

from a previous study [318]. See Table 4 for participant information and demographics and associated references 

for in-depth details Here, datasets are described briefly. 

 

Table 4. Participant information/experimental protocols. 

 DS1 DS2 

Environment 

Cohort-Number 

Treadmill  

(YA-16) 

Indoor  

(YA-31) 

Outdoor  

(YA-25) 

Indoor  

(OA-20) 

Indoor  

(PD-36) 

Male/Female (n) 10/6 22/9 16/9 10/10 18/18 

Age(years) Mean ± 

SD 
32.6 ± 11.9 26.6 ± 11.0 26.28 ± 12.2 69.76 ± 7.82 69.20 ± 6.64 

Sampling 

Frequency 
60 Hz 60 Hz 75–100 Hz 128 Hz 128 Hz 

Disease Duration 

(years) 
-- -- -- -- 7.82 ± 5.62 

UPDRS III -- -- -- -- 32.51 ± 4.12 

NFOGQ -- -- -- -- 7.44 ± 8.62 
LEDD -- -- -- -- 786.68 ± 416.88 

OA: Older Adults, YA: Young Adults, PD: Parkinson’s Disease, UPDRS: Unified Parkinson’s Disease Rating Scale, NFOGQ: The New 

Freezing of Gait Questionnaire, LEDD: L-dopa equivalent daily dose. 
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3.4. Datasets 

 

3.4.1. Datasets-1 (DS1) 

 

Data capture took place in different countries (Austria, Finland, Kenya) and testing environments (treadmill, 

indoor and outdoor). All volunteers provided informed consent about the experiments, data storage and the future 

use of data before participating. Comprehensive information on protocols, data collection, etc., is provided 

elsewhere [317]. In short, each subject wore three IMUs (Xsens MTw, Enschede, Netherlands) on the right shank 

(SR), left shank (SL) and the lower back (fifth lumbar vertebrae, L5), Figure 5. a. Each synchronized Xsens IMU 

was configured for different protocols (acceleration ±16 g, angular velocity ±2000 deg/s and different sampling 

rates: 60 Hz, 75 Hz, 100 Hz) before data collection. 

 

 
Figure 5.Data processing: (a) Sensor placement, (b) raw acceleration and rotation data of two different locations, (c) IC-FC 

detection with Algorithm 1 process, (d) IC-FC detection with Algorithm 2, ICss and FCs are represented with red and green 

dots, respectively. 

During treadmill walking, participants were asked to walk between 7–9 mins. The speed was incremented 

every minute from 2–8 km/h with a step of 1 km/h. During repetitive indoor walking, participants walked 10–20 

m four times at self-selected normal, slow, and fast speeds. The outdoor walking experiments consisted of two 40–

80 m walks at a self-selected speed. 

 

3.4.2. Datasets-2 (DS2) 

 

Each subject wore three synchronized IMUs (Opal, V2 APDM Inc., Portland, OR, USA) located on the SR, 

SL and the L5 via a belt strap, Figure 5. a. Each recorded tri-axial acceleration (±2 g or 6 g, 128 Hz) and tri-axial 

angular velocity (±1500 degree/s). Gait assessment and instrumentation were carried out by a physiotherapist and 

trained researchers, respectively. Ethical consent was granted by the Oregon Health & Science University 

institutional review board (REF: 9903). All participants gave informed written consent before participating. 

Repetitive indoor/lab gait tasks included: walking back and forth over 10 m for 2 min at normal/self-selected speed. 

 

3.4.3. Methodology 

Two previously validated algorithms A1 and A2 [6, 222] were used for IC-FC detection. Both use a wavelet 

approach to process IMU signals but have fundamental differences such as signal (acceleration vs. angular 

velocity) and locations (waist vs. shank). Each anatomical segment of the human body has a characteristic 

movement pattern and thus produces distinct acceleration and angular velocity signals. Consequently, the selection 

of an appropriate mother wavelet is appropriate to best interpret and quantify characteristics from an IMU signal 
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produced by the movement of a particular body segment. Custom programs (MATLAB® 2019, MathWorks Inc., 

Natick, US) analysed raw (sample level) IMU data for ICs-FCs detection and temporal analysis. 

 

3.4.3.1. Algorithm 1 (A1): Lower Back 

 

A1 (see Appendix 4) uses the vertical acceleration signal generated with the movement of the hip during 

walking. First, the tri-axial accelerometer signals were transformed to the horizontal-vertical coordinate system 

from the sensor reference frame using an approximation algorithm [319] and low-pass filtered (4th order 

Butterworth, cut-off frequency 20 Hz). Then, wavelet transform: (i) numerically integrated (cumtrapz) and then 

differentiated vertical acceleration using a first-order Gaussian (gaus1) continuous wavelet transform at scale 10 

were used to detect the IC events (the local minima) (ii) further differentiated to find the FC events (local maxima), 

Figure 5.c. 

 

3.4.3.2. Algorithm 2 (A2): Shanks (Right and Left) 

A2 (see Appendix 4) uses the sagittal plane rotation of the shin during walking. First, wavelet decomposition 

5th order Coiflets (coif) at 10 scales split the angular velocity signal into low and high-frequency components. 

Then, drift and high-frequency movement artefacts were removed with an initial approximation. Afterwards, two 

new approximations (a1 and a2) were obtained to enhance the detection of IC/FC events. For each approximation, 

the time corresponding to the global maximum (tms, mid-swing) was detected. Finally, IC/FC events (negative 

peaks) were searched in predetermined intervals [a1: IC (tms + 0.25 s, tms + 2 s), a2: FC (tms – 2 s, tms – 0.05 

s)], Figure 5. d. 

3.4.3.3. Temporal Parameter and Statistical Calculations 

From IC-FC moments, temporal gait characteristics were calculated. Among all temporal characteristics, only 

step time calculation requires both right and left foot ICs-FCs moments. Therefore, the right, and left foot’s step 

times were calculated using time stamp information. Temporal calculation formulas are presented in Appendix 

Table 2 for the left side only as the same approach is used for the right side. Temporal characteristics of both sides 

are then used to calculate mean, variability, and asymmetry results. 

Agreements between two algorithms on the temporal parameters were evaluated using Pearson’s I, 

Spearman’s (rho) and interclass correlation coefficients (ICC2,1) with upper and lower bounds and calculated 

using a two-factor mixed model to assess the level of absolute agreement (between A1 and A2) [320]. A coefficient 

value of ≤0.30 indicates no agreement, 0.31 to 0.50 reflects fair, 0.51 to 0.70 moderate, 0.71 to 0.90 substantial, 

and ≥0.91 indicates very good agreement [321, 322].  

Graphical analysis was performed using Bland and Altman plots [323]. Absolute differences were calculated as 

AD =abs(A1-A2). All statistical analyses were performed using IBM® SPSS® Statistics 26. 

 

3.5. Results 

Generally, algorithms provided similar results for mean temporal characteristics but with small AD. A higher 

agreement was found on the mean compared to variability and asymmetry characteristics in all cohorts and 

environments. 

3.5.1. A1 vs. A2: Treadmill 

 

The agreement was substantial to very good for mean stride time, step time and stance time, shown in Table 

5. The agreement was moderate for mean swing time. Agreement for stride and step times variability was 

substantial to very good but fair to moderate for stance time variability and poor for swing time variability. 

Asymmetry parameters did not show any significant correlation except for stride time (r-rho > 0.40, ICC2,1 > 

0.50), shown in Table 5. There were small Ads for mean stride time (0.004 s), stance time (0.001 s), swing time 

(0.003 s) and step time (0.004 s). Comparing overall AD and correlation coefficients between stride-step 

parameters and stance-swing parameters revealed that the latter parameters experience larger AD and lower 

correlation coefficients. The AD of standard deviation in mean temporal parameters did not show any significant 

values. 
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Table 5.Extracted temporal parameters and agreements for treadmill walking. 

 

 

 

 

 

 

(YA) 

Treadmill 

 

DS1 

n = 16 

 A1-Lower Back  A2-Shank Pearson’s R Spearman’s Rho 95% CI Bounds 

Mean time (s) Average SD Average SD   ICC2,1 lower upper p  

Stride 1.156 0.065 1.152 0.054 0.965 ** 0.988 ** 0.975 0.929 0.991 0.000 

Stance 0.733 0.042 0.732 0.042 0.832 ** 0.753 ** 0.914 0.750 0.970 0.000 

Swing 0.423 0.023 0.420 0.033 0.537 * 0.547 * 0.684 0.073 0.890 0.019 

Step 0.578 0.033 0.578 0.027 0.907 ** 0.865 ** 0.945 0.841 0.981 0.000 

Variability Time (s)           

Stride 0.068 0.029 0.075 0.028 0.918 ** 0.956 ** 0.946 0.814 0.982 0.000 

Stance 0.045 0.018 0.084 0.021 0.630 ** 0.632 ** 0.441 −0,228 0.804 0.005 

Swing 0.026 0.010 0.027 0.006 0.116 −0.300 0.132 −1.666 0.704 0.398 

Step 0.036 0.014 0.040 0.017 0.885 ** 0.886 ** 0.915 0.735 0.971 0.000 

Asymmetry Time (s)           

Stride 0.000 0.000 0.003 0.010 0.436 0.455 0.564 −0.150 0.847 0.049 

Stance 0.004 0.004 0.016 0.013 0.019 0.176 0.019 −0.633 0.552 0.476 

Swing 0.004 0.004 0.013 0.008 −0.050 0.037 −0.050 −0.698 0.408 0.563 

Step 0.005 0.005 0.019 0.009 −0.085 0.046 −0.069 −0.509 0.428 0.612 

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). 

3.5.2. A1 vs. A2: Indoor 

Absolute agreements between temporal characteristics extracted using A1 and A2 during indoor walking 

varied for YA, OA and PD, shown in Table 6. The agreement was very good for YA, OA and PD mean stride and 

step times. There were substantial to very good (YA), and moderate to substantial (OA and PD) agreements for 

mean stance and swing times. 

Agreements between A1 and A2 for variability and asymmetry temporal parameters were poor. There were 

small Ads in mean stride, stance, swing, and step times for YA (0.017 s, 0.029 s, 0.014 s, 0.010 s), OA (0.002 s, 

0.009 s, 0.003 s, 0.009 s) and PD (0.015 s, 0.022 s, 0.004 s, 0.010 s), respectively. Absolute agreement for temporal 

characteristics during indoor walking was highest in YA and lowest in PD. Comparing overall AD and correlation 

coefficients between stride-step parameters and stance-swing parameters revealed larger differences and lower 

correlation coefficients in the latter. 

Table 6.Extracted temporal parameters and agreements for indoor walking. 

 

 

 

 

 

(YA) 

Indoor 

 

DS1 

n = 31 

 

 

 

 

 A1-Lower back  A2-Shank Pearson’s R Spearman’s Rho 95% CI Bounds 

Mean Time (s) Average SD Average SD   ICC2,1 lower upper p 

Stride  1.096 0.138 1.079 0.138 0.982 ** 0.974 ** 0.987 0.965 0.994 0.000 

Stance  0.692 0.084 0.663 0.092 0.931 ** 0.892 ** 0.936 0.716 0.974 0.000 

Swing  0.402 0.052 0.416 0.058 0.863 ** 0.797 ** 0.909 0.842 0.942 0.000 

Step  0.548 0.069 0.537 0.070 0.989 ** 0.984 ** 0.989 0.916 0.996 0.000 

Variability Time (s)           

Stride  0.040 0.037 0.032 0.018 0.040 0.221 ** 0.600 −0.176 0.251 0.294 

Stance  0.026 0.020 0.024 0.015 0.025 0.122 * 0.047 −0.204 0.246 0.343 

Swing  0.019 0.020 0.032 0.011 0.054 0.301 ** 0.070 −0.116 0.231 0.217 

Step  0.024 0.021 0.023 0.016 −0.025 −0.016 −0.049 −0.325 0.169 0.656 

Asymmetry Time (s)           

Stride  0.005 0.006 0.007 0.010 −0.034 0.000 −0.060 −0.338 0.159 0.690 

Stance  0.009 0.008 0.016 0.019 0.013 0.800 0.017 −0.214 0.207 0.437 

Swing  0.009 0.009 0.017 0.015 0.130 * 0.155 ** 0.184 −0.011 0.344 0.025 

Step  0.011 0.010 0.032 0.036 0.081 0.097 0.062 −0.122 0.223 0.241 

 

 

(OA) 

Indoor 

 

DS2 

n = 20 

 

 

 

 

 

Mean Time (s)           

Stride  1.162 0.077 1.164 0.0866 0.962 ** 0.974 ** 0.979 0.947 0.992 0.000 

Stance  0.707 0.0404 0.716 0.0630 0.816 ** 0.811 ** 0.851 0.631 0.941 0.000 

Swing  0.447 0.05 0.444 0.0442 0.699 ** 0.657 ** 0.824 0.551 0.930 0.000 

Step  0.579 0.043 0.570 0.0452 0.989 ** 0.991 ** 0.985 0.766 0.996 0.000 

Variability Time (s)           

Stride  0.086 0.034 0.162 0.106 0.130 0.316 0.124 −0.639 0.603 0.356 

Stance  0.041 0.008 0.151 0.108 −0.153 −0.041 −0.025 −0.494 0.428 0.542 

Swing  0.046 0.012 0.043 0.004 −0.109 −0.039 −0.155 −1.991 0.547 0.621 

Step  0.042 0.010 0.033 0.009 0.061 0.108 0.083 −0.609 0.561 0.396 

Asymmetry Time (s)           

Stride  0.001 0.002 0.016 0.012 0.147 0.278 0.042 −0.319 0.441 0.418 

Stance  0.000 0.000 0.020 0.016 0.226 0.199 0.013 −0.338 0.406 0.475 

Swing  0.001 0.002 0.012 0.011 −0.028 −0.017 −0.011 −0.549 0.462 0.516 

Step  0.000 0.000 0.016 0.011 0.050 0.068 0.004 −0.177 0.308 0.488 

 

 

 

 

(PD) 

Indoor 

 

DS2 

n = 36 

Mean Time (s)           

Stride  1.168 0.096 1.183 0.106 0.973 ** 0.960 ** 0.979 0.940 0.991 0.000 

Stance  0.704 0.051 0.727 0.087 0.804 ** 0.750 ** 0.806 0.608 0.903 0.000 

Swing  0.458 0.052 0.454 0.052 0.570 ** 0.545 ** 0.730 0.469 0.863 0.000 

Step  0.584 0.049 0.574 0.049 0.979 ** 0.949 ** 0.980 0.849 0.993 0.000 

Variability Time (s)           

Stride  0.083 0.044 0.237 0.161 0.033 0.082 0.018 −0.350 0.360 0.461 

Stance  0.058 0.038 0.231 0.163 0.057 0.315 0.025 −0.295 0.343 0.441 

Swing  0.054 0.023 0.045 0.007 0.316 0.361 * 0.284 −0.299 0.620 0.140 



 

55 | P a g e  
 

 

 

 

Step  0.059 0.038 0.038 0.023 0.069 0.525 ** 0.097 0.528 0.499 0.359 

Asymmetry Time (s)           

Stride  0.002 0.006 0.023 0.021 −0.161 0.136 −0.158 −0.699 0.777 0.760 

Stance  0.001 0.005 0.032 0.024 −0.165 −0.075 −0.062 −0.354 0.256 0.664 

Swing  0.002 0.003 0.026 0.018 −0.309 −0.211 −0.076 −0.343 0.236 0.723 

Step  0.002 0.005 0.033 0.026 −0.200 −0.021 −0.073 −0.391 0.262 0.682 

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). 

3.5.3. A1 vs. A2: Outdoor 

 

The agreement was very good for mean stride, stance, and step times and substantial for mean swing time. 

The agreement between A1 and A2 for the variability of stride times was moderate and fair for stance times, Table 

7. The remaining variability and asymmetry characteristics did not show any significant correlation. AD found 

0.004 s, 0.001 s, 0.003 s, and 0.004 s for mean stride, stance, swing, and step times, respectively. Differences are 

larger and correlation coefficients are lower in mean stance-swing times compared to mean stride-step times during 

outdoor walking. 

 

Table 7.Extracted temporal parameters and agreements for outdoor walking. 

 

 

 

 

(YA) 

Outdoor 

 

DS1 

 

n = 25 

 

 A1-Lower Back  A2-Shank Pearson’s R Spearman’s Rho  95% CI Bounds  

Mean Time (s) Average SD Average SD   ICC2,1 lower upper p 

Stride  1.084 0.152 1.084 0.153 0.996 ** 0.997 ** 0.998 0.997 0.998 0.000 

Stance  0.680 0.085 0.668 0.111 0.924 ** 0.936 ** 0.940 0.913 0.958 0.000 

Swing  0.403 0.068 0.416 0.055 0.779 ** 0.835 ** 0.856 0.790 0.900 0.000 

Step  0.541 0.076 0.539 0.076 0.996 ** 0.993 ** 0.998 0.997 0.999 0.000 

Variability Time (s)           

Stride  0.025 0.018 0.040 0.030 0.563 ** 0.434 ** 0.605 0.314 0.757 0.000 

Stance  0.018 0.011 0.033 0.026 0.445 ** 0.346 ** 0.413 0.102 0.607 0.000 

Swing  0.016 0.014 0.035 0.011 0.226 ** 0.257 ** 0.195 −0.123 0.436 0.004 

Step  0.017 0.011 0.025 0.018 0.044 0.025 0.068 −0.234 0.305 0.314 

Asymmetry Time (s)           

Stride  0.003 0.003 0.006 0.010 0.104 0.202 * 0.109 −0.2013 0.350 0.234 

Stance  0.014 0.014 0.022 0.028 0.079 0.066 0.113 −0.210 0.353 0.226 

Swing  0.014 0.014 0.023 0.024 0.008 −0.026 0.013 −0.337 0.277 0.466 

Step  0.014 0.014 0.040 0.054 0.030 −0.013 0.025 −0.271 0.264 0.429 

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). 

3.6. Discussion 

To the author’s best knowledge, this is the first study to comprehensively investigate agreement levels between 

the lower back and shank IMU algorithms. This study aimed to reveal the suitability of lower back and shank 

inertial algorithms on various experimental walking protocols, with different cohorts and walking environments. 

The alterations in the performances of lower back and shank inertial algorithms in various cohorts, especially PD, 

have not been previously investigated. Moreover, the impacts of a treadmill, indoor and outdoor walking on the 

agreement of both algorithms have not been revealed. Therefore, the implications of this study will contribute to 

the current knowledge by providing information about the similarity of lower back and shank inertial algorithms 

under different conditions. The statistical results presented in this study will also shed light on future studies 

regarding how cautious researchers should be while interpreting results belonging to a particular environment (e.g., 

indoor-outdoor), cohort (e.g., PD) or temporal parameter (e.g., stance time). 

Overall, location and algorithm pairs provided highly correlated mean temporal results for all cohorts during 

treadmill, indoor and outdoor walking. However, this is not true for variability and asymmetry characteristics. 

These findings attest to the common knowledge that variability and asymmetry values extracted from inertial 

algorithms differ across wear locations [324]. This could be associated with the fact that errors or systematic delays 

in ICs-FCs detection affect variability measures more than mean values [325]. My findings also suggest that the 

agreement between location/algorithm is sensitive to age, neurological condition, and walking environment. My 

results are deemed suitable for exploratory investigation as they are derived from previously validated algorithms. 

 

3.6.1. Impact of Pathology and Age 

The lowest agreement with the largest AD between algorithms was in PD compared to YA and OA during 

indoor walking for mean, variability, and asymmetry. A previous study reported global performances of lower back 

IMU algorithms decreased when applied to a neurological group [7], which supports my similar findings for lower 

agreement. Among the underlying reasons for this limitation, missing or detecting extra ICs-FCs is the most likely 
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cause [7]. Given gait abnormalities affect the movement patterns of hip and shank segments to cause disrupted 

inertial waveforms [2, 7], decreases in performance/agreement levels are likely. Furthermore, existing IC-FC 

algorithms were developed and validated for healthy populations only [9,23,32]. Disagreement was at its highest 

level for stance-swing time characteristics that rely on both ICs-FCs moments, aligning with previous findings [7] 

where A1 [6] returns greater (extra) FCs moments, thereby reducing accuracy and repeatability. 

Age also affects algorithm accuracy for ICs-FCs. A study investigated age on mean, asymmetry and variability 

gait characteristics using chest and lower back algorithms and reported more accurate results for YA compared to 

OA [324]. Similarly, comparing mean temporal parameters of YA and OA during indoor walking in this study 

revealed agreement between algorithms is higher on YA than OA. 

The above was further investigated with regression analysis, Figure 6. For example, more ordinated regression 

lines were present in OA than in PD. A higher agreement was observed in Bland-Altman plots where the difference 

axis experienced significantly lower values for OA than PD. Similarly, more ordinated regression lines were 

present in YA than in OA. A higher agreement was observed in Bland-Altman plots where the difference axis 

experienced lower values for YA than OA, Figure 6, Figure 7. 

 

 
Figure 6.Scatter and Bland-Altman plots of algorithms 1 and 2 for investigating the agreements in older adults (OA) and PD 

populations by pooling all temporal parameters. OA1 and PD1 are scatter plots with regression lines (green), respectively. 

OA2 and PD2 are Bland-Altman plotting with mean, lower and upper bands (purple), respectively. 

3.6.2. Impact of Environment 

Various agreement levels were observed in mean, variability and asymmetry characteristics during treadmill, 

indoor and outdoor walking. Agreement in stride and step times is slightly higher during outdoor whereas 

agreement in stance and swing times is slightly higher during indoor walking. Studies have shown differences in 

characteristics between indoor and outdoor using IMU sensors [22, 326]. There are several factors that could 

explain the differences between extracted temporal parameters during treadmills, and indoor and outdoor walking. 

Primarily, treadmills are classed as an external cue; forcing the person to walk to the set speed of the device, rather 

than having the freedom to select their own walking pattern/style. Therefore, walking on a treadmill requires 

additional balance skills with respect to overground walking, and harnesses or treadmill bars have an impact on 

patients' perception and pro-prioception during walking [135]. Daily life and laboratory gait are also different, and 

this is associated with participants being more conscious of measurements being taken during laboratory walking 

compared to free-living, which reflects more about real-life e.g., with natural dual-tasking [326]. Another factor 

that could explain the difference between indoor and outdoor walking is the walking terrain used (e.g., carpet, 
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cobble) [2]. This was further studied and reported that gait adaptation strategies to maintain stability are sensitive 

to different walking surfaces, meaning different gait patterns are employed while walking on soft and hard terrains 

[293]. Given the fact that there are characteristic differences between the treadmill, and indoor and outdoor 

walking, a previous study hypothesized that the environment plays an important role in generating different 

walking signals, influencing the accuracy of ICs-FCs detection [150]. 

Based on the findings, I suggest that the instability of IMU algorithm performances could also be a prominent 

reason that accounts for differences between indoor and outdoor mean characteristics. Furthermore, the agreement 

between algorithms for the variability of temporal parameters during treadmill walking is higher than 

indoor/outdoor walking. A higher agreement between algorithms could be associated with the fact that the treadmill 

as an external cue reduces variability by means of controlling walking belt speed. These results are valid for 

different walking speeds since treadmill walking and indoor walking experiments were performed at various 

walking speeds. Regression and Bland-Altman plots belonging to various walking environments suggest that the 

difference between mean temporal parameters is lower during treadmill walking than during indoor-outdoor 

walking, Appendix 4. 

 

 

 
Figure 7.Scatter and Bland-Altman plots of algorithms 1 and 2 for investigating the agreements in various walking 
environments by pooling all temporal parameters. Treadmill.1, Indoor.1, Outdoor.1 are scatter plots with regression lines 
(green), respectively. Treadmill.2, Indoor.2, Outdoor.2 are Bland-Altman plotting with mean, lower and upper bands (purple), 
respectively. 
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3.6.3. Considerations: Sensor Location and Algorithms 

Systematic delays, errors and inconsistencies in IC′s-FC′s detection are present even between two reference 

systems such as treadmill and motion analysis [305]. Therefore, it is crucial to investigate the level of error 

(agreement) between two or more IMU algorithms and minimize inconsistencies to achieve a reliable and robust 

methodology. 

Using different IMU systems and processing methods are possible factors accounting for inconsistencies 

[150]. Previous studies investigated the listed factors and their impacts on the accuracy of the results on healthy 

subjects [150, 214, 305]. Here, I studied these factors in YA, OA and PD and merged them with previous findings 

to provide a guide for future studies. 

• The first factor needing consideration for IMU gait algorithms is the preferred pre-processing and post-

processing methodologies as it has an impact on the extracted mean, variability, and asymmetry of 

temporal characteristics. For example, using algorithms like A1 [6] requires strict filtering and may 

affect the variability of extracted characteristics as the signal is much smoother compared to less strict 

filters (e.g., A2). 

• Sensor location and sensor signal are other important factors affecting accuracy. Research suggests the 

shank angular velocity signals provide more accurate and repeatable results for IC-FC detection 

compared to algorithms that use waist acceleration [214, 305]. However, this has not been fully 

investigated in neurological cohorts. Here I also found that correlation/agreement of lower back and 

shank algorithms change when applied in various walking environments and decrease when applied to 

those with PD. 

• Although findings show that the threshold/rule-based inertial algorithms for ICs-FCs detection provide 

highly correlated mean results, the fact that performances are sensitive to target cohort and environment 

limits widespread use. 

 

3.6.4. Limitations and Future Works 

Despite the algorithms being previously validated against reference standards (e.g., instrumented walkways), 

it remains a limitation that I did not collect and compare reference data in this study. However, study results are 

deemed suitable as validated algorithms and high-grade wearable IMUs were used, showing good agreement with 

previous studies [125, 154, 169, 310, 311], and the purpose here is to compare between algorithms. However, 

systematic errors (e.g., delays) exist in the algorithms, 0.006 s and −0.029 s were reported for ICs and FCs, 

respectively in the lower back algorithm whereas 0.01 s in IC detection was reported for the shank-based algorithm 

[6, 222]. Systematic delays in ICs-FCs detection may increase in OA and PD populations due to the change in the 

acceleration and angular velocity of the hip and lower limb [7, 150]. Given the importance of accurate ICs-FCs 

detection in gait analysis, more reliable and robust algorithms are needed, especially for the gait assessment of 

neurological conditions. Moreover, wearable sensor-based gait assessment is shifting from supervised 

environments (e.g., lab) to unsupervised environments (e.g., free-living) because the latter enables habitual data 

capture [327]. Therefore, there is a need for validated inertial algorithms to be used in unsupervised environments, 

however, the absence of gold/reference standard systems to validate inertial algorithms in unsupervised 

environments brings new challenges as the field matures [294]. The severity of gait impairment has an impact on 

the waveform of acceleration and angular velocity signals [2]. Therefore, more advanced approaches (e.g., machine 

learning, deep learning) which already have shown promising results [328-330] should be adopted in neurological 

gait studies as they work independently from signal shape and thresholds. Furthermore, the use of a particular 

target signal e.g., vertical acceleration of the hip or sagittal plane angular velocity of the shin makes the orientation 

of the sensor crucial. In case of inaccurate sensor placement, the algorithms provide inaccurate results. Therefore, 

future studies also should aim to develop algorithms that work independently from sensor orientation. 

 

3.7. Conclusions 

Based on a comparative study conducted, this chapter reveals that the agreement levels of parameters extracted 

from various algorithms or sensor locations can vary across different cohorts and environments. The results also 

highlight that temporal characteristics such as stance and swing times exhibit lower levels of agreement compared 

to step and stride times. It was also shown that the agreement level is sensitive to the cohort as higher agreements 
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were obtained in healthy participants compared to PD. The discrepancy in the agreement between these parameters 

could be attributed to the fact that stance and swing times are calculated using both initial contact (IC) and final 

contact (FC) moments, whereas step and stride times are solely derived from IC moments.  These findings answer 

the PoI1 by suggesting that researchers should be cautious when interpreting the stance and swing times derived 

from these algorithms on Parkinson’s cohort and different walking environments. 

In summary, Chapter 3 investigated common algorithms and sensor locations for extracting temporal 

characteristics (unimodal) of gait using single sensor units. However, the literature review conducted in Chapter 2 

suggests that combining multiple sensor units can better inform gait studies by providing multimodal gait data 

(e.g., temporal and kinematics). This can be achieved through the utilisation of sensor data fusion (also known as 

multi-sensor data fusion) which is a process of integrating multiple data sources to produce more consistent and 

reliable output. In addition, using data mining and AI techniques can improve wearable sensor-based gait analysis. 

Chapter 2 provided a concise overview of some of these considerations. However, further investigation of these 

topics in greater depth is needed. Therefore, the next chapter (4) will investigate data/sensor fusion, AI, and data 

mining techniques. After, I will use the acquired knowledge to overcome challenges in Chapters 2 and 3. 
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Chapter 4 Considering Contemporary 

Approaches for Gait Analysis 
This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The article appears as a book chapter (Sensor Integration for Gait Analysis), appearing in 

the book Encyclopaedia of Sensors and Biosensors published by Elsevier in 2023. Permission is 

granted to freely use the whole chapter with declaration of authorisation included in Appendix 10. 

 (URL: https://doi.org/10.1016/B978-0-12-822548-6.00139-4) 

Permission to reuse up to 8x 500-word excerpts of the published work was obtained from Elsevier on 

26 May 2023 – License Number: 5556541043665. The declaration of authorisation is included in 

(Appendix 10). 

Permission to reuse 1 figure of the published work was obtained from Elsevier on 26 May 2023 – 

License Number: 5556541290238. The declaration of authorisation is included in (Appendix 10). 
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4.1. Introduction  

The literature review conducted in Chapter 2 suggests that the implementation of a multimodal/multi-sensor 

approach has the potential to enhance unimodal gait analysis. Furthermore, the utilisation of wearable sensors 

outside of laboratory settings holds promise for informing clinical gait analysis. Before attempting to utilise these 

methods and techniques in wearable sensor-based gait analysis, I need to further enhance my understanding of 

their application, as well as the associated considerations and limitations, thereby acquiring a higher level of 

expertise in this area. Therefore, this section will aim to study data fusion techniques with various frameworks to 

fuse different wearable sensor technologies. Moreover, the use of IoT in multimodal gait analysis and data mining 

techniques by various AI applications including HAR will be discovered and studied. The knowledge gained could 

be helpful to set a foundation before utilising these techniques and methods to address my PoI2 and PoI3. 

 

4.2. Data fusion  

Data fusion is the process of integrating multiple data sources to achieve new information or improved 

information that is not possible to obtain from a single data source alone. The combination of multiple data sources 

primarily aims to produce more reliable and desired physiologic and behavioural measures with less computational 

costs while reducing uncertainty [331]. The use of multiple sensor systems and data fusion ensures a higher signal-

to-noise ratio (SNR), increased dimensionality of the measurement and increased sensing robustness [332]. In the 

case of gait analysis, data fusion is performed based on clinical needs. For example, researchers/clinicians aiming 

to investigate the change in muscle activation characteristics, heartbeat or respiratory system during gait are 

required to use multiple sensor configurations along with an appropriate data fusion algorithm. Investigating 

muscle activation characteristics in a gait cycle and its subphases (stance and swing) can provide clinically relevant 

information [132]. In such a scenario, an additional data source such as inertial signals can help identify stance 

and swing periods in accordance with specific EMG activity, as EMG data alone does not solely have sufficient 

information for detecting gait phases [290].  

The data fusion approach can be very useful when a whole set of biometrics is needed [333]. For example, 

assessment of human walking along with the cardiovascular system and autonomic control systems can provide 

insightful information to better understand underlying deficits of neurological conditions. The development of 

such systems requires the fusion of multiple data sources including accelerometer, respiratory band, 

electrocardiogram (ECG), force sensor and electrodermal response sensors, Figure 8. Among neurological cohorts 

and elderlies, falls are common and have a negative impact on the cost of healthcare. Recent developments in data 

fusion techniques have triggered intensive research efforts toward the early detection of falls [334, 335]. Early fall 

detection systems were developed by fusing inertial (accelerometer and gyroscope) and ambient (infrared sensors, 

vibration, and pressure) sensors [336]. These efforts also have enabled monitoring of the changes in various sensor 

data before the fall event. This information could be useful when investigating the posture and motion of fallers in 

neurological groups. 
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Figure 8. Multi-sensor fusion categories on processing level, figure modified from  [331, 337] (A) Commonly used 

wearable/ambient sensors in gait assessment of neurological populations. (B) Sensor fusion frameworks and some of the 
common fusion algorithms 

A variety of data fusion methods have been developed and adopted in the literature for wearable sensor-based 

gait assessment/health monitoring [284, 331, 337]. On the processing level, fusion from multiple sensor modalities 

can be done at data, feature, and decision levels, Figure 8. When the same type of sensor is present to measure the 

same physical phenomenon, raw signals collected from each sensor are typically fused via data-level fusion to 

produce the most accurate and reliable outcome. Data-level fusion is common in body sensor network (BSN) based 

neurological gait analysis studies, e.g., a combination of three axial acceleration and gyroscope or multi-channel 

EMG measurement of lower limbs [338]. Data-level fusion has been used for various purposes including data 

adaptation, parameter estimation and calibration [337]. Weighted averages, Kalman filter (KF), and Particle 

filtering (PF) are common data-level fusion approaches.  

Alternatively, having heterogeneous sensors in BSN requires higher fusion levels (feature-level or decision-

level) as outputs of two different sensor types cannot be fused directly. Feature level fusion is the process of 

combining extracted features from multiple data sources and is commonly used in classification (e.g., activity 

recognition) studies [339]. For example, features extracted from accelerometers are informative but limited due to 

their sensing capacity. Thus, combining accelerometers with gyroscopes provides additional insight into the 

rotational activities of the trunk or legs that cannot be (easily or accurately) measured via accelerometers only [17]. 

Although the aim of feature-level fusion is to provide a high dimensional feature vector, steps such as feature 

selection that extracts highly correlated features are needed along with domain knowledge[340]. Gaussian mixture 

model (GMM), k-Nearest Neighbour (k-NN), and Decision Trees (DT) are some of the widely preferred feature-

level fusion algorithms. In addition, popular deep learning (DL) techniques such as convolutional neural networks 

(CNN) have been drawing the attention of researchers as feature extraction is performed without any domain 

knowledge. Decision-level fusion is the process of generating one final decision (hypothesis) from the produced 

decisions. Decision-level data fusion is performed after feature extraction and classification of each sensor in the 

corresponding sensor modalities. Common decision-level fusion algorithms are Bayesian inference and Fuzzy 

Logic (fuzzy set theory). Factors such as system accuracy, computational time, diversity of data available and 

power consumption are determinants when deciding on a fusion algorithm. 

 

4.3. Data mining (big data and AI)  

Typical approaches to gait analysis involve the use of sensing devices (e.g., IMU, EMG, smartphone), with 

the participant wearing the sensing modality over extended periods at up to 100Hz [2, 341-343]. Consequently, 
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the culmination of large-scale datasets has become prevalent, especially coinciding with the ubiquity of the IoT, 

commonly referred to within the ‘Big Data’ paradigm [344]. With the prevalence of big data in healthcare analytics, 

wider adoption of artificial intelligence (AI) is being deployed [345], providing a wider understanding of gait in 

varying conditions, pathologies and demographics. Generally, AI and big data rely on: 

4.3.1. Sensing modality streaming to IoT device/edge device 

Sensors used within healthcare monitoring typically rely on technologies such as Bluetooth to have the data 

streamed to either an edge computing device (Raspberry Pi, Smartphone) or more common networking 

technologies such as Wi-Fi on IoT enabled devices [346, 347]. Through the application of IoT enabled devices the 

need for physical wires is alleviated allowing the participants a greater and unobstructed range of movement. 

4.3.2. Range of classifiers 

Typically, within healthcare the AI methods employed are that of classifiers e.g., classifying a fall risk. A range 

of AI-based classifiers are available, each offering distinct advantages over others. For time series data such as 

polling data from an IMU sensor to classify fall risk [348], long short-term memory (LSTM) could be used. LSTMs 

are a type of recurrent neural network that retains information from previous examples when processing their 

output. Other types of less computationally complex classifiers exist such as support vector machines (SVM) and 

perform well on select tasks [349], which do not retain information from previous examples but provide much 

faster outputs while retaining a high degree of accuracy. There are too many different forms of AI-based classifiers 

to discuss in this paragraph however the choice of the classifier will always depend on the requirements of the task 

at hand e.g., does the algorithm need to run in real-time or, is accuracy more important than speed? 

 

4.3.3. Outputs 

Applications of big data and AI within healthcare are vast, with an accompanying range of outputs. For lots 

of AI-based health applications, typically the output is binary (detected, not detected) with a probability range of 

0.0 and 1.0 (<0.5 not detected, >0.5 detected) [350]. The higher probabilities of course mean the stronger the risk 

of e.g., a fall to occur. Binary classification problems are not the only available type, classifiers with multiple 

possibilities are also prevalent i.e., classification of different respiratory diseases or balance abilities [351].  

 

The use of AI and big data demonstrate utility for smarter gait assessment, especially remote. However, 

concerns of high dimensionality and heterogeneity of healthcare data (e.g., sensing modalities will have different 

outputs) [352] require verification and validation before an AI agent can be effectively used. In response, 

dimensionality reduction techniques can be employed, aiming to reduce the complexities within a dataset. For 

example, utilisation of an edge computing-based system could provide semi-frequent, local feature extraction 

[353], before transmission to a large-scale big data instance containing pre-processed, lower dimensionality data. 

Provision of pre-processed gait data into a concise dataset of features in a big data context could inform clinically 

relevant outcomes [354], but also provide computationally optimal execution to streamline the analysis, as seen in 

other big data-centric domains [355]. 

 

4.3.4. HAR using wearable technology and AI 

Machine learning (ML) algorithms such as Support Vector Machine (SVM) or Decision Tree (DT), rely on 

manual feature extraction and selection that greatly impact HAR accuracy. Prior works have shown that designing 

hand-crafted features in a specific application requires human-based domain knowledge [356] and heuristically-

defined features may perform well in recognizing one activity, but not others [357]. Furthermore, hand-crafted 

features may not be sensitive to targeted cohorts and environments [358] i.e., models developed with a set of features 

in a lab lose accuracy when applied in free living (beyond the lab) due to the diversity of user’s habitual behaviour 

and complexity of activities and environments. Equally, human expertise may not always select the best features, 

which can decrease accuracy and make it necessary to apply additional feature selection methods to reduce 

dimensionality [17]. The use of ensemble classifiers has been recommended to increase classification accuracy [359, 

360] but studies utilized complex methods that were computationally inefficient. To optimize performance, IMU-

based HAR approaches have generally converged on DL [361]. DL algorithms are capable of generating complex 

and high-level features that well represent raw data and do not require expert knowledge for feature extraction and 
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selection [17, 362]. DL methods are considered state of art in computational processing [363] and have provided 

very accurate classification approaches [306, 364].  

Common DL approaches include Convolutional Neural Networks (CNN) which can learn multiple layers of 

feature hierarchies to provide high accuracy for the recognition of repetitive activities with a long duration [361]. 

Compared to other AI methods, CNNs have a local dependency, an ability to identify correlation between close 

signals and scale invariance with an ability to work with different frequencies in time series data [364]. CNN models 

have been used with other AI methods such as Long-short-term memory (LSTM) recurrent neural networks to 

capture time dependencies on features extracted by convolution operations. This kind of combined architecture 

outperformed other studies that used the same HAR dataset  [365]. Additionally, spectrogram-based feature 

extraction methods using Short-Time Fourier transform (STFT) from raw IMU data have been proposed through 

data augmentation with down sampling and shuffling techniques before classification with LSTM [299].  

In both ML and DL models, the variety and size of data have the utmost importance to minimize overfitting. 

Failing to provide a diverse and large data set will cause training and validation errors. Data augmentation is a 

powerful method to solve training, validation errors, overfitting [366, 367] and data sparsity problems. Previously, 

a two-stage end-to-end CNN model was proposed along with an augmentation technique to enhance datasets by 

inserting data points via linear interpolation [368]. The results of the proposed methodology outperformed previous 

studies in terms of classifying activities in a dataset of healthy participants. Another study used two different time 

series data augmentation techniques to investigate the impact on accuracy and reported that the use of data 

augmentation significantly enhances recognition accuracy in three public datasets of healthy participants [369]. 

Alternatively, the Generative Adversarial Network (GAN) framework [370] was adopted to generate more data 

samples. Although GAN could improve the performance of classifiers with limited labelled data, weaknesses such 

as lack of explicit representation of the generator’s distribution and the need for model synchronization were 

reported [371]. Synthetic Minority Over-sampling technique (SMOTE) is another technique that uses oversampling 

to generate more data samples [372] and achieves better classifier performances in ML classifiers (such as Naive 

Bayes) but has not been fully investigated in DL classifiers and HAR of neurological populations.  

Interpretation of numeric IMU data as images has been implemented in very few HAR studies. In [373], IMU 

data was stacked row by row into an array (called a signal image) before a 2D Discrete Fourier transform (DFT) 

was applied to generate activity images which were then input to a CNN. Elsewhere, frequency (activity) images 

were created from the raw IMU signals by applying STFT [306] and Fast Fourier Transform (FFT) [374] before 

being used as input to a CNN. However, the referenced studies performed HAR using activity images (spectrum) 

rather than a direct representation of numerical sensor values. Although these studies produced accurate HAR, the 

images (spectrum) used do not fully represent raw sensor data. Using raw sensor data to create images where pixel 

brightness increases/decreases with the numerical value of the IMU is a novel and potentially more accurate 

alternative as it better represents raw (sample level) IMU data. Previously, images that were created with this 

approach provided very promising classification results of the survival status of the patient using a clinical record 

dataset [375]. 

4.3.4.1. Inertial sensor based HAR in neurologic populations 

The use of inertial sensors in HAR eliminates immediate privacy, and security concerns and offers pragmatic 

data collection possibilities via various technologies such as commercially available devices, smartphones, and 

smartwatches. Despite providing unique opportunities, inertial sensor-based HAR also poses many challenges such 

as accurately recognizing the activity type from an unknown environment using an inertial signal [16]. Unlike 

camera-based HAR systems, inertial sensor-based HAR requires additional mechanisms such as video recording or 

scripted data collection protocol to label the data before training. Another challenge posed by inertial sensor based 

HAR is the requirement of wearing multiple sensors. Although multiple inertial sensors-based HAR have provided 

highly accurate activity classification [306], wearing multiple devices may cause discomfort while increasing 

computation and project costs. Accordingly, most studies utilize a single waist-mounted sensor [376].  

Several publicly available benchmark datasets have been generated using a single sensor configuration to 

enable researchers to develop highly accurate HAR models [377, 378]. However, those datasets were produced from 

healthy people only [364]. The lack of HAR benchmarking datasets for neurological populations forces researchers 

to create local (project-specific) datasets. The creation of a local dataset that has diverse and sufficient data is 

challenging due to several reasons [371]. For example, researchers interested in HAR within neurological disorders 

may struggle with patient recruitment (due to a lack of clinical partners) or ensure the longevity of recording to 
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obtain sufficient data due to a lack of patient adherence. Additionally, data may be skewed as those with functional 

limitations may generally perform light activities only, such as level ground walking rather than stair ascent/descent 

or walking over uneven terrain due to fear of falling. These real-life implications result in datasets of SS [358, 379], 

PD [19] and people with spinal cord injury [380] that may not be rich and diverse enough to achieve very high HAR 

accuracies on new data.  

Accurate HAR in neurological populations requires diverse data from multiple participants with a broad range 

of ages, fitness levels, disease duration, mood, and health conditions to ensure inter-subject and intrasubject 

variability have minimal impact on recognition accuracy [381]. For example, people with different stroke types 

(e.g., ischemic) and post-stroke recovery durations may show different levels of impaired mobility during stair 

ascending/descending. Increasing the size of the dataset may also contribute to minimizing the impact of subject 

variability in classification models. 

 

4.4. Internet of Things 

 

As described, instrumented gait assessment beyond the clinic has many challenges to overcome such as 

multimodal sensing (e.g., IMU + EMG) as well as robust interpretation of data while knowing/understanding the 

context of how and where people are walking. Yet, there is a desire to achieve robust gait assessment beyond the 

clinic and to enable a streamlined process of communication technologies that need investigating. The Internet of 

Things (IoT) is a term used to describe a rapidly growing infrastructure of interconnected, embedded devices that 

harness the power of the Internet to derive enhanced intelligence through intra-device communication and 

multimodal data analytics [382]. IoT is predominantly defined as a network of billions of globally interconnected 

physical devices [383, 384], but the term also encompasses virtual services and platforms [385]. Passive sensors 

and multimodal data analytics provide established methods for determining patient pathologies in clinical 

assessment. Due to the accessibility of IoT-based sensor technologies, IoT-enabled data collection methods have 

the potential to extend research beyond the clinic, to enable free-living assessment of patients in their habitual 

environments [353]. This has the potential to monitor patients as they perform everyday tasks to determine e.g., 

where functional limitations may exist.  

Within the field of gait assessment, IoT presents many opportunities to address a recognised need for free-

living assessment that exposes patients to habitual environments and everyday obstacles, without researcher 

supervision [316]. Increased accessibility and low costs mean that IoT devices can overcome the inhibiting factors 

that have made research in this area unfeasible [386]. Moreover, sensor technologies used by clinicians are 

becoming pervasive in everyday life, as these technologies are targeted to a consumer health market in the form 

of fashion items such as clothes and jewellery [387]. However, IoT devices are internet-enabled, communication 

technologies, so healthcare researchers face new challenges, due to the frequency of data that is required to assess 

underlying pathologies. Medical grade gait analysis sensors typically use tri-axial accelerometers with a capture 

frequency of 100Hz. Capturing data at this frequency can be challenging in an IoT context due to the 

bandwidth/costs required to transmit the large amount of data that is created. 

One possible solution to overcome the bandwidth challenges is to increase the processing power of the 

wearable device and perform calculations and assessments on the hardware itself, known as edge computing. This 

is commonly used when computationally expensive tasks need to be done with minimal latency [388], but it can 

also be used to reduce the amount of data being transmitted. For example, instead of directly sending raw data 

from an IoT-enabled tri-axial accelerometer to an IoT service, data could be processed on the device itself, 

transmitting only key information e.g., when walking bouts stop and start or arising gait characteristics, Figure 9. 
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Figure 9. IoT on the Edge: Transmission of processed data to the cloud, to reduce bandwidth and costs. 

Another solution to overcome bandwidth challenges would be to reduce the frequency of the data capture, 

depending on the pathologies under interrogation and outcomes being measured. Since the rate of human motion 

is considered to be in the range of 3-5hz, for measuring steps/walking bouts, it is possible to reduce the frequency 

down to around 10Hz [389]. However, Yang et al. [390] found that many gait features can be accurately assessed 

(with 90% accuracy) when a lower data capture frequency (between 10-50hz) is adopted. However, gait features 

captured at that range may be less sensitive (than those quantifiable at 100Hz data capture) and lack clinical utility. 

While the current technological limitations of IoT feasibly prevent the transmission of raw gait data. There 

are approaches to overcome many of the challenges. If traditional approaches for data collection are augmented 

these approaches it could be possible to capture and store raw data locally on the device, while simultaneously 

transmitting low-frequency data/real-time event data.[391] Thus, if managed correctly, IoT has a lot of potentials 

to enable real-time assessment of free-living gait.   

 

4.5. Conclusion 

This chapter has been instrumental in enhancing my understanding of data fusion, data mining, and the 

utilization of IoT to address the limitations of clinical gait analysis. The section highlights the potential benefits of 

multi-sensor fusion at both the processing level and the feature level. By merging signals from various wearable 

sensors, processing level fusion can offer valuable insights. For example, inertial data collected can be used to 

segment individual gait cycles and monitor how joint kinematics and muscle activation change during a gait cycle 

(e.g., during stance and swing periods). Similarly, feature-level fusion can enhance human activity recognition 

(HAR) models by leveraging features extracted from both IMU and EMG sensors, thereby improving overall 

performance. Additionally, for time series data, such as polling data from an IMU sensor, classical machine 

learning methods like SVM and kNN can be employed due to their lower computational complexity compared to 

deep learning models such as LSTM. Furthermore, the integration of IoT technology can unlock opportunities for 

remote gait analysis.  The next chapter will provide an overview of lessons learned to this point. 

 

.  
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Chapter 5 Lessons Learned 
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5.1. Introduction 

The purpose of this chapter is to determine how the PoI1 detailed in Chapter 1 have been addressed from 

preliminary investigations (Chapters 3) and how the remaining PoIs will be addressed in the following chapters. 

Here I outline the lessons learned as part of my research so far in this thesis and introduce the next stage of my 

research to provide a unique contribution to knowledge while examining my thesis statement/research hypothesis. 

5.2. Lessons learned and the next stages of the thesis 

There have been some important and practical findings gathered to this point to inform clinical and free-living 

gait analysis of people with neurological conditions. To this point, I have uncovered the need to do a wearable-

based multimodal gait analysis for free-living assessment. I also performed preliminary work to explore the 

reliability of existing IC-FC moment detection algorithms considering the wearable location and walking 

environment. Although certain crucial PoIs remain unanswered, the existing findings have established a robust 

foundation and deeper understanding. These findings provide a stronger rationale for the second half of the thesis, 

where the objective is to address the remaining PoIs and further expand the knowledge in this field. 

5.2.1. Addressing PoI1 and gaining a deeper knowledge of the foundation of remaining PoI 

Chapter 2 introduces various algorithms for wearable IMU and EMG devices, considering the selection of 

sensor wear location. However, the optimal sensor placement, in terms of both accuracy and convenience, as well 

as the reliability of these algorithms, requires further investigation and assessment. Chapter 3 conducted a 

comparative study that investigates the level of agreement between two of the most common sensor 

locations/algorithms. The findings of the comparative study suggest the level of agreement between algorithms 

sensitive to the walking environment and target cohorts (lower agreement in the PD population compared to the 

healthy population). I also observed higher agreement in step and stride times compared to stance and swing times 

parameters.  

In Chapter 3, a thorough examination was conducted on the application of sensor fusion as a potential solution 

to enhance wearable algorithms in terms of consistency, robustness, accuracy, and reliability. The investigation 

focused on different sensor fusion techniques, both at the processing and feature levels, with the aim of developing 

a comprehensive multimodal gait analysis tool capable of functioning not only in clinical settings but also in natural 

and complex environments. Furthermore, this chapter deepened the understanding of the significance and 

implementation of remote assessment through the utilisation of IoT technology in free-living environments. 

5.2.2. Addressing PoI2 and PoI3  

 

5.2.2.1. Fusing sensor data to achieve multimodal gait analysis (PoI2) 

Chapter 4 introduced a range of frameworks essential for establishing a robust multimodal gait analysis tool. 

Among these frameworks, processing level fusion (multilayer sensor fusion) was highlighted due to its 

appropriateness to address PoI. The primary objective is to leverage data from multiple sensors and utilise validated 

unimodal algorithms to create a comprehensive tool capable of extracting simultaneous spatiotemporal, joint 

kinematic, and muscle activation parameters. This processing level fusion framework serves two key purposes: 

(1) improving the accuracy of joint kinematic estimation by effectively detecting sensor orientation using both 

accelerometer and gyroscope sensors, and (2) integrating various aspects of gait. In Chapter 6, a comprehensive 

overview of the complete data fusion algorithms, as well as algorithms specific to IMU and EMG, is presented to 

provide support for the development of the proposed multimodal gait analysis tool. 

 

5.2.2.2. Employment of HAR for automatic segmentation of walking bouts in free-living (PoI3) 

PoI3 emerged from the literature search conducted in Chapter 2, focusing on the need to adapt human activity 

recognition (HAR) techniques for the automatic labelling of free-living data to streamline gait analysis. This 

objective will be achieved by leveraging advanced AI methods to predict and segment walking bouts based on data 

collected from wearable sensor units. The chosen approach involves feature-level fusion of IMU and EMG data, 

accompanied by the utilization of Support Vector Machine (SVM) and k-Nearest Neighbours (kNN) algorithms. 

These machine learning methods were selected due to their demonstrated effectiveness and informative features 

identified in previous gait studies. By employing this approach, the main aim is to an achieve accurate and robust 

HAR model that can predict/segment gait bouts in data collected in free living. However, there are certain 
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challenges and limitations in HAR use in the dataset of neurological populations such as limited dataset. Literature 

also indicates that HAR models trained using data exclusively from healthy participants experience significant 

declines in accuracy when tasked with classifying activities performed by individuals with neurological conditions 

[18, 19]. Therefore, population-specific models (e.g., HAR model trained and tested on PD group only) are needed 

to classify the daily activities accurately and sensitively among neurological groups. The development of accurate 

population-specific AI models requires the availability of rich and diverse datasets, enabling high classification 

accuracies for activities of daily living. However, creating such datasets is inherently challenging for individuals 

with neurological conditions, as their impaired gait often prevents them from performing certain activities over 

extended periods. Consequently, the limited dataset size can lead to suboptimal AI model performance. To address 

this issue, an assertion is put forth, proposing the utilisation of advanced data augmentation techniques to 

artificially increase the size of training datasets. This augmentation approach is hypothesised to enhance the overall 

performance of AI models by providing additional variations and examples for training, compensating for the 

limitations in dataset size inherent to neurological populations. 
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Chapter 6 Exploring Multimodal Gait 

Analysis and HAR Methodologies in 

Neurological Conditions 

 
This chapter uses text from my previously published online articles to fit the context and narrative of 

this thesis.  

The first journal article “Multi-modal gait: A wearable, algorithm and data fusion approach for clinical 

and free-living assessment”, was published in Information Fusion in 2021. (URL: 

https://doi.org/10.1016/j.inffus.2021.09.016). 

The published work is copyrighted by Elsevier Ltd, however, rights to reuse the work non-commercially 

for theses are granted to original authors. Details on Author rights are available at: 

https://www.elsevier.com/about/policies/copyright 

 

The second publication appears as a conference paper “Exploring human activity recognition using 

feature level fusion of inertial and electromyography data”, which was published 44th Annual 

International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) in 2022. 

(URL: https://doi.org/10.1109/EMBC48229.2022.9870909).  

The published work is copyrighted by IEEE, however, rights to reuse the work non-commercially for 

theses are granted to the original authors (Appendix 11). 

 

The third journal article “Improving Inertial Sensor-Based Activity Recognition in Neurological 

Populations” was published in the Sensors in 2022. (URL: https://doi.org/10.3390/s22249891). 

This work was distributed under a Creative Commons 4.0 license (Appendix 9). 

 

 

 

 

 

 

https://doi.org/10.1016/j.inffus.2021.09.016
https://www.elsevier.com/about/policies/copyright
https://doi.org/10.1109/EMBC48229.2022.9870909
https://doi.org/10.3390/s22249891
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6.1. Introduction 

In this chapter, I present three different methodologies and associated study protocols I developed during the 

implementation of my thesis. These were developed based on the identification of knowledge gaps from an 

extensive literature review (chapter 2) and acquired knowledge (chapter 4). Accordingly: 

• Section 6.2 introduces a comprehensive framework for multimodal gait assessment, utilising data 

fusion techniques (methodology 1, M1).  

• Section 6.3, I present a methodology to explore human activity recognition (HAR) by employing a 

feature-level fusion of inertial and electromyography data (methodology 2, M2).  

• Section 6.4 presents a proposed solution to address the issue of limited datasets inherent to 

neurological conditions, with the aim of achieving accurate HAR outcomes (methodology 3, M3). 

 

6.2. Methodology 1 (M1): Multimodal gait analysis with data fusion 

 

6.2.1. Fusion fit for the wild 

Fusion of multiple measurement resources presents a promising development for human movement studies 

such as increased activity recognition and more informed gait assessment [392, 393]. Previously, IMU sensor fusion 

with accelerometers and gyroscopes was adopted to produce more consistent and reliable outputs [280]. Typically, 

accelerometers produce useful but limited data such as static and dynamic characteristics but when fused with 

gyroscopes could deliver relative heading/direction. Sensor fusion often equated to bulky devices, but micro-

electromechanical systems (MEMS) facilitated new synchronized/unsynchronized data collection possibilities with 

discrete wearable technologies. This has enabled more pragmatic multi-modal sensor fusion to provide real-world 

and clinically relevant information to increase the utility and accuracy of rehabilitation systems. For example, fusion 

approaches have seen acceleration signals fused with electrocardiography (ECG) signals to calculate energy 

expenditure [394] and EMG signals to monitor functional activities in stroke survivors [395]. However, studies 

generally rely on gait data gathered indoors within a controlled environment only.  

Development of any multi-modal fusion approach needs to examine the methodology in laboratory and free-

living based environments. This is important as previous research reported that gait adaptation techniques for 

maintaining stability are affected by walking terrain [293]. The impact of the environment has been investigated in 

uni-modal gait studies for neurological conditions, and significant spatiotemporal differences were revealed 

between indoor and outdoor/free-living environments [169, 316]. However, understanding potential reasons for 

poor mobility and falls is limited since additional gait characteristics (i.e., kinematic joint angles and muscle 

activation) were not previously included. Additionally, outdoor studies focused on activity recognition or activity 

level tracking rather than specific gait characteristics. For example, a study proposed an ECG, skin conductance, 

respiration and gait acceleration signals-based gait monitor system for habitual environments, but failed to include 

clinically relevant lower limb gait characteristics such as spatiotemporal, kinematic and muscle activation [333].  

Therefore, the proposed novelty of this research is to investigate multi-modal gait characteristics in both 

clinical/lab and habitual environments by proposing a novel multi-layer fusion approach along with synchronized 

IMU and EMG. Although existing chosen wearable algorithms are individually validated for a single gait outcome, 

these algorithms have not been fused for the purposes outlined here. Multi-modal investigation of neurological gait 

with clinically relevant characteristics in natural habitats remains lacking, perhaps due to the shortage of 

developments in the field. Here, I utilise a multi-modal wearable to implement a novel fusion approach consisting 

of validated algorithms and synchronized sensor data for use in the lab/clinic and beyond such as outdoor level 

walking, incline walking, and stair ascent/descent. Preferred algorithms and locations were chosen based on their 

performances that were investigated in the literature [7, 150, 213, 214, 305] and as part of investigative 

developments conducted within this study. I hypothesise that the proposed work can better inform gait assessment 

through the adoption of a multi-layer fusion approach (wearables/sensors, algorithms and gait characteristics). 

Therefore, the main contributions of this chapter section are to:  

i. develop a framework that fuses validated wearable-based gait algorithms for multi-modal gait assessment 

use in laboratory and free-living environments, 

ii. examine implementation by investigating use on a cohort of healthy adults and, 
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iii. investigate use within a pilot study of SS to evidence clinical effectiveness for use beyond the clinic/lab, 

revealing the impact of different terrains and activities on spatiotemporal, kinematic and muscle activation, 

iv. provide insight into limitations with existing algorithms. 

 

The fusion methodology provided here will showcase how multi-modal gait assessment can be created which 

could enable clinicians to prepare more informed rehabilitation programs and measure their effectiveness. Section 

6.2.2. summarises the experimental protocol including participant demographics, data collection protocol and 

performed gait tasks. Section 6.2.3. contains various algorithms adopted here and provides details about pre-

processing, used signal, sensor orientation and multi-layer data fusion framework. Chapter 7 presents the results 

extracted from the framework, including indoor, and outdoor level walking multi-modal gait characteristics and 

impacts of changing environments for both healthy populations and stroke survivors. Experimental results of 

walking on the rocky surface, incline walking and stair ambulation are provided in Appendix 5.  

6.2.2. Experimental protocol M1 

6.2.2.1. Participants  

Ten healthy participants (HP’s) were recruited for the main study (28.4 ± 7.0yrs, 79.2 ± 14.4kg, 176.8 ± 8.4cm, 

8M:2F) and three SS (72.3 ± 3.1yrs, 78.5 ± 12.1kg, 176 ± 8.2cm, 3M, right side mostly affected for all) for the 

clinical pilot. Assessment and instrumentation were carried out by a physiotherapist and trained researchers, 

respectively. Ethical consent was granted by the Northumbria University Research Ethics Committee (REF: 21603). 

All participants gave informed written consent before participating in this study. Testing took place at the Clinical 

Gait Laboratory, Coach Lane Campus, Northumbria University, Newcastle upon Tyne. 

6.2.2.2. Data collection and gait tasks  

Each participant wore four Shimmer3 EMG wearables (24.9cm3, 31g) with straps on the lateral side of the 

thighs and shanks, approximately 7-8 cm above the ankle and knee joints, respectively, (Figure 10, S). Before data 

collection, wearables attached to the shank and thigh level were positioned in the same vertical line while the 

participant stood still to achieve a better knee flexion angle estimation. The wearable enables multi-modal capture 

of IMU and EMG data simultaneously. Inertial data is sampled at a rate of 100 Hz, while EMG data is sampled at 

512 Hz, following device configuration (16-bit resolution, ±8g, ±500°/s) prior to data collection. Skin preparation 

for EMG electrode attachment was performed with alcohol swabs to achieve better skin-electrode contact. 

Disposable surface electrodes (circular – Ag/AgCI, silver/silver chloride) were placed bilaterally (inter-electrode 

spacing ≈30mm) on clean skin according to SENIAM recommendations and locations: rectus femoris (RF), biceps 

femoris (BF), tibialis anterior (TA) and gastrocnemius (GS), with a reference electrode on the ankle and knee. In 

each wearable (worn on the left and right legs), channel 1 (ch1) was assigned to TA and RF muscle groups for shank 

and thigh level sensors, respectively. Similarly, channel 2 (ch2) was assigned to GS and BF muscle groups for shank 

and thigh level sensors, respectively. 

Each participant was instructed to walk over the ground for 2-minutes around a 20m circuit at their preferred 

self-selected walking speed inside the laboratory. Subsequently, participants walked outdoors with the same 

wearables. Outdoor walking consisted of a pre-defined route, including ground-level walking on different surfaces 

(e.g., asphalt, uneven rock, pavement) (Figure 10, F1-F2-F3), inclined walking (wheelchair ramp) (Figure 10, F4), 

ascending/descending stairs (Figure 10, F5-F6), with a physiotherapist and trained researcher. For safety, walking 

on an uneven rock surface and inclined walking on a wheelchair ramp were excluded from SS. Two-minute data 

recorded inside and outside (on asphalt and pavement) during level walking are presented here (additional walking 

surface data available online). 
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Figure 10. Sensor placement and physical tasks. (S) sensor placement illustration, (F1, F2 and F3) free-living walking on 

asphalt, uneven rock surface and pavement, (F4, F5 and F6) free-living incline walking, stair ascent and stair descent, 

respectively. 

6.2.3. Approach M1 

Here I present the proposed multi-layered fusion approach by combining validated algorithms, multi-modal 

sensors, and inertial and EMG data culminating in many gait characteristics. IMU and EMG data were transferred 

to a workstation (Windows 10) from the wearable via proprietary software (Consensys). Custom programs in 

MATLAB® (2019, Statistics and Machine Learning Toolbox, MathWorks, Inc., Natick, US) analysed raw (sample 

level) IMU and EMG data for spatiotemporal, kinematic and EMG analysis. Stride time was calculated as the 

average of left and right strides. All spatiotemporal gait characteristic results are presented similar to clinical 

domains of gait (pace, rhythm, variability and asymmetry) [91, 396].  

Various validated algorithms (A) were selected to extract informative multi-model gait characteristics. Of 

critical importance within the suggested approach are initial contact (IC i.e., heel strike) and final contact (FC i.e., 

toe-off) times for the right and left foot derived from the shank-mounted wearables. IC and FC events help segment 

the gait cycle and denote specific regions of interest. Walking periods on different terrains and stair ambulation 

were manually segmented based on the pre-defined route and time stamps. Participants were asked to stand still 

for five seconds before and after each activity for more accurate manual segmentation. A general logical flow is 

presented in Figure 11 and broadly described as follows: 

• IC and FC were extracted with two different algorithms. Ground level IC-FC times were detected with 

(algorithm) 1 (A1) [222], whereas incline walking, stair ascent & descent IC-FC times were detected with 

A2 [223, 397]. Only step time is calculated using the synchronised left and right shank IMU sensor 

timestamps. The remaining spatiotemporal parameters are calculated from the right shank sensor for the 

right side and the left shank sensor for the left side. 

• Spatial characteristics (stride velocity and stride length) were estimated using A3 [398] and IC-FC times 

of A1 and A2, depending on activity (e.g. level walking or incline walking)  

• Knee flexion angle and muscle activation for each stride were segmented considering the type of activity. 

For example, knee flexion angles during ground level and incline walking were estimated using A4 [399] 

and A1, while knee flexion angles for stair ascent & descent were estimated with A5 [400] and A2.  

• Muscle activation (bursts) patterns were extracted using the k-means approach A6 [239] together with A1 

(for ground-level walking and incline walking) and A2 (for stair ascent & descent), Figure 11. 
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Figure 11.General flow chart (left to right) of the sensor and data fusion framework, A for the algorithm used. This details 

the fusion approach for the right leg only, the same is repeated for the left-mounted multi-modal wearables. 

6.2.3.1. Data pre-processing 

Appropriate filtering must be performed to ensure all sensor signals are physiologically related and not 

corrupted by noise [118]. For example, previous studies reported that during barefoot walking, 99% of the 

acceleration signal contained a frequency below 16 Hz [112, 114]. Thus higher frequencies are filtered out in the 

majority of the gait studies[117]. Here, various pre-processing algorithms (Table 8) were applied to raw sensor data 

depending on the parameter to be extracted as detailed in validation studies:  

• IC-FC during level walking: a multi-resolution wavelet decomposition was applied on raw angular 

velocity signal (perpendicular to the sagittal plane), and drift and high-frequency artefacts were cancelled 

by obtaining an approximation, A1. A digital filter (second-order Butterworth low pass filter with a cut-

off frequency of 35Hz) was applied to the collected angular velocity signal to smooth the signal prior to 

detection of IC and FC during incline walking and stair ascending & descending, A2.  

• Spatial parameters: Accelerometer and gyroscope signals were filtered (first-order Butterworth low pass 

filter with a cut-off frequency of 5Hz) to cancel high-frequency components before the estimation of step 

velocity from shank mounted sensor. Additionally, the angular velocity signal was filtered (first-order 

Butterworth low pass filter with a cut-off frequency of 0.001Hz) to reduce integration drift, A3.  

• Knee joint flexion: A third-order Savitzky–Golay filter was applied to smooth the accelerometers and 

gyroscopes signals before the extraction of knee joint angles, A4. Both physical sensors' signals attached 

to shanks and thighs were filtered (fourth-order Butterworth low pass filter with a cut-off frequency of 4 

Hz) prior to the estimation of sensor orientation, consequently calculation of the joint angle in A5.  

• EMG: A zero-lag fourth-order bandpass Butterworth filter with cut-off frequencies of 20Hz and 250Hz 

was applied to EMG data, followed by rectification, and a second zero-lag fourth-order Butterworth low-

pass filtering at 6Hz, A6. 
Table 8.Data pre-processing 

Input: 

Saccx,y,z(i);    Sgyrox,y,z(i);  

Taccx,y,z(i);   Tgyrox,y,z(i);  
S,T EMG-ch1, ch2; 

Fs=512;  

Filtering: 
Sgyroy=wavedec(Sgyroy) & appcoef; 

Sgyroy=lpf (Sgyroy); 
Saccx,z,Sgyroy= lpf,hpf (Saccx,z,Sgyroy); 

S,Taccx,z,S,Tgyroy= sgf (S,Taccx,z,S,Tgyroy); 

S,Tgyroy=lpf (S,Tgyroy); 
S,T-EMGch1, ch2=bpf,lpf(S,T-EMGch1,ch2); 

// upload Shank (S) and thigh (T) sensors, 

   accelerometer (acc) and gyroscope(gyro) signals   

// upload EMG channels (EMGch1, ch2) of upper(thigh) and lower (shank) 
leg sensors 

// sampling frequency (Fs) 

 
// wavelet decomposition and approximation (coif5)-A1 

// low pass filtering (lpf)-A2 
// low pass filtering (lpf)- high pass filtering (hpf)- A3 

// Savitzky–Golay filtering (sgf)-A4 

// low pass filtering (lpf)-A5 
// band pass filtering (bpf)-A6 
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6.2.3.2. Multi-modal wearable and data fusion methodology 

Here, validated algorithms are fused i.e., implemented in a co-dependent arrangement to inform the 

identification and segmentation of the gait cycle during 2-minute indoor and outdoor walking. The fusion approach 

also utilises inertial data from different sensor locations (shank and thigh) to quantify kinematic data. Lastly, a range 

of inertial and EMG gait derived gait characteristics are presented in two different cohorts. 

6.2.3.2.1. A1: IC and FC events during level walking  

A previously validated algorithm was used to identify IC-FC times using shank-mounted sagittal plane IMU 

angular velocity [222]. In brief, wavelet decomposition (5th order coiflet, ten scales) was used to split the signal into 

low (approximation) and high frequency (details) components. Subsequently, drift and high-frequency movement 

artefacts were removed with an initial approximation. Then, two new approximations were obtained to enhance the 

detection of IC-FC events, respectively. For each approximation, the time corresponding to the global maximum 

(tms = time of mid-swing) of the signals were detected. Finally, IC-FC events (negative peaks) were searched (local 

minima) in predetermined intervals [IC (tms+0.25s, tms+2s), FC (tms-2s, tms-0.05s)].  

 

A1: IC-FC detection and temporal gait characteristic estimation during level walking 

Input: 

Sgyroy-r,l(i);  

Fs=512;  
Procedure: 

1. a2,3=get two new approx. 

2. for i=1: N  
3. msICr,l=find global max points (a2); 

4. msFCr,l=find global max points (a3); 

5. end for 
6. for i=1: numel(a2) 

7. ICs-r,l=find local minima [msIC+0.25s, msIC+2s] 

8. end for 
9. for i=1: numel(a3) 

10. FCs-r,l =find local minima [msFC-2s, msFC-0.05s] 

11. end for 
12. for i=1: numel(ICs+1) 

13. stance(i)-r,l=FCs(i+1)-ICs(i); 
14. swing(i)-r,l=ICs(i+1)-FCs(i+1); 

15. stride(i)-r,l=ICs(i+1)-ICs(i); 

16. rstep(i)= rIC(i)-lIC(i) 
17. lstep(i)= lIC(i+1)-rIC(i) 

18. end for 

19. StepTimeVar=sqrt((var(rstep)+ var(lstep))/2); 
20. StepTimeAsym = abs(mean(lstep)–mean(rstep));  

Output: rIC, rFC, lIC, lFC; 

stance times-r,l;swing times-r,l;stride times-r,l;step times-r,l; 

 

// upload right and left shank angular velocities 

// sampling frequency (Fs) 
 

 

// (1: N=sample number at the end of walking period), mid-swing (ms) 
// reference points for detecting ICs 

// reference points for detecting FCs 

 
 

// saving initial contact times 

 
// saving final contact times 

 

// temporal parameter estimations 
 

 
 

 

// right/left step time are estimated using timestamp information of 
right/left IC-FC times 

 

 
// variance calculation 

// asymmetry calculation 

 

 

6.2.3.2.2. A2: IC and FC events during inclined walking and stair ascent or descent 

Formento et al. validated an algorithm for IC-FC detection during inclined walking [223] and stair ascent or 

descent [397]. Similar to A1, IC-FC events were estimated based on the detection of two negative peaks considering 

the swing period as a reference point in the shank angular velocity signal. In the A1, IC-FC events were searched in 

predetermined intervals, whereas, in A2, these events were detected based on a set of predetermined rules. Briefly, 

the algorithm begins with searching the swing phase of a gait cycle. When the gyroscope signal exceeds a 

predetermined threshold for at least 40 milliseconds, the algorithm considers the swing phase is detected. Then, the 

first negative minimum after swing phase is defined as IC. Around the time of IC, the gyroscope signal may present 

further negative peaks related to events during the loading response. In order to avoid false FC detection during that 

time, a “waiting time” was set during which there was no search for FC events. The waiting time was set to be 50% 

of the duration of the positive wave for the first step analysed and 50% of the last stance phase for the remaining 

steps. Once waiting time is over, FC is defined as the sample that represents a minimum negative peak in a window 

of 200ms, that is preceded by a decreasing (more negative angular velocity) trend in the signal and followed by an 

increasing (more positive voltage) trend.  
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A2: IC-FC detection and temporal gait characteristic estimation during incline walking and stair ascent or descent 

Input: 

Sgyroy-r,l (i);  

Fs=512;  
Procedure: 

1. for i=1: N  

2. ms=find global max points (Sgyroy- r,l); 
3. end for 

4. for i=1: numel(ms) 

5. ICs r,l =find local minima after [ms] 
6. set waiting time 

7. FCs r,l = find following local minima after waiting time 

8. end for 
9. for i=1: numel(ICs+1) 

10. stance(i) r,l =FCs(i+1)-ICs(i); 

11. swing(i) r,l =ICs(i+1)-FCs(i+1); 
12. stride(i)-r,l=ICs(i+1)-ICs(i); 

13. rstep(i)= rIC(i)-lIC(i) 

14. lstep(i)= lIC(i+1)-rIC(i) 
15. end for 

Output: rIC, rFC, lIC, lFC; 

stance times-r,l;swing times-r,l;stride times-r,l;step times-r,l; 

 

// upload right and left shank angular velocities 

// sampling frequency (Fs) 
 

 

// (1: N= sample number at the end of walking period), mid-swing (ms) 
// reference points for detecting ICs and FCs 

 

 
// saving initial contact times 

 

// saving final contact times 
 

// temporal parameter estimations 

 
 

// right/left step time are estimated using timestamp information of 

right/left IC-FC times 

 

6.2.3.3. A3: Spatial parameter extraction during ground level walking 

A validated algorithm (A3) [398] was used to estimate spatial parameters (stride velocity) from shank mounted 

IMU. The algorithm is an improved and simplified version of [401], where both horizontal and vertical accelerations 

were considered. As only horizontal velocity and displacement are needed, acceleration and angular velocities in 

the sagittal plane (the plane of progression) were considered, vertical components were excluded.  

First, gait cycles were segmented from mid-stance to mid-stance (unlike A1 and A2) based on the assumption 

that the velocity of the shank is zero in the moment of mid-stance, the moment when the shank is parallel to the 

direction of gravity. Then, the angular velocity signal was integrated to calculate Θ for each gait cycle, Eq. 2. 

Afterwards, horizontal acceleration components of the sensor's coordinate system were calculated for the global 

coordinate system using calculated Θ (Eq.3). Finally, horizontal velocity was computed with the integration of 

horizontal acceleration and corrected with the horizontal velocity component Eq. 4. Horizontal correction velocity 

(Vhor-correction) component was calculated considering the initial horizontal speed at the start of the stride and the 

distance (Figure 10, h3) between the ankle joint and shank wearables. Finally, the stride length is calculated by 

multiplication of corrected horizontal stride velocity and stride time (estimated spatial parameter) for each gait cycle, 

Eq. 5. Results of the developed algorithm suggest that the distance between the shank mounted wearable and the 

ankle (h3) has a negligible impact (± 2cm) on the accuracy of the measure [398]. Study findings also reported that 

the effects of numerical drifts are insignificant as integrations are performed for a short period of time - only gait 

cycle (max 1.4s). 

0

( ) ( )
endt

st t dt =              (2) 

( ) cos ( ) ( ) sin ( ) ( )hora t t ax t t az t = −         (3) 

0

( ) ( )
endt

hor hor hor correctionv t a t dt v −= +          (4) 

_ _horStride length v x stride time=         (5) 

where,   and s are orientation angle and shank angular velocity, respectively. The ahor, vhor and t are horizontal 

acceleration, velocity, and the duration represents stance to stance period, respectively. 
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A3: Stride length and velocity estimation 

Input: 

Saccx, z-r,l (i); Sgyroy-r,l (i);  

Fs=512;  

Procedure: 

1. for i=1: numel(rIC-lIC) 

2. find mid-stance= max (Sgyroy-r,l (ICs r,l(i): FCs 

r,l(i+1))) 

3. segmented_ Saccx, z-r,l (i)= Saccx,z-r,l (mid-stance(i): 

mid-stance (i+1)); 

4. segmened_ Sgyroy-r,l (i)= Sgyroy-r,l (mid-stance(i): 

mid-stance (i+1)); 

5. end for 

6. segmened_ Sgyroy-r,l =deg2rad(segmened_ Sgyroy-

r,l) 

7. theta (i)= integration of segmented_Sgyro y-r,l (i); 

8. costheta=cos(theta); sintheta=sin(theta); 

9. for i=1: numel(theta) 

10. ahorr,l (i)= costheta(i)* Saccx(i)- sintheta(i)* 

Saccz(i); 

11. end for 

12. vhor r,l= integration of ahorr,l +vhorcorrection 

13. Stride_length=mean(vhor)*stride_time 

14. Output: vhorr.l; Stride_length r,l; 

 

// upload right and left shank accelerations and angular 

velocities 

// sampling frequency (Fs) 

 

 

// segmenting relevant signals from mid stance to mid stance for 

a stride using timestamp information of ICs and FCs  

 

 

 

 

 

// convert angle from degrees to radians 

// calculation of the orientation of the sensor across a stride 

 

 

// estimation of horizontal acceleration in world coordinate 

system 

 

//calculation of the velocity and displacement across a stride 

 

6.2.3.4. Kinematic angles 

6.2.3.4.1. A4: Knee angle estimation during level walking 

Kinematic joint angles are typically calculated from the orientations of IMU wearables that are estimated either 

using gravitational acceleration or integrated angular velocity [400]. In the latter, an error (drift) may occur due to 

integration. One method to avoid integration drift is to use neural networks, which require training from sufficient 

data involving a large number of participants [275]. Kalman filtering is another approach, but three-dimensional 

orientation errors are reported [402]. However, in the former approach, it is possible to estimate the orientation of 

sensors by the gravitational acceleration in static states, but in dynamic states like gait, translational acceleration 

will be included.  

Takeda et al. [399] developed an algorithm (a simplified version of [403]) considering measurements at the 

centre of a proposed link model. The developed algorithm estimates knee flexion angles for a dynamic state (level 

walking) after the elimination of translational acceleration. Here, [399] was replicated to estimate knee flexion 

angles. First, each stride was segmented from continuous walking using IC-FC estimations (A1). Then, segmented 

acceleration and angular velocity signals from each left and right thigh and shank were used to estimate knee flexion. 

For the purposes of this chapter section, angular velocity and the sensor distance from the knee were used to calculate 

the translational acceleration during gait, Eq6. The estimated translational acceleration was then subtracted from the 

measured acceleration data to obtain the gravitational acceleration. The gravitational acceleration provided the 

orientation angle of the segments and, consequently, the three-dimensional posture of lower limb segments, Eq. 7. 

Once the orientation of each segment was calculated, knee flexion was estimated by the difference between the 

angle of inclination of the shank and thigh, Eq. 8.  

( )KS S KS S S KSr r r  =  +  
, 

( )KT T KT T T KTr r r  =  +  
      (6) 

where KSr
  and  KTr

are calculated translational accelerations for the shank and thigh sensors, respectively. S

and T are angular velocity signals of shank and thigh sensors,  KSr
 and  KTr

 are the distance of the attached sensors 

from the knee (Figure 10, h1-h2). 

1 arctan( )T KT T KTx z
O r O r = − −

  2 arctan( )S KS S KSx z
O r O r = − −

      (7) 

2 1Flexion  = −
           (8) 

 where SO
and TO

are raw acceleration outputs of sensors.  



 

78 | P a g e  
 

A4: Knee joint flexion-extension angle estimation 

Input: 

Saccx, z-r,l (i); Sgyroy-r,l (i); Tgyroy-r,l (i); Taccx, z-r,l (i); 

Fs=512;  

Procedure: 

1. for i=1: numel(rIC-lIC) 

2. segmented_ Saccx, z-r,l (i)= Saccx, z-r,l (ICs r,l(i): ICs 

r,l(i+1)); 

3. segmened_ Sgyroy-r,l (i)= Sgyroy-r,l (ICs r,l(i): ICs r,l(i+1)); 

4. segmented_ Taccx, z-r,l (i)= Taccx, z-r,l (ICs r,l(i): ICs 

r,l(i+1)); 

5. segmened_ Tgyroy-r,l (i)= Tgyroy-r,l (ICs r,l(i): ICs r,l(i+1)); 

6. end for 

7. segmened_ S,Tgyroy-r,l =deg2rad(segmened_ S,Tgyroy-r,l) 

8. 
KSr  (i)= diff (segmened_ Sgyroy-r,l).rKS + segmened_ 

Sgyroy-r,l . (segmened_ Sgyroy-r,l . rKS); 

9. 
KTr  (i)= diff (segmened_ Tgyroy-r,l).rTS + segmened_ 

Tgyroy-r,l . (segmened_ Tgyroy-r,l . rKT); 

10. theta1= atan((abs(Tacc-r,l - KTr ))x / (abs(Tacc-r,l - KTr ))z); 

11. theta2= atan((abs(Sacc-r,l - KSr ))x / (abs(Sacc-r,l - KSr ))z); 

12. thetaF-E=theta2-theta1 

13. thetaF-E = rad2deg(thetaF-E) 

Output: thetaF-E 

 

// upload right and left shank accelerations and 

angular velocities 

// sampling frequency (Fs) 

 

 

 

// segmenting relevant signals for a stride using 

timestamp information of right and left ICs and 

FCs  

 

 

// convert angle from degrees to radians 

 

// calculation of translational accelerations 

 

 

 

// estimation of orientation angle of shank and 

thigh sensors 

 

// calculation flexion extension angle 

// convert angle from radians to degree 

 

6.2.3.4.2. Knee angle estimation during inclined walking, stair ascent and descent 

Nestares and Callupe developed an algorithm based on orientations of shank and thigh level sensors to evaluate 

knee joint angle during level walking and stair ascent on HP and SS [404]. The study reported that shank and thigh 

level sensors' orientation could compute knee flexion angles with high accuracy during level walking and stair 

ambulation. The developed algorithm used a complementary filter to estimate sensor orientations. However, it was 

reported that the fusion coefficient of a complementary filter is too sensitive to be pragmatically used and thus 

requires additional operations [405]. An alternative and more practical way of estimating sensor orientation is 

integrating angular velocity as suggested by Tong et al. [400] (during level walking).  

Here, a novel application of both algorithms was utilised for the purpose of this chapter section to achieve a 

practical knee flexion angle estimation algorithm during incline walking and stair ambulation. First, each stride was 

segmented from continuous walking using ICs and FCs (A2). Then shank and thigh sensor angular velocities were 

integrated to estimate sensor orientation (inclination) across a stride, Eq. 9. Finally, the knee angle was calculated 

by subtracting the inclination (orientation angle) of the thigh from the inclination of the shank, Eq. 10 (similar to 

A4 Eq.8). 

0

( ) ( )
endt

S St t dt =  , 
0

( ) ( )
endt

T Tt t dt =           (9) 

F E S T  − = −              (10) 

where S , T and t are angular velocities measured from shank and thigh sensors and gait cycle period (stride 

time), respectively. 
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A5: Knee joint flexion-extension angle estimation 

Input: 

Sgyroy-r,l (i); Tgyroy-r,l (i);  

Fs=512;  

Procedure: 

1. for i=1: numel(rIC-lIC) 

2. segmened_ Sgyroy-r,l (i)= Sgyroy-r,l (ICs r,l(i): ICs 

r,l(i+1)); 

3. segmened_ Tgyroy-r,l (i)= Tgyroy-r,l (ICs r,l(i): ICs 

r,l(i+1)); 

4. end for 

5. segmened_ S,Tgyroy-r,l =deg2rad(segmened_ 

S,Tgyroy-r,l) 

6. theta1 (i)= integration of segmented_Tgyro y-r,l (i); 

7. theta2 (i)= integration of segmented_Sgyro y-r,l (i); 

8. theta F-E=theta2-theta1 

9. theta F-E = rad2deg(thetaF-E) 

Output: thetaF-E 

 

// upload right and left shank angular velocities 

// sampling frequency (Fs) 

 

 

// segmenting relevant signals for a stride using 

timestamp information of ICs and FCs  

 

 

// convert angle from degrees to radians 

// estimation of orientation angle of shank and thigh 

sensors 

 

// calculation flexion extension angle 

// convert angle from radians to degree 

6.2.3.5. A6: EMG muscle activity (burst) detection 

Detection of muscle activity/inactivity and overall level of activity in a muscle at any time is relatively 

identifiable from the linear envelope of raw EMG signals. There are various methods to extract the linear envelope 

of EMG signal such as root mean square (RMS), mean of moving window, and use of a set of filters along with 

rectification [75, 79]. Once the linear envelope is extracted, muscle activity/inactivity can be detected via a 

predetermined threshold, manual observation, or clustering algorithms[142]. The latter finds resemblances between 

data points and groups these according to their similarities.  

 Here, the filters described in Section 6.2.3.1 (A6) and full-wave rectification were used to extract the linear 

envelope of the EMG signal, while k-means clustering was used to search muscle bursts (activity). The rationale for 

k-means is that it does not require an a priori setting of thresholds for each individual and has shown the ability to 

differentiate bursts, even when bursts are short or have spike-like characters [243]. Similar to [239], each data point 

in the EMG linear envelopes is clustered into subsets of data using k-means. Then, EMG signals are dichotomised 

into periods of activity and inactivity according to the amplitude of each data point. Here, the numbers of centroids 

(clusters), which influence sensitivity, were set to five after visual inspection for all EMG signals analysed. Muscle 

inactivity is identified for the lowest two clusters, whereas the remaining three clusters are accepted as muscle 

activity. All EMG values for each participant underwent time normalisation within the gait cycle and amplitude 

normalisation to the highest EMG value in the gait cycles. 

A6 Muscle burst detection via k-means clustering 

Input: 

S,T-EMG-ch1, ch2; 

Fs=512;  

Procedure: 

1. for i=1: numel(rIC-lIC) 

2. segmened_ SEMG-ch1, ch2-r,l (i)= SEMG-ch1, ch2-r,l (ICs r,l(i): 

ICs r,l(i+1)); 

3. segmened_ TEMG-ch1, ch2-r,l (i)= TEMG-ch1, ch2;-r,l (ICs r,l(i): 

ICs r,l(i+1)); 

4. end for 

5. [idx_segmened_SEMG-ch1,ch2-r,l,mean_val] 

6. =kmeans (segmened_S,TEMG-ch1, ch2-r,l,5); 

7. mean_val= sort(mean_val,'descend'); 

8. for i=1: numel (segmened_ S,TEMG-ch1, ch2-r,l) 

9. if segmened_S,TEMG-ch1, ch2-r,l (i)<mean_val1(4) 

10. kmeans_S,TEMG-ch1, ch2-r,l (i)=muscle_off; 

11. else 

12. kmeans_S,TEMG-ch1, ch2-r,l (i)=muscle_on; 

13. end if 

14. end for 

Output: kmeans_S,TEMG-ch1, ch2-r,l 

//upload EMG channels (EMGch1, ch2) of 

upper(thigh) and lower leg (shank) sensors 

// sampling frequency (Fs) 

 

// segmenting relevant signals for a stride using 

timestamp information of ICs and FCs  

 

 

// k-means clustering (# of cluster is five) 

// sort calculated mean value (descend) 

 

 

// find muscle activation if EMG envelope value 

is greater than lowest two mean values 
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********** 

6.3. Methodology 2 (M2): Human activity recognition using feature level fusion of IMU and EMG data 

 

6.3.1. Background M2 

Here, I utilised handcrafted feature extraction (from domain knowledge) and supervised ML classification 

models. I hypothesise that knee flexion-extension waveform and sEMG linear envelope along with specific features 

such as integrated EMG belonging to four different lower limb muscles have discriminative and consistent 

characteristics to improve HAR when fused with inertial data. Accordingly, this chapter section aims to explore: (i) 

how feature-level fusion of sEMG and inertial data improve classification accuracies, (ii) the impact of post-

processing on classification performance, and (iii) which lower limb muscles have the most discriminative and 

consistent information for HAR. 

6.3.2. Approach M2 

 

6.3.2.1. Data collection, protocol, and labelling 

Ten healthy subjects (HS) (28.4±7.0yrs, 8M:2F) were recruited. Ethical consent was granted by the 

Northumbria University Research Ethics Committee (REF: 21603). Each participant wore two Shimmer3 EMG 

devices (24.9cm3, 31g) with straps on the lateral side of the right thigh (TR) and shank (SR), Figure 12 (a). 

 

 
Figure 12.Classification procedure of activities using IMU and sEMG data (a) sensor placement, (b) acquisition of raw IMU 

and sEMG data, (c) signal post-processing and segmentation, (d) feature extraction, (e) feature level fusion, (f) state-of-the-

art classification models. 

The Shimmer3 consists of IMU (tri-axis accelerometer + tri-axis gyroscope) and 2-channel EMG, Figure 12 

(b). Synchronised data were recorded at a sampling frequency of 512 Hz, and IMU was configured (16-bit 

resolution, ±8g, ±500 °/s) prior to data collection. Disposable sEMG electrodes (circular, Ag/AgCI: silver/silver 

chloride) were placed bilaterally (inter-electrode spacing ≈30mm) on clean skin (prepared with alcohol swabs) 

according to SENIAM recommendations and locations [406]: tibialis anterior (TA) and gastrocnemius (GS), rectus 

femoris (RF) and biceps femoris (BF), Figure 12 (a) with a reference electrode around the ankle. 

Each participant was instructed to first stand (2min- eyes open), then walk for 2 min (110-130 strides) around 

a 20m circuit at their comfortable walking speed inside a lab. Participants then walked outdoors with the same 

wearables, navigating a pre-defined route including ground-level walking, stair ascent and descent (24 steps). As a 

result, there were imbalances in the dataset since time spent e.g., during ascending/descending stairs was shorter 

than walking and standing. Performing classification in an imbalanced dataset is biased in favour of the majority 

class. Here, accuracies of walking and standing activities are dominant. Although the synthetic minority 

oversampling technique (SMOTE) can generate synthetic samples for minority classes, SMOTE has a very limited 

impact on SVM classifiers [407]. Therefore, some walking and standing data were excluded to produce a balanced 

dataset.   

Activity labelling in continuous data streams was done via the scripted experimental protocol and timestamp 

information. Custom programs in MATLAB® (2019, MathWorks, Inc., Natick, US) analysed raw (sample level) 

IMU and sEMG data for HAR of walking, standing, stair ascent and stair descent. 
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6.3.2.2. Feature extraction and post-processing 

Raw IMU data are typically characterized by noise, making it difficult to be used directly in HAR models [408]. 

Consequently, a standardised approach of applying a low pass filter (4th order Butterworth, cut-off frequencies 5Hz 

and 20Hz) was used for acceleration and gyroscope signals, respectively. sEMG signals were post-processed by a 

band-pass filter (zero-lag 4th order Butterworth filter with cut-off frequencies of 20Hz and 250Hz) followed by 

rectification, and a second zero-lag 4th order Butterworth low-pass filtering at 6Hz. That removes baseline drift often 

associated with movement artifact, perspiration, or any DC offset [409], Figure 12 (c). After post-processing, inertial 

and sEMG data streams for each activity were segmented into 1.25 seconds windows with 50% overlap using a 

sliding window. Overlap between two consecutive windows was adopted to eliminate information loss at window 

edges. The window size was selected to ensure fast feature extraction (small-size window) while covering sufficient 

information about activities. Specifically, the size was set to 1.25s to ensure each window covers at least one stance 

and swing period during dynamic activities, Figure 12 (c). A total of 252 (walking), 232 (standing), 206 (stair ascent) 

and 191 (stair descent) units of activity (occurrence) were obtained, after segmenting a continuous data stream. To 

investigate the impact of sEMG post-processing on classification performances, two different feature-level 

classifications were investigated. The first combined features of IMU data with features of band pass filtered sEMG. 

The second combined features of IMU data with features of linear envelope which is obtained by bandpass filtered 

and rectified sEMG following low pass filtering. 

6.3.2.3.  Features 

Handcrafted features are independent variables that act as input for most classifiers. Typically, features are 

calculated from raw segmented data and designed for comparing and differentiating activities [408]. Here, I created 

a feature set based on the features previously found informative [409, 410] for inertial and sEMG data. Features are 

extracted for each acceleration and gyroscope axis, as well as sEMG channel, Figure 12 (d). Consequently, 60 (tri-

axial × 20 features) features were extracted for one single accelerometer, 60 (tri-axial × 20 features) features for one 

gyroscope, 40 (2 channels × 20 features) features for sEMG, Figure 12 (e). One hybrid feature, the difference of SR 

and TR sensor orientation also known as knee flexion/extension angle, was extracted using [400] to improve 

classification accuracy as walking, stair ascent and descent have their own distinctive knee flexion angles [411]. 

The area under the curve also known as integrated EMG provide discriminative information for each muscle during 

various activities since previous studies highlighted different sEMG signal wave for different activities [412, 413]. 

In classification with sEMG linear envelope (sEMG-LE), zero crossing feature was excluded as the signal has single 

polarity.  

The features used for classification were: 1. Maximum fractal length, 2. Variance, 3. Simple square integral, 4. 

Mean absolute value (MAV), 5. Log detector, 6. Average amplitude change, 7. Waveform length, 8. Root mean 

square, 9. Mean absolute deviation, 10. Interquartile range, 11. Skewness, 12. Kurtosis, 13. Coefficient of variation, 

14. Standard deviation, 15. Variance, 16. Average energy, 17. Area under the curve (integrated EMG) 18. Modified 

MAV, 19. Slope sign change, 20. Zero crossing, and 21. Hybrid feature (orientation difference between SR and 

TR). 

Features extracted from IMU and sEMG data were then input to two different supervised classification models 

(SVM and kNN), commonly used with labelled data, Figure 12 (f). These classifiers compared classification 

performances based on different feature-level fusions. SVM is a binary classifier searching for the separation 

between two classes after mapping data into a high-dimensional space. Alternatively, k-NN has a simple structure 

measuring the distance between unlabelled observations and training samples to perform classification [284]. No 

feature dimensionality reduction or feature selection processes were performed as the number of the initial set of 

features does not have computational cost (i.e., the training time for each <30s). k-fold cross-validation was used 

on the training and testing datasets. The k value was set to 5 which has empirically yielded a classification model 

accuracy estimate with low bias and a modest variance [408]. 

 

6.3.2.4. Analysis 

Accuracy (ACC.%), sensitivity (SEN.), and specificity (SPE.) were used to evaluate model performance. 

Accuracy is a common metric, giving a general representation of a model's performance in a balanced dataset [408]. 

Sensitivity and specificity are produced from confusion matrices using the formula presented in [17]. 
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********** 

6.4. Methodology 3 (M3): Improving inertial sensor-based activity recognition 

 

6.4.1. Background M3 

In this section, I propose a methodology to investigate how limited data can be better utilized to achieve accurate 

HAR/mobility classification in limited healthy, PD and SS population-specific models. To achieve my goal, I 

propose numerical-to-image conversion as the fundamental component of my proposed methodology. The use of 

data augmentation complements my framework by providing solutions to the limited dataset and overfitting 

problems. Finally, using transfer learning enable applications with small data to benefit from models that are more 

experienced and trained with big data. An investigation of the proposed method's performance was initially 

performed on two public datasets. Results were compared to the reference studies with and without data 

augmentation operations in the same datasets. Then, several pilot studies tested my numerical-to-image conversion 

approach along with a data augmentation technique on limited local datasets belonging to healthy, PD, and SS 

participants. Therefore, the contributions of this section are: 

 

1. Developing a novel framework that converts inertial sensor time-series data into images (activity images). 

2. Adopting established data augmentation techniques in image processing to artificially increase limited 
datasets for the purpose of better HAR in neurological populations (where access to data may be difficult). 

3. Verifying the proposed approach in public datasets and conducting experimental pilot studies for a single 
sensor based HAR on limited HS, PD, and SS datasets. 

6.4.2. Approach M3 

The proposed methodology developed for better HAR of people with neurological conditions is presented in 

Figure 13. Three limited local datasets and two independent benchmarking public datasets were used to verify the 

proposed methodology. To replicate the pragmatic problems in this domain, the local dataset has a limited number 

of participants, data sparsity and class imbalance. In the proposed methodology, numerical inertial sensor data were 

first normalized and then converted into images (initial state). Then, established image augmentation techniques 

were adopted to artificially increase the number of images (enhanced state). Finally, generated images were fed into 

different CNN architectures. All steps are further detailed in this section. 

 

Figure 13.Data collection protocol and proposed framework: (a) Dataset illustration. Flow of the proposed HAR methodology 
with data augmentation and CNN architectures: (b) IMU data acquisition, (c) data normalization, (d) numerical to image 
conversion, (e) resizing, (f) data augmentation, (g) CNN classification. 
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6.4.2.1. Data normalization and numerical to image conversion (initial state) 

Raw accelerometer and gyroscope signals experience different lower and upper limits, because of configuration 

(e.g., an accelerometer typically can collect data at the range of ±16 m/s2 whereas gyroscopes can sense up to 

±2000°/sec).  Normalizing features with different upper and lower limits is a commonly used pre-process in AI as 

extreme differences between different features may have a negative impact on the learning abilities [414]. In the 

normalization step, a feature scaling-based normalization method is preferred due to its convenience. Here, raw 

IMU data (𝑥) is normalized (𝑥̂) considering max value (𝑥𝑚𝑎𝑥) and min value (𝑥𝑚𝑖𝑛), as depicted in Figure 13 4(c). 

As a result of normalization, the value in matrices ranges between 0 and 1 for both accelerometer and angular 

velocity, Eq.11. 

max

ˆ min

min

x x
x

x x

−
=

−
          (11) 

After normalization, data were divided into sub-segments (windows) considering each sub-segment should 

contain sufficient characteristics that allow HAR to be successfully performed. A previous study [415] investigated 

windows size impact on HAR application and reported that the ideal size for fixed windows ranges between 2s and 

5s considering a frequency of 20Hz to 50Hz. Therefore, each activity was divided into consecutive segments of 

fixed-length (≈2.5s windows) considering that at least two strides are needed to recognize walking and stair 

ambulation. IMUs typically sense tri-axial acceleration (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧)  and tri-axial angular velocity (𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧) in 

the 𝑡 moment (Eq.12). Generally, popular CNN models are not suitable to use 1D datasets and require 2/3D images 

to feed input layers [416]. Therefore, many previous studies [365, 417, 418] extract IMU data features with 1D 

convolution layers and then evaluate those features with recurrent neural network-based methods. Here, I convert 

numerical IMU data to images to go beyond that limit, as shown in Figure 13 (d). 

t x y z x y zIMU = a ,a ,a ,w ,w ,w
t t t t t t

 
          (12) 

Eq. 13 represent 2D data (also can be referred to as an image) created by vertical placement of accelerometer 

and gyroscope values recorded in 2.50s window/250 sample and 2.56s windows/128 sample for the local dataset 

and UCI HAR dataset, respectively. In WISDM dataset, only accelerometer values were placed in 2.50s window/50 

sample. Unlike previous studies [306, 373, 374], this work ensures that each numerical IMU value corresponds to 

a specific pixel in an image. The normalized values in the matrices were multiplied by 255 to produce grey images 

with pixels ranging from 0 to 255. As a result, images whose brightness increases/decreases with the numerical 

value of the IMU are produced. However, image dimensions are not suitable to feed the input layer of CNN models 

since each CNN model’s input layer accepts images with a size of 224×224 [416]. Therefore, resizing is applied by 

stretching row length to obtain a square matrix from these images Figure 13 (e).  
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6.4.2.2. Data augmentation 

Table 9 presents the number of occurrences along with class distribution in limited local datasets. To alleviate 

the problems related to small dataset size and prevent overfitting, data augmentation was applied to increase the 

number of generated images using established image processing techniques.  In this sense, four different image 

position augmentation techniques (reflection, rotation, scale, and translation) were applied to each image to ensure 

data diversity and robust training, see Figure 13 (f). Reflection also known as symmetry is an image pre-processing 

operation that can occur in horizontal or vertical access. Rotation, scaling, and translation are other pre-processing 

operation that deal with spinning, resizing, and moving (right, left, up and down) in given upper and lower limits, 

respectively. The lower and upper limit values of rotation, translation (pixel) and scale are ±30°, ±10° and 0.9-1.1, 
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respectively, since these values have proved to be efficient [375]. Consequently, the size of the original dataset in 

the initial state was enhanced by adding 8 times more artificial data (4 different techniques with lower and upper 

limits). In this context, the number of occurrences for each class in the local datasets are increased, Table 10.  

Table 9.Class distributions in local datasets (initial state) 

Dataset Walking Ascent Descent Standing Total 

HS 50 (25) 50 (25) 49 (25) 50 (25) 199 (100) 

PD 81 (29) 64 (23) 60 (21) 75 (27) 280 (100) 

SS 49 (28) 18 (11) 31 (18) 75 (43) 173 (100) 

Number of occurrences/images (% class distribution) 

 

Table 10.Number of occurrences after data augmentation (enhanced state) in local dataset 

Dataset Walking Ascent Descent Standing Total 

HS 450 450 441 450 1791 

PD 729 576 540 675 2520 

SS 441 162 279 675 1557 

Number of occurrences/images (% class distribution) 

  

6.4.2.3. HAR via CNN 

Benchmarking analysis of various deep learning models was previously studied and performance indices such 

as accuracy, model complexity, memory usage, computing power and interference times were evaluated  [416, 419]. 

I determined my priority performance indices as high accuracy rate, minimal computing power and short prediction 

time to achieve an effective HAR framework. Therefore, I chose four optimal pre-trained networks GoogleNet 

[420], ResNet18 [421], ResNet50 [421] and MobileNet-v2 [422, 423] in the Pareto frontier as these architectures 

satisfy my requirements. Each CNN architecture used in this chapter section differs from each other in layer, size 

and parameters, and is often preferred in benchmarking studies to evaluate CNN performances [424, 425], Table 

11. MATLAB® (2021, MathWorks, Inc., Natick, US) software on a laptop with Intel Core i7-7700HG CPU (2.80 

GHz), 16 GB RAM, NVIDIA GeForce GTX 1050 4 GB was used to perform CNN training and testing. 

Residual network (ResNet) [421] was developed to improve unexpected low performances of deeper network 

architectures by adding a skip connection (shortcut) to convey information between layers and avoid the vanishing 

gradient problem [425]. There are different ResNet variants (18-layer 34-layer 50-layer 101-layer 152-layer) 

proposed considering the number of layer and output sizes, ResNet18 and ResNet50 were implemented here. 

MobileNet was employed as it has low computation and fast operation by using depth-wise separable convolutions 

to reduce number of parameters and computation time. Specifically, MobileNet-v2 [423] was implemented, which 

has 54-layers, distinguishing it from MobileNet in using inverted residual blocks with bottleneck properties. 

GoogleNet [420] is 22-layer deep (excluding pooling) model designed with computational efficiency and 

practicality. It uses the inception module to extract features more effectively using various filter sizes. And the 

computational load is reduced with a 1×1 convolution of the depth of the network. Minor adjustments such as the 

use of fine-tuning network were made to the existing architecture for the four-class classification problem in chapter 

section. In this context, a fully connected layer with four outputs and a classification layer was added to the existing 

structure, see Figure 13 (g).  

 
Table 11.Properties of pre-trained CNN architectures 

CNN  

architecture 

Layer  

(Depth) 

Size 

(Megabyte) 

Parameters  

(Millions) 

Input image  

size 

ResNet18 18 44 11.7 224 × 224 

ResNet50 50 96 25.6 224 × 224 

MobileNetv2 54 13 3.5 224 × 224 

GoogleNet 22 27 7 224 x 224 
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6.4.3. Datasets M3 

6.4.3.1. Local datasets 

Ten HS (28.4 ± 7.0yrs, 79.2 ± 14.4kg, 176.8 ± 8.4cm, 8 Male, M: 2 Female, F), five people with PD (61.5± 

3.43yrs, 82.9 ± 10.3kg, 175.8 ± 4.6cm, 5M) and three SS (72.3 ± 3.1yrs, 78.5 ± 12.1kg, 176 ± 8.2cm, 3M) were 

recruited, as illustrated in Figure 13 (a). Each participant was instructed to stand for 2-minutes (eyes open and 

comfortable standing) then walk over level ground for 2-minutes around a 20m circuit at their self-selected walking 

speed inside the lab. Afterwards, participants ascended and descended stairs (15 steps) outside of the lab (in a generic 

university campus stair well).  

Assessment and instrumentation were carried out by a physiotherapist and trained researcher, respectively. 

Ethical consent was granted by the Northumbria University Research Ethics Committee (REF: 21603). All 

participants gave informed written consent before participating in this study. Testing took place inside and outside 

of a gait laboratory/lab, Coach Lane Campus, Northumbria University, Newcastle upon Tyne.  

Each participant wore a Shimmer3 IMU device (24.3cm3, 23.6g) on the 5th lumbar vertebrae (L5), as shown 

in Figure 13(b). IMU signals (tri-axial accelerometer and tri-axial gyroscope) were recorded at a sampling frequency 

of 100Hz and configured with 16-bit resolution (±8g, ±500°/s). IMU data were transferred to a workstation 

(Windows 10) from the IMU device via proprietary software (Consensys, Shimmer). Labelling of activities in a 

continuous data stream was done via a wearable camera for PD and SS, whereas a scripted experimental protocol 

was used for HS. All participants performed the same protocol. Inertial data streams for each activity were 

segmented into 2.5 seconds (s, 250 sample points) windows with 50% overlap using a sliding window.  

6.4.3.2.  UCI-HAR and WISDM independent benchmarking datasets 

UCI-HAR dataset [378] was preferred to test the development methodology as it was created using the same 

data collection protocol as the local dataset. UCI-HAR dataset has accelerometer and gyroscope recording of 30 HS 

(19-48 years), collected by a device attached at waist level. The dataset was randomly portioned into training and 

testing. Data were recorded at a sampling frequency of 50Hz and segmented to fixed width sliding windows of 2.56s 

(128 sample points) with 50% overlap. WISDM dataset was created from 36 HS under controlled laboratory 

conditions. The dataset has tri-axial accelerometer readings only recorded at 20Hz. Accelerometer recordings were 

segmented to fixed width sliding windows of 2.50s with 50% overlap.  

Table 12 presents activity classes along with class distributions in the benchmarking datasets. Skewed class 

distributions are present in the public datasets. This typically limits the learning/training process by causing class 

overlapping, small sample size or small disjuncts [426]. In addition, models trained with imbalanced datasets are 

often biased towards the majority class and therefore there is a greater misclassification rate for the minority class 

occurrences such as sitting and standing in WISDM dataset[427]. Furthermore, the most common evaluation metric, 

accuracy treats all classes as equally important which makes it inefficient [17]. To alleviate the limitations of 

imbalanced public datasets, I utilized 500 occurrences from each class for training in public datasets. In total, 3000 

occurrences were utilized for each dataset and the train/test split ratio. 

Table 12.Class distributions in benchmarking datasets (initial state) 

Dataset  Walking Ascent Descent Sitting Standing Laying Jogging Total 

UCI-HAR Original 1226  

(17) 

1073 (15) 986 

(13) 

1286 

(17) 

1374 (19) 1407 

(19) 

- 7352 

 Utilized  500 (16.6) 500 (16.6) 500 (16.6) 500 

(16.6) 

500 (16.6) 500 

(16.6) 

- 3000 

WISDM Original 424,400 
(38.6) 

122,869 
(11.2) 

100,427 
(9.1) 

59,939 
(5.5) 

48,395 
(4.4) 

- 342,17 
(31.2) 

756,030 

 Utilized  500 (16.6) 500 (16.6) 500 (16.6) 500 

(16.6) 

500 (16.6) - 500 (16.6) 3000 

Number of occurrences/images (% class distribution)   

6.5. Conclusion 

This chapter provides a comprehensive overview of my three proposed methodologies (M1 to M3) and study 

protocols employed, encompassing a cohort of healthy individuals, SS, and individuals with PD. The first 

methodology outlined in this chapter focuses on investigating PoI2. Subsequently, the second and third 

methodologies address PoI3 with a specific emphasis on human activity recognition (HAR) in PD group and stroke 

survivors. The next chapter will present the experimental results obtained from these published studies, offering 

further insights into the outcomes of the conducted research. 
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Chapter 7 Experimental results of 

methodologies 1 to 3 
 

This chapter uses text from my previously published online articles to fit the context and narrative of 

this thesis.  

The first journal article “Multi-modal gait: A wearable, algorithm and data fusion approach for clinical 

and free-living assessment”, was published in the Information Fusion in 2021.  (URL: 

https://doi.org/10.1016/j.inffus.2021.09.016). 

The published work is copyrighted by Elsevier Ltd, however, rights to reuse the work non-commercially 

for theses are granted to original authors. Details on Author rights are available at: 

https://www.elsevier.com/about/policies/copyright 

 

The second publication appears as a conference paper “Exploring human activity recognition using 

feature level fusion of inertial and electromyography data”, was published 44th Annual International 

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) in 2022. (URL: 

https://doi.org/10.1109/EMBC48229.2022.9870909).  

The published work is copyrighted by IEEE, however, rights to reuse the work non-commercially for 

theses are granted to original authors (Appendix 11). 

 

The third journal article “Improving Inertial Sensor-Based Activity Recognition in Neurological 

Populations” was published in the Sensors in 2022. (URL: https://doi.org/10.3390/s22249891). 

This work was distributed under a Creative Commons 4.0 license (Appendix 9). 
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7.1. Introduction 

This chapter entails the presentation of the experimental results and discussions derived from the studies 

outlined in the previous chapter. Section 7.2 provides a detailed account of the outcomes of multimodal gait 

analysis, encompassing spatiotemporal, kinematic, and muscle activation parameters, obtained from both healthy 

individuals and stroke survivors in both indoor and outdoor environments. In Section 7.3, the effectiveness of 

feature-level fusion of IMU and EMG sensor data in enhancing the performance of classical machine learning 

models for the classification of basic daily activities is demonstrated. Finally, Section 7.4 presents the experimental 

findings pertaining to the improvements in deep learning model performance achieved through data augmentation 

techniques applied to public datasets as well as local datasets comprising healthy individuals, stroke survivors, and 

individuals with Parkinson's disease. 

 

7.2. M1 results: Multimodal gait analysis with data fusion 

This novel fusion approach quantifies and contrasts temporal, spatial, knee joint kinematics, and muscle 

activation characteristics in (i) HP’s during 2min walks in a lab (indoor) vs 2min outdoor walking on level ground, 

and (ii) in a pilot study of SS walking for 2mins, indoor vs outdoor. Here, results are deemed suitable for 

exploratory investigation as they are derived from validated algorithms for use on level ground terrain. Similar 

modes of investigation have been conducted previously, examining unimodal, spatiotemporal gait between 

clinic/lab and habitual environments [316].  

Outputs of the fusion approach can be classified as; spatiotemporal, knee joint flexion and muscle activation 

patterns. Muscle bursts timing and durations are presented throughout the gait cycles. Multi-model gait 

characteristics of the left side for one HP participant (#9) during outdoor level walking were not extracted due to 

wearable malfunction; therefore, only mean values for the right side were calculated. IC-FC events were not 

detected for the paretic side of one SS participant (#3) as algorithms (A1-A2) failed to detect peaks due to poor 

gait; therefore, only mean values for the non-paretic side were calculated. 
 

7.2.1. Healthy participants-M1 

 

7.2.1.1. Two-minute walks: Spatiotemporal, kinematics and EMG  

There were differences in gait domains for spatiotemporal characteristics between indoor and outdoor walks, 

Table 13. Generally, participants walked with greater pace and variability but with decreased rhythm in outdoor 

compared to indoor level walking (stride length variability characteristic did not experience any changes between 

outdoor level walking and indoor). Among asymmetry characteristics, only stride length asymmetry was found 

higher during indoor level walking compared to outdoor. There were slightly increased mean knee flexion angles 

(~1°) and decreased variance and asymmetry in outdoor level walking compared to indoor, Table 13. Although 

there are large inter-individual differences among participants, common muscle burst timing and durations patterns 

can be extracted via EMG signals [239], where common muscle activity patterns were observed within a gait cycle. 

Regardless of indoor/outdoor, the prevalence of TA muscle activation had similar patterns with RF and BF, all 

active around the start and end of a gait cycle during level walking. TA was also found active at stance to swing 

transition period (around FC) and throughout the swing phase in some participants. BF muscle activation was 

observed at the end of a gait cycle around the time of the next IC. GS prevalence was observed mostly during the 

later stance phase before the FC moments for push-off of the foot, Figure 14. 
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Table 13.Multi-modal gait characteristics of healthy participants during 2-minute walks 

  Indoor Outdoor 

 # Mean of strides 99.6 108.1 

  Mean ± SD Mean ± SD 

SPATIOTEMPORAL 

PACE     

Mean Stride V. (m/s) 1.174 0.127 1.319 0.101 

Mean Stride L. (m) 1.332 0.147 1.415 0.142 

RHYTHM     
Mean Stride Time (s) 1.136 0.082 1.074 0.060 

Mean Step Time (s) 0.566 0.037 0.534 0.032 

Mean Stance Time (s) 0.647 0.057 0.597 0.038 
Mean Swing Time (s) 0.489 0.039 0.476 0.034 

VARIABILITY     

Stride V. Var (m/s) 0.105 0.024 0.125 0.023 
Stride L Var (m) 0.130 0.041 0.129 0.029 

Step Time Var (s) 0.034 0.020 0.039 0.013 

Stance Time Var (s) 0.014 0.010 0.050 0.012 
Swing Time Var (s) 0.018 0.011 0.043 0.004 

ASYMMETRY     

Stride L. Asy (m) 0.086 0.062 0.104 0.068 

Step Time Asy (s) 0.033 0.006 0.025 0.022 
Stance Time Asy (s) 0.041 0.010 0.012 0.008 

Swing Time Asy (s) 0.044 0.007 0.011 0.007 

      

KNEE JOINT KINEMATICS 
Mean K.F.E angle 62.621° 4.229° 63.580° 5.220° 
Variability 5.1875° 1.217° 4.490° 1.239° 

Asymmetry 1.8117° 1.040° 1.593° 1.069° 

Stride V = stride velocity, Stride L = stride length. Var = variability, Asy = symmetry 
(K.F.E) knee flexion 

Bold indicate greater mean values comparing indoor to outdoor. 
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Figure 14.Muscle activity pattern healthy participants for indoor/outdoor ground-level walking 

 

7.2.2. Pilot study: Multi-modal gait analysis in stroke survivors-M1 

The process of extracting multi-modal gait during level walking is generally illustrated in Figure 15, 

highlighted here for those with stroke gait. The proposed sensor and data fusion tool provides multi-model gait 

characteristics during indoor and outdoor activities, but IC-FC times must be detectable initially.  
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Figure 15.Level walking extracted parameters from the proposed tool. (A) Raw wearable IMU data for EMG (a1-a2) and 
angular velocity (a3-a4) – black represents shank mounted sensors – grey represents thigh mounted sensors, (B) Shank 
angular velocity of paretic and non-paretic sides: initial (dots) and final (stars) contact moments, (C) outcome of sensor 

fusion work for non-paretic and paretic sides: (c1) temporal characteristics where long dot dush, square dot, solid line and 
round dot represents (top-to-bottom) stride, stance, step and swing times respectively: (c2) estimated kinematic knee 

angles: (c3-c4-c5-c6) EMG activity for TA, GS, RF, and BF, respectively. a.u, Arbitrary unit-peak normalised EMG. 

7.2.2.1. Two-minute walks: Spatiotemporal, kinematics, and EMG  

Although SS presented similar shank angular velocity patterns with disturbances (e.g., oscillations) between 

paretic and non-paretic sides during ground-level walking, extracted indoor and outdoor temporal and spatial 

characteristics varied, Table 14.  

SS walked with increased pace and decreased rhythm during outdoor level walking compared to indoor. Swing 

time asymmetry is the only asymmetry characteristic that was found to be higher during indoor compared to 

outdoor. Among variability, there was no difference in stride velocity, but stance time was lower during indoor 

level walking compared to outdoor. (Individual and left/right data available via Appendix 5). 

Noticeable differences were observed for mean, variance and asymmetry of knee joining angles. Increased mean 

knee flexion angles (~4°) and decreased variability and asymmetry were found during outdoor walking, compared 

to indoor, Table 14. Muscle activity (bursts) during indoor and outdoor walking presented in Figure 16. TA, RF 

and BF muscle burst were detected around the starting and ending moments of gait cycles (around IC moments). 

GS muscle bursts most frequently observed in the stance phase in most SS. 
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Table 14.Multi-modal gait characteristics of stroke survivors during 2-minute walks 

  Indoor Outdoor 

 # Mean of strides 93.6 109.33 

  Mean ±SD Mean ±SD 

SPATIOTEMPORAL 

PACE     

Mean Stride V. (m/s) 1.021 0.049 1.067 0.119 

Mean Stride L. (m) 1.303 0.134 1.384 0.338 

RHYTHM     
Mean Stride Time (s) 1.254 0.077 1.235 0.130 

Mean Step Time (s) 0.614 0.041 0.535 0.011 

Mean Stance Time (s) 0.770 0.085 0.748 0.142 
Mean Swing Time (s) 0.483 0.045 0.452 0.016 

VARIABILITY     

Stride V. Var (m/s) 0.189 0.013 0.182 0.033 
Stride L Var (m) 0.275 0.046 0.224 0.052 

Step Time Var (s) 0.100 0.096 0.033 0.006 

Stance Time Var (s) 0.070 0.058 0.074 0.002 
Swing Time Var (s) 0.071 0.052 0.037 0.002 

ASYMMETRY     

Stride L. Asy (m) 0.197 0.179 0.290 0.182 

Step Time Asy (s) 0.060 0.003 0.102 0.061 
Stance Time Asy (s) 0.063 0.001 0.088 0.046 

Swing Time Asy (s) 0.062 0.001 0.067 0.036 

      

KNEE JOINT KINEMATICS 
Mean K.F.E angle 48.120° 1.196° 52.096° 1.014° 
Variability 6.064° 0.188° 5.297° 0.660° 

Asymmetry 22.251° 4.506° 19.920° 6.821° 

Stride V = stride velocity, Stride L = stride length. Var = variability, Asy = asymmetry 
(K.F.E) knee flexion  

Bold indicate greater mean values comparing indoor to outdoor 

 

 
Figure 16.Muscle activity pattern stroke survivors for indoor vs. outdoor ground level walking. IC-FC moments were not able 

to detect for the paretic side of SS survivor (#3). Thus, only the left side muscle activity patterns are segmented only. 

 
7.2.3. Impact of changing terrain-M1 

The fusion approach can quantify multi-model gait characteristics on different terrains, but I present level 

ground data only. Multi-model gait characteristics and descriptions of HP’s and SS during different indoor (e.g., 

stairs) and outdoor (e.g., cobbles) terrains are presented in Appendix 5 but mentioned briefly here. 

• Spatiotemporal characteristics: Comparing spatiotemporal gait characteristics of HP and SS in four domains 

during indoor/outdoor walking activities revealed notable differences. Among all indoor/outdoor walking 

activities of HP, the highest pace along with the lowest rhythm and asymmetry were found during outdoor 

level walking. Also, spatial parameters experienced the highest values for the variability domain, whereas 

temporal parameters were found second highest in outdoor level walking after incline walking. 
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SS groups experienced slightly increased pace and increased asymmetry during outdoor walking compared 

to indoor. 

• Knee joint kinematics: HP revealed that mean knee flexion angles did not experience significant change while 

indoor/outdoor ground-level walking and walking on a rock surface.  

SS group revealed a slightly increased knee flexion angle (~4°) during outdoor level walking compared 

to indoor level walking. When comparing the paretic side and non-paretic side knee flexion angles of each 

SS, higher differences observed, Figure 15. 

• EMG, burst timing and durations during level walking: Prevalence of muscle burst and duration showed 

similar patterns between the right and left sides of lower limb muscles in most HP. Additionally, durations of 

muscle burst slightly decreased during outdoor level walking compared to indoor in most HP. 

 The durations of muscle burst found slightly decreased during outdoor level walking compared to 

indoor in most SS. 

 

 

7.2.4. Discussion M1: Multimodal gait analysis with data fusion 

The methodologies provide a comprehensive range of lower limb gait characteristics (spatiotemporal, 

kinematics, and EMG) for use in different environments. The work presented here shows how algorithms 

developed in isolation can be successfully adapted and fused to create a more rounded/holistic gait assessment tool 

for use in the clinic/lab and beyond. The multi-modal fusion approach proposed here may better contribute to gait 

studies for clinical as well as habitual gait assessments, better informing rehabilitation programs that aim to regain 

community-based ambulatory mobility for those with neurological conditions such as stroke. Improved 

understanding of gait through my proposed multi-modal approach could lead to a better understanding of the effect 

of walking environment and how that contributes to the underlying mechanisms to reduce mobility and induce 

falls. 

The proposed fusion methodology defined here consists of the detection of IC-FC contact moments along 

with timestamp information (using A1-A2 algorithms and shank sensors data) by considering the type of activity 

(e.g., level walking or incline walking). That enables segmentation of gait cycles and sub-phases (stance and swing 

periods) as well as extraction of temporal parameters (e.g., step time). Then, gait cycles are segmented from mid-

stance to mid-stance using the IC-FC information obtained from A1-A2, and spatial characteristics (A3 and shank 

sensors data). Afterwards, knee joint flexion angles are estimated (A4-A5 and shank-thigh sensors data) by 

considering the type of activity (e.g., level walking or stair ambulation) for each gait cycle segmented. Finally, 

segmented gait cycles and corresponding timestamp information were used to segment EMG data belonging to 

four different lower limb muscles and muscle onset/offset timings (using A6). 

Previous studies have investigated gait during free-living to better understand the impacts of real-life settings 

such as environmental factors on gait [58, 269].  Most of these studies aim to extract clinically useful gait 

characteristics (spatiotemporal, kinematics) and are based on cameras and IMUs. However, camera-based systems 

are not pragmatically feasible due to several factors such as privacy, security and, limited data capture due to field 

of vision [2, 428]. Although existing inertial sensor-based studies use a more feasible data collection approach, 

most fail to include clinically useful gait characteristics such as lower limb kinematics [429]. Additionally, the 

number of those focusing on free-living gait analysis in neurological conditions (e.g. stroke) is very limited and 

provides uni-modal characteristics only [2]. Those who investigated a multi-sensor fusion approach, utilised 

wearable sensors attached to the right lower limb for use during indoor level walking only [430]. Although that 

study quantified kinetic characteristics with a pressure sensor, spatial characteristics were not included.  

 

7.2.5. The multi-modal approach-M1 

Multi-modal wearable sensor deployment is of growing interest during free-living activities. For instance, an 

approach to develop a vital sign monitoring system involving physiological components (e.g., respiratory band, 

electrocardiography) has been presented previously [333]. Another study used a similar approach where multiple 

sensors were fused to develop a body sensor network that can measure motor functions in children with spastic 

diplegia [431]. Multi-modal wearable sensor use is possible due to the miniaturisation of wearable technologies 
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and the increasing paradigm shift to monitoring people in their habitual environments. As gait is now classed as 

the sixth vital sign [432], it is important that multi-modal approaches are developed to capture gait in its entirety 

across more natural environments. 

Most gait analysis studies have been conducted that do not immediately aim to make clinical decisions but to 

learn about a condition affecting a group of patients or the effect of an intervention [433]. Also, studies are based 

on a single sensor and provide either activity detection or informative gait outcomes. However, the next generation 

of wearables could be fused in a way that human activity assessment (i.e. activity detection and gait characteristics 

extraction) can be done using multiple sensor configurations [434]. Contemporary gait analysis requires evaluation 

of various aspects (e.g. kinematic, muscle) of the lower limb with a large number of outcomes [2]. Variances in 

gait are very subtle [392], and so the multi-modal gait approach enables granular capture of characteristics 

considering key digital biomarkers, i.e., clinically relevant gait characteristics. A study already reported that these 

variances/fluctuations in gait can be used to differentiate a particular neurological condition from healthy 

participants using gait data along with complexity measures [435]. Here, subtle differences were observed between 

indoor and outdoor level walking (as the differences between walking on various outdoor surfaces and stair 

ambulation) for HP and SS. This corroborates the benefit of using wearables for outdoor/habitual gait assessment 

as observed in another neurological cohort, albeit with a uni-modal device in Parkinson’s disease [22]. The use of 

a multi-modal sensor and data fusion approach may provide more insights into the underlying neurological 

mechanisms due to, e.g., changing terrain. 

Spatiotemporal outcomes have been widely used to reveal distinctive gait deficits and interpret impaired gait 

during indoor and outdoor assessments. Particularly for outdoor assessments, a previous study reported gait 

adaptation strategies to maintain stability are sensitive to different walking surfaces [293]. Thus, investigating the 

adaptation of pace on various surfaces may help better understand control of the sensory, motor and cortical 

functions that are critical to minimise trips, slips and falls [2]. Additionally, the proposed multi-modal sensor 

fusion approach efficiently computed spatiotemporal characteristics during indoor and outdoor gait for a more 

holistic gait assessment. Here, extracted spatiotemporal characteristics (e.g., indoor step, stance, swing times: 

0.566s, 0.647s, 0.489s, respectively, outdoor step, stance, swing times: 0.534s, 0.597s, 0.476s, respectively) show 

good agreement with previous indoor level walking (0.534s, 0.668s, 0.401s) [436] and outdoor level walking 

(0.593s, 0.741s, 0.449s) studies [22] for HP. The small difference between the extracted temporal results perhaps 

is due to the difference between preferred experimental protocols, preferred sensor location, sensors, and 

algorithms. This is equally true for SS; indoor level walking (step, stance, swing times: 0.614s, 0.770s, 0.483s, 

respectively ) and outdoor level walking (step, stance, swing times: 0.535s, 0.748s, 0.452s,  respectively) findings 

of this study show good agreement with a previous study [169], where indoor level walking (step, stance, swing 

times: 0.6 s 0.743s 0.485, respectively) and outdoor level walking (step, stance, swing times: 0.613s, 0.764s, 

0.474s) are reported. However, small differences (e.g., in stance-swing times <0.09s) were also observed in the 

stroke population due to referenced studies using a single IMU attached to the lower back compared to my 

approach of two IMU’s attached to both shanks. Performance comparison of sensor locations and used 

methodology was further investigated[150, 305]. It was found that the shank-based methods provide more accurate 

temporal results compared to lower back based methods because the sensor is closer to IC-FC points of the foot.  

Moreover, reference studies used an algorithm based on acceleration signals whereas the proposed fusion approach 

used algorithms based on angular velocity for extracting spatiotemporal outcomes. The proposed multi-modal 

approach also attests to the existing knowledge that stroke survivors are high likely to experience decreased stance 

time and increased swing time in the paretic side, compared to non-paretic[437]. 

Many physical therapy techniques focus on the restoration of joint kinematics and hence promote the 

rehabilitation of functional activities [411]. Thus, kinematic joint characteristics are crucial as these characteristics 

provide additional insight into indoor/outdoor gait analysis. The prevalence of joint kinematic analysis in gait 

studies is low as kinematic characteristics require lab-based motion analysis systems that are complex and costly 

or goniometers, which brings synchronisation issues with other technologies [2]. Alternatively, a few gait studies 

estimate joint angles (e.g. knee flexion) during indoor and outdoor activities using wearable sensors [399, 403]. 

Findings of the proposed multi-modal sensor fusion tool (62.621°, 48.120°  for indoor level walking of HP and 

SS, respectively) show good agreement with previous study findings based on indoor level walking (~60°, ~40° 
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for indoor level walking of HP and SS) [38, 438] and outdoor [439, 440] activities in terms of estimated knee joint 

angles. Additionally, stroke participants experience decreased knee flexion angles during indoor/outdoor level 

walking on the paretic side, compared to non-paretic as previously reported [438]. 

Muscle activation pattern analysis of one or more muscles, particularly when the examination is conducted 

together with additional gait characteristics such as kinematics (joint angles), provides better insight into the 

performance of muscles and their role in accomplishing a motor task [441]. Although other crucial parameters, 

such as walking velocity and age that affect muscle burst timing and durations exist [442], comprehensive 

knowledge of muscle activation and co-activation may contribute to the individualised bespoke rehabilitation 

programs[142]. The findings of the proposed multi-modal fusion tool attest to the common muscle activation 

patterns in terms of muscle burst timings and durations during indoor [132, 442] and outdoor activities [412, 441].  

 

7.2.6. Implementation-M1 

Importantly, extraction of multi-model gait characteristics starts with the detection of gait cycles, IC, and FC 

events. A1 and A2 were sufficient to estimate IC-FC moments during level walking (as well as incline walking 

and stair ambulation) for HP’s and non-paretic sides of SS. However, failing to detect IC-FC events in the paretic 

side of SS, where significant foot clearance is lacking, negatively impacts the multi-model gait characteristics 

(primarily temporal) to be extracted. Alternatively, spatial characteristics successfully computed with A3 for HP 

and non-paretic sides of SS, but similar problems occurred for the paretic sides of SS.  

Sensor misplacement is also a consideration that needs to be considered during the implementation of this 

framework. It was previously reported that algorithms that use angular velocity for IC-FC detection (such as A1 

and A2) are less sensitive to positioning compared to acceleration due to their measurement principle. A3 and A5 

also stated that the sensor placement anywhere along the same plane on the anatomical segment (e.g., shank) gives 

almost identical signal output [213, 398, 400]. The proposed tool has potential use in free-living as it enables an 

extended period of data recording opportunities. Gyroscopes tend to consume up to several hundred milliamperes 

whereas accelerometers consume in the range of a few microamperes [213]. The use of additional hardware or 

sensing capabilities such as EMG can increase energy consumption significantly. Therefore, the energy 

consumption of the hardware (sensor) to be used should be taken into consideration. Here I use the Shimmer3 

EMG sensor, which can be used in clinical studies as it provides reliable output for around 70 hours, depending 

on the activated sensing capabilities (e.g., sampling frequencies). Sensors that can collect data for a week or more 

are also available but there is a trade-off between e.g., data resolution, battery life and memory [2]. 

A review for sensor fusion use in orientation tracking found that advanced algorithms such as extended 

Kalman filter and complementary filter approaches should meet the need to perform offline calibration, vector 

selection technique for imperfect measurement rejection [443]. Although high accuracy and robust estimations 

were reported, these approaches are complex and require prior technical information regarding the IMUs to be 

used. Here, I proposed a less complex and more practical novel approach (A5) to estimate knee flexion angles 

during stair ambulation and incline walking by novel combination of two different validated algorithms [400, 404]. 

That approach allowed us to achieve a knee joint flexion angle approach that works during stair ambulation and 

without a need for prior configuration coefficients during orientation estimation.  

EMG signals were segmented for each gait cycle using IC-FC timed events. Segmented raw EMG signals are 

difficult to interpret with a visual inspection alone [142]. Thus, processing raw EMG signals allow the extraction 

of clinically useful outcomes (e.g., muscle burst timing). Additionally, normalisation of EMG signals is crucial to 

make comparisons between muscles on different days or in different individuals during different walking tasks. 

Most studies time normalise EMG signal into gait cycles (%) or sub phases (stance %). However, the same 

standardisation is not common for amplitude normalisation. Peak activation level, mean activation level, maximum 

voluntary contraction and peak to peak maximum amplitude (M wave) normalisation approaches have been widely 

used [142]. Although there are standards for EMG data collection (SENIAM), EMG signal processing standards 

are needed to achieve a more consistent EMG-based gait assessment [2]. 
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7.2.7. Limitations and future work-M1 

Wearables offer high resolution data recording opportunities for extended periods. Continuous recording 

during free-living may result in a vast amount of unlabelled data that includes different daily dynamic gait activities 

(e.g., level walking, stair ambulation) and static activities (e.g., sitting, lying). Here, the proposed framework was 

used with manually segmented gait data (e.g., indoor level walking). However, manual segmentation of different 

activities before feeding into the proposed framework is a limitation to achieve a more automatic gait assessment 

tool. Therefore, automatic recognition of all activities (also known as human activity recognition, HAR) would 

provide a more pragmatic gait analysis tool, negating the time-consuming manual segmentation adopted here. 

Previous studies report that wearables can be deployed to recognise gait events with high accuracies using artificial 

intelligence approaches (e.g. machine learning, deep learning) [444, 445].  

The time spent on sensor configuration and placement before data collection can be accepted as a limitation 

since it was approx. 50% of the total testing time for each participant. Here, the configuration of wearables and 

placement took 15-20 min for each participant. Much of the time (≈10 min) was spent on the placement of surface 

EMG electrodes and their connections with sensor units using wires. Technology is becoming more user friendly 

with wireless EMG sensors which could significantly decrease the setup time of wearables. 

Successful implementation of the proposed multi-modal approach is significantly dependent on the correct 

detection of IC-FC times that is used to split gait into sub-phases and extract joint angles and muscle activities. As 

presented in (Figure 15, b), more oscillations were observed in paretic side angular velocity compared to the non-

paretic side of a stroke survivor. These oscillations affect the accuracy of proposed algorithms (e.g. A1) as these 

algorithms estimate IC-FC times by taking reference to a single positive peak (mid-swing) [162]. In the paretic 

side of SS (#3), more oscillations were observed in peaks during mid-swing, and negative peaks were not present 

for the detection of IC-FC moments. Therefore, the proposed algorithms (A1 and A2) failed to detect IC-FC 

moments, and consequently, kinematic and muscle characteristics could not be extracted for the gait cycles.  

Some algorithms presented here use a set of rules and thresholds. The use of threshold-based algorithms could 

be a limitation since time and frequency domain features of the wearable signals can be significantly affected by 

several factors such as weight, age, the severity of impaired gait and walking speed. Alternatively, previous studies 

suggested that although amplitudes of these peaks vary depending on different factors, IC-FC moments can always 

be localised once approximate locations are known in time and frequency domains [2, 222]. Therefore, appropriate 

signal processing approaches (e.g. advanced wavelet) and artificial intelligent (machine learning, deep learning) 

approaches should be used in future studies to overcome this limitation [446]. Equally, developing new algorithms 

by considering signal power and statistical features rather than wave shape could be a solution for the algorithms 

that rely on peak detection. 

 

7.2.7.1. Factors influencing the accuracy of gait characteristics 

Small errors and systematic delays (e.g. <0.009s) are present even in two different gold/reference standard 

systems [150]. Therefore, it is crucial to investigate and interpret the agreement levels between reference systems 

and wearable sensors with caution. Although most inertial signal-based validation studies reported very good 

agreements when compared to a gold standard system[222, 399],  the developed algorithms were validated on 

healthy participants only during controlled environments. When these algorithms were adopted to use in a 

neurological population, it was observed that their accuracies decrease [7, 398]. The primary reason for the poor 

performances of the algorithms is that movement patterns of hip and lower-limb segments experience different 

acceleration and angular velocity compared to healthy participants[7]. The secondary reason is the effects of the 

walking environments. This was further investigated by Storm et al. who reported that shank sensor-based 

algorithms such as A1-A2 perform better in outdoor walking in terms of detecting some temporal parameters (e.g., 

stance time) compared to indoor walking [150]. The other reasons that affect the accuracy of inertial signal-based 

gait outcomes are preferred sensor locations (e.g., shank, lower back) and used target signal (e.g., acceleration, 

angular velocity) in the experimental protocol. A previous study investigated the impact of both factors on the 

extracted parameters, and findings showed that shank level sensor angular velocity signals pair provide more 
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accurate and repeatable results than lower back sensor- acceleration signal algorithms for healthy 

participants[214].  

 

My future work will aim to: 

(i) investigate validity in a larger stroke cohort with the latest technology wearable sensors (e.g., 

wireless EMG),  

(ii) integrate automated gait detection into a multi-modal fusion approach to achieve an automatic 

approach and,  

(iii) investigate potential solutions for better detecting IC-FC moments in neurological conditions, 

particularly in severely disrupted gait. 

 

********** 

7.3. M2 results: Human activity recognition using feature-level fusion of IMU and EMG data 

This section presents the performances of SVM and kNN models for walking, standing, stair ascent and 

descent activities. 

 

7.3.1. HAR with inertial data-M2 

Table 15 shows the classification performances of the different classifiers for single and two sensor modalities 

that include inertial data only. SVM (ACC% = 91.4, 93.0, 95.5) had better classification than kNN (86.0, 87.2, 

88.3) for SR, TR, and SR+TR, respectively. Multi-modal sensor configurations and data level fusion classified 

activities with higher ACC., SEN., and SPE. than the single sensor, where thigh-level wearable slightly 

outperformed the shank-level wearable for HAR. 

 

 

7.3.2. HAR: Inertial and sEMG (filter and use of LE)-M2 

After post-processing IMU and sEMG signals, data fusion is performed at the feature level to improve the 

classification. Table 16 presents the results of the different models trained with inertial and sEMG data. Here, 

sEMG signals were bandpass filtered and corresponding features were extracted. When classification is performed 

with only SR sensor data, the use of GS muscle data resulted in higher performances than TA. 

 
Table 15.HAR with inertial data only 

Case SVM kNN 

 ACC. SEN. SPE. ACC. SEN. SPE. 

SR 91.4 0.915 0.971 86.0 0.858 0.953 

TR 93.0 0.930 0.976 87.2 0.871 0.957 

SR+TR 95.5 0.955 0.985 88.3 0.879 0.961 
SR shank right and TR: thigh right 

 
Table 16.HAR with inertial data and sEMG data (Bandpass filtered) 

Case SVM kNN 

 ACC. SEN. SPE. ACC. SEN. SPE. 

SR+TA 90.3 0.904 0.967 85.2 0.849 0.951 
SR+GS 92.6 0.926 0.976 89.6 0.897 0.966 

SR+TA+GS 91.8 0.918 0.973 89.1 0.889 0.964 

TR+RF 93.5 0.935 0.978 88.0 0.879 0.960 
TR+BF 94.4 0.944 0.981 88.9 0.885 0.963 

TR+RF+BF 94.7 0.946 0.982 88.9 0.884 0.963 
SR+TR+TA+RF 94.2 0.942 0.981 89.6 0.893 0.965 

SR+TR+GS+BF 95.2 0.953 0.984 89.4 0.895 0.965 

SR+TR+CASE* 95.6 0.956 0.985 90.7 0.904 0.969 

SR: shank right, TR: thigh right, TA: Tibialis anterior, RF: Rectus femoris, GS: Gastrocnemius, BF: Biceps femoris. 
*CASE=TA+GS+RF+BF 
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Table 17.HAR with inertial data and sEMG data (LE) 

Case SVM kNN 

 ACC. SEN. SPE. ACC. SEN. SPE. 

SR+TA 95.3 0.953 0.985 90.8 0.908 0.970 
SR+GS 94.7 0.947 0.982 89.1 0.890 0.964 

SR+TA+GS 96.5 0.964 0.988 92.2 0.921 0.974 

TR+RF 95.5 0.953 0.985 89.7 0.892 0.966 
TR+BF 96.5 0.965 0.988 88.5 0.886 0.962 

TR+RF+BF 98.1 0.980 0.994 92.2 0.917 0.974 

SR+TR+TA+RF 97.2 0.971 0.991 92.6 0.923 0.976 
SR+TR+GS+BF 97.5 0.974 0.992 92.6 0.922 0.976 

SR+TR+CASE* 99.0 0.990 0.997 94.6 0.944 0.982 

SR: shank right, TR: thigh right, TA: Tibialis anterior, RF: Rectus femoris, GS: Gastrocnemius, BF: Biceps femoris. 

*CASE=TA+GS+RF+BF 

 

For TR multimodal sensor data, use of BF had higher performance than RF. Additionally, thigh level inertial 

and sEMG better classified HAR than shank, Table 16. To investigate impact of post-processing on classification, 

LE was obtained from band-pass filtered sEMG data using rectification operation). Results of the two different 

HAR models based on sEMG-LE are shown in Table 17. Feature level classification with LE seems to provide a 

better overall classification compared to band-pass filtered sEMG (ACC., SEN., SPE.). Comparing Table 16 and 

Table 17, overall accuracy was improved by 3.11% in SVM models and 2.54% in kNN models. Figure 17 was 

created using confusion matrixes derived from a case (TA+GS+RF+BF) to display differences between 

performance for each activity. Here, HAR accuracy increased by 4.4%, 2.2%, 3.6%, 3.6%(SVM) and 3.4%, 6.9%, 

1.7%, 3.9% (kNN) in stair ascent, stair descent, standing and walking, respectively. 

 

7.3.3. M2 discussion: Human activity recognition using feature level fusion of IMU and EMG data 

This chapter section investigated how sEMG data improves HAR and the importance of sEMG post-

processing on classification performance. Preliminary results show use of multimodal data and feature level fusion 

improves HAR. This finding corroborates the existing knowledge that inertial sensor-based HAR can be further 

improved when fused with sEMG [447], especially in walking and stair ambulation related HAR [448]. Here, 

classification accuracy was increased by 3.5% for SVM and 6.3% for the kNN classifier after inertial features were 

fused with sEMG features.  Findings also reveal how sEMG signal post-processing can impact the performance 

of the classifiers, where use of sEMG-LE results with higher overall performance than the use of band-pass filtered 

sEMG. Use of single polarity LE signal improved recognition of each activity Figure 17.  

 

 
Figure 17.Confusion matrix (%) from feature level fusion classification, case (SR+ TR+ TA+ GS+ RF+ BF). 

When sEMG-LE is used for training, posterior muscles GS+BF provided slightly higher classification 

performances than anterior TA+RF. Additionally, classification with features extracted from TR outperformed SR. 

IMU and Filtered sEMG IMU and sEMG-LE 
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A. 95.6 2.4 0 2.0 100 0 0 0 

D. 3.6 95.8 0 0.6 1.0 98 0 1.0 

S. 0 3.4 95.2 1.4 0 0.8 98.8 0.4 

W. 0 0 4.4 95.6 0 0 0.8 99.2 
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A. 93.2 4.8 0.4 1.6 96.6 1.9 0 1.5 

D. 12.0 83.7 3.6 0.7 9.4 90.6 0 0 

S. 0.8 2.1 92.6 4.5 0 3.4 94.3 2.3 

W. 0 1.9 5.7 92.4 0.3 0.3 3.1 96.3 

  Predicted class  

  A.: Ascent, D.: Descent, S.: Stand, W.: Walk   
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That could be useful when minimising sensing modalities in HAR systems as single or multiple sEMG 

configurations have been extensively studied. For example, only the gastrocnemius medial muscle [449], four 

lower limb muscles of one leg [339] and two legs [450] muscle activation data were utilised. I also found SVM 

outperformed kNN for HAR, similar to [136, 284].   

Performing a direct comparison to another study would not be appropriate since I created a unique dataset for 

the purpose of this study. Similar to [451], significant improvement in the recognition of stair ambulation can be 

achieved when IMU data is fused with EMG. Several factors could contribute to this including the extracted 

features. Instead of extracting a single wearable dependent feature [136, 408], I extracted an orientation feature 

knee flexion/extension [452] that improved classification. This was motivated from [411] that reported knee 

flexion/extension angles and wave shapes during walking, stair ascent and descent are unique to those activities. 

Another factor to explain classifier improvement is the use of agonist and antagonist muscle pairs that are 

responsible for the activity (e.g. knee flexion/extension during walking) [413]. There was a study limitation, 

datasets were created from healthy subjects in a controlled environment and with a scripted protocol. Equally, I 

did not assess my approach for identifying separate tasks as the focus here were all activity tasks. A future study 

will include neurological cohorts, HAR for mobility specific tasks as well as application on independent datasets 

to examine wider performance. 

********** 

7.4. M3 results: Improving inertial sensor-based activity recognition in neurological populations 

 

7.4.1. UCI-HAR datasets-M3 

Table 18 presents the results of performance metrics for initial and enhanced states in UCI-HAR. In the initial 

state, ResNet18 architecture slightly outperformed its counterparts in all performance metrics. Moreover, the data 

augmentation operation provided slight improvements in the performance metrics of each architecture whereas the 

largest improvement was observed in GoogleNet. In the enhanced state, ResNet50 architecture provided slightly 

higher performances compared to other CNN architectures and reached 97% accuracy. However, comparing 

execution time reveals that GoogleNet classifies HAR activities faster than its counterparts. Table 19 presents the 

ResNet50 confusion matrix of UCI-HAR dataset in the initial and enhanced states as it outperforms other 

architectures in terms of all performance metrics except execution time. Here, notable improvements are observed 

after data augmentation especially in static activities (sitting, standing, and laying). 

 
Table 18.HAR performance metrics in UCI HAR dataset 

  Initial state   Enhanced state 

 
DL-CNN 

Epochs:5 

Iteration:3750 
Learning 

rate:0.001 

Batch size: 32 

Pre-trained 
network 

Acc. 
(%) 

Sens. Spec. F1 MCC 
Acc. 
(%) 

Sens. Spec. F1_ MCC 

Training 

time 

(minutes) 

ResNet18 93.3 0.929 0.987 0.928 0.915 96.1 0.960 0.992 0.961 0.953 89.26 

ResNet50 91.8 0.914 0.984 0.911 0.897 97.0 0.970 0.994 0.970 0.964 165.38 

MobileNet-v2 90.7 0.903 0.982 0.899 0.883 96.2 0.962 0.992 0.962 0.954 143.41 

GoogleNet 81.0 0.803 0.962 0.800 0.771 91.9 0.919 0.984 0.918 0.903 75.55 

  Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score 

 

 
Table 19.Confusion matrix of UCI HAR- ResNet50 (initial results-left, final results-right) 

 
Walking Ascent Descent Sitting Standing Laying 

 
Walking Ascent Descent Sitting Standing Laying 

Walking 
106 0 0 0 0 0 

Walking 
494 0 1 0 0 0 

Ascent 
0 108 0 0 0 0 

Ascent 
1 547 3 0 0 0 

Descent 
0 1 106 0 0 0 

Descent 
1 0 477 0 0 0 

Sitting 
0 0 0 89 3 12 

Sitting 
0 0 1 465 12 17 

Standing 
1 1 0 14 66 11 

Standing 
0 0 0 19 461 11 

Laying 
0 0 0 2 4 76 

Laying 
0 0 0 15 8 467 
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7.4.2. WISDM datasets-M3 

Table 20 presents classification results of the four CNN architectures using the WISDM dataset in initial and 

enhanced states. In the initial state, ResNet50 architecture classified HAR activities better than ResNet18 and 

MobileNet-v2 whereas GoogleNet showed a notable poorer performance. However, this is not valid for specificity 

metrics which experienced similar values in all architectures. After data augmentation is implemented, significant 

improvements are observed in all architectures. ResNet18 reached 95.8% accuracy with the shortest training time 

whereas ResNet50 and MobileNet-v2 are provided slightly lower accuracies but in a much longer time (≥130min). 

Although GoogleNet is improved in its enhanced state, it is still the poorest in activity recognition compared to 

other architectures. Table 21 presents the confusion matrix for the best-enhanced state (ResNet18). Comparing 

activity recognition performances for each class in the initial and enhanced state reveals that the largest 

improvements are obtained in accurate recognition of static activities (sitting and standing). 

 
Table 20.HAR performance metrics in WISDM dataset 

  Initial state   Enhanced state 

 
DL-CNN 

Epochs:5 

Iteration:3750 
Learning 

rate:0.001 

Batch size: 32 

Pre-trained 
network 

Acc. 
(%) 

Sens. Spec. F1 MCC 
Acc. 
(%) 

Sens. Spec. F1 MCC 

Training 

time 

(minutes) 

ResNet18 83.5 0.832 0.967 0.828 0.799 95.8 0.958 0.992 0.958 0.949 72.2 

ResNet50 86.0 0.854 0.972 0.854 0.827 95.4 0.953 0.991 0.953 0.944 163.49 

MobileNet-

v2 
82.7 0.821 0.965 0.821 0.787 95.4 0.953 0.991 0.953 0.944 129.52 

GoogleNet 71.5 0.719 0.943 0.718 0.678 89.3 0.891 0.979 0.892 0.871 80.27 

  Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score 

Table 21.Confusion matrix of WISDM dataset – ResNet18 (initial results-left, final results-right) 

 

Jogging Walking Ascent Descent Sitting Standing 

 

Jogging Walking Ascent Descent Sitting Standing 

Jogging 

100 2 0 3 0 1 

Jogging 

488 3 3 1 0 0 

Walking 

0 106 0 2 0 0 

Walking 

0 546 0 5 0 0 

Ascent 

3 4 85 12 0 3 

Ascent 

5 6 453 8 2 4 

Descent 

3 4 8 79 5 5 

Descent 

0 6 20 457 4 8 

Sitting 

0 0 0 1 60 32 

Sitting 

0 0 3 1 468 19 

Standing 

0 1 0 0 10 71 

Standing 

0 0 4 2 21 463 

 

7.4.3.  Local datasets (HS model)-M3 

Table 22 shows the initial and enhanced state results of HAR in the local dataset created from HS. In the initial 

state, MobileNet-v2 architecture outperforms its counterparts in terms of each performance metric whereas 

GoogleNet architecture performs poorly in recognition of HAR activities. Significant improvements are observed 

in the enhanced state where ResNet50 reaches the highest accuracy with 100%, especially GoogleNet accuracy is 

more than doubled in the enhanced state. Table 23 presents the confusion matrix created from ResNet50 

architecture which experienced misclassification in recognition of stair activities in the initial state. After data 

augmentation, ResNet50 architecture better adopted stair classes and corrected the misclassifications. 
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Table 22.HAR performance in local HS dataset 

  Initial state  Enhanced state  

DL-CNN 

Epochs:5 
Iteration:190 

Learning 

rate:0.001 
Batch size: 32 

Pre-trained 
network 

Acc. 
(%) 

Sens. Spec. F1 MCC 
Acc. 
(%) 

Sens. Spec. F1 MCC 

ResNet18 80.0 0.821 0.936 0.803 0.753 99.7 0.997 0.999 0.997 0.996 

ResNet50 82.5 0.827 0.942 0.822 0.765 100.0 1.000 1.000 1.000 1.000 

MobileNet-v2 85.0 0.863 0.951 0.852 0.810 97.5 0.975 0.991 0.975 0.967 

GoogleNet 42.5 0.358 0.798 0.313 0.224 95.3 0.953 0.984 0.952 0.937 

 Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score  

Table 23.Confusion matrix of HS local dataset– ResNet50 (initial results-left, final results-right) 

 Ascent Descent Walking Standing  Ascent Descent Walking Standing 

Ascent 9 2 1 0 Ascent 86 0 0 0 
Descent 2 5 0 0 Descent 0 95 0 0 

Walking 0 2 11 0 Walking 0 0 91 0 

Standing 0 0 0 8 Standing 0 0 0 87 

 

7.4.4. Local datasets (PD model)-M3 

Table 24 presents initial and enhanced results of HAR in those with PD. In the initial state, all CNN 

architectures experience comparable results where ResNet18 and ResNet50 outperforms other architectures. Later 

in the enhanced state, notable improvements were observed in all architectures but MobileNet-v2 achieved the 

highest performance. Table 25 presents a confusion matrix belonging to the classification result of MobileNet-v2, 

where misclassification in stair descent and walking activities were improved in the enhanced state. 

Table 24.HAR performance metrics in local PD dataset 

  Initial state  Enhanced state  

DL-CNN 
Epochs:5 

Iteration:190 

Learning 
rate:0.001 

Batch size: 32 

Pre-trained 
network 

Acc. 
(%) 

Sens. Spec. F1 MCC 
Acc. 
(%) 

Sens. Spec. F1 MCC 

ResNet18 94.6 0.949 0.982 0.947 0.929 98.8 0.987 0.996 0.987 0.983 

ResNet50 94.6 0.940 0.981 0.945 0.928 99.0 0.989 0.997 0.990 0.986 

MobileNet-v2 92.9 0.936 0.976 0.931 0.908 99.2 0.992 0.997 0.992 0.989 

GoogleNet 89.3 0.895 0.964 0.896 0.864 97.61 0.973 0.991 0.978 0.975 

 
Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score 

 
 

Table 25.Confusion matrix of PD local dataset– MobileNet-v2 (initial results-left, final results-right) 

 Ascent Descent Walking Standing  Ascent Descent Walking Standing 

Ascent 15 1 0 2 Ascent 121 1 0 2 
Descent 1 10 0 0 Descent 0 99 0 0 

Walking 0 0 13 0 Walking 0 0 135 0 

Standing 0 0 0 14 Standing 0 0 1 145 

 

7.4.5. Local datasets (SS model)-M3 

Table 26 shows performances from initial and enhanced states in the local SS dataset. In the initial state, 

ResNet18, ResNet50 and MobileNet-v2 experience accuracies just above 70% whereas GoogleNet shows the 

poorest performance with 65.7% accuracy. In the enhanced state, all architectures except GoogleNet experience 

significant improvements and reach over 95% accuracy. On the other hand, GoogleNet also experience 

improvements but with a small margin compared to its counterparts. Table 27 present confusion matrix of 

ResNet50 from initial and enhanced states. In the SS group, stair ascent occurrences were mostly misclassified 

whereas stair descent and walking activities suffered from low recognition. In the enhanced state, notable 

improvements were observed, especially in stair activities. 
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Table 26.HAR performance in local SS dataset 

  Initial state  Enhanced state  

DL-CNN 

Epochs:5 

Iteration:190 
Learning 

rate:0.001 

Batch size: 32 

Pre-trained 

network 

Acc. 

(%) 
Sens. Spec. F1 MCC 

Acc. 

(%) 
Sens. Spec. F1 MCC 

ResNet18 74.3 0.690 0.917 0.643 0.591 96.2 0.944 0.987 0.948 0.936 

ResNet50 71.4 0.667 0.903 0.629 0.558 98.1 0.968 0.993 0.973 0.967 

MobileNet-v2 74.3 0.690 0.913 0.650 0.590 97.4 0.960 0.992 0.960 0.952 

GoogleNet 65.7 0.500 0.874 0.563 0.516 79.8 0.655 0.927 0.656 0.647 

 Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score  

 

Table 27.Confusion matrix of SS local dataset– ResNet50 (initial results-left, final results-right) 

 Ascent Descent Walking Standing  Ascent Descent Walking Standing 

Ascent 1 1 1 4 Ascent 36 0 0 3 

Descent 0 4 0 1 Descent 1 51 0 1 

Walking 0 0 12 0 Walking 0 0 120 0 

Standing 1 2 0 8 Standing 0 1 0 99 

 

 

7.4.6. Discussion 3: Improving inertial sensor-based activity recognition in neurological populations 

The computational performance of the framework was deemed acceptable for data preparation (normalization, 

generally having low computational cost). Specifically, normalization of each segmented IMU window took 

approx. 5.4 milliseconds which was then converted into the activity image within approx. 2.1 milliseconds 

resulting in a total data preparation for each occurrence of about 7.5 milliseconds. However, model training was 

prolonged. Here, I first verify the proposed approach in benchmarking datasets and compare with reference studies. 

This tests whether the proposed numerical to image conversion approach is a valid and reliable approach in 

independent datasets. Results suggest that the proposed framework can classify activity classes in both 

benchmarking datasets with high accuracy, especially after the data augmentation. The pre-trained networks used 

in this study can achieve better or comparable classification accuracies against reference studies even when the 

networks are trained with a portion of the original datasets. 

After promising results are obtained in benchmarking datasets, I provide an evaluation regarding the pilot studies 

(in HS, PD and SS) which test the proposed approach (numerical to image conversion and data augmentation) on 

limited local datasets. In addition, I present an analysis regarding why some CNN architectures perform better than 

others and recommend the necessary properties a pre-trained network needs to achieve sufficient learning. 

 

7.4.6.1. Verification of the results in public datasets 

Table 28 compares the proposed framework against several reference studies with and without data 

augmentation in the same public datasets. Overall, numerical to image conversion along with data augmentation 

significantly improves the performance of CNN architectures in HAR. This study utilized 500 

occurrences/instances for each class to provide unbiased evaluation metrics as detailed in 4.1.2. Therefore, my 

findings should be considered in this context.  

 

7.4.6.1.1. UCI-HAR dataset 

Comparing my initial results with a reference study [369] initial results in the same dataset reveals that the 

proposed numerical to image conversion approach is an effective method. Here, ResNet18 architecture reaches 

93.3 % accuracy which is superior to 80% accuracy [369]. In the enhanced state of UCI-HAR dataset, the 

methodology proposed here provides similar or better results compared to the reference studies, Table 28. 

Comparing the training times with a reference study [369] that uses exponential smoothing augmentation technique 

reveals that my approach reaches 97.0 % accuracy in 166 min training duration whereas the reference study reaches 

97.9 % accuracy in 210 min. This suggests that the proposed framework can provide comparable accuracies with 

smaller training data with shorter durations. The difference in the training times could be attributed to the preferred 

data augmentation technique. For example, the exponential smoothing approach assigns exponentially decreasing 
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weights for older observations. However, my framework uses raw numerical data to produce activity images that 

are independent of the numerical values in the data stream. Producing images (e.g., activity images or spectrogram) 

directly from raw sensor data was proved to be effective in HAR [306, 373, 374].  

 

7.4.6.1.2. WISDM dataset 

In the initial state, my numerical to image conversion technique with ResNet50 reaches 86% accuracy that is 

superior to 83.4% in [369] and comparable to 86.4% in [368]. In the enhanced state, my accuracy reaches 95.8% 

with ResNet18 architecture that is comparable to 95.7% in [368] but poorer than 97.1% in [369]. Comparing the 

training time with a reference study [369] reveals that my proposed framework reaches comparable accuracies 

with smaller training data and shorter training duration.  

 
Table 28.Reference studies with benchmarking datasets 

Study 

 

Method Augmentation Accuracy (%) 

UCI WISDM 

Alawneh et al.[369] RNN Moving average and the exponential smoothing  97.9-80.0* 97.13-83.4* 

Huang et al. [368] CNN Step detection based novel augmentation technique- 

not appropriate for passive activities 

- 95.7-86.4* 

Yen et al.[453] CNN NA 95.99 - 

Jiang and Yin[373] CNN NA 97.59 - 

Li and Trocan[454] CNN NA 95.75 - 

Cho and Yoon[455] CNN Data sharpening 97.62 - 

Proposed framework CNN Numerical image conversion + image augmentation 97.0-93.3* 95.8-86.0* 

* Represents initial results where available 

 

7.4.6.2. Verification in local datasets 

I tested the proposed approach (initial state and enhanced state) on local datasets of HS, PD and SS groups. 

In the initial state, in terms of accuracy, CNN architectures provide higher performances in PD dataset compared 

to HS and SS. This could be associated with the fact that PD dataset is more balanced than SS and larger than both 

HS and SS. In addition, majority classes (walking and standing) are better recognized than minority classes (ascent 

and descent) in PD dataset. When the sizes of the datasets were artificially increased with data augmentation 

techniques in the enhanced state, improvements were achieved in all CNN architectures. It is important to highlight 

that data augmentation has no impact on the balance of a dataset because each class is enhanced at the same rate.  

Figure 18 presents the average performances of all CNN architectures from Table 22, Table 24, Table 26. 

Sensitivity and specificity values were normalized to 0-100 to present comparable results against accuracy. 

Comparing initial and enhanced results considering the overall performance of all CNN architectures in the local 

datasets reveals that the largest improvement in terms of accuracy is observed in HS with 25.6% followed by SS 

with 21.4% and PD with 5.8%, as seen in Figure 18. Comparing accuracy, sensitivity, and specificity reveals that 

data augmentation had the largest improvement in sensitivity with 18.81% followed by accuracy with 17.62% and 

relatively small improvements in specificity with 5.99%. This finding could be associated with the nature of the 

limited and imbalanced local datasets. In the initial state, the number of true positive (TP) and true negative (TN) 

in the classification were relatively low. After data augmentation, models experienced better performance in 

predicting positive classes compared to negative classes. This resulted in a larger increase in TP compared to TN. 

Consequently, improvements in sensitivity were found significantly larger than specificity. 
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Figure 18.Comparison of performance metrices between initial and enhanced states in local dataset. Sensitivity and 

specificity values are normalized to 0-100 to provide comparable results with accuracy. 

All four CNN architectures showed a test accuracy exceeding 90% in the enhanced state. ResNet50 

outperformed all other architectures in the enhanced state whereas MobileNet-v2 achieved the best result in the 

initial state. Although GoogleNet architecture experienced the sharpest enhancement after data augmentation, 

overall performance in both initial and enhanced states is poorer than its counterparts, as shown in Figure 19.  

Interpreting these outcomes with the properties of pre-trained CNN architectures (Table 11) could provide useful 

information regarding the most suitable CNN architecture. Initially, comparing ResNet18 (18 layers) with 

ResNet50 and MobileNet-v2 (50 and 54 layers) reveals that higher network layer does not necessarily provide 

better accuracy because ResNet18 achieved comparable results, aligning with the findings of a previous study that 

employs the same CNN architectures[425]. This suggests that network size and the number of parameters that a 

network can learn also have an impact on the accuracy. Among the two architectures with the greatest number of 

deep layers, ResNet50 (larger size and more parameters) provides better classification than MobileNet-v2 (smaller 

size and fewer parameters) in the enhanced state. Alternatively, MobileNet-v2 (smaller size and fewer parameters) 

achieves better results than ResNet50 (larger size and more parameters) in the initial state where the dataset is 

limited and unbalanced. This phenomenon can also be partially observed when two architectures with the lowest 

number of deep layers are compared. ResNet18 (larger size and more parameters) achieves higher performance 

than GoogleNet (smaller size and fewer parameters) in the enhanced state. As a result, findings of enhanced state 

suggest that CNN architectures require approximately 22 deep layers and 7 million parameters (GoogleNet) to 

classify walking, standing, ascent and descent activities with more than 90% accuracy. To achieve better accuracy, 

the number of deep layers and/or the number of parameters needs to be increased. The maximum accuracy can be 

potentially achieved with approximately 50 deep layers and 25.6 million parameters (ResNet50) or approximately 

54 deep layers and 3.5 million parameters (MobileNet-v2) because ResNet50 and MobileNet-v2 were found 

superior in HS, SS and PD datasets, respectively. On occasions when training time is considered as important as 

accuracy, ResNet18 architecture could be potentially a more suitable choice because this architecture has fewer 

deep layers and fewer parameters (fewer computation costs) than ResNet50. However, inconsistencies can occur 

as the previous study [416] reports that not all CNN architectures use their parameters with the same level of 

efficiency. 
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Figure 19.Comparison of CNN architectures in terms of accuracy in initial and enhanced status in the local datasets (HS-SS-

PD combined) 

My findings revealed that walking and standing are recognized with higher accuracy compared to stair 

activities, as shown in Figure 20. I also found stair ascent is the activity with the lowest recognition accuracy, 

aligning with many previous studies that use a single waist device [18, 368, 456]. Moreover, the figure reveals that 

data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, 

respectively. These findings align with a similar study [368] where data augmentation was shown to be effective 

in recognizing stair activities. Recognition of basic daily life activities in PD and stroke populations with high 

accuracy has potential to provide more robust and accurate movement analysis in real life. This framework can be 

used to accurately classify walking bouts and assist extraction of clinically important spatiotemporal parameters 

during walking. Moreover, it can also provide a better picture of functional capabilities of people with PD and 

stroke by recognizing stair ambulation activities more accurately. 

 

 

Figure 20.Recognition accuracy comparison of each activity in initial result of local dataset. This graph was derived from 

the architectures that provide the best performances in enhanced results. 

7.4.7. Limitation and future work-M3 

A limitation of the work includes total model training time. Deep learning models are structurally different 

from traditional machine learning models and involve significantly more training parameters, Table 11. Therefore, 
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deep learning-based CNN models are more complex than traditional machine learning models [457]. This 

computational complexity can be observed in training times in Table 18, Table 20. Although the training time 

reported in this study is shorter than a reference study [369], it still needs improvements.   

In this chapter section, the framework was examined within the context of four basic mobility tasks only. In 

addition, the dataset was created in a semi-controlled environment with a scripted experimental protocol, i.e., all 

participants walked in the same route while wearing the same device. Future studies will aim to investigate the 

performances of more complex daily activities in free living environments (e.g., home). In addition, this framework 

can be deployed to advanced microcontrollers (Raspberry Pi 4- 1.5 GHz) to perform real-time HAR. However, 

this could still be slower than offline computing as a faster CPU (Core i7-7700HG-2.80 GHz) is used in this study. 

 

7.5. Conclusion 

In this chapter, a multi-layer fusion framework was initially devised, incorporating sensor data and gait 

characteristics, to facilitate comprehensive multimodal gait analysis. The proposed fusion approach exhibits the 

potential in enabling a more holistic assessment of gait across diverse indoor and outdoor terrains. The study 

findings demonstrate the preliminary effectiveness of this approach by revealing distinctions between indoor and 

outdoor experiments in terms of spatiotemporal parameters, knee joint kinematics, and muscle activities. These 

insights have implications for the development of individualized rehabilitation strategies, as they offer valuable 

information for tailoring interventions based on the specific gait characteristics observed. 

Later, a feature-level sensor fusion framework was developed to combine IMU and EMG sensor data to 

achieve highly accurate HAR models. Here, various EMG signal processing methods were utilised to investigate 

how accuracy changes. Findings suggest the integration of sEMG and inertial features enhances human activity 

recognition (HAR) performance, particularly for activities involving stair ascent and descent. Utilising features 

extracted from a linear envelope of sEMG signals yields higher classification accuracy compared to features 

obtained from band-pass filtered sEMG signals. Furthermore, the inclusion of sEMG data from posterior leg 

muscles demonstrates slightly superior HAR performance compared to the inclusion of sEMG data from anterior 

leg muscles. 

Finally, I intended to increase low AI model performance in limited HAR datasets of people with neurological 

conditions using data augmentation techniques. The results demonstrated substantial improvements in HAR 

accuracy across all activities following the artificial augmentation of the data. Furthermore, the findings 

highlighted the significance of developing population-specific models to achieve higher levels of accuracy for 

each population. The next chapter will provide reflection and possible research directions. 
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Chapter 8 Reflection and possible 

research directions 
 

This chapter uses text from my previously published online article to fit the context and narrative of 

this thesis. The article appears as a book chapter (Sensor Integration for Gait Analysis), appearing in 

the book Encyclopaedia of Sensors and Biosensors published by Elsevier in 2023. Permission 

granted to freely use the whole chapter with declaration of authorisation included in Appendix 10. 

 (URL: https://doi.org/10.1016/B978-0-12-822548-6.00139-4) 

Permission to reuse up to 6x 500- word excerpts of the published work was obtained from Elsevier on 

26 May 2023 – License Number: 5556550154630. The declaration of authorisation is included in 

(Appendix 10). 

Permission to reuse 2 figures of the published work was obtained from Elsevier on 26 May 2023 – 

License Number: 5556550272693. The declaration of authorisation is included in (Appendix 10). 
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8.1. Introduction 

This chapter presents my reflection on methods I developed and presented in Chapters 6 and 7. After reflecting 

on these methods, I will explore potential research directions and focus on PoI4 to emphasise the utilisation of 

edge computing technology in the analysis of gait among individuals with neurological conditions. 

8.2. Reflection 

To this point, significant progress has been made in the development of multimodal gait analysis methods, 

which have been effectively combined with HAR techniques tailored for individuals with neurological conditions. 

This innovative combination enables me to conduct automated multimodal gait analysis without the need for 

manual gait segmentation in clinics and various environments, even over extended periods of time. The integrated 

framework can be summarised as follows: 

The process of multimodal gait analysis commences with the collection of data using multiple wearable 

inertial and EMG sensors attached to the patient's body. Inertial data is sampled at a rate of 100 Hz, while EMG 

data is sampled at 512 Hz, following device configuration. The collected data is stored in memory cards within 

each sensor unit, with timestamps facilitating synchronisation across multiple wearable devices. Subsequently, the 

data is transferred to a computer for post-processing. The duration of data upload typically takes a few hours or 

more, depending on the length of data collection. Pretrained AI models are then employed to segment various 

activities, such as walking, stair ascent, and stair descent, utilizing the inertial data. This segmentation process 

involves dividing the data into 2.5-second windows (almost equivalent to two strides) and classifying each window 

based on the inertial data. Once all walking bouts, including stair activities, have been successfully segmented, 

multimodal gait analysis is conducted, considering the specific type of activity. While the developed 

methodologies have proved beneficial in exploring PoI1, PoI2, and PoI3 the post-processing stage remains time-

consuming for researchers. 

 

8.3. Possible research directions: Remote monitoring considerations 

 

8.3.1. Why is innovation needed? 

Since its inception in 1948, the National Health Service (NHS) in the United Kingdom has transformed and 

evolved to be the fifth-biggest employer globally and delivers care to over 1 million patients every 36 hours [458]. 

This has required the NHS and many other healthcare systems to change and adapt to new ways of working and 

incorporate new technological advances over the past seven decades.  

By 2050, the number of people over 65’s will outnumber children (under 15s) for the first time ever, driven 

by decreases in infant mortality [459]. Although this trend of reduced infant mortality should be celebrated, the 

consequence of people living longer has added a significant financial and social burden to health care in the NHS 

(and elsewhere). An ageing population is not the only challenge facing society, alongside is the rise in complex 

co-morbidities such as Dementia and Alzheimer's disease, which are now the leading cause of death in the UK 

[460]. The Covid-19 pandemic has also highlighted the limitations and fragility of the current volume-based 

healthcare system, and it is struggling to meet the expectations of society, government, staff and most importantly, 

patients. 

8.3.2. Embracing remote monitoring with wearables 

One promising opportunity to alleviate the pressure on health structures such as the NHS and deliver improved 

care, efficiency and outcomes for patients and society is remote assessment via medical technology (MedTech) 

including wearables. Defined as “products, services or solutions used to save and improve people’s lives” [461], 

MedTech is estimated to be worth over half a trillion dollars worldwide [462] and is a significant driver of 

healthcare, economic growth and job creation.  

Wearables can capture meaningful health data during passive tasks like walking. Walking, generally perceived 

as a simple and routine task, requires significant cortical processing and integration of many complex systems and 

has already shown considerable value in detecting impairments and disease progression [94, 463-466]. For 

example, slow walkers at the age of 40 were found to have more signs of accelerated aging and a variety of 
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neurological impairments [467, 468]. Overall, there is likely to be a wide variety of improvements and innovations 

in the ‘anytime & anywhere’ healthcare domain, central to remote monitoring. However, clinical adoption and 

adherence to technology will be critical in realising the benefits and contributing to personalised medicine and 

healthcare. Here I highlight the drivers, the type of changes that may occur in the future, and how this may be 

achieved. 

• Citizens, society, and patients 

Citizens and patients alike will be more involved, engaged, informed, and therefore empowered to review 

their health status, personal data, and management of care. Crucial to this successful implementation is ensuring 

patients feel involved and trust the healthcare system. Widening access to healthcare and reducing societal 

inequalities will drive better early diagnosis and self-management of conditions. Co-created (patient and 

researcher) healthcare research is important to develop trust and ensure technology is successfully integrated into 

the healthcare system.  

• Health System and healthcare professionals  

Digital transformation and technology can increase the effectiveness, efficiency, connectivity, and resilience 

of healthcare systems. Central to achieving this transformation is a requirement to upskill and improve all health 

professionals' digital skills/literacy to support a sustainable and learning health system. This will free up time for 

clinicians to offer patient-centred care and spend more time with patients, often referred to as the 'gift of time' and 

most importantly, compassionate care.  

• How can this be achieved? 

As technologies become more mature, embedded and mainstream, the next stage of a digital transformation 

will move away from a project-based implementation plan to one where data and technology are viewed as 

strategic assets. Empowering data-driven decisions will require a cultural shift to a digital culture that builds trust, 

supports a learning health system, and better connects healthcare professionals to patients. Building trust and 

patient engagement will be paramount. Overall, this will allow the strategic move from a traditional volume-based 

model of care to value-based care. Improving the ability to respond to the everchanging and increasingly volatile 

global health system.  

The future of technology deployment and remote assessment will depend on balancing the best use of 

technology and data to optimise patient outcomes and safeguard patient privacy. To achieve this, the role of 

Government, academia, and industry in establishing the appropriate regulatory framework will be critical to ensure 

confidentiality and patient control over data. If this can be achieved, then the future of technology can be diverse, 

positive, and impactful. A summary of some of the processes outlined here to enable wearable use in clinical care 

is summarised in Box 1. 

 

 
Box 1: Embracing remote monitoring with wearables 

 

8.4. Conclusion 

This chapter presented my reflections on automated multimodal gait analysis and its limitations such as time-

consuming post-processing. From this point, I focused on mitigating problems of offline processing using edge 

computing, and IoT technology to enable a remote automated gait assessment tool.  

The advantages of remote gait analysis are numerous. Firstly, it would eliminate the need for patients to travel 

to clinics, which can be particularly beneficial for individuals with limited mobility or those residing in remote 

areas. During times such as the COVID-19 pandemic, when individuals need to isolate themselves, remote gait 

analysis using wearable sensors and edge computing could become particularly valuable. Remote gait analysis 

also offers the potential for long-term monitoring, enabling the continuous assessment of gait patterns in natural 

environments. This longitudinal data can provide valuable insights into disease progression, treatment efficacy, 

and the impact of interventions. Moreover, remote gait analysis has the potential to revolutionize research studies 

• Creating a culture for transparent, ethical, secure, and patient-centric data 

• Moving to value-based healthcare models 

• Academic and private sector (health technology) collaboration 

• Diverse stakeholder leadership (patient, clinician, academic and regulator) 
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by enabling large-scale data collection. Researchers can remotely recruit participants from diverse geographic 

locations, resulting in more representative study populations. This approach allows for the collection of habitual 

gait data, minimising the influence of artificial laboratory conditions. The availability of rich, real-world gait 

datasets can significantly enhance the development and validation of gait analysis algorithms and models. In the 

next chapter, I will present a developed technology and methodology that allows automated remote gait analysis.  
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Chapter 9 Gait analysis on the Edge 
This chapter uses text from a manuscript I prepared during my doctoral study to fit the context and 

narrative of this thesis.  

The manuscript titled "Gait on the Edge: A Proposed Wearable for Continuous Real-Time Analysis 

Beyond the Lab" has been submitted to the journal Computer Methods and Programs in Biomedicine. 
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9.1. Introduction 

In this chapter, I introduce a newly developed remote gait analysis device that utilizes cutting-edge edge 

computing technology. I provide a comprehensive overview of the hardware and software components 

incorporated into the design, delving into their functionalities and intricacies. Furthermore, I present detailed 

experimental results obtained from rigorous validation studies conducted to assess the device's performance and 

accuracy. Through this chapter, readers will gain a thorough understanding of the remote gait analysis device and 

its potential implications in the field of remote gait analysis. 

 

9.2. Background 

Wearable inertial devices are enabling a paradigm shift for gait assessment from the clinic to the home. Yet, 

capturing inertial data beyond clinics for long periods results in (very) large datasets. Previous studies that seek to 

examine gait in ecologically valid environments preferred data collection for multiple days (e.g., 2-7) or more. 

[21-23]. Those studies and others [8, 13, 469] used different sampling frequencies ranging between 32 and 128 Hz 

with 100 Hz usually preferred. Considering a single IMU device capable of sensing 3D acceleration and 3D angular 

velocity at 100 Hz, it can generate 600 data samples per second. Collecting 6 degree of freedom data (i.e., 2 × 3D, 

100 Hz) for 7-days result in approx. >362 million data samples which is often stored locally on a device for post-

processing. That requires big memory/storage capabilities locally on the device which may negatively impact its 

size. Alternatively, inertial data could be transferred to a Cloud/computer as it is being collected. However, 

streaming 600 data points into the Cloud every second would require very high bandwidth requirements along 

with introducing other challenges like data loss, latency, privacy, and power consumption. Moreover, post-

processing often involves a time-consuming and labour-intensive task of downloading data from a memory card, 

locally processing on a computer, or uploading to a Cloud platform as analysing the large collection of data often 

requires high computational power. Specifically, inertial data captured over many days need labelling/categorizing 

as gait bouts need to be (i) detected and segmented [470] and then (ii) examined for specific sequences as defined 

by the gait cycle [315].  

Those challenges can be mitigated by edge computing technology [25]. Edge computing refers to the 

decentralization of computing power from the Cloud/computer to the edge of the network, where data is collected 

and processed closer to the source. Such an approach enables faster and more efficient processing of data, as well 

as reduced latency and bandwidth [24]. Edge computing could also enhance the capabilities of gait analysis in 

healthcare by efficiently processing data continuously in real-time.  

Improved efficiency can be explained by examining the 600 data points (as detailed above). For temporal gait 

analysis, researchers require initial contact (IC) and final contact (FC) moments within the gait cycle to calculate 

clinically important characteristics like step, stance, and swing times. In offline processing, and once data (walking 

bouts) has been segmented, IC and FC points are identified through a search of IMU data [159]. Typically, in 

normal/healthy gait there are two steps within one second [291]. Accordingly, the first phase is to identify the 

walking periods, then search for four data samples/moments (right foot IC and FC, as well as left foot IC and FC) 

within 600 data samples to calculate temporal characteristics. Subsequently, the remaining data points are 

considered superfluous, akin to data collected during static activities such as sitting or lying. 

In this chapter, I introduce a low-cost edge device as a viable alternative to the time-consuming and 

computationally intensive offline instrumented gait analysis. The proposed edge device aims to address the 

described challenges by leveraging artificial intelligence (AI) models in conjunction with previously validated gait 

algorithms at the software level. Bluetooth® Low Energy (BLE) and Internet of Things (IoT) complement the 

device for efficient data streaming. Specifically, the proposed edge device can identify walking bouts and perform 

real-time gait analysis to calculate step and stride times by detecting foot IC moments. This low-cost device can 

operate for up to three days outside of clinical settings and requires a smartphone with Bluetooth and internet 

connectivity to transmit data to a Cloud platform. To assess the efficacy of the proposed edge device, validation 

was performed against a reference system in a lab, with statistical parameters presented to explore agreement 

between both systems. Additionally, a participant-specific examination (case study) was executed, wherein an 
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individual wore the edge device and the same reference for a day, during their customary daily activities. The 

results obtained from both wearable sensors were analysed and presented. 

 

9.3. Related work 

The acquisition of gait data from everyday life can offer supplementary information that can complement 

clinical evaluations [294]. Recent research has shifted its focus towards the utilization of devices and algorithms 

that can gather high-resolution and objective data to accurately reflect an individual’s gait in free-living 

environments [294]. Consequently, innovative technologies such as smart insole devices, wearable devices, and 

mobile applications have been developed to support these endeavours. 

 

9.3.1. Use of smart insole units and smartphones 

Smart insoles have emerged as a promising technology for gait analysis, providing a non-invasive and portable 

way to collect detailed information on foot mechanics and gait patterns. Bamberg et al. introduced a wireless 

wearable system, which incorporated accelerometers, gyroscopes, and force sensors, to collect gait data on healthy 

and PD participants beyond the lab. The shoes transmit data at intervals of 13.4 milliseconds (ms) to a base station 

via a radio frequency transmitter for characteristics extraction such as stride length, and stride time, resulting in a 

net data transmission frequency of approximately 75 Hz [471]. Another study [472] proposed a lightweight smart 

shoe that monitors walking behaviour using an instability assessment model to produce a quantitative value, 

highlighting important episodes of activity. That system enables the transmission of sensor data obtained from 

acquisition units in the shoe to a variety of Bluetooth® enabled devices for post-processing. Schlachetzki et al. 

[170] developed a wearable unit that can be attached to a shoe for gait analysis different from previous studies. 

That system offers a high level of biomechanical resolution for gait impairment in PD. In that study, data were 

transmitted via Bluetooth® technology at a sampling frequency of 51.2 Hz. That system computes stride length, 

stride time, stance time, and inter-stride variation, and was suggested as suitable for use in both large-scale clinical 

studies and individual patient care. Alternatively, insoles are also used for human activity recognition. For example, 

SmartStep comprises insole-based and wrist-worn wearable sensors for the automatic recognition of activities of 

daily living. Throughout a free-living study, data were recorded at a rate of 50 Hz, and transmitted to a smartphone 

via BLE [473]. Some studies utilized electronic textile and fabric pressure sensor technologies to measure plantar 

pressure [474, 475]. Lin et al. employed a collection of electronic textile-based pressure sensors embedded within 

an insole to measure plantar pressure. Additionally, a low-cost IMU method was used to capture gait characteristics 

through the use of adaptive sampling frequencies for a tailored approach, with an upper threshold of 100 Hz [476]. 

Some studies did not utilize bespoke insole technology and simply attached commercial off-the-shelf IMU sensors 

to a shoe. For instance, a previous study [477] designed and validated a biofeedback system that functions in 

tandem with a mobile Android app on an LG Nexus 4 smartphone to compute step quality. Specifically, a wearable 

IMU was configured to transmit 6 degrees of freedom inertial data at a sampling rate of 51.2 Hz. Samples were 

transmitted to the feedback module via Bluetooth® in packets consisting of 16 samples.  

Previous studies often transferred the raw data collected by smart insoles or IMU into a base station (e.g., 

computer, smartphone) for further analysis. Some studies aimed to minimize the negative impact of data 

transferring and developed a mobile application that utilizes sensor sets within the mobile device. For example, 

[478] used a smartphone as a wireless accelerometer to extract characteristics such as stride time, stance time, 

swing time, and cadence. The referenced study used a smartphone (attached to the user's ankle) and an application 

for data collection and processing. 

Despite their promises, existing smart insole and IMU-based gait analysis systems with and without a 

complementary mobile app still face limitations. For example, many of these systems require data transmission to 

a base station or mobile device for post-processing, which can result in signal loss or delay, cause privacy concerns, 

and require a considerable amount of operating power and memory space. Additionally, while some systems can 

collect data wirelessly, they are often limited in terms of sampling frequency, which can reduce the accuracy of 

the collected data [112, 479]. Streaming raw data into a Cloud platform can also bring more limitations such as 
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high latency, and the need for high bandwidth. Furthermore, many systems cannot analyse data in real-time, 

limiting their usefulness for applications such as continuous monitoring or real-time feedback. 

 

9.3.2. On the edge: Towards continuous gait 

This research proposes edge computing technology to develop an inertial-based wearable that continuously 

assesses gait, with particular use beyond the lab. Edge computing has the capability to facilitate decentralized gait 

data processing, whereby data is collected and processed on edge devices without being transmitted to 

Cloud/computer or time delayed post-processing on a computer. This mitigates problems related to raw data 

transmission such as data loss and offers real-time feedback capabilities for users [25, 480, 481]. Furthermore, the 

proposed approach suggests a solution to privacy concerns, as it allows individuals and organizations to maintain 

a greater level of control over their data and minimize the risk of data leakage [24, 482].  

The primary objective of this study is to design an edge wearable device for continuous and real-time gait 

analysis. The device is designed to be used easily by attaching it to the lower back (fifth lumbar vertebrae, L5) to 

compute step and stride times. Then, the edge device will be validated against a reference standard on a group of 

young adults, and it will then be used to conduct a case study for a day. Unlike most prior research, the raw data 

will be analysed within the edge device itself, without the need for streaming to an external base station such as a 

computer or mobile phone. As a result, only computed gait characteristics (e.g., step times) will be transferred to 

Cloud and displayed via smartphone.   

The rest of this chapter is organized as follows. Section 9.4 provides detailed information regarding the 

hardware, electronic design, and algorithms employed in the study. Section 9.5 includes the results obtained 

through the validation study and case study.  In Section 9.6, the proposed edge device is evaluated in terms of its 

accuracy, privacy, daily use, and limitations. Finally, Section 9.7 provides a conclusion that summarizes the main 

findings of the study and highlights potential directions for future research. 

9.4. Materials and Methods 

 

9.4.1. Hardware 

The edge device consists of (i) a rechargeable lithium polymer battery (LiPo 3.7V), (ii) an Arduino Nano BLE 

33 Sense module, (iii) a LiPo battery charging module, (iv) a switch, and (v) DC-DC boost converter (3.7V to 5V). 

Arduino Nano module was chosen due to nRF52840 (64MHz, 256 KB SRAM, 1MB flash memory) 

microcontroller that can run machine learning (ML) models. The module also has an embedded 2.4 GHz 

Bluetooth® 5 Low Energy, and LSM9DS1 IMU features a 3D accelerometer, 3D gyroscope, and 3D 

magnetometer. An Apple iPhone 13 smartphone (vi) was used to receive data from the edge device and send to the 

Cloud. The connection between the electronics components and the edge device is presented in Figure 21.  
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Figure 21.The edge device with black strap. Physical features along with   led indicators. Electronic circuit design with 

connections. 

9.4.2. Gait detection: Creating a ML model 

Detection of gait bouts in real time plays a critical role in remote gait analysis. This eliminates the need for 

manual data labelling or time-consuming post-processing that was detailed in Chapter 4.  

Temporal characteristics (step and stride times) from IC’s can only be extracted during walking. Therefore, 

an AI model was trained and deployed to the microcontroller to detect walking. Data collected via embedded 

Arduino module IMU sensors were used on a model development platform. Edge impulse 

(www.edgeimpulse.com) is a Cloud-based machine learning operations (MLOps) platform for developing AI 

models that can be deployed to microcontrollers. It provides a user-friendly interface for data acquisition, model 

development/evaluation, and model deployment, rendering the platform a feasible solution. This section has two 

important parts model training/testing and investigating model performance.  During the model training, inertial 

data collected from IMU placement on the lower back (fifth lumbar vertebrae, L5) were gathered from a single 

participant (29 years old, 90 kg, 184 cm, male) with the objective of creating a highly effective model that would 

incur minimal computational complexity and costs, thereby making it suitable for real-time applications. 

Additional participants were not included in the model development process as the model was specifically designed 

to differentiate between simple activities based on non-gait (more stable IMU signals) and gait (less stable IMU 

signals). Furthermore, solely 3D accelerometer signals were employed in the model, as the incorporation of 

supplementary 3D angular velocity signals would result in a twofold increase in computational complexity and 

costs.  Two-second windows of 3D accelerometer data were used to train ML model to classify 2 different classes, 

(1) gait and (2) non-gait conditions (standing, lying, sitting). 2700 seconds (s) of gait and 2700s non-gait data (total 

of 5400s = 90 min) were collected at 100 Hz. Then 80% of this data was used for training (2160 occurrences/ 

4320s) and the remaining 20% for testing (540 occurrences / 1080s). Signal pre-processing was not used as it can 

potentially increase the computational cost and time.  

A neural network (NN) structure with 2 hidden layers (20 neurons + 10 neurons, Figure 22) was used with 

100 epochs and 0.0001 learning rates. These hyperparameters were chosen considering short inferencing time and 

low memory usage. Model performance was investigated using accuracy and F1 score computed from a confusion 

matrix where TP: true positive, TN: true negative, FP: false positive and FN: false negative, Eq. 14 and 15. 

 

 

http://www.edgeimpulse.com/
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
          (14) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑥𝑇𝑃

2𝑥𝑇𝑃+𝐹𝑃+𝐹𝑁
           (15) 

 

The results of the classification are illustrated in Figure 23, where it can be observed that one instance from 

each category was incorrectly classified by the model. Nonetheless, the NN demonstrated an accuracy and F1 

score of 0.98. Moreover, the interference time on the device (Arduino Nano 33 BLE Sense, Cortex-M4F 64MHz) 

is 1 millisecond, enabling the device to perform gait classification in a very short time.  Consequently, the model 

was deployed to an Arduino platform using the provided sketch file. 

 

 
Figure 22.Data collection protocol and neural network structure used for walking (gait) activity recognition. 

 
Figure 23.Classified activities by the neural network and corresponding confusion matrix 

9.4.3. Calculation of temporal gait characteristics 

Here, the edge device has 1MB of flash memory. Therefore, gait data (3D acceleration) is recorded for 2 

minutes, then processed and deleted. The algorithms developed in this study are written in C++ language using 

Arduino Integrated Development Environment (IDE). The process to calculate temporal characteristics (step and 

stride times) is presented. 

• Phase 1: When a gait bout is detected (walking starts) by the ML model, the anterior–posterior (AP) 

acceleration data is buffered into an array [APacceleration] using a serial monitor. AP acceleration data is 

collected at 100 Hz for 120s (2 minutes) and low pass filtered (4th order Butterworth filter at 20 Hz cut-off). 

Therefore, the float array size is 12000. The timing was controlled by an internal timer, in an Arduino device 

(the millis(); function returns milliseconds passed since the Arduino board began running the current program).  
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• Phase 2: Step and stride times from IC. Previously validated algorithms were used to compute IC moments 

from vertical [6] and AP [219] accelerations. Here, the method from AP accelerations was used due to low 

computational complexity. The edge device was programmed to detect peaks (IC moments) with a minimum 

peak distance of 0.4s (40 data points) and a minimum peak height of 1 m/s2 (Figure 24). The minimum peak 

distance threshold was selected considering healthy individuals walk with step times above 0.4s [13, 291]. 

• Phase 3: Moments (timestamps of running internal clock) of the detected peaks (IC moments) were saved in 

an array [APpeakLocations]. Each value located in this array represents right foot IC (right_IC) and left foot 

IC (left_IC) moments. Step times and stride times were calculated using those values with the following 

equations [154], where i represents the sequence number. 

 

𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒 = 𝐴𝑃𝑝𝑒𝑎𝑘𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝑖 + 1) − 𝐴𝑃𝑝𝑒𝑎𝑘𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝑖)     (16) 

 

StrideTime =  APpeakLocations (i + 2) − APpeakLocations (i)       (17) 

 

• Phase 4: Step and stride times were saved in two different arrays to be sent to the Cloud via Bluetooth®. The 

computed characteristics in the step and stride arrays can be transferred to the mobile app in order to optimize 

battery life. The mobile app can utilize a predetermined schedule, tailored to circumstances, to determine the 

timing of data streaming. In the event of an unavailable Bluetooth® connection, the data can be transmitted to 

the mobile app when the connection is re-established (Figure 25).  

 

 
Figure 24.AP acceleration signal of lower back. Red stars represent initial contact moments. 

9.4.4. Streaming calculated characteristics 

Data saved in step and stride time arrays are sent to a connected Bluetooth® device with a mobile app 

(LightBlue®, an alternative is nRF Cloud Gateway, https://nrfcloud.com, where both applications enable users to 

stream data between mobile phones and Arduino Nano BLE 33 Sense). Here, an Apple iPhone 13 mobile phone, 

coupled with the LightBlue® app (receiver), was employed to receive data transmitted via BLE from the edge 

device (transmitter). The LightBlue® app also offers to transfer the received data into a connected Cloud platform 

as the data is being received. Here, Adafruit IO (https://io.adafruit.com), an IoT platform was used to save step 

and stride times characteristics as final storage. The platform enables users to view the collected data on different 

days and provides facilities for further data processing. 

The process to stream data is as follows: 

• Configuration of the edge device for the type of connection and data to be sent. Here, BLE Read and BLE 

Notify were used in the edge device to communicate with the mobile phone. A standard 16-bit characteristic 

Universal Unique Identifier (Hexadecimal, UUID:2A19) was selected.   

• A mobile phone was connected to the edge device using a central address number (first connection) on the 

LightBlue® app.  The central address number was saved in the memory of the edge device for re-connection in 

case of disconnection. The LightBlue® app was configured to listen to notifications that come from the central 

address of the edge device. In addition, Cloud connection mode was activated to transfer the values to the 

Cloud platform as data arrived. 

• After step and stride time arrays are created, the edge device attempts to connect to the central address saved 

after the first connection. In the case of connection, values in step and stride arrays were sent individually. 

After sending all data points, the edge device returns to the gait detection mode. 

https://nrfcloud.com/
https://io.adafruit.com/
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Figure 25.Flow chart of working edge-based system 

9.4.5. Validation protocol 

Ten healthy participants (HP’s) were recruited for the main study (30.6 ± 6.4yrs, 79.2 ± 16.0kg, 176.9 ± 7.5cm, 

7M:3F). Full participant demographics are presented in Appendix Table 10.  Assessment and instrumentation were 

carried out by a physiotherapist and trained researchers, respectively. Ethical consent was granted by the 

Northumbria University Research Ethics Committee (REF: 21603). All participants gave informed written consent 

before participating in this study. Testing took place at the Clinical Gait Laboratory, Coach Lane Campus, 

Northumbria University, Newcastle upon Tyne. Each participant wore the edge device on L5. The edge device 

was configured (acceleration ±2 g, sampling rates: 100 Hz) prior to data collection. Each participant was instructed 

to walk (2 trials) over the ground for 2 min around a 20 m circuit at three different self-selected walking speeds 

(slow, preferred self-selected and fast) inside the laboratory.  

The validation of the edge device was carried out using a reference technology (Mobility Lab™, APDM, Inc., 

Portland, OR, USA) for each of the walking speeds. Mobility Lab™, is a commercially available system that allows 

for IMUs to be wirelessly synchronized (Opal V1, APDM Inc., Portland, OR, USA) and software that allows for 

easy data collection and automatic analysis, without gait research knowledge or expert data processing [483]. Two 

Opal sensors were attached to feet for the purpose of this study as only steps and strides are collected. Gait 

characteristics obtained from the reference were compared to those obtained from the edge device. 

 

9.4.6. Statistical analysis 

I evaluated the correlation between the reference system and edge device on the temporal characteristics using 

Pearson's (r) and Spearman's (rho) correlation coefficients. I also investigated agreement using interclass 

correlation coefficients (ICC2,1) with upper and lower bounds, which were calculated using a two-factor mixed 

model to assess the level of absolute agreement. I accepted that a coefficient value of 0.71 to 0.90 indicates good, 

while a value >0.91 indicates excellent agreement [322]. Furthermore, Bland-Altman analysis offered a 

straightforward and precise approach to gauging agreement, and is a valuable tool for medical professionals aiming 
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to compare a new measurement technique with an existing one or a benchmark standard [484]. Statistical 

calculations were made by IBM® SPSS® Statistics 26 and Bland-Altman plots were generated using MedCalc v20. 

 

9.5. Results 

Table 29 and Table 30 present summaries of descriptive and statistical data pertaining to validation gait 

characteristics, step and stride times for two different trials, acquired from the edge device and reference. The 

tables also provide information on the degree of correlation and agreement between both systems.  Bland–Altman 

plots in Figure 26 and Figure 27 offer a graphical representation of the level of agreement between the two devices 

(trials are merged) during normal/preferred walking speed. Bland-Altman plots showing the agreement between 

the two devices for slow and fast walking speeds are presented in Appendix 6, Appendix Figure  4 and Appendix 

Figure  5.The validation study aims at investigating the agreement between step and stride times obtained from 

two different devices across a range of walking speeds. My findings reveal that both gait characteristics exhibited 

substantial to very good agreement across all speeds.For step time, strong correlations (r = 0.912, rho = 0.886) and 

high levels of agreement (ICC2,1 = 0.949) were observed during slow walking. Stronger correlations (r = 0.962, 

rho = 0.955) and agreement (ICC2,1 = 0.976) were obtained during preferred walking speed. The highest 

correlations (r = 0.964, rho = 0.980) and agreement (ICC2,1 = 0.974) were observed during fast walking. Similarly, 

for stride time, I found high correlations (r=0.922, rho=0.904) and agreement (ICC2,1 = 0.935) during slow walking, 

very strong correlations (r = 0.97, rho = 0.902) and agreement (ICC2,1 = 0.971) during preferred walking speed, 

and the highest correlations (r = 0.975, rho = 0.959) and agreement (ICC2,1 = 0.973) during fast walking. Results 

obtained from both systems during all walking speeds for each participant are presented in Appendix Table 11, 

Appendix Table 12, Appendix Table 13. 

 
Figure 26.Bland–Altman plots demonstrating Step Time agreement between edge device and reference (preferred walking 

speed) 
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Figure 27.Bland–Altman plots demonstrating stride time agreement between Edge Device and reference (preferred walking 

speed) 

9.5.1. Case study: Daily walking pattern monitoring 

Validation results show the edge device has excellent agreement with the reference technology for all 

characteristics and during various walking speeds. Results indicate that the edge device can accurately collect gait 

characteristics in real-time and has the potential for use in continuous gait analysis beyond the controlled lab 

settings. The study also presents a GitHub repository (https://github.com/wearableyunus/Edge-device/wiki), 

containing a demonstration video, source code, and electronic and mechanical designs of the edge device, which 

serve to facilitate the reproducibility of the experimental results. 

Subsequently, I performed a pilot study in a complex real-world scenario (e.g., walks through a city centre) 

to verify the feasibility of the edge device in daily life. A single participant (29 years old, 90 kg, 184 cm, male) 

wore the edge device on L5 for a day (6 hours), with clear instructions to walk in a routine manner. The edge 

device was paired with the participant's own smartphone. The smartphone battery was charged during the night 

and the battery level was maintained above 50% during the day as researchers observed that a low battery has an 

impact on BLE connection reliability. Following data collection, step times and stride times computed on the 

device were transmitted to the Cloud through a singular channel facilitated by a smartphone. Timestamps were 

included in the transmitted data, which were downloaded for analysis. A threshold was applied to distinguish 

between step and stride times. Specifically, data points with a duration ≤0.8s were classified as step times, whereas 

those >0.8s were categorized as stride times.  

The commercial McRoberts wearable sensor was also placed on the lower back (above the edge device) to 

investigate the validity of the edge device. Data collected via McRoberts was processed offline with step and stride 

time characteristics extracted using the same methodology [219], after walking bouts are manually segmented. 

The number of steps and strides detected by the edge device were 966 and 482, respectively. Mean absolute error 

(MAE) and mean absolute percentage error (MAPE) were calculated using formulas presented in equation 18, 

where N is the number of steps and stride times, E is data computed from the edge device and M is the data 

computed from McRoberts. 

 

𝑀𝐴𝐸 =
∑ |𝑀−𝐸|

𝑁
 ,  𝑀𝐴𝑃𝐸 =

∑
|𝑀−𝐸|

𝑀
𝑋100

𝑁
       (18) 

 

The mean absolute error (MAE) values for the step and stride times are 0.001s and 0.007s, respectively, Table 

31. Alternatively, mean absolute percentage error (MAPE) values for the step and stride times are 0.203% and 

0.764%, respectively. Those values indicate the level of deviation between both wearable systems. Furthermore, 

the mean step time and mean stride time were computed as 0.518s and 1.039s, respectively. Comparing these 

https://github.com/wearableyunus/Edge-device/wiki


 

 

 

120 | P a g e  
 

results with the result of the validation study for the same participant (id:1, Appendix 6) during normal walking 

speeds reveals that the participant walks with slightly lower step times (faster walk) beyond the lab compared to a 

comfortable normal walk in the lab. Similarly, the participant walks with lower stride times (faster walk) beyond 

the lab compared to normal walk speed in the lab. This finding is consistent with a prior study [13] that compared 

laboratory-based walking with outdoor walking using different participants through offline data processing. 

 

9.6. Discussion 

This study presents a novel gait analysis system that utilizes edge computing technology. The system is 

capable of detecting gait in real-time and extracting clinically relevant characteristics during detected walking 

bouts. The validity of the edge device was established by comparing it against a reference technology for different 

walking speeds in young adults. Furthermore, a case study was conducted to test the edge device over a day outside 

of the laboratory setting.  

The proposed system offers several advantages over traditional lab-based gait analysis systems. By capturing 

data in naturalistic settings, the system is better able to reflect real-world walking behaviour. When participants 

forget to wear the sensor, a researcher can detect this due to real-time analysis. This study computed clinically 

relevant temporal characteristics, which serve to complement a prior study [25] that focused on the extraction of 

spatial characteristics. In this way, a more comprehensive representation of an individual's spatiotemporal walking 

characteristics in uncontrolled free-living environments can be established. Additionally, the system minimizes the 

risks associated with data privacy as raw data is processed and deleted on the edge device, reducing the need for 

data transfer to Cloud-based servers. Furthermore, it reduces the need for post-processing of data, as the edge 

device processes the raw data as it is collected, reducing both bandwidth requirements and time-consuming post-

processing. 

 

9.6.1. Accuracy and reliability 

 The accuracy and reliability of wearable edge devices developed depend on several factors, including the 

quality of the sensor technology, algorithms used, and the placement of the sensors on the body. In general, the 

edge device offers a convenient and non-invasive way to gather real-time gait data in free-living environments. As 

a result of the validation study, both step time and stride time characteristics are more accurately detected in 

preferred and fast walking speeds compared to slow walking considering ICC agreement values. This finding 

aligns with previous studies [485, 486]. I hypothesize that the observed difference may be attributed to the 

smoother nature of the generated signals during slow walking, which may cause the algorithms utilized to identify 

peaks in IMU signals.  

The accuracy of computed gait characteristics is influenced by various factors, including sensor location and 

the nature of sensor signals. Prior research has indicated that utilizing shank angular velocity signals results in 

more precise and consistent outcomes for IC and FC detection, in contrast to algorithms that rely on waist 

acceleration [214, 291, 305]. Differing characteristics of acceleration and angular velocity signals at various 

locations on the body are responsible for this discrepancy [479]. A previous study has extensively investigated the 

impact of IMU placement on the extraction of diverse characteristics for a neurological disorder [156]. 

Preferred locations for the extraction of gait characteristics are typically the waist and ankle/foot regions. 

Previous research has explored the use of the ankle location for real-time gait analysis through the attachment of 

a smartphone [478]. However, this approach may be impractical, as users would need to carry an additional mobile 

device during their daily activities. Another limitation is the discomfort of walking with a smartphone attached to 

the ankle. Furthermore, the use of a single mobile device attached to one ankle would only permit the computation 

of IC and foot clearance moments for a single foot, thus impeding the calculation of the step time characteristic 

that requires IC moments from both feet. Sensor placement on the lower back can provide gait characteristics in 

certain accuracies and it can allow computation of temporal and spatial characteristics by using e.g., an inverted 

pendulum model [215, 218]. 
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Table 29.Validation result for step time 

Step Time Edge Device Reference System Pearson’s Spearman’s Agreement-95% CI Bounds 

  Average SD Average SD r rho ICC2,1 Lower Upper p 

Slow 
Trial 1 0.707 0.035 0.712 0.037 0.920** 0.869** 0.956 0.833 0.989 <0.001 

Trial 2 0.715 0.096 0.7251 0.055 0.905** 0.863** 0.943 0.784 0.986 <0.001 

Preferred 
Trial 1 0.561 0.033 0.559 0.030 0.967** 0.972** 0.982 0.930 0.996 <0.001 

Trial 2 0.559 0.036 0.558 0.029 0.957** 0.939** 0.971 0.882 0.993 <0.001 

Fast 
Trial 1 0.507 0.032 0.506 0.033 0.978** 0.976** 0.990 0.960 0.997 <0.001 

Trial 2 0.499 0.027 0.497 0.036 0.951** 0.985** 0.958 0.832 0.989 <0.001 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 
Table 30.Validation result for stride time 

Stride Time Edge Device Reference System Pearson’s Spearman’s Agreement-95% CI Bounds 

  Average SD Average SD r rho ICC2,1 Lower Upper p 

Slow 
Trial 1 1.39 0.062 1.411 0.073 0.926** 0.884** 0.939 0.690 0.986 <0.001 

Trial 2 1.419 0.100 1.457 0.112 0.919** 0.924** 0.931 0.595 0.984 <0.001 

Preferred 
Trial 1 1.131 0.069 1.114 0.062 0.976** 0.926** 0.973 0.715 0.994 <0.001 

Trial 2 1.130 0.061 1.114 0.060 0.964** 0.879** 0.969 0.758 0.993 <0.001 

Fast 
Trial 1 1.011 0.060 1.005 0.067 0.983** 0.932** 0.988 0.954 0.997 <0.001 

Trial 2 0.997 0.047 0.992 0.067 0.968** 0.985** 0.958 0.836 0.989 <0.001 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Table 31.Comparison results for free living 

 Edge Device McRoberts Errors 

 Mean SD Mean SD MAE MAPE (%) 
Step Times 0.518 0.051 0.517 0.042 0.001 0.203 

Stride Times 1.039 0.064 1.031 0.062 0.007 0.764 

 

9.6.2. Limitations and improvements 

Considering the sensor used in the case study, the battery life of the edge device lasts 3 days. Therefore, the 

edge device would need to be charged by mini-USB cable for longer assessment periods. A larger Li-Po battery 

cell (e.g., 2 cells with 2600 mAh) can be preferred to increase battery life. Another limitation is the inability to 

detect final contact moments (i.e., detecting IC moment related characteristics only (e.g., step and stride times). 

Future work will include adaptation of different algorithms to detect FC moments and compute other clinically 

important characteristics e.g., stance and swing times. Additionally, spatial characteristic step length can be 

potentially integrated [25]. The edge device does not differentiate true right and left steps and cannot produce 

asymmetry and variability outcomes. Although left/right assumptions could be made, absolute left and right could 

be detected by using a gyroscope sensor with an appropriate algorithm [6]. Finally, the edge device validation was 

performed on healthy subjects. Future studies will recruit e.g., those with PD. In this context, "cohort-specific 

models" refer to machine learning models that are trained on data from a specific group of people with a particular 

medical condition. The goal of those models is to improve the accuracy of gait recognition for individuals within 

the specific cohort, as previous research [18, 19] has suggested that models developed on healthy subjects may not 

perform as well when applied to those with different medical conditions. 

 

9.7. Conclusion 

This chapter represents the culmination of my doctoral study, serving as the final experimental work. In 

Chapter 6, I successfully developed and presented methodologies for extracting multimodal gait data in free-living 

environments. However, certain limitations, such as the time-consuming offline processing of gait data, motivated 

me to study the automation of HAR and parameter extraction processes. This section presents a novel wearable 
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edge device that automatically computes clinically important gait characteristics in real-time. Gait characteristics 

obtained from the device were validated against reference technology for different walking speeds in the controlled 

lab condition and beyond. Results indicate that the proposed edge device has high levels of accuracy, with an 

average ICC of 0.966 and 0.959 for step times and stride times, respectively. Findings suggest the suitability of 

the low-cost edge device for remote monitoring of gait and may be a pragmatic tool during rehabilitation. 

The next chapter serves as the final chapter of this thesis, presenting the findings derived from the conducted 

studies. It will comprehensively address the PoIs listed in the previous chapters, elaborating on the methods and 

technologies employed. Additionally, the chapter will explore future directions and the broader impacts of utilising 

wearable sensor technologies in gait analysis for populations affected by Parkinson's disease (PD) and Stroke. 
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Chapter 10 Discussion, conclusions, 

and wider impact 
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10.1. Introduction 

In this concluding chapter, I provide a summary of the knowledge acquired and the findings derived from the 

experimental studies conducted in my thesis. After outlining the key findings, I engage in a discussion about how 

I addressed the Points of Interest (PoIs) that were defined in Chapter 1. By addressing these PoIs, I then proceed 

to examine my hypothesis, supported by the evidence I gathered throughout my studies, and highlight my 

contribution to the field. Moreover, I present certain limitations that were encountered during my doctoral study 

and engage in a discussion regarding the broader research impact. Finally, I offer recommendations for future 

research endeavours in the field. 

10.2.  Key findings of experimental studies 

 

Chapter 2 

• Existing gait models developed to interpret gait outcomes extracted from wearable sensing 

technologies are limited to unimodal parameters (e.g., relying on spatiotemporal parameters only). 

• A sensor fusion approach offers the essential infrastructure to combine data from multiple sensors, 

creating a multimodal gait tool that is both comprehensive and informative. 

• There are discrepancies among the findings of previous gait studies of neurological populations due 

to a lack of standardisation in IMU and EMG data collection protocols such as sensor placement, 

configuration and algorithms used. 

• Gait analysis has been shifting to free living environments that reflect daily capacity better. However, 

there are differences in the produced gait parameters between clinics and free living. The root causes 

of these differences need to be explored. 

• Collecting data beyond controlled clinic settings for extended periods leads to a significant volume 

of unlabelled data. Manual labelling, specifically segmenting gait bouts, for gait analysis can be time-

consuming and labour-intensive. Hence, the automation of this process using AI techniques can offer 

a faster and more efficient gait analysis tool for assessing gait in free-living conditions. 

 

Chapter 3 

• The mean temporal parameters extracted from the lower back sensor-based algorithm[6] and shank 

sensor-based algorithm [222] for all cohorts during treadmill, indoor, and outdoor walking show a 

strong correlation. However, this is not true for variability and asymmetry characteristics. 

• The agreement between these algorithms is sensitive to age and neurological condition, the highest 

agreement is observed in young adults, then older adults then the PD group. 

• The agreement between these algorithms is sensitive to the walking environment. Agreement in stride 

and step times is slightly higher during outdoor whereas agreement in stance and swing times is 

slightly higher during indoor walking.  

• Overall agreement for stride and step times parameters (relies on IC only) is higher than stance and 

swing times parameters (relies on both IC and FC).  

 

Chapters 5 and 6 (M1-M2-M3) 

M1-HS: 

• Healthy participants (HS) walked with greater pace and variability but with decreased rhythm during 

outdoor compared to indoor level walking (stride length variability characteristic did not experience 

any alteration) 

• In terms of knee flexion angles, HS experienced slightly increased mean values (~1°) and decreased 

variance and asymmetry in outdoor compared to indoor level walking. 

• Regardless of indoor/outdoor, the prevalence of TA muscle activation had similar patterns with RF 

and BF, all active around the start and end of a gait cycle during level walking. GS prevalence was 

observed mostly during the later stance phase before the FC moments for push off of the foot. 

M1-SS: 

• Stroke Survivors (SS) walked with increased pace and decreased rhythm during outdoor level 

walking compared to indoor. Swing time asymmetry is the only asymmetry characteristic that was 

found to be higher dur ing indoor compared to outdoor.  
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• In terms of knee flexion angle, increased mean values (~4°) and decreased variability and asymmetry 

were found during outdoor walking compared to indoor. 

• TA, RF and BF muscle bursts were detected at the start and end of gait cycles (around IC moments). 

GS muscle bursts are most frequently observed in the stance phase in most SS. 

M2: 

• Preliminary results show the use of multimodal data (IMU and EMG) and feature-level fusion 

improves HAR model accuracy.  

• Post-processing of sEMG data also impacts the model accuracy. Liner envelope of sEMG results 

with higher overall performance than the use of band pass filtered sEMG. 

• Classification with features extracted from the thigh level sensor outperformed the shank level sensor.  

M3: 

• Augmenting data with the proposed methodology increase HAR model performance in terms of 

accuracy, sensitivity, and specificity in limited datasets of HS, PD and SS. 

• ResNet50 outperformed all other architectures after data augmentation whereas MobileNet v2 

achieved the best result before augmentation. 

• Walking and standing activities are recognized with higher accuracy compared to stair ascent and 

descent. 

 

10.3. Addressing research questions (PoIs) 

In Chapter 2, I emphasized the numerous challenges associated with improving gait analysis in neurological 

populations. These challenges were initially identified through a comprehensive literature review. Also, I compared 

reference standard technologies and wearable technologies, assessing their usability, advantages, and 

disadvantages in the literature review. This comparison led me to the conclusion that wearable sensors, particularly 

inertial and EMG sensors, offer the potential to enhance clinical decision-making by providing rich habitual data 

at a minimal cost and complexity. 

Expanding on the literature search, I discovered several validated algorithms developed based on IMU data, 

applicable to various wear locations and cohorts. This discovery led me to investigate the usability of wearable 

sensors in free-living conditions and the reliability and consistency of these algorithms in spatiotemporal gait 

analysis (PoI1). In Chapter 3, I conducted a comparative study involving 128 participants (92 HS and 36 PD) to 

examine the agreement between two popular wear locations and their corresponding algorithms. The results 

highlighted the sensitivity of these algorithms to walking environments and target cohorts, emphasizing the need 

for cautious interpretation by researchers and clinicians. Furthermore, I observed that most wearable sensor-based 

gait analysis studies tend to focus on unimodal characteristics, such as spatiotemporal parameters, attributing this 

limitation to both the lack of methodologies combining multiple characteristics and the technological constraints 

of wearable sensors (e.g., single sensor units only containing IMUs). 

To address this limitation, I explored off-the-shelf wearable sensor technologies available in the market and 

discovered the Shimmer3 EMG unit, which incorporates both inertial and EMG sensors within a single sensor 

unit. This discovery prompted the development of PoI2, which aimed to investigate how the sensing capabilities 

of wearable sensors could be fused to obtain multimodal gait characteristics that offer more comprehensive insights 

than unimodal analyses. In Chapter 4, I studied various data fusion algorithms, and AI methodologies for HAR. In 

Chapter 6, I introduced a multilayer data fusion framework to address PoI2 on 10 HS and 3 stroke survivors (this 

number was planned to be 10 but I could not reach this target due to COVID-19). The output of this framework 

provided spatiotemporal, knee flexion angles and muscle activation characteristics of 4 different muscle groups 

during indoor, outdoor, and incline walking as well as stair ascent and descent. Comparing these multimodal 

parameters allow me to observe key differences such as SS walk with increased mean knee flexion angle values 

(~4°) during outdoor walking compared to indoor. In addition, muscle burst timings and durations of SS was 

extracted during various activities, which can potentially inform clinical gait analysis. However, during the 

framework's development, I encountered a significant challenge in labelling the data collected in unsupervised 

environments. 
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To mitigate this challenge, I introduced PoI3, which explored the application of AI models for human activity 

recognition (HAR) to accurately label data collected in unsupervised environments. Initially, I investigated 

classical machine learning models and employed feature-level fusion of IMU and EMG data on 10 healthy 

participants, achieving high accuracies in classifying basic daily activities. Features extracted from the thigh level 

sensor outperformed the shank level sensor. This could be useful when minimising sensing modalities in HAR 

systems. However, AI models require rich and diverse datasets to be able to train models effectively. Neurological 

cohorts often lack the diverse and rich datasets required for accurate and sensitive HAR, making it impractical to 

create such datasets.  This is a new limitation caused by the difficulty of collecting mobility data from people with 

walking impairments.  

This limitation led me to improve my PoI3, which explored methods to enhance the accuracy of AI models 

despite limited HAR datasets. To address this challenge, I developed a methodology that transformed numerical 

inertial data into two-dimensional activity images and employed proven data augmentation techniques to 

artificially increase the size of the training dataset. I tested this methodology on two different public datasets and 

subsequently implemented it on local datasets comprising healthy subjects (10), stroke survivors (3), and 

individuals with Parkinson's disease (5). The results demonstrated that data augmentation significantly improved 

HAR performance in terms of accuracy, sensitivity, and specificity. 

By addressing PoI1-PoI3, I successfully developed an automated multimodal gait analysis tool capable of 

functioning in both clinical and free-living environments, accommodating various forms of walking and stair 

ambulation. This tool not only enhances the understanding of impaired gait but also has the potential to uncover 

underlying deficits associated with such impairments. However, post-processing the collected data remains time-

consuming due to the need to save raw inertial and EMG data. Although the inclusion of HAR improves data 

labelling and subsequently reduces post-processing time, further improvements are still necessary. 

To address the time-consuming post-processing challenge (PoI4), I investigated ways to improve efficiency. 

By leveraging edge computing technology, I developed an edge device in Chapter 9 to facilitate real-time gait 

analysis. At its current stage, the device is validated for 10 HS and achieved very high accuracy. However, it can 

generate only unimodal temporal gait characteristics in real time. 

10.4. Addressing my hypothesis 

I propose that exploration and a better understanding of PoIs are necessary to achieve an efficient instrumented 

gait analysis tool that can provide insight into various aspects of impaired gait and the discovery of underlying 

reasons. Thus, this leads me to the central hypothesis for my thesis: 

“The use of wearable sensing technology in conjunction with advanced computing techniques may enable highly 

affordable, accessible, comprehensive, and objective multimodal gait analysis tools for clinical and free-living 

gait assessment”. 

From my work undertaken in this thesis, I believe my hypothesis to be valid. This thesis supports the suggested 

use of wearable sensing technologies as an affordable, comprehensive, and objective method to support 

instrumented multimodal gait analysis of people with neurological PD group and stroke survivors. The evidence 

for the comprehensive and objective multimodal gait analysis tools for clinical and free-living gait assessment lies 

in the development of the framework outlined in Chapter 6 Methodology 1 (M1). This framework utilised 

multimodal data fusion, effectively combining data from multiple IMU and EMG sensors to generate 

spatiotemporal, kinematic, and muscle activation characteristics. To improve the efficiency of this framework, I 

also utilised AI techniques to perform HAR in Chapter 6 Methodology 2 and 3 (M2-M3). This approach allows 

automatic gait bout segmentation, minimising time-consuming post-processing operations such as manual data 

labelling. Adopting the developed multimodal approach in both clinics and beyond may help achieve a more 

comprehensive gait analysis for daily monitoring of disease progression or exploring the underlying reasons for 

rare incidents such as falls. More work is needed to strengthen that claim as well as further investigate verification 

and clinical validation. 
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10.5.  Contribution to knowledge 

Through my multidisciplinary approach, I have discovered that solely focusing on unimodal characteristics, 

such as spatiotemporal parameters, in gait analysis of neurological populations provides limited information, 

whereas incorporating multimodal characteristics offers a more comprehensive and informative perspective. This 

becomes clear when looking at formerly developed models for gait analysis, which are employed to interpret 

spatiotemporal characteristics of gait. The primary elements of these models encompass postural control, pace, 

variability, asymmetry, and rhythm. The framework I developed within this thesis is capable of merging IMU and 

EMG sensors data at data level to produce additional gait characteristics. So, these characteristics related to joint 

kinematics and muscle activation can be integrated into these models to make them more comprehensive. Another 

thing that is evident in the previous gait models is that gait analysis is shifting to habitual settings to collect more 

habitual data that better reflect capacity of people with mobility loss. Moving beyond clinics using wearables 

creates large datasets (e.g., based on the number of sensors, data collection duration and sampling frequency). 

However, a significant amount of the data gathered in free-living scenarios can be redundant when the primary 

focus is on gait analysis. Data reduction is therefore crucial to alleviate the workload on researchers or other 

individuals performing data analysis. In most gait studies utilising wearable sensors, scripted data collection 

protocols are employed to conveniently label the data. An alternative method involves synchronised camera 

recording. Nonetheless, neither approach is ideally suited for data collection in habitual environments. 

Consequently, another crucial contribution of mine is the training of AI models to accurately label wearable data 

for data reduction purposes. Accomplishing multimodal gait analysis alongside automated gait bout recognition 

significantly diminishes the labour-intensive aspect of post-processing tasks in unsupervised free-living scenarios. 

In a purely computing science context, my research has revealed both challenges and opportunities for further 

advancement. Notably, there is still scope for enhancing complex post-processing techniques and reducing their 

duration. To address this, I initially employed edge computing technology to create a real-time remote assessment 

device, enabling the extraction of unimodal gait characteristics. However, further refinements are necessary to 

achieve real-time remote multimodal gait analysis. Moreover, implementing verification processes, analytical 

methodologies, and clinical validation protocols is crucial to bolster the precision and dependability of remote 

monitoring instruments. This is an essential future direction for the practical application of academic research-

grade tools, ensuring they find broader use in day-to-day clinical practice. It is this next step that has the potential 

to redefine how we approach gait analysis and neurological condition management at a clinical level. 

 

10.6. Limitations 

COVID-19 has significantly affected my PhD topic as people with neurological conditions are categorised as 

vulnerable in the UK. As a result, I faced challenges in recruiting participants throughout the 15-month period of 

my PhD. This limitation is reflected in the number of participants included in my previous studies. Despite my 

attempts to mitigate the impact by utilizing publicly available datasets, I only partially succeeded as my research 

questions necessitated a distinct dataset that was not readily accessible online. 

Furthermore, my PhD thesis encountered other limitations, such as the lack of standardization in the use of 

wearable sensors. While there are clear guidelines for the use of surface EMG measurements provided by the 

European Surface Electromyography for the Non-Invasive Assessment of Muscles (http://www.seniam.org), the 

promotion of standardisation for wearable sensors in research remains relatively scarce.  

Another limitation that emerged during my PhD project pertains to the cost associated with wearable sensor-

based gait analysis endeavours. This cost encompasses expenses incurred during participant recruitment as well as 

the procurement of digital technologies. In Chapter 2, I highlighted the affordability and accessibility of wearable 

sensors, which make them suitable for a wide range of populations. However, one of my research findings suggests 

the importance of utilising edge computing technologies, such as processing data on the device itself, to facilitate 

remote gait analysis. Unfortunately, the development of such systems entails substantial costs, including the 

acquisition of advanced microcontrollers with high memory capacity and processing speed. Consequently, these 

expenses limit the feasibility of wearable sensor utilisation in gait analysis, somewhat detracting from their initial 

appeal. 
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10.7.  Wider impact and future directions 

I truly believe wearable sensor-based gait analysis extends beyond the realm of research and holds potential 

for various future directions. However, researchers and clinicians should work together to ensure the reliability of 

these technologies and methodologies. In Chapter 3, I conducted an experimental study to compare the temporal 

parameters extracted from two different sensor wear locations and algorithms, and my findings revealed the 

discrepancy and various levels of agreement. This could be because of the lack of standardisation in IMU data 

collection as I also highlighted in Chapter 2. In this context, more effort needs to be put into developing guidelines 

to achieve a more standardised approach. This guideline should include information about optimal wear location, 

sensor configuration, filters and algorithms used. Another way of ensuring the reliability of wearable technologies 

in gait analysis is through conducting research for clinical validation. While there have been a satisfactory number 

of validation studies conducted within clinical settings using reference technologies like motion capture systems 

or instrumented walkways, limitations arise when it comes to free-living environments. To address this, future 

studies should prioritize conducting validation studies in free-living conditions using alternative technologies such 

as foot switches or video-based systems. Additionally, validation studies should consider natural scenarios 

involving both single-tasking and dual-tasking situations. This could involve determining whether individuals are 

engaged in single or dual-tasking activities, walking alongside someone, or navigating obstacles in a busy street. 

Further details on these aspects can be found in Appendix 7. 

The field of wearable data analysis requires advancements in the post-processing of collected data. In Chapter 

6, efforts were made to address the manual, labour-intensive, and time-consuming data labelling issue associated 

with unsupervised data collected over extended periods, resulting in some level of improvement. However, there 

is still a need for further enhancements in post-processing wearable data to compute clinically relevant parameters 

more efficiently. As discussed in Chapter 4, the utilization of IoT technology in conjunction with Edge computing 

can offer significant improvements in this regard. It has the potential to enable remote and real-time gait analysis, 

providing valuable insights into disease progression, treatment effectiveness, and the impact of daily activities on 

gait in real-time. In Chapter 9, the development of an Edge device was presented, allowing real-time temporal gait 

analysis. Nonetheless, additional improvements are necessary to advance this approach into a multimodal tool. 

This includes the need for faster microcontrollers with low energy consumption and the development of robust 

and reliable fusion algorithms. 

Overall, wearable sensor-based gait analysis has the potential to revolutionize clinical practice by providing 

objective and comprehensive assessment tools. This technology can facilitate personalized treatment plans and 

track the effectiveness of interventions, leading to improved patient outcomes. By accurately capturing gait 

patterns and biomechanical data, wearable sensors can guide the design and customization of prosthetics, orthotics, 

and exoskeletons. This can enhance mobility, stability, and overall quality of life for individuals with impaired 

gait. By identifying gait abnormalities and balance deficits, personalized interventions can be developed to mitigate 

fall risks and enhance safety. 

 

10.8.  Closing summary 

It is now clear and apparent that wearable sensor technology can provide multimodal gait characteristics for 

extended periods regardless of the walking environment. This will initially help researchers produce more 

comprehensive gait models utilising multiple gait characteristics to interpret gait outcomes. Daily monitoring of 

impaired gait will open new research toward measuring the success of interventions and rehabilitation programs. 

Moreover, falls, one of the biggest fears among people with walking impairments, could potentially be further 

investigated using data collected in habitual environments. All these improvements and advancements in medical 

care will help promote healthy aging, manage neurological conditions, and improve the overall well-being of 

individuals. 
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Appendix 2. Ethics declaration, Participant information, Consent Sheet, and Debrief  

 

Project Title: Instrumenting Gait in Neurological Disorders: Multi-Modal Approach Using Wearables 

Northumbria University Ethics Reference Number: 23946 

I, Yunus Celik, hereby declare that the project outlined below has received ethical approval from Northumbria 

University, in accordance with the established guidelines and procedures for ethical research. 

Ethical Considerations: 

Informed Consent: All participants involved in this study will be provided with clear and comprehensive 

information about the nature, purpose, and potential risks and benefits of their involvement. Their voluntary 

participation will be ensured through obtaining written consent prior to their participation. Confidentiality and 

anonymity will be maintained throughout the study, and all personal information will be securely stored. 

Privacy and Data Protection: Any personal data collected during this research will be handled in accordance with 

relevant data protection laws and regulations. Measures will be taken to ensure that all data is stored securely and 

treated with the utmost confidentiality. Data will be anonymised wherever possible, and only authorized members 

of the research team will have access to the collected data. 

Risk Assessment: A thorough risk assessment has been conducted to identify and mitigate any potential risks 

associated with this research project. Necessary precautions will be taken to ensure the safety and well-being of 

all participants involved. 

Beneficence: This research aims to provide benefits to society, academia, or the participants involved. The potential 

positive impact of this study has been considered, and efforts will be made to maximize the benefits while 

minimizing any potential harm or discomfort to the participants. 

Ethical Conduct: This research will be conducted in accordance with the ethical principles outlined by Northumbria 

University and relevant regulatory bodies. The research team will adhere to the highest standards of integrity, 

honesty, and professionalism throughout the project. 

Ethical Review: This project has undergone a rigorous ethical review process by the Northumbria University Ethics 

Committee, which has granted ethical approval for its execution. Any amendments or modifications to the project 

will be subject to further ethical review and approval. 
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You are being invited to take part in this research study. Before you decide it is 
important for you to read this leaflet so you understand why the study is being 

carried out and what it will involve. 
 

Reading this leaflet, discussing it with others or asking any questions you might have 
will help you decide whether or not you would like to take part. 

INCREASED HEALTH AND SAFETY DURING COVID-19 
 

• All research will adhere to local (university) and national (government) 
guidance 

• We will require you to confirm you have had no: contact with anyone 
testing positive or have/had symptoms of COVID-19 in the previous 14 
days. 

• All participants and researchers will be required to wear a facemask at all 
times. (Researchers will be wearing appropriate PPE) 

• The laboratory including all equipment will be cleaned before and after 
each participant, with extra time given to ensure health and safety 
maintained and no mixing between participants. 

• We will maintain social distancing at all times (1 meter plus). 

• You may withdraw at any time without reason 

If you need help or are worried about the virus, we can provide signposting to the 
appropriate services within the university – 

 

https://www.northumbria.ac.uk/study-at-northumbria/support-for- 
students/counselling-and-mental-health-support/self-help 

The purpose of this project is to evaluate a number of wearable technologies in laboratory 

and free-living (e.g. home) environments to capture accurate and useful information relating 

to how you move. This includes how you walk and how you look and navigate your 

environment. Additionally, this project helps to inform the development of new wearable 

technology algorithms (analytics) to detect those activities (i.e. walking, navigation) by 

capturing high resolution digital data that could be very helpful to aid those who may have 

difficulty in daily functional tasks. 

Instrumenting Gait in Neurological Disorders: Multi-
Modal Approaches Using Wearables Participant 

Information Sheet 
 

 
 

 

What is the Purpose of the Study 
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It is important that we assess as many people as possible and you have indicated that you 

are interested in taking part in this studies of this nature and that you are a healthy person 

aged >18 years. Additionally, you are or have been involved with a patient group or carer 

panel in the North East and have expressed an interest in academic-based research 

regarding functional activities and methods to better asses those with functional limitations. 

No. It is up to you whether you would like to take part in the study. I am giving you this 

information sheet to help you make that decision. If you do decide to take part, remember 

that you can stop being involved in the study whenever you choose, without telling me why. 

You are completely free to decide whether or not to take part, or to take part and then leave 

the study before completion. Deciding not to take part, or leaving the study, will not affect 

your right to routine care. 

E.g. You will be asked to attend a testing session held in the Clinical Gait Laboratory at the 

Coach Lane campus or Biomechanics Gait Laboratory city campus of Northumbria University 

at a date that is convenient to you. After signing a consent form, the investigator will ask you to 

wear a number of sensors (noninvasive) on your person and to perform a number of functional 

tasks such as walking for 2 minutes during which time you will be video recorded. These non- 

invasive sensors will be attached with a strap and double-sided tape. In addition, disposable 

EMG surface electrodes (non-invasive) will be attached to pre-determined locations. A skin 

preparation (e.g. shaving some of the leg area) may be needed, only if the skin surface at which 

the electrodes have to be placed is covered with hair, to achieve a good electrode skin contact 

for a higher quality signal. After you have completed the aspect of the study you may be asked 

to wear the same sensor technologies in your home for an extended period e.g. 1 to 2 hours. This 

is completely voluntary and will be arranged at a date and time that suits you. The study 

investigator will give you a debrief sheet explaining the nature of the research, how you can find 

out about the results, and how you can withdraw your data if you wish. It is estimated that the 

total time to complete this laboratory study will be 60 minutes but additional time will be needed 

in your home (if you wish to undertake that component of the study). 

You will be asked to wear a face mask, gloves and keep two meters social distancing rule during 

the data collection for your and researchers safety. 

Why have I been invited? 
 

 

Do I have to take part? 
 

 
 

 

What will happen if I take part? 

What are the possible disadvantages of taking part? 

 

There are no disadvantages in taking part. However, one aspect of the project is wearing many 

wearable technologies beyond the laboratory testing, this may cause some embarrassment 

depending on your personality but is mitigated by wearing of those technologies in the confines 

of the University and in your home only. Although the study designed in a way that both 

participants and researchers will be protected by face mask, gloves and social distancing, there 

is a reduced risk of exposure to COVID-19. But the risk amount is not more than the risk of 

being in social places (stores, etc.) We will maintain social distancing at all times and ensure 

health and safety risks are mitigated and ensure appropriate local and national COVID-19 

policy is followed and adhered to. 
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What categories of personal data will be collected and processed in this study? 

Personal data relating to name, age, height and general health status will be collected only. No 

information relating to finance, sexual orientation, religion or political views will be collected 

and stored. 

By taking part in this study you will be helping researchers better understand how those with 

functional limitations better navigate their environment to ensure safe and effective activities of 

daily living and possibly reducing the incidence of falls. 

Yes. Your name will not be written on any of the wearable data we collect; the written 

information you provide will have an ID number, not your name. The consent form you have 

signed will be stored separately from your other data. The data collected from you in this study 

will be confidential. The only exception to this confidentiality is if the researcher feels that you 

or others may be harmed if information is not shared. 

All paper data will be kept in locked storage. All electronic data; including the recordings from 

your interview, will be stored on the University U drive, which is password protected. All data 

will be stored in accordance with University guidelines and the Data Protection Act (2018). 

All information and data gathered during this research will be stored in line with the 

Data Protection Act and will be destroyed 72 months following the conclusion of the study. If 

the research is published in a scientific journal it may be kept for longer before being 

destroyed. During that time the data may be used by members of the research team only for 

purposes appropriate to the research question, but at no point will your personal information 

or data be revealed. Insurance companies and employers will not be given any individual’s 

personal information, nor any data provided by them, and nor will we allow access to the 

police, security services, social services, relatives or lawyers, unless forced to do so by the 

courts. 

General Data Protection Regulation (GDPR) requires researchers to be transparent about the 

legal basis for undertaking research which will collect and process personal data. GDPR 

provides a number of legal bases to choose from, and for the purposes of this study relates to 

article 6(1e): processing is necessary for the performance of a task carried out in the public 

interest or in the exercise of official authority vested in the controller. 

The research team at Northumbria University will have access and process the data only. The 

team utilize a Northumbria University controlled SharePoint site which is password protected, 

with hierarchies of access if appropriate, and with clear onboarding and off boarding 

procedures to detail how researchers gain access to the system, who approves that access, and 

how long that access persists (e.g. until the end of the project, or just for part of the project). 

 

No data will be transferred beyond the UK 

What are the possible benefits of taking part? 

Will my taking part in this study be kept confidential and anonymous? 
 

How will my data be stored, and how long will it be stored for? 
 

 
 
 
 

What is the legal basis for processing personal data? 
 

 

Who are the recipients or categories of recipients of personal data, if any? 
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Project Title: Instrumenting Gait in Neurological Disorders: Multi-
Modal Approaches Using Wearables 

 
please initial 

where applicable 

I have carefully read and understood the Participant Information Sheet.  

I declare that I have not knowingly been in contact with anyone displaying 
Covid-19 symptoms, or experienced symptoms themselves, in the 14 days 

before taking part in the study 

 
 

I agree to wear protective equipment (face-covering masks and gloves) during 
the study and take the risk of exposure to COVID-19 

 

I have carefully read and understand the guidance on safety issues and 
measures for participants and researchers safety in participant information 

sheets 

 
 

I declare that the study design is in line with government guidelines, local site 
policies around COVID-19 and I feel comfortable with participation 

 

I have had an opportunity to ask questions and discuss this study and I have 
received satisfactory answers. 

 

 

I understand I am free to withdraw from the study at any time, without having 
to give a reason for withdrawing, and without prejudice. 

 

 

I agree to take part in this study.  

I consent my leg to be shaved (if required)  

I also consent to the retention of these data (wearable and questionnaire) 
under the condition that any subsequent use also be restricted to research 

projects that have gained ethical approval from Northumbria University 

 
 

I agree to the University of Northumbria at Newcastle recording and processing 
this information about me. I understand that this information will be used only 

for the purpose(s) set out in the information sheet supplied to me, and my 
consent is conditional upon the University complying with its duties and 

obligations under the Data Protection Act 2018 which incorporates General Data 
Protection Regulations (GDPR).You can find out more about how we use your 

information here - Privacy Notices: http://www.northumbria.ac.uk/about- 
us/leadership-governance/vice-chancellors-office/legal-services- 

team/gdpr/gdpr---privacy-notices/ 

 
 
 

 
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INCREASED HEALTH AND SAFETY DURING COVID-19 

 

 

• All research will adhere to local (university) and national (government) guidance 

• We will require you to confirm you have had no: contact with anyone testing positive or 

have/had symptoms of COVID-19 in the previous 14 days. 

• All participants and researchers will be required to wear a facemask at all times. 

(Researchers will be wearing appropriate PPE) 

• The laboratory including all equipment will be cleaned before and after each participant, 

with extra time given to ensure health and safety maintained and no mixing between 

participants. 

• We will maintain social distancing at all times (1 meter plus). 

• You may withdraw at any time without reason 
If you need help or are worried about the virus, we can provide signposting to the appropriate services within 

the university – 

 

https://www.northumbria.ac.uk/study-at-northumbria/support-for-students/counselling-and-mental-health- 

support/self-help 

1.  What was the purpose of the project? 

The purpose of this project is to evaluate a number of wearable technologies in laboratory 

and free-living (home) environments to capture accurate and useful information relating to 

how you move. This includes how you walk and how you look around to navigate your 

environment. Additionally, this project helps to inform the development of new wearable 

technology algorithms (analytics) to detect those activities (i.e. walking, navigation) by 

capturing high resolution digital data that could be very helpful to aid those who may have 

difficulty in daily functional tasks. 
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Appendix 3. Chapter 2 supplementary materials 

 

 

Appendix Figure  1.Temporal timings and formulae [72, 487] 

Spatial measure formulae: 

1.(Foot based) One way of calculating stride length is the computation of double integration of gravity correlated 

accelerometer signal. This approach is not widely preferred as it includes various of complex subsections like 

orientation estimation, gravity removal and de-drifting [225].  

2.(Shank based) Trojaniello et al. proposed a more extensive method to estimate stride length using two 

consecutive initial contacts (ICs) of the same foot. The proposed method removes the gravity then uses Optimally 

Filtered Direct and Reverse Integration along with high pass filter to reduce the effect of drift in the accelerometer 

signal. In the final stages, AP acceleration is integrated to obtain AP velocity and AP displacement with a further 

integration [220]. 

3. (Lower trunk based) Another approach to estimating the step length is the use of inverted pendulum model;  

2steplength=2 2lh-h  ,where h is the change in the height of CoM, and l is the sensor height from the ground, 

detailed [215].  

4. Weinberg proposed an alternative way to calculate the step length as a function of the difference between max 

and min vertical acceleration during steps: z z
4step length K A ,max A ,min= −  , where K is a regression coefficient 

and   Az represents the acceleration in vertical axis [488].   
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5. (Upper trunk based) In another approach, step length is calculated as a function of variance of the vertical 

acceleration  step length c d Var(Az)= +  where c, d and Az are regression coefficients and vertical acceleration, 

respectively [489]. 

6. (Lower trunk and lower limb based) Step width is lateral distance between two feet. Pythagorean theorem can 

be used to estimate step with SW=2*Step length*tan(θ)  , where θ  is rotational yaw angle of the IMU placed at 

leg in which step was executed [490]. 

To the best of the author's knowledge, no studies have investigated the temporal and spatial measures using 

wearable sensors for those with Hypoxic-Ischemic brain injury or Cervical dystonia. Therefore, to provide a guide 

for the reader in terms of all pathologies, Appendix Table 1 presents studies that used non-wearable technologies 

to investigate the spatiotemporal outcomes. 

 

Appendix Table 1. Clinic based devices in neurological gait assessment with spatiotemporal outcomes. 

Neurological 

Condition 

Ref. Device Group 

# 

subject 

- (Age) 

Findings 

VEL CAD SPL SDL SW SPT SDT Additional findings 

 

TBI 

 

[253] 

Motion 

Analysis 

Vicon 512- 

Force plate 

AMTI 

HS 

25-

(27.8) 

↑ ↑ ↑ - - - - 

Increased stance duration, double 

support and base of support in TBI 

TBI 

41-

(29.1) 

↓ ↓ ↓ - - - - 

HIBI 

FOG 

 

[255] 

Motion 

Analysis VICON 

MX-T10 Motion 

Analysis System, 

Oxford Metrics 

Inc., Oxford, UK 

HS 

15-

(40.27) 

↑ ↑ ↑ ↑ - ↓ ↑ 
Increased stance time and double 

support, decreased swing time and 

single support. Higher asymmetry in 

step length and time in HIBI with FOG. 

HIBI 

FOG 

13-

(37.36) 

↓ ↓ ↓ ↓ - ↑ ↓ 

HIBI with and 

without FOG 

 

[256] 

Motion 

Analysis VICON 

MX-T10 Motion 

Analysis System, 

Oxford Metrics 

Inc., Oxford, UK 

HIBI 

17-

(48.88) 

↑ ↓ ↑ ↑ - ↓ ↑ 

Increased stance time and double 

support, decreased swing time and 

single support in HIBI with FOG. 
HIBI-

FOG 

12-

(37.83) 

↓ ↑ ↓ ↓ - ↑ ↓ 

 

CD 

[262] 

Walkway 

CIR Systems, Inc. 

GAITRite System 

HS 

10-

(52.8) 

↑ - ↓ - - ↓ - 

When corrected for walking speed, 

people with CD demonstrated higher 

step time variability and lower step 

length variability. 

CD 

10-

(53.9) 

↓ - ↑ - - ↑ - 

HS: Healthy subject, X: the same value, (-): not available, g=force, Fs= sampling frequency, VEL: velocity, CAD: cadence, SPL: step length SDL: stride length, SW= step with, SPT: 

step time, SDT: stride time 

Appendix 4. Chapter 3 Supplementary Materials 

 

Algorithm 1 (Pseudocode) 

1: Filter raw vertical hip acceleration signal (The 4th order Butterworth filter with 10 Hz cut off frequency) 

2: Acceleration correction to horizontal-vertical frame [33] 

3: Integrated_av: Numerical integration of vertical acceleration of hip in the horizontal-vertical frame (cumtrapz) 

4: IC_moments = Gaussian continuous wavelet transforms at scale 10 (Integrated_av) 
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5: FC_moments= Further differentiation of IC_moments 

6: for i=1: size (IC_moments) 

7: IC=find local minima in IC_moments 

8: end for  

9: for i=1: size (FC_moments) 

10: FC=find local maxima in FC_moments 

11: end for  

12: Return IC and FC 

 

Algorithm 2 (Pseudocode) 

1: Wavelet decomposition (5th order coiflet, at scale 10) of shin sagittal plane angular velocity 

2: Get two new approximations (a1 and a2) with appcoef function 

3: ms_a1= Find peaks in a1 to locate mid swing  

4: ms_a2= Find peaks in a2 to locate mid swing 

4: for i=1: size (a1) 

5: IC=find local minima in the range of [ms_a1+0.25s, ms_a1+2s] 

6: end for 

7: for i=1: size (a2) 

8: FC=find local minima in the range of [ms_a2-2s, ms_a2-0.05s] 

9: end for 

10: Return IC and FC 

 

Note: step time statistical formula is presented in Appendix Table 2 only, the same formulas are used for the 

remaining temporal outcomes. 

Appendix Table 2. Formulas used to calculate temporal parameters along with statistical results 

 Temporal parameter formula (left side only) 

Algorithm 1 (A1) Stride Time= IC(i+2) - IC(i), Stance Time= FC(i+1) - IC(i),  

Swing Time= IC(i+2) - FC(i+1), Step Time= IC(i+1)- IC(i) 

Algorithm 2 (A2) Stride Time= IC(j+2) - IC(j), Stance Time= FC(j+1) - IC(j),  

Swing Time= IC(j+2) - FC(j+1), Step Time= IC(j+1)- IC(j) 

 Statistical formulas (both sides-for Step Time only) 

Mean ( )left right
mean(Step time ) + (Step time ) 2  

Variability 
( ) ( )( )left right

var Step time + var Step time 2  

Asymmetry ( ) ( )left right
m mStep time Step tiean - e mean  
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Appendix 5. Chapter 7 Supplementary Materials 

 

Impact of changing terrain  

Walking on uneven rock surface and inclined walking were excluded for stroke survivors due to safety reasons. 

The environments and cohorts’ information for extracted parameters for the purpose of this study are presented in 

Appendix Table 3. 

 

Appendix Table 3.Extracted parameters in environments/activities for healthy participants (HP) and stroke survivors (SS) for 

the purpose of the study. 

Environment/activity Cohort Spatio-temporal Knee joint angle Muscle activity 

Indoor level walking HP-SS ✓ ✓ ✓ 
Outdoor level walking HP-SS ✓ ✓ ✓ 
Incline walking  HP only ✓ ✓ X 

Walking on rock surface HP only ✓ ✓ X 

Stair ascent/descent HP-SS X ✓ ✓ 

 

Spatio-temporal outcomes 

HP: Small but substantial impacts of changing terrain observed in four gait domains, Appendix Table 4. Comparing 

spatio-temporal characteristics of outdoor activities revealed that variability is highest in temporal characteristics 

during incline walking (ascent slope) compared to other activities. Additionally, higher variability observed in 

level walking compared to walking on a rock surface and the differences in variability found higher in spatial 

parameters compared to temporal. HP walks with decreased rhythm and increased pace, variability and asymmetry 

during incline walking compared to walking on a rock surface. 

 

 

Appendix Table 4.Spatiotemporal gait characteristics of HP ground level walking in indoor and outdoor, 2min 

 Indoor 

 1 2 3 4 5 6 7 8 9 10 

# of strides 104 105 103 76 95 104 124 103 100 82 

PACE           
Mean Stride V. (m/s) 1.361 1.11 1.291 0.943 1.204 1.27 1.273 1.205 1.077 1.015 

Mean Stride L. (m) 1.569 1.242 1.493 1.073 1.406 1.438 1.161 1.349 1.371 1.223 

RHYTHM           

Mean Stride Time (s) 1.150 1.118 1.158 1.134 1.165 1.131 0.912 1.117 1.270 1.206 
Mean Step Time (s) 0.576 0.560 0.579 - 0.594 0.566 0.468 0.559 0.590 0.604 

Mean Stance Time (s) 0.699 0.616 0.65 0.638 0.639 0.635 0.510 0.653 0.719 0.715 

Mean Swing Time (s) 0.45 0.502 0.508 0.496 0.526 0.497 0.402 0.465 0.554 0.491 

VARIABILITY           

Stride V. Var (m/s) 0.143 0.085 0.133 0.099 0.111 0.074 0.077 0.085 0.106 0.142 

Stride L Var (m) 0.171 0.103 0.161 0.122 0.149 0.085 0.063 0.088 0.175 0.186 
Step Time Var (s) 0.005 0.007 0.059 - 0.038 0.031 0.033 0.019 0.071 0.043 

Stance Time Var (s) 0.005 0.002 0.022 0.027 0.007 0.005 0.008 0.022 0.033 0.011 

Swing Time Var (s) 0.008 0.005 0.02 0.013 0.039 0.006 0.036 0.022 0.025 0.007 

ASYMMETRY           

Stride L. Asy (m) 0.050 0.015 0.139 0.065 0.088 0.181 0.125 0.004 0.177 0.019 

Step Time Asy (s) 0.029 0.039 0.044 - 0.037 0.026 0.027 0.027 0.043 0.032 

Stance Time Asy (s) 0.037 0.034 0.043 0.062 0.057 0.03 0.042 0.03 0.036 0.039 
Swing Time Asy (s) 0.041 0.048 0.048 0.043 0.059 0.039 0.036 0.034 0.053 0.045 

 Outdoor 

 1 2 3 4 5 6 7 8 9 10 

# of strides 98 114 108 118 103 108 120 96 100 116 
PACE           

Mean Stride V. (m/s) 1.477 1.241 1.343 1.123 1.257 1.352 1.371 1.39 1.419 1.218 

Mean Stride L. (m) 1.606 1.339 1.488 1.131 1.414 1.461 1.259 1.449 1.627 1.377 
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RHYTHM           

Mean Stride Time (s) 1.092 1.078 1.112 1.015 1.133 1.086 0.924 1.042 1.142 1.125 

Mean Step Time (s) 0.547 0.546 0.556 0.499 0.567 0.545 0.464 0.521 - 0.566 
Mean Stance Time (s) 0.648 0.589 0.622 0.557 0.6 0.604 0.51 0.588 0.622 0.636 

Mean Swing Time (s) 0.444 0.489 0.490 0.452 0.533 0.481 0.413 0.455 0.519 0.488 

VARIABILITY           

Stride V. Var (m/s) 0.160 0.124 0.109 0.124 0.116 0.08 0.141 0.112 - 0.159 
Stride L Var (m) 0.173 0.13 0.119 0.125 0.134 0.11 0.086 0.106 - 0.185 

Step Time Var (s) 0.035 0.033 0.035 0.049 0.035 0.041 0.036 0.02 - 0.071 

Stance Time Var (s) 0.044 0.046 0.048 0.043 0.069 0.047 0.049 0.034 - 0.075 

Swing Time Var (s) 0.043 0.043 0.044 0.042 0.051 0.046 0.042 0.034 - 0.044 

ASYMMETRY           

Stride L. Asy (m) 0.126 0.143 0.125 0.019 0.057 0.248 0.024 0.056 - 0.138 
Step Time Asy (s) 0.029 0.005 0.077 0.019 0.005 0.031 0.01 0.006 - 0.047 

Stance Time Asy (s) 0.013 0.019 0.033 0.005 0.011 0.008 0.006 0.012 - 0.006 

Swing Time Asy (s) 0.010 0.006 0.031 0.009 0.009 0.009 0.011 0.012 - 0.003 
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Appendix Table 5.Spatiotemporal gait characteristics of HPs during incline walking and walking on rock surface. 

 Incline walking  

 1 2 3 4 5 6 7 8 9 10  

# of strides 8 9 11 10 7 7 7 8 7 7  

PACE           Average 

Mean Stride V. (m/s) 1.178 1.076 1.233 1.178 1.185 1.136 1.357 1.222 1.231 1.390 1.218 

Mean Stride L. (m) 1.215 1.290 1.480 1.215 1.424 1.375 1.275 1.427 1.555 1.715 1.397 

RHYTHM            
Mean Stride Time (s) 1.248 1.184 1.200 1.046 1.205 1.197 0.953 1.134 1.25 1.205 1.162 

Mean Step Time (s) 0.619 0.608 0.606 0.555 0.617 0.597 0.477 0.565 - 0.625 0.585 

Mean Stance Time (s) 0.693 0.652 0.64 0.578 0.683 0.684 0.529 0.614 0.706 0.709 0.648 

Mean Swing Time (s) 0.555 0.531 0.556 0.469 0.523 0.513 0.424 0.521 0.547 0.496 0.513 

VARIABILITY             

Stride V. Var (m/s) 0.085 0.068 0.059 0.085 0.180 0.124 0.183 0.136 - 0.124 0.113 
Stride L Var (m) 0.091 0.094 0.046 0.091 0.208 0.158 0.116 0.141 - 0.149 0.120 

Step Time Var (s) 0.048 0.037 0.057 0.057 0.398 0.037 0.036 0.062 - 0.024 0.084 

Stance Time Var (s) 0.050 0.047 0.073 0.045 0.058 0.046 0.029 0.106 - 0.074 0.058 
Swing Time Var (s) 0.060 0.065 0.076 0.050 0.056 0.050 0.048 0.066 - 0.035 0.057 

ASYMMETRY            

Stride L. Asy (m) 0.030 0.21 0.259 0.030 0.046 0.437 0.030 0.366 - 0.020 0.158 

Step Time Asy (s) 0.000 0.025 0.051 0.029 0.269 0.047 0.004 0.002 - 0.029 0.050 
Stance Time Asy (s) 0.009 0.055 0.024 0.035 0.049 0.036 0.002 0.007 - 0.049 0.029 

Swing Time Asy (s) 0.010 0.007 0.010 0.017 0.022 0.048 0.015 0.015 - 0.068 0.023 

 Rock surface  

 1 2 3 4 5 6 7 8 9 10  
# of strides 6 6 8 3 6 6 5 4 8 7  

PACE           Average 

Mean Stride V. (m/s) 1.126 1.137 1.066 1.126 1.129 1.196 1.289 1.372 1.356 1.241 1.203 
Mean Stride L. (m) 1.21 1.364 1.315 1.21 1.466 1.507 1.319 1.589 1.582 1.515 1.407 

RHYTHM            

Mean Stride Time (s) 1.096 1.172 1.239 1.096 1.346 1.283 1.063 1.149 1.161 1.229 1.183 

Mean Step Time (s) 0.554 0.592 0.623 0.554 0.673 0.635 0.531 0.569 - 0.623 0.594 
Mean Stance Time (s) 0.607 0.64 0.717 0.607 0.775 0.734 0.585 0.641 0.652 0.705 0.666 

Mean Swing Time (s) 0.489 0.532 0.522 0.489 0.571 0.549 0.478 0.508 0.509 0.524 0.517 

VARIABILITY             
Stride V. Var (m/s) 0.107 0.099 0.096 0.107 0.082 0.050 0.100 0.064 - 0.101 0.084 

Stride L Var (m) 0.112 0.15 0.123 0.112 0.094 0.067 0.109 0.123 - 0.136 0.108 

Step Time Var (s) 0.022 0.027 0.062 0.022 0.045 0.045 0.034 0.020 - 0.054 0.036 
Stance Time Var (s) 0.057 0.066 0.061 0.057 0.049 0.042 0.037 0.039 - 0.075 0.052 

Swing Time Var (s) 0.033 0.033 0.033 0.033 0.059 0.037 0.063 0.046 - 0.038 0.040 

ASYMMETRY            

Stride L. Asy (m) 0.211 0.190 0.032 0.211 0.167 0.307 0.100 0.006 - 0.124 0.149 
Step Time Asy (s) 0.007 0.040 0.068 0.007 0.016 0.022 0.005 0.013 - 0.031 0.023 

Stance Time Asy (s) 0.006 0.033 0.004 0.006 0.027 0.022 0.001 0.008 - 0.011 0.013 
Swing Time Asy (s) 0.019 0.028 0.038 0.019 0.000 0.009 0.003 0.013 - 0.02 0.016 

(-) parameter not available due to data collection or synchronisation error,  

Stride V = stride velocity, Stride L = stride length. Var = variability, Asy = asymmetry 

 

Appendix Table 6.Spatiotemporal gait characteristics of SS ground level walking in indoor and outdoor 

 Indoor Outdoor 

 1 2 3 np 1 2 3 np 
# of strides 80 110 91 95 125 108 

PACE       

Mean Stride V. (m/s) 0.997 0.977 1.09 1.014 0.955 1.233 
Mean Stride L. (m) 1.35 1.121 1.44 1.248 1.055 1.850 

RHYTHM       

Mean Stride Time (s) 1.308 1.145 1.310 1.248 1.070 1.388 

Mean Step Time (s) 0.656 0.573 - 0.547 0.524 - 
Mean Stance Time (s) 0.766 0.668 0.878 0.669 0.627 0.948 
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Mean Swing Time (s) 0.542 0.477 0.432 0.476 0.443 0.439 

VARIABILITY       
Stride V. Var (m/s) 0.203 0.176 - 0.216 0.149 - 

Stride L Var (m) 0.322 0.229 - 0.277 0.172 - 

Step Time Var (s) 0.196 0.004 - 0.027 0.040 - 
Stance Time Var (s) 0.129 0.012 - 0.072 0.077 - 

Swing Time Var (s) 0.123 0.019 - 0.035 0.040 - 

ASYMMETRY       

Stride L. Asy (m) 0.018 0.376 - 0.108 0.473 - 
Step Time Asy (s) 0.063 0.057 - 0.164 0.041 - 

Stance Time Asy (s) 0.064 0.063 - 0.134 0.042 - 

Swing Time Asy (s) 0.062 0.062 - 0.103 0.031 - 
(-) parameter not available due to data collection or synchronisation error, Stride V = stride velocity, Stride L = stride length. Var = 

variability, Asy = asymmetry,(np) non paretic side only due to failing to detect IC-FC times 

 

Knee joint kinematics 

Knee joint kinematics (HP): Increased asymmetry in knee flexion angles while walking on a rock surface was notable 

compared to indoor/outdoor ground-level walking. During incline walking (ascent slope), HP experienced lower mean 

knee flexion angles compared to indoor/outdoor ground-level walking. Increased variance and asymmetry in knee 

flexion angles during incline walking were other findings compared to indoor/outdoor ground-level walking. 

Additionally, increased mean knee flexion angles and asymmetry were found to be common during walking on rock 

surfaces compared to incline walking 

In the stair ambulation experiment, knee flexion angles found higher during stair descent compared to stair ascent.  

No significant differences observed in the asymmetry of knee flexion angles.  

Knee joint kinematics (SS):  Increased variability and asymmetry in knee flexion angles were observed during indoor 

level walking compared to outdoor level walking. Similarly, SS experienced higher knee flexion angles during stair 

ascent compared to stair descent.  Additionally, increased variance and decreased asymmetry were present during stair 

descent compared to the ascent. 

Appendix Table 7.Kinematic knee joint angles (degree) of HPs 

Indoor level walking 

 1 2 3 4 5 6 7 8 9 10  

# of strides 104 105 103 76 95 104 124 103 100 82  

           Average 

Mean 62.976 51.839 63.419 62.701 59.281 64.467 62.791 66.774 64.056 67.906 62.621 

Var 5.328 4.818 4.025 7.706 4.028 4.321 4.693 4.438 7.202 5.316 5.1875 

Asy 3.485 3.467 1.950 0.880 0.760 2.869 1.635 0.687 0.954 1.430 1.8117 

Outdoor level walking 

# of strides 98 114 108 118 103 108 120 96 100 116  

           Average 

Mean 63.819 51.529 63.577 64.202 56.731 65.022 65.256 67.821 69.000 68.839 63.5796 

Var 4.746 5.103 3.043 6.327 4.704 4.120 3.286 3.095 - 6.582 4.4901 
Asy 0.042 2.046 2.231 3.498 0.847 1.364 1.530 2.602 - 0.175 1.592778 

Incline walking 

# of strides 8 9 11 10 7 7 7 8 7 7  

           Average 

Mean 59.836 49.133 57.166 59.836 48.602 64.125 62.099 70.640 59.731 62.900 59.406 
Var 10.415 7.021 5.374 10.415 4.888 4.113 4.930 4.594 - 8.282 6.350 

Asy 1.171 4.475 1.827 1.171 6.915 11.023 7.492 7.587 - 13.710 6.152 

Rock surface 

# of strides 6 6 8 3 6 6 5 4 8 7  

           Average 

Mean 65.381 56.778 54.643 65.381 52.102 69.335 62.986 70.574 70.731 67.267 63.517 

Var 2.134 6.673 3.368 2.134 4.897 4.121 4.620 1.863 - 4.436 3.860 
Asy 9.657 16.532 0.359 9.657 5.990 3.727 17.224 0.696 - 19.321 9.240 

Stair ascent 

           Average 

Mean 34.650 44.121 41.995 34.650 24.666 49.320 43.474 51.407 54.717 48.013 42.701 
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Var 3.264 2.369 3.942 3.264 - 4.754 3.781 2.653 - 2.491 2.989 

Asy 2.901 5.516 0.337 2.901 - 0.463 7.679 4.591 - 4.758 3.643 

Stair descent 

           Average 

Mean 75.746 73.257 67.150 75.746 58.536 77.045 71.726 82.048 71.591 80.478 73.332 

Var 8.708 7.392 3.906 8.708 - 5.847 6.227 5.500 - 7.141 6.928 
Asy 0.841 1.540 4.590 0.841 - 5.807 4.293 5.964 - 1.896 3.221 

(-) parameter not available due to data collection or synchronisation error 

Appendix Table 8.Kinematic knee joint angles (degree) of SS 

 Stroke Survivors  

Indoor level walking Outdoor level walking 

 1 2 3 np  1 2 3 np  

# of strides 80 110 91  95 125 108  

    Average    Average 

Mean 46.786 49.687 47.888 48.12033 50.782 53.251 52.255 52.096 
Var 5.511 5.887 - 6.063667 4.682 6.002 - 5.297 

Asy 17.746 26.757 - 22.2515 13.099 26.740 - 19.9195 

Stair ascent Stair descent 

 1 2 3 np  1 2 3 np  
    Average    Average 

Mean 32.485 40.762 36.096 36.44767 56.780 74.891 60.844 64.171 

Var 5.108 5.868 - 4.712 8.003 6.999 - 7.262 
Asy 14.952 2.103 - 8.5275 8.452 2.886 - 5.669 

(-) parameter not available due to data collection or synchronisation error, 

(np) non paretic side only due to failing to detect IC-FC times 

 

EMG, burst timing and durations during stair ambulation 

EMG, burst timing and durations (HP): The muscle activation patterns during stair ascent and descent for both groups 

were shown in Appendix Figure  3. Although muscle burst timing and durations slightly varied from person to person, 

common muscle activation patterns were revealed during stair ambulation. Findings of EMG muscle activation 

patterns in my participants are consistent with previous stair ambulation based EMG studies [412, 441].  

In stair ascent experiments, TA found active mostly from late stance through swing phase to provide adequate foot 

clearance. TA muscle activation also found early stance phase in most HP. The activation at the stance phase was 

related to control of foot inversion-eversion, related to balance control during single limb support [441]. GS muscle 

bursts were detected in the stance phase (mostly mid-stance) for a short period similar to ground level walking. This 

finding shows good agreement with [412]. However, contradicts with [441], where GS reported being active during 

most stance phase. Prevalence of RF bursts was also observed in the stance phase, from early stance to midstance. BF 

muscle activation observed in both stance and swing phase, mostly around FC point and related to flexion of the knee 

for the next step over. 

In stair descent experiments, TA muscle bursts were detected mostly at the initial stance phase, unlike stair ascent. 

This activation is potentially related to controlling foot inversion-eversion [441]. In some, TA also found active around 

at initial swing (FCs moments), help sustaining the foot while landing on a surface. GS muscle onset pattern observed 

around IC moment and lasts until stance to swing transition time. RF muscle activation were observed at the initial 

stance, IC moments. BF muscle burst found mostly in the opposite phase of RF. Muscle onset of BF at late stance is 

related to the preparation of limb loading [441]. 

EMG, burst timing and durations (SS): The common EMG pattern of burst timing and durations observed in HP also 

observed in SS group, as shown in Appendix Figure  2 - (d3-d6). Although there are differences in terms of burst 

timing and durations, it may not be possible to relate these differences with SS group as a result of this pilot study. 

Because earlier EMG based studies reported that there are other crucial parameters, such as walking velocity and age 

that affects muscle burst timing and durations [442]. Additionally, the number of studies for muscle activation of SS 

during stair ambulation is very limited, unlike level walking. Thus, future works will investigate the muscle pattern of 

SS during stair ambulation with a larger cohort. 
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Appendix Figure  2. Stroke Gait. (D) stair ascent & descent extracted parameters from the proposed tool. (d1) left panel 

represents non paretic side knee flexion during stair ascent and right panel represent paretic side knee flexion during stair 

descent. (d2) left panel represents paretic side knee flexion during stair ascent and right panel represent non paretic side knee 

flexion during stair descent. Left panel of (d3-d6) presents typical lower limb muscle activations during stair ascent. Right panel 

of (d3-d6) presents typical lower limb muscle activations during stair descent. a.u, Arbitrary unit-peak normalised EMG 

 

Appendix Table 9. Spatiotemporal gait characteristics of SS ground level walking in indoor and outdoor for the right and left 

sides. SS (#3) paretic, non-paretic data is not presented due to failing to detect paretic side IC-FC moments. 

 Indoor Outdoor 

 Np P Np P 

 1 2  1 2  1 2  1 2  
RHYTHM   Averag

e 

  Averag

e 

  Averag

e 

  Averag

e 

Mean Step 
T.ime (s) 

0.558 0.57 0.564 0.754 0.575 0.6645 0.465 0.648 0.5565 0.63 0.606 0.618 

Mean Stance 

Time (s) 

0.83 0.673 0.7515 0.701 0.66 0.6805 0.736 0.427 0.5815 0.602 0.459 0.5305 

Mean Swing 

Time (s) 

0.48 0.467 0.4735 0.603 0.486 0.5445 0.425 0.503 0.464 0.528 0.545 0.5365 

VARIABILIT
Y 

            

Step Time 

Var (s) 

0.004 0.004 0.004 0.003 0.002 0.0025 0.007 0.007 0.007 0.002 0.005 0.0035 

Stance Time 

Var (s) 

0.003 0.001 0.002 0.004 0.004 0.004 0.001 0.001 0.001 0.001 0.001 0.001 

Swing Time 
Var (s) 

0.004 0.004 0.004 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 

Mean K.F.E 

angle (°) 

55.65

9 

63.06

5 

59.362 37.91

3 

36.30

8 

37.1105 57.16

4 

63.23

7 

60.2005 42.57

6 

38.31

1 

40.4435 

 (K.F.E) knee flexion angle (degree), Np=non paretic side, P=paretic side 
Bold indicate greater mean values comparing non paretic side to paretic side 
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Appendix Figure  3. Muscle activity pattern for stair ambulation, healthy participants, and stroke survivors 

 

 

 



 

 

 

146 | P a g e  
 

 

 

 

Appendix 6. Chapter 9 Supplementary Materials 

Appendix Table 10. Participants Demographics 

Id Age Height Weight BMI Id Age Height Weight BMI 

1 29 184 90 26.58318 6 25 178 80 25.24934 

2 26 182 78.5 23.69883 7 43 165 52 19.10009 

3 39 177 78 24.89706 8 37 174 75 24.7721 

4 24 186 115 33.24084 9 30 175 60 19.59184 

5 24 185 78 22.79036 10 29 163 85 31.99217 

Appendix Table 11.Validation results for slow walk speed 

Id Step-D1 Stride-D1 Step-R1 Stride-R1 Speed1 Step-D2 Stride-D2 Step-R2 Stride-R2 Speed2 

1 0.71 1.4 0.753 1.46 0.778 0.75 1.5 0.823 1.62 0.643 

2 0.7 1.34 0.707 1.39 0.934 0.7 1.38 0.707 1.49 0.889 

3 0.71 1.41 0.71 1.42 0.758 0.76 1.49 0.758 1.52 0.672 

4 0.67 1.34 0.682 1.34 0.887 0.69 1.38 0.706 1.39 0.852 

5 0.75 1.48 0.757 1.49 0.761 0.77 1.52 0.783 1.55 0.688 

6 0.72 1.4 0.72 1.43 0.785 0.73 1.45 0.73 1.5 0.739 

7 0.72 1.44 0.706 1.43 0.577 0.71 1.42 0.699 1.41 0.597 

8 0.63 1.25 0.637 1.25 0.774 0.59 1.15 0.608 1.19 0.889 

9 0.7 1.39 0.69 1.38 0.831 0.71 1.42 0.694 1.39 0.814 

10 0.76 1.45 0.766 1.52 0.663 0.74 1.48 0.743 1.51 0.656 

D: edge device, R: reference system, 1: first trial, 2: second trial 

 
Appendix Table 12.Validation results for normal walk speed 

Id Step-D1 Stride-D1 Step-R1 Stride-R1 Speed1 Step-D2 Stride-D2 Step-R2 Stride-R2 Speed2 

1 0.51 1.05 0.532 1.04 1.29 0.54 1.09 0.55 1.08 1.24 

2 0.59 1.21 0.59 1.16 1.22 0.58 1.18 0.579 1.14 1.23 

3 0.58 1.16 0.573 1.16 1.25 0.58 1.14 0.567 1.15 1.25 

4 0.57 1.14 0.572 1.14 1.19 0.57 1.14 0.572 1.14 1.2 

5 0.6 1.21 0.601 1.2 1.15 0.62 1.23 0.608 1.22 1.14 

6 0.57 1.16 0.56 1.13 1.2 0.56 1.13 0.55 1.12 1.22 

7 0.49 0.97 0.489 0.972 1.17 0.49 1 0.491 0.976 1.14 

8 0.57 1.14 0.565 1.11 1.08 0.55 1.14 0.563 1.11 1.09 

9 0.58 1.16 0.572 1.14 1.14 0.59 1.18 0.574 1.14 1.14 

10 0.55 1.11 0.543 1.09 1.14 0.51 1.07 0.531 1.07 1.2 

D: edge device, R: reference system, 1: first trial, 2: second trial 

 
Appendix Table 13.Validation results for fast walk speed 

Id Step-D1 Stride-D1 Step-R1 Stride-R1 Speed1 Step-D2 Stride-D2 Step-R2 Stride-R2 Speed2 

1 0.48 0.96 0.494 0.965 1.51 0.49 0.98 0.498 0.973 1.49 

2 0.54 1.04 0.539 1.05 1.46 0.53 1.06 0.539 1.06 1.45 

3 0.52 1.04 0.521 1.05 1.59 0.51 1.02 0.512 1.03 1.61 

4 0.51 1.04 0.51 1.01 1.52 0.5 0.99 0.504 1.01 1.5 

5 0.56 1.12 0.558 1.12 1.32 0.55 1.08 0.545 1.1 1.39 

6 0.51 1.01 0.5 1.01 1.48 0.49 0.99 0.49 0.99 1.52 

7 0.44 0.88 0.429 0.85 1.74 0.45 0.91 0.41 0.84 1.77 

8 0.53 1.05 0.527 1.04 1.34 0.51 1.02 0.514 1.01 1.38 

9 0.49 0.99 0.496 0.985 1.43 0.49 0.97 0.487 0.969 1.46 

10 0.49 0.98 0.486 0.973 1.45 0.47 0.95 0.471 0.94 1.52 

D: edge device, R: reference system, 1: first trial, 2: second trial 
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Appendix Figure  4. Bland-Altman plots for Step time during slow and fast walking speeds 

 

 
Appendix Figure  5. Bland-Altman plots for Stride time during slow and fast walking speeds 

 Appendix 7. Single & dual tasking 

Gait assessment beyond the lab is challenging for many reasons already presented. Of focus here is the 

concept of single and dual tasking and how that can impact gait characteristic interpretation. As described, gait 

changes observed in laboratory testing are associated with, and predictive of, numerous adverse health outcomes, 

including neurodegenerative diseases, cognitive decline, dementia, fall risk, and mortality [491-499]. Particularly, 

laboratory testing allows the control and/or experimental manipulation of the environment and task complexity 

through well-defined protocols, which are designed to simulate different situations of daily activities. The primary 

idea is to stress the locomotor system out to a point where walking difficulties become clearer and the underlying 

mechanisms quantifiable. Although numerous laboratory-based protocols have been proposed (e.g., obstacle 

avoidance, fast walking, dimed lighting, etc. [500-503]), the most common protocol involves single- and dual-

task walking.   

The dual-task paradigm has been extensively used to investigate the contribution of executive-attentional 

resources to the control of walking. In such a protocol, walking and a concurrent cognitive or motor task are 

performed separately (single-task condition) as well as simultaneously (dual-task condition). Performance must 

be quantified for both tasks in single-task and dual-task conditions [504]. To avoid the influence of order effect, 

the two conditions must be performed in random order or counter-balanced through participants. The walking task 

may include bouts of walking in a straight line, walking back and forth (with 180° turns) a given distance for a 

fixed number of times, walking continuously over an oval or semi-rectangular circuit for a fixed time/period or 

treadmill walking. Regarding the concurrent task, many have been used: counting backwards, serial subtractions, 

number recall, reverse number recall, digit vigilance, verbal fluency, handling objects and others. These concurrent 

tasks target different aspects of cognitive function, such as working memory, attention, and verbal functioning. 

Standardized instructions to participants are recommended as they may influence task prioritization [505, 506]. 
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The dual-task condition often yields a decrement in performance of one or both tasks compared to the single-task 

condition. The magnitude of the decrement, referred as “dual-task cost” or “dual-task interference”, is calculated 

relative to the single-task condition, in below Equation. 

Dual-task cost= (
single-task measure – dual-task measure

single-task measure
) × 100                                                                                        

  

The dual-task cost represents the interference between the two tasks that compete for resources from common 

brain networks, including the prefrontal cortex [503, 507-510]. Dual-task costs to walking include, but are not 

limited to, reduced speed, increased gait variability and poorer walking-adaptability e.g., obstacle avoidance [504, 

511-513]. When movement automaticity is preserved and lower levels of executive-attentional resources are 

required to control walking, which is the case for healthy individuals, the dual-task cost to walking is expected to 

be lower [510]. In contrast, the dual-task cost is expected to be greater when single walking requires increased 

levels of executive-attentional control [510], which is typically the case in neurological populations as a result of 

impaired automaticity [511, 513]. Greater dual-task cost is also expected in individuals with limited attentional-

executive resources as they may not have enough resources to deal with two simultaneous tasks. Although it is 

well known that dual-task walking ability declines with age [503, 514] and even more with neurological diseases 

[511, 513], there is still need for the development of normative data and disease-specific signatures [492, 513]. 

Accordingly, interpretation of gait characteristics from outdoor walking has many challenges to overcome before 

it can be robustly used to inform clinical practice or research trends in many clinical cohorts. 
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 

Abstract— The Sports Concussion Assessment Tool (SCAT) is 

a pen and paper-based evaluation tool for use by healthcare 

professionals in the acute evaluation of suspected concussion. 

Here we present a feasibility study towards instrumented SCAT 

(iSCAT). Traditionally, a healthcare professional subjectively 

counts errors according to SCAT marking criteria matrix. It is 

hypothesized that an instrumented version of the test will be 

more accurate while providing additional digital-based 

parameters to better inform player management. The feasibility 

study focuses on the SCAT physical functioning tasks only: 

double leg stance, single-leg stance, tandem stance and tandem 

gait. Amateur university rugby players underwent iSCAT 

testing and data were recorded with 8 inertial units attached at 

different anatomical locations. Video data were gathered 

simultaneously as reference. An iSCAT algorithm was used to 

detect errors and quantify additional concussion-based time and 

frequency domain parameters to assess participant stability 

during balance and gait tasks. Future work aims to instrument 

other SCAT features such as hand-eye coordination while 

deploying methods within a large concussion project. 

I. INTRODUCTION 

Concussion is common in contact sports (e.g. rugby) and 
returning to play before sufficient recovery increases risk of 
more serious secondary injury. Medical staff make return-to-
play decisions based on ‘snapshot’ post-injury subjective 
concussion assessment tools [1]. The 5th edition of the Sport 
Concussion Assessment Tool (SCAT5/SCAT) is the most 
recent revision/consensus of an evaluation tool for use by 
healthcare professionals in the acute evaluation of suspected 
concussion. The SCAT is a validated tool to evaluate post-
concussion symptoms in athletes and includes evaluation of 
response to different physical tasks that inform clinical 
concussion diagnosis. The physical assessments performed 
within the SCAT include double leg stance, single-leg stance, 
tandem stance for balance and tandem gait/walking [2]. 
Athletes are assessed based on the total number of errors they 
make during observation of the physical tasks. 

In the physical assessment stage, a healthcare professional 
manually counts the number of errors such as hands lifted off 
the iliac crest, step, stumble, fall, and lifting forefoot or heel, 
whilst using a stopwatch to time each task [2]. Accurately 
counting all errors during each test is challenging as they may 
occur simultaneously. This is problematic as an erroneous 
implementation of the test may lead to serious implications for 
athletes, such as failing to notice concussion in its early stages 
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that could lead to returning to play before full recovery. That 
could lead to subsequent future health problems or secondary 
injury.  

Wearable inertial measurement units (IMUs) are being 
used to facilitate the standardization of different physical 
assessments. IMUs provide objective rather than subjective 
assessment in addition to digital-based high resolution data not 
normally captured during routine clinical observation testing 
[3-5].   

Within this study, we develop and evaluate an IMU-based 
algorithm, capable of counting task errors, which provides an 
objective assessment for SCAT. Additionally, pragmatic 
digital-based balance parameters (e.g. sway) are extracted 
which may better inform an athlete's performance before 
taking important return-to-play decisions [6]. The contribution 
of this feasibility study focuses on the investigation of an 
algorithm to (1) instrument SCAT physical assessment tests 
for objective error detection, comparing results against a 
manual rater, and (2) propose IMU-based parameters for a 
more informative concussion assessment.  

II. MATERIAL AND METHODS 

A. Participants 
University-level rugby players were recruited during the 
academic sports season at Northumbria University. 
Assessment and instrumentation were carried out by a 
qualified physiotherapist and researcher, respectively. Ethical 
consent was granted by the Northumbria University Research 
Ethics Committee (REF: 16335/335). All players gave 
informed written informed consent before participating.  

 B. Equipment and IMU placement 
Each participant wore 8 tri-axial accelerometer and tri-axial 
gyroscope-based IMUs (AX6, Axivity: 23x32.5x8.9 mm, 
11g). IMUs recorded data at a sampling frequency of 100Hz 
(16-bit resolution) and at a range of ±8g. IMUs were located 
on the back (fifth lumbar vertebrae, L5, and seventh cervical 
vertebrae, C7), with the remaining 6 IMUs attached to the top 
of the right and left feet (RF, LF), midway on the right and left 
shank/legs (RL, LL) as well as right and left wrists (RW, LW).  

C. SCAT: Experimental protocol, physical tasks 
Assessments consisted of SCAT physical tasks, Figure 1: 

(a) Double leg stance, standing balance: Participants stood 
(eyes closed) with their feet together with hands-on the iliac 
crest, without shoes on a flat surface for 20 seconds (s). 
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(b) Single leg stance, standing balance: Participants stood 
(eyes closed) on their non-dominant foot with dominant leg 
held with 30° hip flexion, 45° knee flexion for 20s. Dominant 
foot movements (e.g. steps) were assessed via IMUs. 

(c) Tandem stance, standing balance: Participants stand 
heel-to-toe (i.e. non-dominant foot placed behind dominant). 
Participants were told to distribute their weight evenly across 
both feet and stand for 20s. 

(d) Tandem gait: Participants stand heel-to-toe, as above. 
Toes of one foot touch the heel of the next at each step. Each 
participant performed a quick 3m tandem walk (eyes open) as 
accurately as possible, turning 180° and returning (total 6m). 

 
Figure 1.  Test Illustrations (a) Double leg stance, (b) Single leg 

stance, (c) Tandem stance, (d) Tandem gait 

D.  iSCAT: Error detection 
Error 1: Hands lifted off iliac crest. Participants stand or walk 
with their hands on their hips. Error detection is performed by 
applying a selected threshold rate and moving average filter to 
the sum of gyroscope signals belonging to RW and LW in 
Medio Lateral (ML), Antero Posterior (AP) and Vertical axes 
(VA). A notable change (increasing or decreasing more than 
120°/s) was observed in both RW and LW and total error is 
calculated by counting the number of the absolute value of 
peaks (more than 120°/s) every 0.5s, Figure 2. 
 

 
Figure 2.  Detection of RW and LW hands lifted off iliac crest  

 

Error 2: Step, stumble, or fall. Non-dominant foot and leg IMU 
signals must be stable during standing tasks with the dominant 
leg having moving tolerance in all three dimensions. Thus, 
steps and stumbles are detected via IMUs attached to the 
dominant foot and leg. The number of errors are calculated by 
counting dominant foot strikes on the ground.   

Accordingly, accelerometer signals from RL in AP axis 
and RF in the VA axis represent the same directions because 
of the attachment locations, are added for a better detection 
where non-dominant foot is LF in the following example. Peak 
detection algorithm was used to detect two step-stumble errors 
(>4 m/s2), Figure 3. 

 
Figure 3.  Step-stumble detection 

Error 3: Moving hip into >30° abductions. In standing balance 
tasks (a) to (c), participants move their hips in ML and AP 
directions. Accelerometer and gyroscope data from L5 are 
used to estimate body tilt using the equation of complementary 
filter [7] given in the following: 

( ) 0.98*( ( 1) * ) 0.02( )angle i angle i gyro dt acc          (1) 

The initial angle was set to 90° for a clear understanding of 
arrow plotting, dt and i represent the derivation and sample 
number, whereas gyro and acc represent gyroscope and 
accelerometer data, respectively. Boundaries (green) were set 
to 60° and 120° to count the number of 30° abductions. The 
angles >120° and <60° are illustrated with black arrows using 
[20]. The participant here, experienced two abduction errors 
(10° and 2°) as illustrated with black arrows/lines, Figure 4. 

 
Figure 4.  30 ° abduction detection for a single participant 

 
Error 4: Lift forefoot or heel. Detected using RF and LF 
accelerometer and gyroscope data in AP-ML axes. Angles 
between foot and ground calculated using a complementary 
filter. During the stable balance tasks, computed RF and LF 
angles must be <5°, determined by manual observation via 
video. In this example, the initial foot angle is set to 90° and 
angles >95° and <85° are extracted for arrow illustration, 
Figure 5, where 5 forefoot-heel lifting errors detected (black 
arrows/lines).  

 
Figure 5.  Lifted forefoot – heel detection 
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Error 5: Out of test position for >5s: Detected when there is no 
significant change considering determined threshold rates and 
angles in all IMUs for >5s.  

E. IMU Algorithms and parameter extraction 

Currently, raw IMU data are manually segmented for each 

task in MATLAB®. Pre-processing for parameter extraction 

was implemented by a 4th order Butterworth low-pass filter, 

5Hz cut-off frequency. The following describes the 

aforementioned algorithms used to quantify the parameters. 

Standing balance: Accelerometer derivation (Jerk), Root 

Mean Square (RMS) and other standing balance parameters 

are listed in Table I. Additionally, accelerometer sway path is 

calculated, where the signal is represented with the ax, ay and 

az in the corresponding axes, and D is the height of the sensor 

attached to L5 in the z-axis. Sway area is calculated according 

to the convex hull of the data points [8, 9]. 

Tandem gait: Symmetry assessed according to peak 

points and step times using RL and LL IMU data. Tandem 

steps detected by setting a threshold (100°/s) in the ML axis. 

Then, step time calculated by extracting time between each 

set of steps. RL and LL step peaks during tandem gait are 

shown with red and blue circles, respectively (Figure 6). 

TABLE I.  SUMMARY OF EXTRACTED MEASURES 

Abbreviation Domain Description 

RMS (m/s2) Time Root mean square of signal 

2 2

1

1
( ..... )M MnRMS a a

n
 

 

Jerk (m2/s5) Time First derivative of acceleration signal 
2 2

0

1

2

t

PA MLda da
JERK

dt dt

   
    

   


 

Range (m/s2) Time Maximum distance between any two 

points of data 

PWR (m2/s4) Frequency Total power of the spectrum of the 

acceleration 

CF (Hz) Frequency Centroid frequency 

MA (m/s2) Time Mean acceleration 

SP (-) Time Sway  

path of 
accelerom

eter 

2 2 2

x y zA a a a  

1cos ( )xa

A
 

1cos ( )
ya

A
 

1cos ( )za

A
 

*cosxd D   

*cosyd D   

PL (m/s2) Time Path   
length of 

accelerom

eter 

SA (mm2/s5) Time Sway  

area of 

accelerom

eter 

 

 
Figure 6.  Step track of tandem gait in ML axis, RL and LL are 

presented with red and blue, respectively. 

III. RESULTS 
Four male rugby players (aged 19-22years) were recruited for 
SCAT assessment where physical tasks were conducted 
immediately after questions. The entire SCAT assessment 
took approximately 15 minutes/participant.  

A. Manual recording compared to iSCAT 
Table II shows good error agreements between manual 
recording and iSCAT for hands lifted off iliac crest and step-
stumble errors. However, upon examining video recordings, 
discrepancies were attributed to manual errors for hip 
abduction and lifting forefoot-heel errors since they are 
difficult to detect from manual observation during testing. In 
manual recording and iSCAT, a single leg stance (b) was the 
most challenging task for participants while double leg stance 
(a) was the easiest, based on the number of errors.  

TABLE II.  NUMBER OF ERRORS 

 Manual iSCAT 

Participant 
Number 

Task 
 (a)-(b)-(c) 

Total 
Errors 

Task 
 (a)-(b)-(c) 

Total 
Errors 

1 1-5-3 9 0-7-3 10 

2 0-4-0 4 0-4-1 5 

3 0-6-3 9 0-13-0 13 

4 0-10-4 14 0-13-3 16 

B. iSCAT plus: Standing balance parameters 
To investigate preliminary iSCAT parameter to best inform 
balance, we analysed L5 and C7 data and extracted parameters 
in AP and ML directions for each task. Jerk, Range and total 
power of signal parameters indicate that task (b) was more 
unstable and challenging compared to tasks (a) and (c) for all 
participants while task (a) parameters were slightly more 
stable than (c). The mean parameter values of participants are 
presented with standard deviations for each task, Table III.  

TABLE III.  EXTRACTED STANDING BALANCE PARAMETERS 

  TASK AP SD ML SD 

 

T 

I 

M 

E 

 

D 

O 

M 

A 

I 

N 

 

RMS 

a 0.928 0.105 0.071 0.051 

b 0.912 0.121 0.106 0.043 

c 0.909 0.126 0.091 0.044 

 

JERK 

a 0.172 0.023 0.175 0.128 

b 1.619 1.613 1.168 1.080 

c 0.460 0.527 0.279 0.149 

 

MV 

a 0.928 0.105 0.070 0.051 

b 0.910 0.121 0.089 0.042 

c 0.908 0.126 0.089 0.045 

 

RANGE 

a 0.297 0.085 - - 

b 1.160 0.660 - - 

c 0.504 0.119 - - 

 

F 
R 

E 

Q 

 

 

PWR 

a 2.411 0.790 - - 

b 3.717 3.188 - - 

c 2.128 0.903 - - 

 
CF 

a 0.885 0.117 - - 

b 0.899 0.126 - - 

c 0.906 0.129 - - 

 

 
S 

W 

A 
Y  

 TASK AREA SD - - 

SWAY 

PATH 
LENGTH 

a 2.434 0.571 - - 

b 2.036 0.504 - - 

c 1.992 0.477 - - 

SWAY 

AREA 

a 0.073 0.088 - - 

b 0.897 0.581 - - 

c 0.204 0.136 - - 
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C. iSCAT plus : Tandem gait 

Symmetry is evaluated considering step time and peak values. 

It was found that each participant performed a higher standard 

deviation of the peak, portraying asymmetry characteristics. 

Furthermore, the time taken to complete the tandem gait was 

extracted for each participant and could be used clinically as 

well as error rates. 

TABLE IV.  SYMMETRY PARAMETERS FOR TANDEM GAIT 

Participant 

Number 

Tandem Walking 

Time (s) 

RL-LL Step 

Time 

Peaks 

(SD) 

1 22.05  RL 1.65 35.94 

LL 1.73 11.44 

2 17.77  RL 1.85 20.80 

LL 1.78 20.05 

3 32.70  RL 2.43 17.93 

LL 2.45 7.76 

4 23.69 RL 2.11 23.38 

LL 2.09 7.78 

IV. DISCUSSION 

iSCAT is capable of facilitating objective and better informed 

concussion assessment, providing useful information such as 

error count but also symmetry and time to complete a tandem 

gait test. This could improve diagnostic processes [6]. 

Preliminary results showed that manual observation aligned 

with preliminary iSCAT methods for most error scoring, e.g. 

hands lifted from iliac crest. Although there were some 

differences, this was during very subtle movements relating 

to the heel rise and knee flexion errors. These are more 

challenging for a single physiotherapist to spot during live 

testing and so iSCAT showcased its potential use as a 

complete monitoring tool to aid player assessment. Indeed, 

we may see greater iSCAT accuracy in future work where we 

plan to use multiple physiotherapists for manual observations. 

iSCAT parameters showed similarity to previous IMU work 

in concussion, health controls [10-12] and other groups [4, 

13]. Yet, iSCAT encountered a few limitations such as not 

counting errors during very slow movements and so had 

difficultly discriminating when an error was made. For 

example, one player had his dominant foot very near the 

ground so any step error resulted in a movement that was 

small and not exceeding any iSCAT threshold. 

Previously [14-16], IMUs were used to assess gait and 

balance, including those with neurological conditions [13, 17, 

18]. Results here show similarity in terms of  mean error and 

medium similarity for tandem gait waking time [19]. Our 

feasibility study supports the growing evidence that IMU data 

could be useful to improve current clinical assessments [11]. 

Time and frequency domain parameters were extracted during 

tasks. Jerk, Range, Power of signal were sensitive and 

informative for each. In the iSCAT, balance measures for 

each task validated the accuracy of the number of errors 

calculated by the algorithm. More errors were detected in less 

stable (i.e. more challenging) tasks, i.e. single leg stance with 

greater errors observed. 

V. CONCLUSION 

Physical assessment tasks of the SCAT were instrumented 

using eight IMUs and novel algorithms. The latter has been 

able to automatically calculate errors during the physical tasks 

and has good agreement with standard reference of clinical 

observation. The proposed methodology has good potential 

for practical utility in sports related assessments but future 

work will aim to automate and streamline IMU data streams 

while instrumenting additional SCAT features. 
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Appendix 9. Developing and exploring a methodology for multi-modal indoor and outdoor gait 

assessment 
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 

Abstract— Gait assessment is emerging as a prominent way to 

understand impaired mobility and underlying neurological 

deficits. Various technologies have been used to assess gait inside 

and outside of laboratory settings, but wearables are the 

preferred option due to their cost-effective and practical use in 

both. There are robust conceptual gait models developed to ease 

the interpretation of gait parameters during indoor and outdoor 

environments. However, these models examine uni-modal gait 

characteristics (e.g., spatio-temporal parameters) only. Previous 

studies reported that understanding the underlying reason for 

impaired gait requires multi-modal gait assessment. Therefore, 

this study aims to develop a multi-modal approach using a 

synchronized inertial and electromyography (EMG) signals. 

Firstly, initial contact (IC), final contact (FC) moments and 

corresponding time stamps were identified from inertial data, 

producing temporal outcomes e.g., step time. Secondly, IC/FC 

time stamps were used to segment EMG data and define onset 

and offset times of muscle activities within the gait cycle and its 

subphases. For investigation purposes, we observed notable 

differences in temporal characteristics as well as muscle 

onset/offset timings and amplitudes between indoor and outdoor 

walking of three stroke survivors. Our preliminary analysis 

suggests a multi-modal approach may be important to augment 

and improve current inertial conceptual gait models by 

providing additional quantitative EMG data. 

I. INTRODUCTION 

Alterations in gait characteristics such as reduced step 
velocity, increased asymmetry in temporal parameters are 
common post-stroke, negatively impacting mobility and cause 
falls [1]. Following a stroke, 37% are able to walk 
independently, 12% can walk with assistance while 50% of 
patients have severe mobility impairment [2], such as 
asymmetrical gait. Therefore, regaining community-based 
ambulation has been identified as a major rehabilitation goal 
in clinics and rehabilitation centres. And gait assessment is 
commonly used to support rehabilitation programs by 
providing insight into postural stability, balance, and different 
aspects of impaired gait (e.g., muscle characteristics) [3].  

Various technologies such as motion capture systems, 
instrumented treadmills, walkways, force platforms, EMG 
have been used as a gold/reference system to monitor different 
aspects of human movement in clinics. However, the use of 
more than one reference/gold standard gait system brings 
complexities (e.g., synchronization) when needing to collect 

                                                           
Yunus Celik is supported by the Turkish Ministry of National Education 

and Faculty of Engineering and Environment, Northumbria University. Work 
was supported by the Private Physiotherapy Education Fund (RPJ03732). Dr 

Sam Stuart is supported by a Parkinson’s Foundation post-doctoral 

fellowship and clinical research award (PF-FBS-1898, PF-CRA-2073). 
Yunus Celik, Dylan Powell, Wai Lok Woo and Alan Godfrey are with the 

Computer and Information Sciences Department, Faculty of Engineering and 

diverse but complementary outcomes[4]. Thus, the number of 
studies investigating more than one physiological outcome 
remains limited. Consequently, failing to use multiple sensing 
modalities in gait studies is a limitation in the field, though 
studies have found clinically useful characteristics in EMG 
gait patterns for specific populations [5]. 

Contemporary wearables overcome the limitations of 
reference/gold standard systems by enabling multiple sensing 
modalities. Wearables also provide a cost-effective assessment 
of multiple gait characteristics for use during controlled 
environments (e.g., clinic/lab) and uncontrolled outdoor 
environments (e.g., home, garden). Previous studies developed 
free-living (outdoor) conceptual gait models using wearables 
to better understand the complexities in neurological gait and 
underlying mechanisms [6, 7]. Those models detail gait 
domains (e.g. pace) with subcategories of spatial and temporal 
characteristics (e.g., step velocity/time) [8]. Wearables 
offering numerous sensing modalities within a single wearable 
enables new opportunities to be taken, augmenting existing 
spatial and temporal gait models with additional data for more 
informed gait assessment. 

Within this developmental pilot study, we propose a 
methodology using IMU and EMG data within a single 
wearable. Here, we (i) develop the methodology in a small 
group of older stroke survivors and (ii) broadly examine use of 
the methodology to provide additional insight for indoor 
(laboratory) and outdoor (free-living) gait. Specifically, the 
harmonised approach can identify initial and final contacts 
(ICs/FCs), and subsequently, the onset/offset times and 
amplitudes of the muscle activities within the gait cycle sub-
phases. The main aim of this study is to provide a multi-modal 
outdoor gait assessment tool using the latest technology which 
overcome unimodal approaches of previous studies. 
Additionally, this pilot study contributes to preliminary 
investigation of muscle activity in the lower limb of those with 
stroke, by evaluating the relationship between temporal 
characteristics (e.g., swing times) and muscle characteristics 
(e.g., on/off set timing, amplitude) in indoor and outdoor 
environments.  

II. METHODS AND MEASUREMENTS 

A. Subjects and Design 
This pilot study recruited three male stroke survivors (72.3 ± 
3.1yrs, 78.5 ± 12.1kg, 176 ± 8.2cm). Assessment and 
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instrumentation were carried out by a physiotherapist and 
researcher, respectively. Ethical consent was granted by the 
Northumbria University Research Ethics Committee (REF: 
21603). All participants gave informed written consent before 
participating in this study.  

 B. Data collection and physical task procedures 
Each participant wore a single Shimmer3 EMG wearable 
(24.276 cm3, 23.6g) with a strap on the shank level of the less 
affected side (left for all). Skin preparation was performed 
with alcohol swabs to achieve better skin-electrode contact. 
Disposable surface electrodes (circular - Ag/AgCI, 
silver/silver chloride) were placed bilaterally (inter-electrode 
spacing ≈ 30mm) on clean skin according to SENIAM 
recommendations and locations: tibialis anterior (TA) and 
gastrocnemius (GS), with a reference electrode around the 
ankle (fibula) [9].  

The Shimmer3 wearable allows multi-modal capture of 
IMU and EMG data simultaneously. Signals were recorded at 
a sampling frequency of 512Hz, and the IMU was configured 
(16-bit resolution, ±8g, ±500°/s) prior to data collection. Here, 
participants were asked to perform (i) 2-minutes walking 
around a 20m circuit at their preferred self-selected speed 
inside the laboratory (ii) 20-minute scripted outdoor walking 
(free-living) with the same wearables. The free-living route 
consisted of a pre-defined route indoor and outdoor route, 
walking on different surfaces (e.g., laminate, asphalt). Data 
recorded during indoor and outdoor walking were analysed. 

III. DATA PROCESSING AND ANALYSIS  

IMU and EMG data were transferred to a workstation 
(Windows 10) from the Shimmer3 via proprietary software 
(Consensys). Custom programs (MATLAB®, R2018b; 
Mathworks, Natick, USA) analysed raw (sample level) IMU 
and EMG data. 

A. IC and FC detection: Temporal gait 
A previously validated method [10] was used, whereby shank 
sagittal plane angular velocity  was used to identify IC (i.e. 
heel strike) and FC (i.e. toe-off) and corresponding time 
stamps. In brief, wavelet decomposition (5th order coiflet with 
ten scales) was used to split the signal into low 
(approximation) and high frequency (details) components.  

Subsequently, drift and high-frequency movement 
artefacts were removed with an initial approximation. Then, 
two new approximations were obtained to enhance IC and FC 
events. For each approximation, the time corresponding to the 
global maximum (tms, mid-swing) of the signals were detected. 
Finally, IC/FC events were searched (local minima) in 
predetermined intervals [IC (tms+0.25s, tms+2s), FC (tms-2s, tms-
0.05s)]. Temporal gait parameters were estimated according to 
identified IC/FC events in the following equations where  is 

the number of the gait cycle (or stride). 

Stride time = IC(i+1) - IC(i)             (1) 

Stance time = FC(i) - IC(i)            (2) 

Swing time = IC(i+1) - FC(i)           (3) 

B. Electromyography processing: Segmentation  
Extracted IC and FC time stamps information were used to 
identify the sub-phases of the gait cycle (stance and swing 
phases). As Shimmer3 EMG provides synchronised IMU and 

EMG data, muscle activation characteristics were segmented 
for stance and swing phases using timestamp information. 
Once EMG data is segmented, appropriate filtering must be 
performed to ensure signals are physiological related and not 
corrupted by noise. Thus, all EMG data were bandpass filtered 
(zero-lag 4th-order Butterworth filter) with cut off frequencies 
of 20 Hz and 250 Hz, followed by full-wave rectification, and 
low-pass filtering (10 Hz, zero-lag 4th-order Butterworth) to 
achieve a smoother signal to identify muscle onset/offset. All 
EMG values for each subject underwent time normalisation 
(gait cycle %) and amplitude normalisation to the highest 
EMG value (Root Mean Square, RMS). 

C. EMG time domain features 

(i). Muscle activity/inactivity timing 
Detection of muscle onset/offset and overall level of activity 
in a muscle at any time is relatively identifiable from the linear 
envelope of raw EMG signals. There are various methods to 
extract the linear envelope of EMG signal such RMS, mean of 
moving window, and use of a set of filters along with 
rectification [4]. Once the linear envelope is extracted, muscle 
onset/offset can be detected via a predetermined threshold, 
manual observation, or clustering algorithms [11]. The latter 
finds resemblances between data points and groups these 
according to their similarities. 

Here, the filters introduced in Section III.B and full-wave 
rectification were used to extract the linear envelope of the 
EMG signal, while k-means clustering was used to search 
muscle bursts (onset). The reason for using k-means is that it 
does not require a priori setting of thresholds and has shown 
the ability to differentiate bursts (onset), even when bursts are 
short or have spike-like characters [12]. Similar to [13], each 
data point in the EMG linear envelopes are clustered into 
subsets of data using k-means. Then, EMG signals are 
dichotomized into periods of onset/offset according to the 
amplitude of each data point. Here, the numbers of centroids 
(clusters), which influence sensitivity was set to five after 
visual inspection for all EMG signals analysed [14]. Muscle 
offset is identified for the lowest two clusters whereas the 
remaining three clusters are accepted as muscle onset.  

(ii). Muscle activity amplitude analysis 
Root mean square (RMS) of an EMG signal represents the 
average power of muscle activation for a given period. RMS 
is used to extract the linear envelope and analyse variations in 
the amount of information between the abduction and 
adduction movements [15]. A linear relationship between the 
contraction force and the RMS value of the EMG signal was 
reported in previous studies [16]. Thus, normalized RMS 
values can be a useful parameter in terms of understanding 
physiological activity during contraction of lower limb 
muscles in gait assessment. 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑘

2𝑁
𝑘=1                                (4) 

where 𝑁 is the number of samples and 𝑥𝑘  is the k-sample.  

IV. RESULTS  

A. Temporal characteristics 
Temporal characteristics extracted in the laboratory and 
scripted outdoor are presented in Table 1.  Participant 1 and 3 
experienced a decrease in temporal parameters (stride, stance, 

i
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and swing time) during scripted outdoor compared to 
laboratory. Contrarily, Participant 2 experienced increased 
temporal parameters in outdoor compared to laboratory. Also, 
overall standard deviation in temporal parameters found 
higher during indoor walking compared to outdoor walking. 

TABLE 1. INDOOR AND OUTDOOR TEMPORAL CHARACTERISTICS 

 

 
Subjects Total 

Strides 

Stride T.  

Mean (SD) 

Stance T. 

Mean (SD) 

Swing T. 

Mean (SD) 

In
d

o
o
r 1 60 1.33 (0.22) 0.84 (0.22) 0.49 (0.06) 

2 76 1.25 (0.09) 0.82 (0.1) 0.42 (0.08) 

3 110 1.09 (0.04) 0.63 (0.04) 0.45 (0.05) 

O
u

td
o

o
r 1 245 1.11 (0.05) 0.67 (0.07) 0.43 (0.04) 

2 246 1.34 (0.06) 0.87 (0.07) 0.46 (0.06) 

3 247 1.03 (0.04) 0.60 (0.05) 0.43 (0.05) 

T.= Time (seconds) 

B. EMG on/off set timing 
From IC/FC events, corresponding muscle activities of TA and 
GS are extracted during gait cycle sub-phases. Muscle onset is 
shaded using raw EMG signals in Fig. 1(a). Onset and offset 
detection are performed by using k-means clustering algorithm 
after the linear envelope is extracted, Fig. 1(b).  

Muscle activity timing is extracted as percentage (%) of 
gait cycle (stride), stance and swing timings. Average of 
extracted time parameters are illustrated in Fig. 2 (a).  Average 
muscle on time durations is longer during lab for all subjects 
and both muscle groups compared to outdoor. TA muscle on-
time duration was found higher than GS across gait cycles for 
all stroke survivors. GS muscle was found more active during 
the stance phase, whereas TA muscle was more active during 
the swing phase. Also, the difference between the indoor and 
outdoor overall on-time duration of TA is minor, whereas the 
differences are noticeable for GS muscle. 

  

 
Fig 1. (a) On periods of raw EMG signal (shaded), (b) Detection of 

the on/off periods of muscle activity 

C. EMG-RMS parameters 
Intensity of muscle activities are normalized to peak RMS 
value in corresponding gait cycle and average RMS values are 
presented in Figure 2 (b). Amplitude (RMS) of GS is higher 
than TA in stance phase in both indoor and outdoor as 
expected [17].  All participant experienced increased RMS 
values in outdoor compared to lab assessment. Also, the RMS 
values of TA were found higher in swing phase compared to 
the stance phase. 

 
Fig 2. (a) Average-Stride-Stance-Swing (%) of muscle activity 

timing for TA and GS. (b) Average-Stride-Stance-Swing (mV) of 
peak muscle activity amplitude (RMS) for TA and GS  

V. DISCUSSION  
A multi-modal methodology is presented (Fig. 3) where raw 
IMU data helps identify the gait cycle and its sub phases by 
means of detecting IC/FC events which further segments 
synchronised EMG data. Our preliminary investigation (pilot 
study) shows that there are variances in the stride, stance, and 
swing times along with muscle characteristics in terms of 
temporal organisation of muscle onset/offset between indoor 
and outdoor. These differences may account for specific 
impairments and compensations in the lower limbs that 
contribute to poor gait quality [5].   

Underlying reasons for differences in temporal parameters 
include, environmental factors (e.g., walking terrain) on the 
generated IMU signals [18] and instability of the developed 
algorithm are possible dominant factors [19].  This could also 
be due to the fact that stroke survivors may change the way 
they walk (e.g., increased speed) while under observation in 
controlled lab environment [20].  

Muscle onset timings found shorter but more powerful for 
both muscle groups in all participants during outdoor 
compared to indoor. Changes in the temporal parameters, 
walking velocity and age may be associated with the variations 
in muscle activities during indoor walking [21]. However, the 
number of studies that investigate muscle activation level 
during outdoor is very limited [4] and so more research is 
needed to provide further insights. 

The developed methodology can contribute to the field by 
investigating how muscle characteristics change during 
outdoor walking. Investigation of muscle characteristics in gait 
sub-phases may help clinicians to better understand an 
individual's muscle characteristics such as muscle onset-offset 
timing and RMS during outdoor walking.  Conceptual gait 
models have been developed for ease of interpretation of gait 
assessment due to the redundancy of parameters and 
covariance amongst characteristics. The proposed models are 
developed based on spatiotemporal outcomes and do not 
include kinematic, kinetic or muscle activation characteristics, 
which could prove beneficial[4]. Previous limitations are 
complexity of design/instrumentation that is used to collect 
synchronized multiple gait characteristics in the indoor and 
outdoor. Therefore, the proposed multimodal approach here 
may contribute to the advancement of existing gait models by 
the integration of muscle characteristics. 

This study has certain limitations, primarily the population 
size. However, this study is designed as a pilot aiming not only 
to provide a less complex design with a single wearable 
compared to previous studies but also to provide highly useful
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Fig. 3. Developed methodology; (a) IMU data (angular velocity), (b) Calibrated raw TA-EMG signals, (c) Calibrated raw GS-EMG signals, (d) angular 

velocity signal with identified initial contact (dot) and final contact (star) in the zoomed time interval, (e, f) Segmented EMG signals and onset/offset of TA 

and GS in the zoomed time interval, respectively 

quantitative multiple gait characteristics in indoor and 

outdoor environments. Future studies will aim to increase the 

population size   and implement the methodology on various 

cohorts (e.g., Parkinson’s Disease). 

 

VI. CONCLUSION 
The methodology had promising potential for practical utility 
in multi-modal indoor and outdoor gait assessment. Integration 
of muscle characteristics into existing gait models can be more 
comprehensive and informative as muscle activity of the lower 
extremities during gait need to be well-coordinated to provide 
dynamic balance, propulsion, and foot clearance. Investigation 
of the validity on various cohorts with larger population size 
can contribute to field. 
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